#### THE FAST FOURIER TRANSFORM (FFT)

By Tom Irvine Email: tomirvine@aol.com

November 15, 1998

### INTRODUCTION

The Fourier transform is a method for representing a time history signal in terms of a frequency domain function. Specifically, the Fourier transform represents a signal in terms of its spectral components.

The Fourier transform is a complex exponential transform which is related to the Laplace transform.

The Fourier transform is also referred to as a trigonometric transformation since the complex exponential function can be represented in terms of trigonometric functions. Specifically,

$$\exp[j\omega t] = \cos(\omega t) + j\sin(\omega t)$$
(1a)

$$\exp[-j\omega t] = \cos(\omega t) - j\sin(\omega t)$$
(1b)

The Fourier transform is often applied to digital time histories. The time histories are sampled from measured analog data.

The transform calculation method, however, requires a relatively high number of mathematical operations. As an alternative, a Fast Fourier transform (FFT) method has been developed to simplify this calculation. The purpose of this tutorial is to present a Fast Fourier transform algorithm.

Background theory is presented prior to the FFT algorithm.

## FOURIER TRANSFORM THEORY

#### **Formulas**

The Fourier transform X(f) for a continuous time series x(t) is defined as

$$X(f) = \int_{-\infty}^{\infty} x(t) \exp[-j2\pi f t] dt$$
(2)

where  $-\infty < f < \infty$ 

Thus, the Fourier transform is continuous over an infinite frequency range. The inverse transform is

$$\mathbf{x}(t) = \int_{-\infty}^{\infty} \mathbf{X}(t) \exp[+j2\pi f t] df$$
(3)

Equations (2) and (3) are taken from Reference 1. Note that X(f) has dimensions of [amplitude-time].

Also note that X(f) is a complex function. It may be represented in terms of real and imaginary components, or in terms of magnitude and phase.

The conversion is made as follows for a complex variable V.

$$V = a + jb \tag{4}$$

Magnitude V = 
$$\sqrt{a^2 + b^2}$$
 (5)

Phase 
$$V = \arctan(b/a)$$
 (6)

Example

Consider a sine wave

$$\mathbf{x}(t) = \mathbf{A}\sin\left[2\pi\,\hat{\mathbf{f}}\,t\right] \tag{7}$$

where

The Fourier transform of the sine wave is

$$X(f) = \left\{\frac{jA}{2}\right\} \left\{-\delta \left(f - \hat{f}\right) + \delta \left(-f - \hat{f}\right)\right\}$$
(8)

where  $\boldsymbol{\delta}$  is the Dirac delta function.

The derivation is given in Appendix A. The Fourier transform is plotted in Figure 1.

Figure 1. Fourier Transform of Sine Wave The transform of a sine wave is purely imaginary.

On the other hand, the Fourier transform of a cosine wave is

$$X(f) = \left\{\frac{A}{2}\right\} \left\{\delta\left(f - \hat{f}\right) + \delta\left(-f - \hat{f}\right)\right\}$$
(9)

The Fourier transform is plotted in Figure 2.



Figure 2. Fourier Transform of Cosine Wave

The transform of a cosine wave is purely real.

#### **Characteristics**

The plots in Figures 1 and 2 demonstrate two characteristics of the Fourier transforms of real time history functions:

- 1. The real Fourier transform is symmetric about the f = 0 line.
- 2. The imaginary Fourier transform is antisymmetric about the f = 0 line.

### DISCRETE FOURIER TRANSFORM

#### Formulas

The following equation set is taken from Reference 2.

The Fourier transform F(k) for a discrete time series x(n) is

$$F(k) = \frac{1}{N} \sum_{n=0}^{N-1} \left\{ x(n) \exp\left(-j\frac{2\pi}{N}nk\right) \right\}, \quad \text{for } k = 0, 1, ..., N-1$$
(10)

where

N is the number of time domain samples, n is the time domain sample index, k is the frequency domain index.

Note that the frequency increment  $\Delta f$  is equal to the time domain period T as follows

$$\Delta f = \frac{1}{T} \tag{11}$$

The frequency is obtained from the index parameter k as follows

frequency (k) = 
$$k\Delta f$$
 (12)

Note that F(k) has dimensions of [amplitude]. An alternate form which has dimensions of [amplitude-time] is given in Appendix B.

The corresponding inverse transform is

$$x(n) = \sum_{k=0}^{N-1} \left\{ F(k) \exp\left(+j\frac{2\pi}{N}nk\right) \right\}, \quad \text{for } n = 0, 1, \dots, N-1$$
(13)

A characteristic of the discrete Fourier transform is that the frequency domain is taken from 0 to  $(N-1)\Delta f$ . The line of symmetry is at a frequency of

$$\left[\frac{N-1}{2}\right]\Delta f \tag{14}$$

Example

The discrete Fourier transform of a sine wave is given in Figure 3.



IMAGINARY DISCRETE FOURIER TRANSFORM OF  $x(t) = 1 \sin [2\pi (1 \text{ Hz}) t]$ 

Figure 3. Fourier Transform of a Sine Wave

Note that the sine wave has a frequency of 1 Hz. The total number of cycles is 512, with a resulting period of 512 seconds. Again, the Fourier transform of a sine wave is imaginary and antisymmetric.

