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INTRODUCTION

The Fourier transform is a method for representing atime history signal in terms of a
frequency domain function. Specifically, the Fourier transform represents a signal in terms of
its spectral components.

The Fourier transform is a complex exponentia transform which is related to the Laplace
transform.

The Fourier transform is also referred to as a trigonometric transformation since the complex
exponential function can be represented in terms of trigonometric functions. Specifically,

exp[ jwt] =cog(wt) + jSn(wt) (1a)
exp[- jwt] =cos(wt) - jsin(wt) (1b)
The Fourier transform is often applied to digital time histories. The time histories are
sampled from measured analog data.

The transform calculation method, however, requires a relatively high number of
mathematical operations. As an alternative, a Fast Fourier transform (FFT) method has been
developed to simplify this calculation. The purpose of thistutorial isto present a Fast
Fourier transform algorithm.

Background theory is presented prior to the FFT agorithm.

FOURIER TRANSFORM THEORY
Formulas

The Fourier transform X(f) for a continuous time series x(t) is defined as

X (f) = (ii x(t)exp|-}2pf t]ct 2

where -¥ <f<¥



Thus, the Fourier transform is continuous over an infinite frequency range.
The inverse transformis

¥
x(t) = (‘& X(f)exp[+j2p ft]df (3)
Equations (2) and (3) are taken from Reference 1. Note that X(f) has dimensions of

[amplitude-time].

Also note that X(f) isacomplex function. It may be represented in terms of real and
imaginary components, or in terms of magnitude and phase.

The conversion is made as follows for a complex variable V.

V=a+jb (4)
Magnitude V = Va2 +p? (5)
PhaseV = arctan(b/ a) (6)
Example
Consder a sine wave
x(t) = Asn[2pf ] 7)

where
¥ <t<¥

The Fourier transform of the sine wave is
1A N
X() =] 2?5{ of - f)+d(- 7 - )} ®

where d is the Dirac delta function.

The derivation is given in Appendix A. The Fourier transformis plotted in Figure 1.
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Figure 1. Fourier Transform of Sine Wave

The transform of a sine wave is purely imaginary.

On the other hand, the Fourier transform of a cosine wave is

X(f) :‘i%g{d(f -f)+d(- - 1))

The Fourier transform is plotted in Figure 2.

A )
Ed(- f-f)

Real X(f)

!

Figure 2. Fourier Transform of Cosine Wave

The transform of a cosine wave is purely real.

(9)



Characterigtics

The plotsin Figures 1 and 2 demonstrate two characteristics of the Fourier transforms of real
time history functions:

1. Therea Fourier transform is symmetric about the f = O line.
2. Theimaginary Fourier transform is antisymmetric about the f = 0 line.

DISCRETE FOURIER TRANSFORM
Formulas
The following equation set is taken from Reference 2.

The Fourier transform F(k) for a discrete time series x(n) is

gl & 2p  G6u _
a %x(n)expg- jWnk%, fork=0,1,...,N-1 (20)

1
Rl = &

=]

where
N is the number of time domain samples,
n isthe time domain sample index,
k is the frequency domain index.

Note that the frequency increment Df is equal to the time domain period T as follows

1
Df = = 11
T (11)

The frequency is obtained from the index parameter k as follows

frequency (k) = kDf (12)

Note that F(k) has dimensions of [amplitude]. An alternate form which has dimensions of
[amplitude-time] is given in Appendix B.

The corresponding inverse transformis

N- 1.
x(n) = & }F(k)expglj@nk‘?‘*‘, forn=0,1..., N-1 (13)
k=0 N o



A characteristic of the discrete Fourier transform is that the frequency domain is taken from 0
to (N-1)Df. The line of symmetry is at a frequency of

N 1
g . ;Df (14)

Example

The discrete Fourier transform of a sine wave is given in Figure 3.
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Figure 3. Fourier Transform of a Sine Wave
Note that the sine wave has a frequency of 1 Hz. The total number of cyclesis 512,

with aresulting period of 512 seconds. Again, the Fourier transform of a sine wave
isimaginary and antisymmetric.



Nyquist Frequency

Note that the line of symmetry in Figure 3 marks the Nyquist frequency. The Nyquist
frequency is equal to one-half of the sampling rate. Shannon’s sampling theorem states that a
sampled time signal must not contain components at frequencies above half the Nyquist
frequency, from Reference 3.

