THE STEADY-STATE FREQUENCY RESPONSE FUNCTION OF A FOUR-DEGREE-OF-FREEDOM SYSTEM TO HARMONIC FORCE EXCITATION

By Tom Irvine Email: tomirvine@aol.com

March 11, 2008

Introduction

The Frequency Response Function (FRF) method is demonstrated by an example. Consider the system in Figure 1.

The system also has damping, but it is modeled as modal damping.

A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given in Figure 3.

$$k_{2}(x_{2}-x_{1})+k_{3}(x_{3}-x_{1})+k_{4}(x_{4}-x_{1})$$

$$f_{1}(t)$$

$$m_{1}$$

$$x_{1}$$

Figure 2.

Determine the equation of motion for mass 1.

$$\Sigma \mathbf{F} = \mathbf{m}_1 \, \ddot{\mathbf{x}}_1 \tag{1}$$

$$m_1 \ddot{x}_1 = k_2 (x_2 - x_1) + k_3 (x_3 - x_1) + k_4 (x_4 - x_1) - k_1 x_1 + f_1(t)$$
(2)

$$m_1\ddot{x}_1 + k_1x_1 - k_2(x_2 - x_1) - k_3(x_3 - x_1) - k_4(x_4 - x_1) = f_1(t)$$
(3)

$$m_1\ddot{x}_1 + k_1x_1 + k_2x_1 - k_2x_2 + k_3x_1 - k_3x_3 + k_4x_1 - k_4x_4 = f_1(t) \tag{4}$$

$$m_1\ddot{x}_1 + (k_1 + k_2 + k_3 + k_4)x_1 - k_2x_2 - k_3x_3 - k_4x_4 = f_1(t)$$
(5)

Figure 3.

Derive the equation of motion for mass 2.

$$\Sigma \mathbf{F} = \mathbf{m}_2 \, \ddot{\mathbf{x}}_2 \tag{6}$$

$$m_2 \ddot{x}_2 = -k_2 (x_2 - x_1) \tag{7}$$

$$m_2 \ddot{x}_2 + k_2 x_2 - k_2 x_1 = 0 \tag{8}$$

Similarly,

$$m_3 \ddot{x}_3 + k_3 x_3 - k_3 x_1 = 0 \tag{9a}$$

$$m_4 \ddot{x}_4 + k_4 x_4 - k_4 x_1 = 0 \tag{9b}$$

Assemble the equations in matrix form.

$$\begin{bmatrix} m_{1} & 0 & 0 & 0 \\ 0 & m_{2} & 0 & 0 \\ 0 & 0 & m_{3} & 0 \\ 0 & 0 & 0 & m_{4} \end{bmatrix} \begin{bmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \\ \ddot{x}_{3} \\ \ddot{x}_{4} \end{bmatrix} + \begin{bmatrix} k_{1} + k_{2} + k_{3} + k_{4} & -k_{2} & -k_{3} & -k_{4} \\ -k_{2} & k_{2} & 0 & 0 \\ -k_{3} & 0 & k_{3} & 0 \\ -k_{4} & 0 & 0 & k_{4} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} f_{1}(t) \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(10)

Decoupling

Equation (10) is coupled via the stiffness matrix. An intermediate goal is to decouple the equation.

Simplify,

$$\mathbf{M}\,\overline{\mathbf{\ddot{x}}} + \mathbf{K}\,\overline{\mathbf{x}} = \overline{\mathbf{F}}\tag{11}$$

where

$$\mathbf{M} = \begin{bmatrix} \mathbf{m}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{m}_2 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{m}_3 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{m}_4 \end{bmatrix}$$
(12)

$$\mathbf{K} = \begin{bmatrix} \mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4 & -\mathbf{k}_2 & -\mathbf{k}_3 & -\mathbf{k}_4 \\ -\mathbf{k}_2 & \mathbf{k}_2 & 0 & 0 \\ -\mathbf{k}_3 & 0 & \mathbf{k}_3 & 0 \\ -\mathbf{k}_4 & 0 & 0 & \mathbf{k}_4 \end{bmatrix}$$
(13)

$$\overline{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix}$$
(14)

$$\overline{\mathbf{F}} = \begin{bmatrix} \mathbf{f}_1(\mathbf{t}) \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \tag{15}$$

Consider the homogeneous form of equation (11).

$$\mathbf{M}\,\overline{\ddot{\mathbf{x}}} + \mathbf{K}\,\overline{\mathbf{x}} = \overline{\mathbf{0}}\tag{16}$$

Seek a solution of the form

$$\overline{\mathbf{x}} = \overline{\mathbf{q}} \exp(\mathbf{j}\omega \mathbf{t}) \tag{17}$$

The q vector is the generalized coordinate vector.

