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The equation of motion for a multi-degree-of-freedom system is

where
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is the mass matrix

is the damping coefficient matrix
is the stiffness matrix

is the displacement

The mass-normalized eigenvectors in column format are @
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Now consider a three-degree-of freedom system.

Derive a damping coefficient matrix as follows.

cll cl2 13 2E 101 0 0
®[c2l 22 c23|d=| 0 28mp O
cl3 c32 ¢33 0 0 28303
where
€j isthe damping ratio for mode i
oj is the natural frequency for mode i
cll cl2 c13 2810 0 0
®'c21 c22 c3|odl=| 0 260, 0 |0
cl3 ¢32 ¢33 0 0 28303
cll cl2 cl3| |2& o 0 0
®Tc2l 22 ¢23|=| 0 260, 0 |[@'M
cl3 c32 ¢33 0 0 28303
cll cl2 cl13 2810 0 0
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The method can be readily extended to systems with any number of degrees-of-freedom.

The resulting damping coefficient is symmetric.