Spectrum Analyzer Approach

Spectrum analyzer devices typicaly represent the Fourier transform in terms of magnitude
and phase rather than real and imaginary components. Furthermore, spectrum analyzers
typically only show one-half the total frequency band due to the symmetry relationship.
The spectrum analyzer amplitude may either represent the half-amplitude or the full-
amplitude of the spectral components. Care must be taken to understand the particular
convention of the spectrum analyzer.

The full-amplitude Fourier transform would be calculated as

i
: g;éa{x(n)} for k=0
Ek) =1
T \N 1,
€2ug "l 2P -1, N
;3 Hn O:x(n)exp% ] nkz% fork=1,..., > 1

with N as an even integer.
(15)

Note that k=0 isa special case. The Fourier transform at this frequency is aready at full-
amplitude.

For example, a sine wave with an amplitude of 1 volt and a frequency of 100 Hz would
simply have a full-amplitude Fourier magnitude of 1 volt at 100 Hz.



FAST FOURIER TRANSFORM

Number of Data Points

The approach in the following derivation assumes that the number of time history data points
isequal to 2N, where N is an integer.

Weighting Factors

The following derivation is based on Reference 4.

Define aweighting factor W as

& .2po
W:exp%- jWB (16a)
WM = oo .2pmg
—exp%- j—N 5 (16b)

The discrete Fourier transform becomes

No-l
a {x(n)w ”k}, fork=0,1..., N- 1 (17)
n=0

1
F(k) =

The matrix representation is

§FO o & w WP WP o WD O u
s FD G e W wh W2 wivd € X
e K2 u=-€ o e w4 waN-2 G x(2) a
e . a Né = . . . & T
é - 0 € : : : : Bk - 0
FN-28 g w° WIN-D 2D WiN- D=2 BN - D

(18)

Note that the W matrix in equation (13) is symmetric. Also note

wOl=1 (19)



Equation (13) smplifiesto

eFO o ¢ 1 1 1 1 %x0 u
SFD & 1 wl w2 wiN-9 (8 gy U
&6 F2 U=—6& 1 W2 wA waAN-D @&y g
@ : l;' Né : . l;é : u
é - é : : e -
FN-20 & 1 wiN-D - 2AN-D wiN-20N-D g -

(20)
Unit Circle

Notethat W™ isa point on the unit circle, with an angle m times the size of theangle W. A
sample unit circle is shown in Figure 4.



Figure 4. Unit Circle for N=16

M 2 @ (220
Recall that W —exp% ] N &
Even and Odd Representation
Recall the Fourier transformation
1 No- 1 nk
F(k):ﬁ a {x(n)W : fork=0,1,..., N-1 (21)
n=0



Now break the series up into its even and odd terms.

e = :
2 2
ro-11 3 {x@nw 2k} + 3 Lxn+w (2n+ kil
N T n=o n=0 | %I
T b

fork=01...,N-1

(22)
Equation (22) can be simplified as shown in the following steps.
F(k)—i.' 3 {x(2n)W Z”k}+ 3 {x(2n+1)W 21Ky k} y
Ny 1o n=0 I
f b
fork=0,1,...,N-1
(23)
Fk)=—1 § {x(zn)w 2”k} +wk3 {x(2n+1)W Z”k} v,
Ni n=o n=0 i
f b
fork=0,1,...,N-1
(24)
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1

F(K) :N[ A(K) +W kB(k)} (25)
where
-1

_ 3 2nk
AK) = EO{X(Zn)W n }

N Z

-1

B(k) = & [x(zn + YW 2”k}
n=0

N
2

fork=0,1...,N-1
The term A(k) isan N/2 transformation over the even indexed data points. Theterm B(k) is
an N/2 point transform over the odd indexed data points.

Note that stepping around the unit circle to pick up the complex coefficients now steps
across every other angle. In other words,

& . 2pmg

wm = expg- j— W' (26)
& .2p2mop

WA = expgt |1 27)
om_ & .2pmjg

W = eng 1N T 26 (28)

Thus, only N/2 angles are required to transform a time history with N points.

No
g+

Now consider W 2 the transform point halfway through the list of output points.