#### Nyquist Frequency

Note that the line of symmetry in Figure 3 marks the Nyquist frequency. The Nyquist frequency is equal to one-half of the sampling rate. Shannon's sampling theorem states that a sampled time signal must not contain components at frequencies above half the Nyquist frequency, from Reference 3.

#### Spectrum Analyzer Approach

Spectrum analyzer devices typically represent the Fourier transform in terms of magnitude and phase rather than real and imaginary components. Furthermore, spectrum analyzers typically only show one-half the total frequency band due to the symmetry relationship. The spectrum analyzer amplitude may either represent the *half-amplitude* or *the full-amplitude* of the spectral components. Care must be taken to understand the particular convention of the spectrum analyzer.

The full-amplitude Fourier transform would be calculated as

$$\hat{F}(k) = \begin{cases} \left[\frac{1}{N}\right] \sum_{n=0}^{N-1} \{x(n)\}, & \text{for } k = 0\\ \left[\frac{2}{N}\right] \sum_{n=0}^{N-1} \{x(n) \exp\left(-j\frac{2\pi}{N}nk\right)\}, & \text{for } k = 1, ..., \frac{N}{2} - 1 \end{cases}$$

with N as an even integer.

(15)

Note that k=0 is a special case. The Fourier transform at this frequency is already at full-amplitude.

For example, a sine wave with an amplitude of 1 volt and a frequency of 100 Hz would simply have a full-amplitude Fourier magnitude of 1 volt at 100 Hz.

#### FAST FOURIER TRANSFORM

## Number of Data Points

The approach in the following derivation assumes that the number of time history data points is equal to  $2^{N}$ , where N is an integer.

## Weighting Factors

The following derivation is based on Reference 4.

Define a weighting factor W as

$$W = \exp\left(-j\frac{2\pi}{N}\right)$$
(16a)

$$W^{m} = \exp\left(-j\frac{2\pi m}{N}\right)$$
(16b)

The discrete Fourier transform becomes

$$F(k) = \frac{1}{N} \sum_{n=0}^{N-1} \left\{ x(n) W^{nk} \right\}, \quad \text{for } k = 0, 1, ..., N-1$$
(17)

The matrix representation is

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ \vdots \\ F(N-1) \end{bmatrix} = \frac{1}{N} \begin{bmatrix} W^0 & W^0 & W^0 & \cdots & W^{0(N-1)} \\ W^0 & W^1 & W^2 & \cdots & W^{1(N-1)} \\ W^0 & W^2 & W^4 & \cdots & W^{2(N-1)} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ W^0 & W^{1(N-1)} & W^{2(N-1)} & \cdots & W^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(N-1) \end{bmatrix}$$
(18)

Note that the W matrix in equation (13) is symmetric. Also note

$$W^0 = 1 \tag{19}$$

# Equation (13) simplifies to

| F(0)                  | [              | 1 | 1              | 1            | ••• | 1                  | x(0)   |
|-----------------------|----------------|---|----------------|--------------|-----|--------------------|--------|
| F(1)                  |                | 1 | $\mathrm{W}^1$ | $W^2$        |     | $W^{1(N-1)}$       | x(1)   |
| F(2)                  | $=\frac{1}{1}$ | 1 | $W^2$          | $W^4$        |     | $W^{2(N-1)}$       | x(2)   |
|                       | N              | ÷ | :              | :            |     | ÷                  |        |
| $\left[F(N-1)\right]$ |                | 1 | $W^{l(N-l)}$   | $W^{2(N-1)}$ |     | $W^{(N-1)(N-1)}$ _ | x(N-1) |
|                       |                |   |                |              |     |                    | (20)   |

# Unit Circle

Note that W<sup>m</sup> is a point on the unit circle, with an angle m times the size of the angle W. A sample unit circle is shown in Figure 4.



Figure 4. Unit Circle for N=16

Recall that 
$$W^m = \exp\left(-j\frac{2\pi m}{N}\right)$$

# Even and Odd Representation

Recall the Fourier transformation

$$F(k) = \frac{1}{N} \sum_{n=0}^{N-1} \left\{ x(n) W^{nk} \right\}, \quad \text{for } k = 0, 1, ..., N-1$$
(21)

Now break the series up into its even and odd terms.

$$F(k) = \frac{1}{N} \left\{ \sum_{n=0}^{N-1} \left\{ x(2n)W^{2nk} \right\} + \sum_{n=0}^{N-1} \left\{ x(2n+1)W^{(2n+1)k} \right\} \right\},$$
  
for k = 0, 1, ..., N-1 (22)

Equation (22) can be simplified as shown in the following steps.

