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The reader should review References 1 and 2 before reading this report. 
 
Introduction 
 
A common engineering practice is to calculate “equivalent static loads” for structures subjected 
to vibration.  The equivalent static loads are then used for static stress analysis and testing.1  The 
goal would be to evaluate the structure with respect to yield and ultimate stress criteria.  Fatigue 
would be another matter. 
 

The equivalent static approach yields error, however, because the resulting static deflection 
shape is different than the dynamic mode shape.  
 

The purpose of this analysis is to perform a case study using a cantilever beam, which has fixed-
free boundary conditions.  The beam is subject to base excitation which is applied at the fixed 
boundary. 
 
The beam will be driven by steady-state sinusoidal excitation.  The same principles, however, 
may be extended for other types of dynamic base excitation.    Random vibration is considered in 
Part II. 
 
Calculate the following: 
 

1. Equivalent static load at the free end 
2. Bending moment at the fixed boundary 

 

The stress at the fixed boundary is the ultimate metric of interest.  Stress is proportional to the 
bending moment, but the peak stress might also depend on a stress concentration factor.  Thus, 
only the bending moment is calculated for simplicity. 
 

                                                 
1  Imagine an engineering company that is designing and building a cantilever beam structure.  
Assume that the beam must withstand base excitation.  Further assume that company cannot 
perform a vibration test on the beam.  The reason could be that the company lacks a shaker table.  
Or the beam may be too large for a shaker table.   The company instead decides to apply a static 
load at the free end of the beam in order to prove that it can withstand the “equivalent” stresses 
from a dynamic base excitation. 
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Two equivalent static methods will be used to determine the force at the free end: 

 

1. Force =  (effective mass) x (inertial acceleration) 

2. Force =  (effective stiffness) x  (relative displacement) 
 
 

Again, each of the parameters in the above two bullets is at the free end. 
 

The respective bending moments will then be calculated at the fixed end. 
 

The equivalent static moments will then be compared to the moment calculated from a dynamic 
modal solution.    
 

The dynamic moment is considered to be the exact moment within the assumptions of this case 
study.  
 

The results will show  
 

1. The inertial acceleration method is rather unreliable. 
2. The relative displacement method is better but may still produce notable error. 

 
Thus, equivalent static testing and analysis methods are questionable for a cantilever beam 
subjected to sinusoidal base excitation.  At least this would be true for an “equivalent” static 
force applied at the free end.2   
 
 

Sample Beam 
 

Recall the beam used in the example in Reference 1.  The beam has the following parameters: 
 

Cross-Section Circular 

Boundary Conditions Fixed-Free 

Material Aluminum 
 

                                                 
2 A distributed force might be more effective if it yielded a deflection shape representative of the 
fundamental bending mode.  This would require an additional study. 
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Diameter D = 0.5 inch 

Cross-Section Area A = 0.1963 in^2 

Length L = 24 inch 

Area Moment of Inertia I = 0.003068 in^4 

Elastic Modulus E = 1.0e+07 lbf/in^2 

Stiffness  EI = 30680 lbf in^2 

Mass per Volume v  = 0.1 lbm / in^3  ( 0.000259 lbf sec^2/in^4 ) 

Mass per Length  = 0.01963  lbm/in (5.08e-05 lbf sec^2/in^2) 

Mass L = 0.471 lbm (1.22E-03  lbf sec^2/in) 

Viscous Damping Ratio  = 0.05 
 
 
Furthermore, the normal modes analysis from Reference 1 gave the following results for the first 
two modes 
 

 
Mode 

 
fn (Hz) 

 
Participation 

Factor 

Effective 
Modal Mass 

( lbf sec^2/in ) 

Effective 
Modal Mass 

( lbm ) 
1 23.86 0.02736 0.00074837 0.289 

2 149.53 0.01516 0.00022982 0.089 
 

 
Only the first mode is considered in this report as long as the excitation frequency is less than or 
equal to the fundamental frequency.   The second mode is include for a case where the excitation 
frequency is twice the fundamental frequency. 
 
Also note that two other length cases are considered in this report. 
 