11



Substituting this argument,

Fa?<+———Aa?<+ _+W67<+';,%Ba?(+ﬂ9
& & & 20
Note that
e N0
29
w _eng N gf( 2@@
e N0
e . 2pko
AL R iy 2Pl ip)
afﬁﬂe'
x
w28 = e J—gcoS(p - jsin(p)]
N 2pk
P x 0
we 29 - - e JL_
No
W% 20 _ K
Recall
N
51
A(K) = A {x(zn)w 2”k}
n=0
N i N
Aa?<+35: a ix@nw y
n=0 | 1
1 b

12

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)



N
N§ _ % 2nK ;NN
Ag‘?wza_ a {x(2n)W W }

Note

.2pnNo

x
W™ = expe- |

w™ :exp(- i2p n)

w™ = coin n) - js'n(2p n)
Thentermisaninteger. Thus

w™N =1
Substituting equation (36) into equation (32),

N
Ag‘i P Zé’l {x(zn)w 2”k}

Thus,

Similarly,
N
B(K) = Béi +3§

Substitute equations (34), (43), and (44) into (25).

F§<+EB— N[ A(K) - W B(k)}

13

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)



In summary, the Fourier transform is reduced to the following pair of equations

1
F(k) = N[ A(K) +W ¥B(K) | (46)
Ng 1
F§<+E%:N[ A(K) - W kB(k)} (47)
Withk=0, 1, 2, ....., g 1

This pair of equations forms the basis of the FFT algorithm.

The equations form a butterfly as shown in Figure 5.

) 4

AKk) O

) 4

Bl o O F"%%E

Figure 5. Butterfly Concept

The final division by N is omitted for brevity.

Figure 5 can be simplified as shown in Figure 6.
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Figure 6. Equivalent Butterfly

The butterfly in Figure 6 significantly reduces the number of calculations required for the
Fourier transform, particularly for large data sets.

Binary Reversad

Binary reversal of the time history is necessary to expedite the FFT calculation, asis shown in
the following examples. Binary reversal is discussed further in Appendix C.

N=2 Example

Consider the specific case for N=2.

0

A(K) = A {x(2n)W Z”k} (48)
n=0
fork =0,0
A(0) = x(0) (49)
B(K) = é(i {x(2n+ 1w 2] (50)
n=0

15



B(0) = x(1)

Now substitute equations (49) and (51) into (46),

F(0) = iZL{ A© +wOB(0) }
F0) = izl{ x(0) +w Ox( }

Substitute equations (49) and (51) into (47),
_1 0
F(1) _E{ AQD) - W B(l)}
1
F(O) = E{ x© - w0 x@ }

Equations (52b) and (53b) are shown in the butterfly diagram in Figure 7.

1.0 +

x(0) O Q) <ON=(0)
+
wP ¥

x1) O > O F1)

Figure 7. Butterfly for N=2

N=4 Example

Consider the specific case for N=4.

16
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(52a)

(52b)

(53a)

(53b)



1
AK) = A {x(2n)W Z”k} (52)

n=0
fork=0,1
A(0) = X(0) + X(2) (53)
A(D) = x(0) +x(2)W? (54a)
w2=-1 (54b)
A(D =x(0) - x(2) (540)
g
B(k) = & [ x(2n + YW 2”k} (55)
n=0
B(0) = x(2) + x(3) (56)
B(D) = x(1) + x(3W? (573)
B(D) = x(1) - X(3) (57b)
By substitution
_1 0
F(0) = Z{ A© +wW OB} (583)
F0) = %{ x(0) + x(2) + W Ox(1) +x(3)] } (58b)
_1 1
(1) = Z{ A@+wiB (59)
F(1) = %{ [x(0) - x@)] + W[x@®- x(3)] } (59)

17



Summary

F2) = :ZL{ A© - wOB(0) }

F(2) = %{ x(0) +x(2) - W O[x(1) +x(3)] }

F3) = %{ A@D) - wlB@ }

F3) :%{ [x©0 - x@)] - Wi[x®- x(3)] }

[ =

FO) = [x(0 +x@] +WO[x® +x(3)] }

——

F@) = { [xO - x@] + W [x®- x(3)] }

NG L=

——

F@ = | [xO +x(@)] - WO[x(® +x(3)] ]

F@ =2 [xO- x@]- wix® - x3)] |

1
AR
—

18

(60a)

(60b)

(61a)

(61b)

(62a)

(62b)

(62c)

(62d)



x(0)

X(2)

x(1)

X(3)

Figure 8. Butterfly for N=4

The four-point Fourier transform is composed of a pair of two-point transforms. The
outputs of the two-point transforms are combined to create the four-point transform.