$$F(k) = \frac{1}{N} \left\{ \sum_{n=0}^{N-1} \left\{ x(2n)W^{2nk} \right\} + \sum_{n=0}^{N-1} \left\{ x(2n+1)W^{2nk}W^k \right\} \right\},\$$

for 
$$k = 0, 1, ..., N - 1$$

(23)

$$F(k) = \frac{1}{N} \left\{ \sum_{n=0}^{\frac{N}{2}-1} \left\{ x(2n)W^{2nk} \right\} + W^{k} \sum_{n=0}^{\frac{N}{2}-1} \left\{ x(2n+1)W^{2nk} \right\} \right\},$$
  
for k = 0, 1, ..., N - 1

(24)

$$F(k) = \frac{1}{N} \left\{ A(k) + W^{k} B(k) \right\}$$
(25)

where

$$A(k) = \sum_{n=0}^{\frac{N}{2}-1} \left\{ x(2n)W^{2nk} \right\}$$
$$B(k) = \sum_{n=0}^{\frac{N}{2}-1} \left\{ x(2n+1)W^{2nk} \right\}$$

for k = 0, 1, ..., N - 1

The term A(k) is an N/2 transformation over the even indexed data points. The term B(k) is an N/2 point transform over the odd indexed data points.

Note that stepping around the unit circle to pick up the complex coefficients now steps across every other angle. In other words,

$$W^{m} = \exp\left(-j\frac{2\pi m}{N}\right)$$
(26)

$$W^{2m} = \exp\left(-j\frac{2\pi 2m}{N}\right)$$
(27)

$$W^{2m} = \exp\left(-j\frac{2\pi m}{N/2}\right)$$
(28)

Thus, only N/2 angles are required to transform a time history with N points.

Now consider  $W^{\left(k+\frac{N}{2}\right)}$ , the transform point halfway through the list of output points.

Substituting this argument,

$$F\left(k+\frac{N}{2}\right) = A\left(k+\frac{N}{2}\right) + W^{\left(k+\frac{N}{2}\right)} B\left(k+\frac{N}{2}\right)$$
(29)

Note that

$$W^{\left(k+\frac{N}{2}\right)} = \exp\left(-j\frac{2\pi}{N}\left(k+\frac{N}{2}\right)\right)$$
(30)

$$W^{\left(k+\frac{N}{2}\right)} = \exp\left(-j\frac{2\pi k}{N}\right)\exp\left(-j\pi\right)$$
(31)

$$W^{\left(k+\frac{N}{2}\right)} = \exp\left(-j\frac{2\pi k}{N}\right)\left[\cos(\pi) - j\sin(\pi)\right]$$
(32)

$$W^{\left(k+\frac{N}{2}\right)} = -\exp\left(-j\frac{2\pi k}{N}\right)$$
(33)

$$W^{\left(k+\frac{N}{2}\right)} = -W^k \tag{34}$$

Recall

$$A(k) = \sum_{n=0}^{\frac{N}{2}-1} \left\{ x(2n) W^{2nk} \right\}$$
(35)

$$A\left(k+\frac{N}{2}\right) = \sum_{n=0}^{\frac{N}{2}-1} \left\{ x(2n)W^{2n\left(k+\frac{N}{2}\right)} \right\}$$
(36)

$$A\left(k + \frac{N}{2}\right) = \sum_{n=0}^{\frac{N}{2}-1} \left\{ x(2n) W^{2nk} W^{nN} \right\}$$
(37)

Note

$$W^{nN} = \exp\left(-j\frac{2\pi nN}{N}\right)$$
(38)

$$W^{nN} = \exp(-j2\pi n)$$
(39)

$$W^{nN} = \cos(2\pi n) - j\sin(2\pi n)$$
(40)

The n term is an integer. Thus

$$W^{nN} = 1 \tag{41}$$

Substituting equation (36) into equation (32),

$$A\left(k + \frac{N}{2}\right) = \sum_{n=0}^{\frac{N}{2}-1} \left\{ x(2n)W^{2nk} \right\}$$
(42)

Thus,

$$A(k) = A\left(k + \frac{N}{2}\right)$$
(43)

Similarly,

$$\mathbf{B}(\mathbf{k}) = \mathbf{B}\left(\mathbf{k} + \frac{\mathbf{N}}{2}\right) \tag{44}$$

Substitute equations (34), (43), and (44) into (25).

$$F\left(k+\frac{N}{2}\right) = \frac{1}{N} \left\{ A(k) - W^{k} B(k) \right\}$$
(45)

In summary, the Fourier transform is reduced to the following pair of equations

$$F(k) = \frac{1}{N} \left\{ A(k) + W^{k} B(k) \right\}$$
(46)

$$F\left(k+\frac{N}{2}\right) = \frac{1}{N} \left\{ A(k) - W^{k} B(k) \right\}$$
(47)

with k=0, 1, 2, ...., 
$$\frac{N}{2} - 1$$

This pair of equations forms the basis of the FFT algorithm.

The equations form a *butterfly* as shown in Figure 5.



Figure 5. Butterfly Concept

The final division by N is omitted for brevity.

Figure 5 can be simplified as shown in Figure 6.



Figure 6. Equivalent Butterfly

The butterfly in Figure 6 significantly reduces the number of calculations required for the Fourier transform, particularly for large data sets.

## **Binary Reversal**

Binary reversal of the time history is necessary to expedite the FFT calculation, as is shown in the following examples. Binary reversal is discussed further in Appendix C.