Addition variables in this analysis are 
 

 

Equivalent Static Force at Free End F 

Bending Moment at Fixed End M 

Normalized Mode Shape )x(1Ŷ  

Displacement ),x(Y   

Base Excitation Frequency   

Base Acceleration )(W   

Spatial magnitude component of the 
absolute acceleration 

),x(U   
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Also note that    1j    . 
 
Assume that the base excitation is  
 

  2sec^/intsin386)(W   
 
The beam is driven with amplitude of 1 G.  Three frequency cases are considered.  Resonant 
excitation is considered in the main text.  Additional cases are considered in the appendices. 
 

 
 
Figure 1. 
 
 
Mode Shapes & Eigenvalues 
 

The cantilever beam has the following eigenvalue from Reference 1. 
 

87510.1L1                                                                                                         (1) 
 

L/87510.11                                                                                                     (2) 
 

in)/1(0.07811         for  L = 24 inch                                                             (3) 
 

 
The natural frequency 1  is calculated from 
 




EI2
11                                                                                                        (4) 
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The mode shape )x(1Ŷ and its derivates are 
 

 

    )x1sin()x1sinh(73410.0)x1cos()x1cosh(
L

1
)x(1Ŷ 














                           (5)                         

 
 

    )x1cos()x1cosh(73410.0)x1sin()x1sinh(
L

1)x(1Ŷ 















                         (6) 

 

    )x1sin()x1sinh(73410.0)x1cos()x1cosh(
L

2
1)x(1Ŷ 
















                         (7) 

 
 
The participation factor 1  is  

 

L7830.01                                                                                                                   (8) 

 
 
 
Part I:  Dynamic Moment at Fixed End 
 
The relative displacement is 
 
 

 
)(W

12j22
1

)x(1Ŷ1),x(Y 





















 


                                                                       (9) 

 
 
The second derivative of the displacement is 
 
 

 
)(W

12j22
1

)x(1Ŷ1),x(Y 





















 


                                                                          (10)                         
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 
)(W

12j22
1

)0(1Ŷ1),0(Y 





















 


                                                                           (11) 

 
 
The mode shape at the fixed end is 
 

  
L

2
12

)0(1Ŷ



                                                                                                                        (12) 

 
 

 
 
By substitution, 
 

 
)(W

12j22
1

1
L

2
12

),0(Y 





















 


















                                                              (13) 

 
 
 
The beam is driven at resonance such that 1 .   The resulting second derivative of the 
displacement is 
 
 

)1(W
2

12j

1
L

2
12

)1,0(Y 





















 


















                                                                            (14) 

 
 
The magnitude is 
 

)1(W
2

1

1
L

2
1)1,0(Y 
































                                                                            (15) 
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The bending moment at the fixed end is 
 
 

)1(W
2

1

1
L

2
1EI)1,0(YEIM 
































         at   x = 0                                       (16)                        

 
 
 

)1(W
L
1

2
1

2
1EI)1,0(YEIM 
































                                                                (17) 

 
 

7830.0
L

1 



                                                                                                              (18) 

 
 
The bending moment at the fixed end is 
 
 

   
 

  2sec^/in3867830.0
2rad/sec 149.92)05.0(

2)in/1(0781.0
in^2 lbf30680M












                              (19)          

  
 

M  =  50.3  in-lbf      for the  dynamic analysis                                                                     (20)                         
 
 
 

Part II:  Equivalent Static Force from Inertial Acceleration 
 
The equivalent static mass at the free end of the beam from Reference 2 is 
 

meff L 0 2235.                                                                                                               (21)  
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Again, the relative displacement is 
 
 

 
)(W

12j22
1

)x(1Ŷ1),x(Y 





















 


                                                                       (22) 

 
 
 
The relative acceleration )t,,x(Z   is  
 
 

 
)tjexp()(W

12j22
1

)x(1Ŷ1
2

)tjexp(),x(Ŷ2)t,,x(Z 





















 


                        (23)                        

 
 
 

The absolute acceleration )t,,x(V   is related to the relative acceleration as follows: 
 
 

)tjexp()(W)t,,x(V)t,,x(Z                                                                                         (23) 
 

 

 
)tjexp()(W

12j22
1

)x(1Ŷ1
2

)tjexp()(W)t,,x(V 





















 


                                (24)                         

 
 
Let ),x(U   be the spatial magnitude component of the absolute acceleration. 
 