N=8 Example

Consider the specific case for N=8. The unit circle is shown in Figure 9.

19



Figure 9. Unit Circle for N=8
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Now determine the A coefficients

3
A(K) = A {x(2n)W Z”k}
n=0
fork =0,1,2,3

A(0) = x(0) + x(2) +x(4) + x(6)
A = x(0) + X(2W? + x(4W* + x(6)W°®
A(2) = x(0) + x(2QW* +x(HW?8 + x(6)W1?

A3 = x(0) + x(2Q)W® + x(HW? + x(6)W18

The unit circle yield the following equivalencies

w4 =-wO
Wwe = - w2
w8 =1
w2 = -0
Wit = w2
By substitution

A(0) = x(0) + x(2)WP + x(4) + x(6)W°
A(D = x(0) + X(2)W? - x(4) - x(6)W?
A(2) = x(0) - x(2QWC +x(4) - x(6)WP°

A@3) = x(0) - X(2JW? - x(4) + x(6)W?

21

(63)

(64)
(65)
(66)

(67)

(68a)
(68b)
(68c)
(68d)

(68e)

(69)
(70)
(71)

(72)



Rearrangement
A(0) =[x(0) +x(4)] + WO[x(2) + x(6)]
A =[x(0) - x(4)] +W3[x(2) - x(6)]
A(2) =[x(0) +x(4)] - WO[x(2) + x(6)]

A®) =[x(0) - x(#)]- W?[x(2) - x(6)]

Now determine the B coefficients

3
B(k) = & [ x(2n+ )W an}
n=0
fork =0,1,2,3

B(0) = x(1) +X(3) +X(5) + X(7)
B(D) = x(1) + x(3W?2 +x(5)W* + x(7)W°E
B(2) = x(1) +x(3W* + x(5)W8 + x(7)W12
B(3) = x(1) + x(W® + x(5)W12 + x(7)W18
By substitution
B(0) = x(1) + x(3)W? +x(5) + x(7)WP°
B(D) = x(1) + X(3W? - x(5) - x(7)W?
B(2) = x(1) - x(3W?P +x(5) - x(7)WP°
B(3) = x(1) - X(3W? - x(5) + x(7)W?
Rearrangement

B(0) =[x(D) +x(8)] + WO[x(3) +x(7)]

22

(73)
(74)
(75)

(76)

(77)

(78)
(79)
(80)

(81)

(82)
(83)
(84)

(85)

(86)



B(D) =[x(®) - x(®)] +W?[x(3 - x(7)]

B(2) = [x(D) +x(5)] - WO[x(3 +x(7)]
B(3 =[x - x(5)]- W[x(3) - x(7)]
Recall
F(k) = %[ A(K) +W KB(K) }
Ng 1
F§<+E%:N[ A(K) - W KB(K) }
withk=0, 1, 2, ....., g 1
Thus,
F0) :—;{ [%(0) +x(4)] +WO[x(2) +x(8)]} +{[x®) +x(®)] + W[x(3 + x(?)]}}

F() = é{{[x(O) x(@)] +W2[x(2) - (@]} +WH{[x@ - @] +W2[x3 - xD]}}
F2) =:—;{ [x(0) +x(@)] - WO[x(2) +x(©)]} +W?{[x® +x®)] - W[x(3) +x(7)]}}

F3 =2{{[x@ - x@]- W2[x@ - x(©)]} +W3{[x@ - x®]- W2[x3- x)}}

OO|I—‘

F(4) = :—é{ [x(0) + x(@)] + W[ x(2) + x(§)]} - WO{[x() + x(®] + W[ x(3@ + x(D)}}
1 2 1 2

) = 8{{[x(O) x(@)] +W2[x(2) - x(§)]} - WH[x(® - x(©)] + W2 [x(3 - x(?)]}}
1 0 2 0