## N=2 Example

Consider the specific case for N=2.

$$A(k) = \sum_{n=0}^{0} \left\{ x(2n) W^{2nk} \right\}$$
 (48)  
for k = 0, 0

$$A(0) = x(0)$$
 (49)

$$B(k) = \sum_{n=0}^{0} \left\{ x(2n+1)W^{2nk} \right\}$$
(50)

$$B(0) = x(1)$$
 (51)

Now substitute equations (49) and (51) into (46),

$$F(0) = \frac{1}{2} \left\{ A(0) + W^{0} B(0) \right\}$$
(52a)

$$F(0) = \frac{1}{2} \left\{ x(0) + W^{0} x(1) \right\}$$
(52b)

Substitute equations (49) and (51) into (47),

$$F(1) = \frac{1}{2} \left\{ A(1) - W^{0} B(1) \right\}$$
(53a)

$$F(1) = \frac{1}{2} \left\{ x(0) - W^{0} x(1) \right\}$$
(53b)

Equations (52b) and (53b) are shown in the butterfly diagram in Figure 7.



Figure 7. Butterfly for N=2

## N=4 Example

Consider the specific case for N=4.

$$A(k) = \sum_{n=0}^{1} \left\{ x(2n) W^{2nk} \right\}$$
(52)

for 
$$k = 0, 1$$

$$A(0) = x(0) + x(2)$$
(53)

$$A(1) = x(0) + x(2)W^{2}$$
(54a)

$$W^2 = -1 \tag{54b}$$

$$A(1) = x(0) - x(2)$$
(54c)

$$B(k) = \sum_{n=0}^{1} \left\{ x(2n+1)W^{2nk} \right\}$$
(55)

$$B(0) = x(1) + x(3)$$
(56)

$$B(1) = x(1) + x(3)W^{2}$$
(57a)

$$B(1) = x(1) - x(3)$$
(57b)

By substitution

$$F(0) = \frac{1}{4} \left\{ A(0) + W^{0} B(0) \right\}$$
(58a)

$$F(0) = \frac{1}{4} \left\{ x(0) + x(2) + W^{0} \left[ x(1) + x(3) \right] \right\}$$
(58b)

$$F(1) = \frac{1}{4} \left\{ A(1) + W^{1} B(1) \right\}$$
(59a)

$$F(1) = \frac{1}{4} \left\{ \left[ x(0) - x(2) \right] + W^{1} \left[ x(1) - x(3) \right] \right\}$$
(59b)

$$F(2) = \frac{1}{4} \left\{ A(0) - W^{0}B(0) \right\}$$
(60a)

$$F(2) = \frac{1}{4} \left\{ x(0) + x(2) - W^{0} \left[ x(1) + x(3) \right] \right\}$$
(60b)

$$F(3) = \frac{1}{4} \left\{ A(1) - W^{1} B(1) \right\}$$
(61a)

$$F(3) = \frac{1}{4} \left\{ \left[ x(0) - x(2) \right] - W^{1} \left[ x(1) - x(3) \right] \right\}$$
(61b)

Summary

$$F(0) = \frac{1}{4} \left\{ \left[ x(0) + x(2) \right] + W^0 \left[ x(1) + x(3) \right] \right\}$$
(62a)

$$F(1) = \frac{1}{4} \left\{ \left[ x(0) - x(2) \right] + W^{1} \left[ x(1) - x(3) \right] \right\}$$
(62b)

$$F(2) = \frac{1}{4} \left\{ \left[ x(0) + x(2) \right] - W^0 \left[ x(1) + x(3) \right] \right\}$$
(62c)

$$F(3) = \frac{1}{4} \left\{ \left[ x(0) - x(2) \right] - W^{1} \left[ x(1) - x(3) \right] \right\}$$
(62d)



Figure 8. Butterfly for N=4

The four-point Fourier transform is composed of a pair of two-point transforms. The outputs of the two-point transforms are combined to create the four-point transform.

## N=8 Example

Consider the specific case for N=8. The unit circle is shown in Figure 9.



Figure 9. Unit Circle for N=8

Now determine the A coefficients

$$A(k) = \sum_{n=0}^{3} \left\{ x(2n) W^{2nk} \right\}$$
 (63)  
for k = 0, 1, 2, 3

$$A(0) = x(0) + x(2) + x(4) + x(6)$$
(64)

$$A(1) = x(0) + x(2)W^{2} + x(4)W^{4} + x(6)W^{6}$$
(65)

$$A(2) = x(0) + x(2)W^{4} + x(4)W^{8} + x(6)W^{12}$$
(66)

$$A(3) = x(0) + x(2)W^{6} + x(4)W^{12} + x(6)W^{18}$$
(67)