)tjexp(),x(U)t,,x(V                                                                                              (25) 
 
 

 
)(W

12j22
1

)x(1Ŷ1
2

)(W),x(U 





















 


                                                        (26)     
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 
)(W)(W

12j22
1

)x(1Ŷ1
2

),x(U 





















 


                                                         (27)       

 
 
 

 
)(W1

12j22
1

)x(1Ŷ1
2

),x(U 









































 


                                                            (28)       

 
 
For resonant excitation  1 . 

 

)1(W1
2

12j

)x(1Ŷ1
2

1)1,x(U 






































 


                                                                       (29)    

 
 
 

  )1(W1
2j

)L(1Ŷ1)1,L(U 




























                                                                          (30)    

 
 
 

)1(W1
2

2

)L(1Ŷ1)1,L(U 
































                                                                  (31)   

 
 
The embedded term is 
 

      )L1sin()L1sinh(73410.0)L1cos()L1cosh(
L

1
L7830.0)L(1Ŷ1 














  

 
(32)   
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Recall 
 

87510.1L1                                                                                                                         (33) 
 
 

      )L1sin()L1sinh(73410.0)L1cos()L1cosh(7830.0)L(1Ŷ1                   (34) 
 
 

 )L(1Ŷ1 1.5660                                                                                                                  (35) 
 
 
The magnitude of the response acceleration is 
 
 

)1(W1
2

)05.0(2

1.5660
)1,L(U 























                                                                       (36)                         

 
 

  )1(W7.15)1,L(U                                                                                               (37)      

    
 
Thus 

1 G input = 15.7 G response                                                                                (38)      
 
 
The static equivalent mass at the free end is  
 

effm  (0.2235) (0.471 lbm) = 0.1053 lbm                                                         (39)      

 
 

F = 1.653 lbf           (Method II)                                                                            (40)                        
 

M = 39.7 in-lbf       (Method II)                                                                            (41)                        
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Part III:   Equivalent Static Force from Relative Displacement 
 
The relative displacement response is 
 
 

 
)(W

12j22
1

)x(1Ŷ1),x(Y 





















 


                                                              (42) 

 
 
The relative displacement at the free end is 

 

 
)(W

12j22
1

)L(1Ŷ1),L(Y 





















 


                                                              (43) 

 
 
The relative displacement at the free end of the beam for resonant excitation is 
 

)1(W
2

12j

)L(1Ŷ1)1,L(Y 





















 


                                                                                (44) 

 
 
The equivalent static stiffness at the free end of the beam is 
 

 
3L

EI3
k                                                                                                 (45)                        

 
 
The mode shape at the free end is 
 

 

    )L1sin()L1sinh(73410.0)L1cos()L1cosh(
L

1
)L(1Ŷ 














                     (46)                        
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    )87510.1sin()87510.1sinh(73410.0)87510.1cos()87510.1cosh(
L

1
)L(1Ŷ 














      

(47)                      
 
 

)L(1Ŷ












L

2
                                                                                                                       (48) 

 
 
Recall 

 

L7830.01                                                                                                                 (49) 

 
 

 
 

 
 2sec^/in386

2rad/sec 149.92)05.0(2

27830.0
)1,L(Y
























                                             (50)       

                        
 

)1,L(Y   = 0.267 in                                                                                                       (51)    

 
 
The equivalent static force at the free end is 
 

F = kx = 
3L

EI3
)1,L(Y      = 1.79 lbf            (Method III)                                           (52)                         

 
M  =  43.0  in-lbf          (Method III)                                                                               (53)                        
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Comparison of Results 
 

Table 1.  Effective Static Mass and Stiffness 

Length Natural 
Frequency 

Effective 
Static Mass 

Effective 
Static 

Stiffness 
(inch) (Hz) (lbm) (lbf/in) 

6 381.7 0.0263 426.1 
12 95.44 0.0527 53.26 
24 23.86 0.1053 6.66 

 
The effective mass and stiffness values are defined at the free end of the beam.  Note that the 
effective modal mass could have been used as an alternative. 
 