F(6) =§{{[x(0)+x(4)] - WO[x(2) + x@)]f - W?{[x +x(3] - WO[x(@ +x(0)}}

F(7) =:—é{{[x(0) - x(@)]- W2[x@) - x(©)} - W¥{[x) - x(®]- W2[x3- x)}}

23
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(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)



x(0)

x(4) F(1)
X(2) F2)
X(6) F(3)
X(1) F(4)
x(5) F(5)
x(3) F(6)
X(7) F(7)

Figure 10. Butterfly for N=8

The eight-point Fourier transform is composed of a pair of four-point transforms. In
turn, each four-point transform is composed of a pair of two-point transforms.
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Data Sets with Higher N values

This concept can be extended to higher data sets. Again, the time history points must be
represented in reverse binary order.

As an example, a 16-point transform would consist of a pair of a pair of eight-point
transforms. Each 8-point transform would consist of a pair of four point-transforms, and so
on.

Representing a butterfly diagram for a 16-point transforms is cumbersome. Nevertheless, the
weight factors are summarized in Table 1.

Table 1. Weighting Factors for 16-point Transform
Stage 1 Stage 2 Stage 3 Stage 4
1 1 1 1
e 1 1 1

1 wP° 1 1
wO w? 1 1

1 1 wP° 1
wO 1 W2 1

1 WO W4 1
w?O w4 wb 1

1 1 1 wPO
WO 1 1 wl
1 w?O 1 W2
1 1 WO W4
w?O w4 wb w’
Savings

A full description of the efficiency of the FFT relative to the conventional Fourier transform
is given in Reference 4.

As an example, consider a serieswith N=1024. Table 2 gives the number of operations per
each method.
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Table 2. Computation Workload for N=1024

FFT Conventional
Fourier Transform
Multiplication steps 16,384 4.2 million
Addition steps 28,672 4.2 million

Note that the addition and multiplication steps in Table 2 are based on real numbers. A
complex multiplication requires 4 real multiplication steps and 2 real addition steps. Again,
these real steps are accounted for in Table 2.

Also note that the 4.2 million number in Table 2 is approximate. The exact number is
4,194,304.

POWER SPECTRAL DENSITY FUNCTION

Dimensions

The power spectral density function has dimensions of [amplitude2 - time].

Formal Definition

Recall the Fourier transform X (f) for a continuous time series x(t)

X(f) = (ii x(t)exp|-}2pf t]ct (100)

where -¥ <f<¥

The power spectral density S(f) is defined as

_ lim 1 .
=10y ;X(f)X (f) (101)

where -¥ <f<¥
Note that the * symbol denotes complex conjugate.

Furthermore, the power spectral density function can be defined as the Fourier transform of
the autocorrelation function per the Wiener-Khintchine equations, as noted in Reference 1.
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Practical Application

Recall the double-amplitude spectrum analyzer version of the Fourier transform,

| BARLY

A i i H%{MmL for k=0

F(k) =1
T . ‘N-l
~ 6200 2p N
I'a—na =P ke fork=1.., —-1
fsN a O:x(n)expg ] nz% or 1, >

with N as an even integer.

(102)
The single-sided power spectral density function PSD(fk) for a discrete seriesis
! EF(0)F* (O)u
i éMa, fork=0
i g Df )
PSD(fy) =1 (103)
61 FkF*ku N
I g_ue( ) ( ) fork=1,..,—-
Eg 2
Recall that the frequency increment Df is equal to the time domain period T as follows
1
Df == 104
T (104)
Recall that the frequency is obtained from the index parameter k as follows
frequency (k) = kDf (105)

The %2 factor in equation (103) is required to convert [amplitude peak]2 to [amplitude
RM 8]2, per the convention of a power spectral density function.
The k=0 case does not require this peak-to-RM S conversion. Note that the RMS amplitude

is equal to the peak amplitude for a signal with zero frequency. Thissigna is often called a
DC signal.



FURTHER PROCESSING CONCEPTS

Discrete Fourier transforms calculated from finite data records can suffer from an error called
leakage. Thiserror causes energy to be smeared into adjacent frequency bands.