The unit circle yield the following equivalencies

$$W^4 = -W^0 \tag{68a}$$

$$W^6 = -W^2 \tag{68b}$$

$$W^8 = 1 \tag{68c}$$

$$W^{12} = -W^0$$
 (68d)

$$W^{18} = W^2 \tag{68e}$$

By substitution

$$A(0) = x(0) + x(2)W^{0} + x(4) + x(6)W^{0}$$
(69)

$$A(1) = x(0) + x(2)W^{2} - x(4) - x(6)W^{2}$$
(70)

$$A(2) = x(0) - x(2)W^{0} + x(4) - x(6)W^{0}$$
(71)

$$A(3) = x(0) - x(2)W^{2} - x(4) + x(6)W^{2}$$
(72)

Rearrangement

$$A(0) = [x(0) + x(4)] + W^{0}[x(2) + x(6)]$$
(73)

$$A(1) = [x(0) - x(4)] + W^{2}[x(2) - x(6)]$$
(74)

$$A(2) = [x(0) + x(4)] - W^{0}[x(2) + x(6)]$$
(75)

$$A(3) = [x(0) - x(4)] - W^{2}[x(2) - x(6)]$$
(76)

Now determine the B coefficients

$$B(k) = \sum_{n=0}^{3} \left\{ x(2n+1)W^{2nk} \right\}$$
 (77)  
for k = 0, 1, 2, 3

$$B(0) = x(1) + x(3) + x(5) + x(7)$$
(78)

$$B(1) = x(1) + x(3)W^{2} + x(5)W^{4} + x(7)W^{6}$$
(79)

$$B(2) = x(1) + x(3)W^{4} + x(5)W^{8} + x(7)W^{12}$$
(80)

$$B(3) = x(1) + x(3)W^{6} + x(5)W^{12} + x(7)W^{18}$$
(81)

By substitution

$$B(0) = x(1) + x(3)W^{0} + x(5) + x(7)W^{0}$$
(82)

$$B(1) = x(1) + x(3)W^{2} - x(5) - x(7)W^{2}$$
(83)

$$B(2) = x(1) - x(3)W^{0} + x(5) - x(7)W^{0}$$
(84)

$$B(3) = x(1) - x(3)W^{2} - x(5) + x(7)W^{2}$$
(85)

Rearrangement

$$B(0) = [x(1) + x(5)] + W^{0}[x(3) + x(7)]$$
(86)

$$B(1) = [x(1) - x(5)] + W^{2}[x(3) - x(7)]$$
(87)

$$B(2) = [x(1) + x(5)] - W^{0}[x(3) + x(7)]$$
(88)

$$\mathbf{B}(3) = \left[\mathbf{x}(1) - \mathbf{x}(5)\right] - \mathbf{W}^{2}\left[\mathbf{x}(3) - \mathbf{x}(7)\right]$$
(89)

Recall

$$F(k) = \frac{1}{N} \left\{ A(k) + W^{k} B(k) \right\}$$
(90)

$$F\left(k + \frac{N}{2}\right) = \frac{1}{N} \left\{ A(k) - W^{k} B(k) \right\}$$
(91)  
with k=0, 1, 2, ....,  $\frac{N}{2} - 1$ 

Thus,

$$F(0) = \frac{1}{8} \left\{ \left\{ \left[ x(0) + x(4) \right] + W^0 \left[ x(2) + x(6) \right] \right\} + \left\{ \left[ x(1) + x(5) \right] + W^0 \left[ x(3) + x(7) \right] \right\} \right\}$$
(92)

$$F(1) = \frac{1}{8} \left\{ \left\{ \left[ x(0) - x(4) \right] + W^2 \left[ x(2) - x(6) \right] \right\} + W^1 \left\{ \left[ x(1) - x(5) \right] + W^2 \left[ x(3) - x(7) \right] \right\} \right\}$$
(93)

$$F(2) = \frac{1}{8} \left\{ \left\{ \left[ x(0) + x(4) \right] - W^0 \left[ x(2) + x(6) \right] \right\} + W^2 \left\{ \left[ x(1) + x(5) \right] - W^0 \left[ x(3) + x(7) \right] \right\} \right\}$$
(94)

$$F(3) = \frac{1}{8} \left\{ \left\{ \left[ x(0) - x(4) \right] - W^2 \left[ x(2) - x(6) \right] \right\} + W^3 \left\{ \left[ x(1) - x(5) \right] - W^2 \left[ x(3) - x(7) \right] \right\} \right\}$$
(95)

$$F(4) = \frac{1}{8} \left\{ \left\{ \left[ x(0) + x(4) \right] + W^0 \left[ x(2) + x(6) \right] \right\} - W^0 \left\{ \left[ x(1) + x(5) \right] + W^0 \left[ x(3) + x(7) \right] \right\} \right\}$$
(96)

$$F(5) = \frac{1}{8} \left\{ \left\{ \left[ x(0) - x(4) \right] + W^2 \left[ x(2) - x(6) \right] \right\} - W^1 \left\{ \left[ x(1) - x(5) \right] + W^2 \left[ x(3) - x(7) \right] \right\} \right\}$$
(97)

$$F(6) = \frac{1}{8} \left\{ \left\{ \left[ x(0) + x(4) \right] - W^0 \left[ x(2) + x(6) \right] \right\} - W^2 \left\{ \left[ x(1) + x(5) \right] - W^0 \left[ x(3) + x(7) \right] \right\} \right\}$$
(98)

$$F(7) = \frac{1}{8} \left\{ \left\{ \left[ x(0) - x(4) \right] - W^2 \left[ x(2) - x(6) \right] \right\} - W^3 \left\{ \left[ x(1) - x(5) \right] - W^2 \left[ x(3) - x(7) \right] \right\} \right\}$$
(99)



Figure 10. Butterfly for N=8

The eight-point Fourier transform is composed of a pair of four-point transforms. In turn, each four-point transform is composed of a pair of two-point transforms.