The bending moments in the following section apply at the fixed end. 
The forces apply the free end.  
 
 
Table 2.  Beam Driven at One-half Natural Frequency, Bending 
Moment at Fixed End 
Length Natural 

Frequency 
Method I 
Moment 

Method II 
Moment 

Method III 
Moment 

(inch) (Hz) (in-lbf) (in-lbf) (in-lbf) 
6 381.7 0.42 0.24 0.36 
12 95.44 1.7 0.96 1.4 
24 23.86 6.7 3.8 5.7 

 
 
 
Table 3.  Beam Driven at Natural Frequency, Bending Moment at 
Fixed End 
Length Natural 

Frequency 
Method I 
Moment 

Method II 
Moment 

Method III 
Moment 

(inch) (Hz) (in-lbf) (in-lbf) (in-lbf) 
6 381.7 3.2 2.5 2.7 
12 95.44 12.5 9.9 10.7 
24 23.86 50.4 39.7 43.0 
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Table 4.  Beam Driven at Twice Natural Frequency, Bending 
Moment at Fixed End (Two Modes) 
Length Fundamental 

Frequency 
Method I 
Moment 

Method II 
Moment 

Method III 
Moment 

(inch) (Hz) (in-lbf) (in-lbf) (in-lbf) 
6 381.7 0.074 0.19 0.094 
12 95.44 0.30 0.75 0.37 
24 23.86 1.2 3.0 1.5 

 
 
 
Equivalent Static Force 
 
 
Table 5.  Beam Driven at One-half Natural 
Frequency, Force at Free End 
Length Natural 

Frequency 
Method II 

Force 
Method III 

Force 
(inch) (Hz) (lbf) (lbf) 

6 381.7 0.04 0.06 
12 95.44 0.08 0.12 
24 23.86 0.16 0.24 

 
 
 
Table 6.  Beam Driven at Natural Frequency, Force 
at Free End 
Length Natural 

Frequency 
Method II 

Force 
Method III 

Force 
(inch) (Hz) (lbf) (lbf) 

6 381.7 0.41 0.45 
12 95.44 0.83 0.90 
24 23.86 1.65 1.79 
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Table 7.  Beam Driven at Twice Natural Frequency, 
Force at Free End (Two Modes) 
Length Fundamental 

Frequency 
Method II 

Force 
Method III 

Force 
(inch) (Hz) (lbf) (lbf) 

6 381.7 0.03 0.015 
12 95.44 0.06 0.03 
24 23.86 0.12 0.06 

 
Note that each of the nine permutations was carried out using a modified version of the Matlab 
script:  cantilever_beam.m. 
 
Conclusion 
 

Method II, Inertial Acceleration Force 
 
Method II yielded a bending moment at the fixed end which was lower than the dynamic bending 
mode for the cases where the base excitation frequencies were less than or equal to the 
fundamental frequency.  On the other hand, the Method II bending moment was 8 dB higher than 
the dynamic moment when the base excitation frequency was twice the fundamental frequency.    
 
Method II is thus unreliable. 
 
Method III, Relative Displacement Force 
 
Method III also yielded a bending moment at the fixed end which was lower than the dynamic 
bending mode for the cases where the base excitation frequencies were less than or equal to the 
fundamental frequency. The Method II bending moment was 2 dB higher than the dynamic 
moment when the base excitation frequency was twice the fundamental frequency.    
 