The leakage error is reduced by applying a window to the data. Typically, the window is
applied to a segment of the data. The segments are taken with an overlap in order to recover
statistical degrees of freedom lost as a result of the window. These concepts are explained in
References 3 through 5.
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APPENDIX A
Consider a sine wave
x(t) =A sin[2p f t]

where
¥ <t<¥

(A-1)

The Fourier transform is calculated indirectly, by considering the inverse transform. Note

that the sine wave is a special case in this regard.

Recall
¥ .
X =Q, X (f)exp| +j2pf t]df
Thus
Asn[2pft|= c‘;; X (f) exp|+ j 2p f t]df
Asn[2pft]= c‘;; X (f){cod2pt ] + jsin[2pt t]}df
Let
X(f) = P(f) +j Q(f)
where
P(f) and Q(f) are both real coefficients
and

¥ <f<¥.
Asin[2pft]= (‘_;;{P(f) + QO cod2pt ] + jsin[2pt t]} o
Asin2pft] = (‘_;;{P(f)cos[prt]- Q(f)sn[2pf t]}of

+10, (P sn2pt ]+ Q(f) cod2p 1]

29

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)



Equation (A-7) can be broken into two parts

Asn[2pft]= (‘_;;{P(f)cos{pr t]- Q(f)sin[2pf t]}df

0= j(‘_;;{P(f)sin[pr t]+ Q(f) cod2p  t]} o
Consider equation (A-8)

Asin[2pft]= (‘_;;{P(f)cos{pr t]- Q(f)sin[2pf t]}df

Now assume
P(f)=0

With this assumption,
Py \¥ .
Asn[2pft|=- d, Q(f)sin[2p f t]df

Now let

Q(f)= a1 (f) + a2 (f)

Asn[2pft]=- c‘;; [a2(F) +az(F)]sn[2p  t]df
Asn[2pft]=- (‘_;;[ql(f)]sin[pr t]t - c‘;; [a2()]sin[2p f o

Asn[2pft|=- c‘;; [qa(F)]sin[2pf t]t + (‘_;; [a2(F)]sin[- 2pf t]df

30

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)



Equation (A-14) is satisfied by the pair of equations

ay(f) =- %d(f- f)

9, (f) :%d(- f-f)

where d is the Dirac delta function.

By substitution,
Q(f)=%d(f : f)+%d(- f- )

Verification must be made that equation (A-9) is satisfied. Recall
¥ .
0= jQ¥{P(f)S|n[2pf t]+ Q(f) cod2p  t]} o

0 j(‘)¥¥‘i03in[2pft]+‘i%d(f - f)+%d(- f- f)gcos[prt]gdf

0 : j\i%cos[pr t]+%cos[- 2pf t]t\l’;l

’_) Y R R e
0= j %17Acos[2pf t]+%cos[2pf t]g
0=0
Recall the time domain function
x(t) =A sin[prt]

where
¥ <t<¥
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(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)



The Fourier transform is thus

X(f) :%d(f : f)+j7Ad(- f- ) (A-26)
X(f) :i%g{ off - ) +o- £- 7)) (A-27)
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APPENDIX B

An alternate form of the discrete Fourier Transform is

N-1.
F(k) =Dt J %lx(n)expg j%nk%g, fork=0,1,...,N- 1 (B-1)
n=0

IA:(k) has dimensions of [amplitude-time].

The corresponding inverse transformis

N

N -
x(n) =Df J iﬁ(k)exp?—jz—l\?nk%g, forn=0,1,..., N- 1 (B-2)
n=0

These aternate equations are based on the following reference:

MAC/RAN IV Applications Manual, Revision 2, University Software Systems, Los Angeles,
Cdlifornia, 1991.
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APPENDIX C

Binary Reversa

Consider a set of two numbers. The numbers are shown in Figure C-1, along with the binary

forms.

Table C-1. Binary Valuesfor N=2
Number Binary Reverse Numbersin
Binary Reverse
Binary
Order
0 0 0 0
1 1 1 1

The analysisis repeated for a set of four numbersin Table C-2.

Table C-2. Binary Vaues for N=4
Number Binary Reverse Numbersin
Binary Reverse

Binary
Order

0 00 00 0

1 01 10 2

2 10 01 1

3 11 11 3

The analysis is shown for a set of eight numbersin Table C-3.

Table C-3. Binary Values for N=8
Number Binary Reverse Numbersin
Binary Reverse

Binary
Order

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7