## Data Sets with Higher N values

This concept can be extended to higher data sets. Again, the time history points must be represented in reverse binary order.

As an example, a 16-point transform would consist of a pair of a pair of eight-point transforms. Each 8-point transform would consist of a pair of four point-transforms, and so on.

Representing a butterfly diagram for a 16-point transforms is cumbersome. Nevertheless, the weight factors are summarized in Table 1.

| Table 1. Weighting Factors for 16-point Transform |         |                |                |  |  |
|---------------------------------------------------|---------|----------------|----------------|--|--|
| Stage 1                                           | Stage 2 | Stage 3        | Stage 4        |  |  |
| 1                                                 | 1       | 1              | 1              |  |  |
| $W^0$                                             | 1       | 1              | 1              |  |  |
| 1                                                 | $W^0$   | 1              | 1              |  |  |
| $W^0$                                             | $W^4$   | 1              | 1              |  |  |
| 1                                                 | 1       | $W^0$          | 1              |  |  |
| $W^0$                                             | 1       | $W^2$          | 1              |  |  |
| 1                                                 | $W^0$   | $W^4$          | 1              |  |  |
| $W^0$                                             | $W^4$   | W <sup>6</sup> | 1              |  |  |
| 1                                                 | 1       | 1              | $W^0$          |  |  |
| $W^0$                                             | 1       | 1              | $W^1$          |  |  |
| 1                                                 | $W^0$   | 1              | $W^2$          |  |  |
| $W^0$                                             | $W^4$   | 1              | $W^3$          |  |  |
| 1                                                 | 1       | $W^0$          | $W^4$          |  |  |
| W                                                 | 1       | $W^2$          | W <sup>5</sup> |  |  |
| 1                                                 | $W^0$   | $W^4$          | $W^6$          |  |  |
| $W^0$                                             | $W^4$   | W <sup>6</sup> | W <sup>7</sup> |  |  |

## Savings

A full description of the efficiency of the FFT relative to the conventional Fourier transform is given in Reference 4.

As an example, consider a series with N=1024. Table 2 gives the number of operations per each method.

| Table 2. Computation Workload for N=1024 |                  |                   |  |  |
|------------------------------------------|------------------|-------------------|--|--|
|                                          | FFT Conventional |                   |  |  |
|                                          |                  | Fourier Transform |  |  |
| Multiplication steps                     | 16,384           | 4.2 million       |  |  |
| Addition steps                           | 28,672           | 4.2 million       |  |  |

Note that the addition and multiplication steps in Table 2 are based on real numbers. A complex multiplication requires 4 real multiplication steps and 2 real addition steps. Again, these real steps are accounted for in Table 2.

Also note that the 4.2 million number in Table 2 is approximate. The exact number is 4,194,304.

## POWER SPECTRAL DENSITY FUNCTION

#### **Dimensions**

The power spectral density function has dimensions of [amplitude  $^2$  · time].

#### Formal Definition

Recall the Fourier transform X(f) for a continuous time series x(t)

$$X(f) = \int_{-\infty}^{\infty} x(t) \exp[-j2\pi f t] dt$$
(100)

where 
$$-\infty < f < \infty$$

The power spectral density S(f) is defined as

$$S(f) = \frac{\lim_{T \to \infty} \frac{1}{T} X(f) X^*(f)}{1 + 1}$$
(101)

where 
$$-\infty < f < \infty$$

Note that the \* symbol denotes complex conjugate.

Furthermore, the power spectral density function can be defined as the Fourier transform of the autocorrelation function per the Wiener-Khintchine equations, as noted in Reference 1.

#### **Practical Application**

Recall the double-amplitude spectrum analyzer version of the Fourier transform,

$$\hat{F}(k) = \begin{cases} \left[\frac{1}{N}\right] \sum_{n=0}^{N-1} \{x(n)\}, & \text{for } k = 0\\ \left[\frac{2}{N}\right] \sum_{n=0}^{N-1} \{x(n) \exp\left(-j\frac{2\pi}{N}nk\right)\}, & \text{for } k = 1, \dots, \frac{N}{2} - 1 \end{cases}$$

with N as an even integer.