 
Comparison of Methods II & III 
 
Method III was more reliable than Method II for each of the nine permutations.  But neither of 
the methods was satisfactory.  Further developments of these methods are needed if they are to 
be used at all. 
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APPENDIX A 
 

Beam Driven at One-half Natural Frequency, Matlab Output 
 
 
 
6 inch Length 
 
Base excitation =        1 G at    190.9 Hz 
 
 Response at x=       6 inch  
 
   Accel =     1.52 G 
   Rel Disp = 0.0001398 in  
 
   Bending Moment at fixed end =   0.4188 in-lbf 
  
 Method II  
F= 0.04002 lbf  M=  0.2401 in-lbf 
  
 Method III  
F= 0.05956 lbf  M=  0.3574 in-lbf 
 
12 inch Length 
 
Base excitation =        1 G at    47.72 Hz 
 
 Response at x=      12 inch  
 
   Accel =     1.52 G 
   Rel Disp = 0.002236 in  
 
   Bending Moment at fixed end =    1.675 in-lbf 
  
 Method II  
F= 0.08005 lbf  M=  0.9606 in-lbf 
  
 Method III  
F=  0.1191 lbf  M=   1.429 in-lbf 
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24 inch Length 
 
Base excitation =        1 G at    11.93 Hz 
 
 Response at x=      24 inch  
 
   Accel =     1.52 G 
   Rel Disp =  0.03578 in  
 
   Bending Moment at fixed end =    6.701 in-lbf 
  
 Method II  
F=  0.1601 lbf  M=   3.842 in-lbf 
  
 Method III  
F=  0.2382 lbf  M=   5.718 in-lbf 
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APPENDIX B 

 
 

Beam Driven at Natural Frequency, Matlab Output 
 
 
6 inch Length 
 
Base excitation =        1 G at    381.7 Hz 
 
 Response at x=       6 inch  
 
   Accel =    15.69 G 
   Rel Disp = 0.001051 in  
 
   Bending Moment at fixed end =    3.148 in-lbf 
  
 Method II  
F=  0.4132 lbf  M=   2.479 in-lbf 
  
 Method III  
F=  0.4477 lbf  M=   2.686 in-lbf 
 
 
12 inch Length 
 
 Base excitation =        1 G at    95.44 Hz 
 
 Response at x=      12 inch  
 
   Accel =    15.69 G 
   Rel Disp =  0.01681 in  
 
   Bending Moment at fixed end =    12.59 in-lbf 
  
 Method II  
F=  0.8263 lbf  M=   9.916 in-lbf 
  
 Method III  
F=  0.8954 lbf  M=   10.74 in-lbf 
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24 inch Length 
 
 Base excitation =        1 G at    23.86 Hz 
 
 Response at x=      24 inch  
 
   Accel =    15.69 G 
   Rel Disp =    0.269 in  
 
   Bending Moment at fixed end =    50.37 in-lbf 
  
 Method II  
F=   1.653 lbf  M=   39.66 in-lbf 
  
 Method III  
F=   1.791 lbf  M=   42.98 in-lbf 
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APPENDIX C 

 
Beam Driven at Twice Natural Frequency, Matlab Output 

 
 
6 inch Length 
 
Base excitation =        1 G at    763.5 Hz 
 
 Response at x=       6 inch  
 
   Accel =    1.185 G 
   Rel Disp = 3.659e-005 in  
 
   Bending Moment at fixed end =  0.07396 in-lbf 
  
 Method II  
F= 0.03119 lbf  M=  0.1872 in-lbf 
  
 Method III  
F= 0.01559 lbf  M= 0.09354 in-lbf 
 
 
12 inch Length 
 
 Base excitation =        1 G at    190.9 Hz 
 
 Response at x=      12 inch  
 
   Accel =    1.185 G 
   Rel Disp = 0.0005854 in  
 
   Bending Moment at fixed end =   0.2958 in-lbf 
  
 Method II  
F= 0.06239 lbf  M=  0.7487 in-lbf 
  
 Method III  
F= 0.03118 lbf  M=  0.3742 in-lbf 
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24 inch Length 
 
Base excitation =        1 G at    47.72 Hz 
 
 Response at x=      24 inch  
 
   Accel =    1.185 G 
   Rel Disp = 0.009366 in  
 
   Bending Moment at fixed end =    1.183 in-lbf 
  
 Method II  
F=  0.1248 lbf  M=   2.995 in-lbf 
  
 Method III  
F= 0.06236 lbf  M=   1.497 in-lbf 