(102)

The single-sided power spectral density function  $PSD(f_k)$  for a discrete series is

$$PSD(f_k) = \begin{cases} \left[\frac{\hat{F}(0)\hat{F}^*(0)}{\Delta f}\right], & \text{for } k = 0\\ \left[\frac{1}{2}\right]\left[\frac{\hat{F}(k)\hat{F}^*(k)}{\Delta f}\right], & \text{for } k = 1, \dots, \frac{N}{2} - 1 \end{cases}$$
(103)

Recall that the frequency increment  $\Delta f$  is equal to the time domain period T as follows

$$\Delta f = \frac{1}{T} \tag{104}$$

Recall that the frequency is obtained from the index parameter k as follows

frequency (k) = 
$$k\Delta f$$
 (105)

The  $\frac{1}{2}$  factor in equation (103) is required to convert [amplitude peak]<sup>2</sup> to [amplitude RMS]<sup>2</sup>, per the convention of a power spectral density function.

The k=0 case does not require this peak-to-RMS conversion. Note that the RMS amplitude is equal to the peak amplitude for a signal with zero frequency. This signal is often called a DC signal.

## FURTHER PROCESSING CONCEPTS

Discrete Fourier transforms calculated from finite data records can suffer from an error called *leakage*. This error causes energy to be smeared into adjacent frequency bands.

The leakage error is reduced by applying a window to the data. Typically, the window is applied to a segment of the data. The segments are taken with an overlap in order to recover statistical degrees of freedom lost as a result of the window. These concepts are explained in References 3 through 5.

## **REFERENCES**:

- 1. W. Thomson, Theory of Vibration with Applications, 2nd Ed, Prentice-Hall, 1981.
- 2. GenRad TSL25 Time Series Language for 2500-Series Systems, Santa Clara, California, 1981.
- 3. R. Randall, Frequency Analysis 3<sup>rd</sup> edition, Bruel & Kjaer, 1987.
- 4. F. Harris, Trigonometric Transforms, Scientific-Atlanta, Technical Publication DSP-005, San Diego, CA.
- 5. T. Irvine, Statistical Degrees of Freedom, 1995.

## APPENDIX A

Consider a sine wave

$$\mathbf{x}(t) = \mathbf{A}\sin\left[2\pi\,\hat{\mathbf{f}}\,t\right] \tag{A-1}$$

where

 $-\infty < t < \infty$ 

The Fourier transform is calculated indirectly, by considering the inverse transform. Note that the sine wave is a special case in this regard.

Recall

$$\mathbf{x}(t) = \int_{-\infty}^{\infty} \mathbf{X}(t) \exp\left[+j2\pi f t\right] df$$
(A-2)

Thus

$$A\sin\left[2\pi \hat{f} t\right] = \int_{-\infty}^{\infty} X(f) \exp\left[+j 2\pi f t\right] df$$
(A-3)

$$A\sin\left[2\pi\,\hat{f}\,t\right] = \int_{-\infty}^{\infty} X(f)\left\{\cos\left[2\pi\,f\,t\right] + j\sin\left[2\pi\,f\,t\right]\right\}df \tag{A-4}$$

Let

$$X(f) = P(f) + j Q(f)$$
(A-5)

where

P(f) and Q(f) are both real coefficients

and

$$A\sin\left[2\pi \hat{f} t\right] = \int_{-\infty}^{\infty} \left\{ P(f) + j Q(f) \right\} \left\{ \cos\left[2\pi f t\right] + j\sin\left[2\pi f t\right] \right\} df$$
(A-6)

$$A \sin[2\pi \hat{f} t] = \int_{-\infty}^{\infty} \{P(f) \cos[2\pi f t] - Q(f) \sin[2\pi f t]\} df$$

$$+ j \int_{-\infty}^{\infty} \{P(f) \sin[2\pi f t] + Q(f) \cos[2\pi f t]\} df$$
(A-7)

Equation (A-7) can be broken into two parts

$$A\sin\left[2\pi \hat{f} t\right] = \int_{-\infty}^{\infty} \left\{ P(f)\cos\left[2\pi f t\right] - Q(f)\sin\left[2\pi f t\right] \right\} df$$
(A-8)

$$0 = j \int_{-\infty}^{\infty} \left\{ P(f) \sin[2\pi f t] + Q(f) \cos[2\pi f t] \right\} df$$
(A-9)

Consider equation (A-8)

$$A\sin\left[2\pi\,\hat{f}\,t\right] = \int_{-\infty}^{\infty} \left\{ P(f)\cos\left[2\pi\,f\,t\right] - Q(f)\sin\left[2\pi\,f\,t\right] \right\} df \tag{A-10}$$

Now assume

With this assumption,

$$A\sin\left[2\pi \hat{f} t\right] = -\int_{-\infty}^{\infty} Q(f)\sin\left[2\pi f t\right] df$$
(A-12)

Now let

$$Q(f) = q_1(f) + q_2(f)$$
 (A-13)

$$A\sin[2\pi \hat{f} t] = -\int_{-\infty}^{\infty} [q_1(f) + q_2(f)] \sin[2\pi f t] df$$
 (A-14)

$$A\sin[2\pi \hat{f} t] = -\int_{-\infty}^{\infty} [q_1(f)]\sin[2\pi f t] dt - \int_{-\infty}^{\infty} [q_2(f)]\sin[2\pi f t] df$$
(A-15)

$$A\sin[2\pi \hat{f} t] = -\int_{-\infty}^{\infty} [q_1(f)]\sin[2\pi f t]dt + \int_{-\infty}^{\infty} [q_2(f)]\sin[-2\pi f t]df$$
(A-16)

Equation (A-14) is satisfied by the pair of equations

$$q_1(f) = -\frac{A}{2}\delta(f - \hat{f})$$
(A-17)

$$q_2(f) = \frac{A}{2}\delta\left(-f - \hat{f}\right) \tag{A-18}$$

where  $\boldsymbol{\delta}$  is the Dirac delta function.

By substitution,

$$Q(f) = \frac{-A}{2}\delta(f - \hat{f}) + \frac{A}{2}\delta(-f - \hat{f})$$
(A-19)

Verification must be made that equation (A-9) is satisfied. Recall

$$0 = j \int_{-\infty}^{\infty} \left\{ P(f) \sin[2\pi f t] + Q(f) \cos[2\pi f t] \right\} df$$
(A-20)

$$0 \stackrel{?}{=} j \int_{-\infty}^{\infty} \left\{ 0 \sin[2\pi f t] + \left\{ \frac{-A}{2} \delta(f - \hat{f}) + \frac{A}{2} \delta(-f - \hat{f}) \right\} \cos[2\pi f t] \right\} df$$
(A-21)

$$0 \stackrel{?}{=} j \left\{ \frac{-A}{2} \cos[2\pi \hat{f} t] + \frac{A}{2} \cos[-2\pi \hat{f} t] \right\}$$
(A-22)

$$0 \stackrel{?}{=} j \left\{ \frac{-A}{2} \cos\left[2\pi \hat{f} t\right] + \frac{A}{2} \cos\left[2\pi \hat{f} t\right] \right\}$$
(A-23)

$$0 = 0$$
 (A-24)

Recall the time domain function

$$\mathbf{x}(t) = \mathbf{A}\sin\left[2\pi\,\hat{\mathbf{f}}\,t\right] \tag{A-25}$$

where

 $-\infty < t < \infty$ 

The Fourier transform is thus

$$X(f) = \frac{-jA}{2}\delta(f - \hat{f}) + \frac{jA}{2}\delta(-f - \hat{f})$$
(A-26)

$$X(f) = \left\{\frac{jA}{2}\right\} \left\{-\delta \left(f - \hat{f}\right) + \delta \left(-f - \hat{f}\right)\right\}$$
(A-27)

## APPENDIX B

An alternate form of the discrete Fourier Transform is

$$\hat{F}(k) = \Delta t \sum_{n=0}^{N-1} \left\{ x(n) \exp\left(-j\frac{2\pi}{N}nk\right) \right\}, \quad \text{for } k = 0, 1, ..., N-1 \quad (B-1)$$

 $\hat{F}(k)$  has dimensions of [amplitude-time].

The corresponding inverse transform is

$$x(n) = \Delta f \sum_{n=0}^{N-1} \left\{ \hat{F}(k) \exp\left(+j\frac{2\pi}{N}nk\right) \right\}, \quad \text{for } n = 0, 1, ..., N-1 \quad (B-2)$$

These alternate equations are based on the following reference:

MAC/RAN IV Applications Manual, Revision 2, University Software Systems, Los Angeles, California, 1991.

## APPENDIX C

## **Binary Reversal**

Consider a set of two numbers. The numbers are shown in Figure C-1, along with the binary forms.

| Table C-1. Binary Values for N=2 |        |         |            |  |
|----------------------------------|--------|---------|------------|--|
| Number                           | Binary | Reverse | Numbers in |  |
|                                  |        | Binary  | Reverse    |  |
|                                  |        |         | Binary     |  |
|                                  |        |         | Order      |  |
| 0                                | 0      | 0       | 0          |  |
| 1                                | 1      | 1       | 1          |  |

The analysis is repeated for a set of four numbers in Table C-2.

| Table C-2. Binary Values for N=4 |        |         |            |  |
|----------------------------------|--------|---------|------------|--|
| Number                           | Binary | Reverse | Numbers in |  |
|                                  |        | Binary  | Reverse    |  |
|                                  |        |         | Binary     |  |
|                                  |        |         | Order      |  |
| 0                                | 00     | 00      | 0          |  |
| 1                                | 01     | 10      | 2          |  |
| 2                                | 10     | 01      | 1          |  |
| 3                                | 11     | 11      | 3          |  |

The analysis is shown for a set of eight numbers in Table C-3.

| Table C-3. Binary Values for N=8 |        |         |            |  |
|----------------------------------|--------|---------|------------|--|
| Number                           | Binary | Reverse | Numbers in |  |
|                                  |        | Binary  | Reverse    |  |
|                                  |        |         | Binary     |  |
|                                  |        |         | Order      |  |
| 0                                | 000    | 000     | 0          |  |
| 1                                | 001    | 100     | 4          |  |
| 2                                | 010    | 010     | 2          |  |
| 3                                | 011    | 110     | 6          |  |
| 4                                | 100    | 001     | 1          |  |
| 5                                | 101    | 101     | 5          |  |
| 6                                | 110    | 011     | 3          |  |
| 7                                | 111    | 111     | 7          |  |