Note that

$$\overline{\dot{\mathbf{x}}} = \mathbf{j}\omega\,\overline{\mathbf{q}}\,\exp(\,\mathbf{j}\omega\mathbf{t})\tag{18}$$

$$\overline{\ddot{x}} = -\omega^2 \,\overline{q} \exp(j\omega t) \tag{19}$$

Substitute equations (17) through (19) into equation (16).

$$-\omega^2 M \,\overline{q} \exp(j\omega t) + K \overline{q} \exp(j\omega t) = \overline{0}$$
⁽²⁰⁾

$$\left\{-\omega^2 M \ \overline{q} + K \overline{q}\right\} \exp(j\omega t) = \overline{0}$$
(21)

$$\left\{-\omega^2 M \ \overline{q} + K \overline{q}\right\} \exp(j\omega t) = \overline{0}$$
(22)

$$\left\{ -\omega^2 M + K \right\} \overline{q} = \overline{0} \tag{23}$$

$$\left\{ \mathbf{K} - \boldsymbol{\omega}^2 \mathbf{M} \right\} \overline{\mathbf{q}} = \overline{\mathbf{0}} \tag{24}$$

Equation (24) is an example of a generalized eigenvalue problem. The eigenvalues can be found by setting the determinant equal to zero.

$$\det\left\{K - \omega^2 M\right\} = 0 \tag{25}$$

$$det \begin{cases} \begin{bmatrix} k_1 + k_2 + k_3 + k_4 & -k_2 & -k_3 & -k_4 \\ -k_2 & k_2 & 0 & 0 \\ -k_3 & 0 & k_3 & 0 \\ -k_4 & 0 & 0 & k_4 \end{bmatrix} - \omega^2 \begin{bmatrix} m_1 & 0 & 0 & 0 \\ 0 & m_2 & 0 & 0 \\ 0 & 0 & m_3 & 0 \\ 0 & 0 & 0 & m_4 \end{bmatrix} \} = 0$$
(26)

The resulting eigenvalues are ω_1 through ω_4 .

The eigenvectors are found via the following equations.

$$\left\{ \mathbf{K} - \omega_{\mathbf{i}}^{2} \mathbf{M} \right\} \overline{\mathbf{q}}_{\mathbf{i}} = \overline{\mathbf{0}} , \quad \mathbf{i} = 1, 2, 3, 4$$

$$(27)$$

where

$$\overline{q}_{i} = \begin{bmatrix} q_{i1} \\ q_{i2} \\ q_{i3} \\ q_{i4} \end{bmatrix}, \quad i = 1, 2, 3, 4$$
(28)

An eigenvector matrix Q can be formed. The eigenvectors are inserted in column format.

$$Q = \begin{bmatrix} \overline{q}_1 & | & \overline{q}_2 & | & \overline{q}_3 & | & \overline{q}_4 \end{bmatrix}$$
(29)

$$Q = \begin{bmatrix} q_{11} & q_{21} & q_{31} & q_{41} \\ q_{12} & q_{22} & q_{32} & q_{42} \\ q_{13} & q_{23} & q_{33} & q_{43} \\ q_{14} & q_{24} & q_{34} & q_{44} \end{bmatrix}$$
(30)

The eigenvectors represent orthogonal mode shapes.

Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized eigenvector matrix \hat{Q} can be obtained such that the following orthogonality relations are obtained.

$$\hat{Q}^{\mathrm{T}} \mathbf{M} \hat{Q} = \mathbf{I}$$
(31)

and

$$\hat{\mathbf{Q}}^{\mathrm{T}}\mathbf{K}\hat{\mathbf{Q}} = \mathbf{\Omega} \tag{32}$$

where

superscript T represents transpose

I is the identity matrix

 Ω is a diagonal matrix of eigenvalues

Note that

$$\hat{\mathbf{Q}} = \begin{bmatrix} \hat{q}_{11} & \hat{q}_{21} & \hat{q}_{31} & \hat{q}_{41} \\ \hat{q}_{12} & \hat{q}_{22} & \hat{q}_{32} & \hat{q}_{42} \\ \hat{q}_{13} & \hat{q}_{23} & \hat{q}_{33} & \hat{q}_{43} \\ \hat{q}_{14} & \hat{q}_{24} & \hat{q}_{34} & \hat{q}_{44} \end{bmatrix}$$
(33a)

$$\hat{Q}^{T} = \begin{bmatrix} \hat{q}_{11} & \hat{q}_{12} & \hat{q}_{13} & \hat{q}_{14} \\ \hat{q}_{21} & \hat{q}_{22} & \hat{q}_{23} & \hat{q}_{24} \\ \hat{q}_{31} & \hat{q}_{32} & \hat{q}_{33} & \hat{q}_{34} \\ \hat{q}_{41} & \hat{q}_{42} & \hat{q}_{43} & \hat{q}_{44} \end{bmatrix}$$
(33b)

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial. Further discussion is given in References 5 and 6.

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial. Now define a modal coordinate $\eta(t)$ such that

$$\overline{\mathbf{x}} = \hat{\mathbf{Q}} \ \overline{\boldsymbol{\eta}} \tag{34}$$

The displacement terms are

$$x_{i} = \hat{q}_{i1} \eta_{1} + \hat{q}_{i2} \eta_{2} + \hat{q}_{i3} \eta_{3} + \hat{q}_{i4} \eta_{4} , \quad i = 1, 2, 3, 4$$
(35)

The velocity terms are

$$\dot{x}_{i} = \hat{q}_{i1} \dot{\eta}_{1} + \hat{q}_{i2} \dot{\eta}_{2} + \hat{q}_{i3} \dot{\eta}_{3} + \hat{q}_{i4} \dot{\eta}_{4}$$
(36)

The acceleration terms are

$$\ddot{x}_{i} = \hat{q}_{i1} \ddot{\eta}_{1} + \hat{q}_{i2} \ddot{\eta}_{2} + \hat{q}_{i3} \ddot{\eta}_{3} + \hat{q}_{i4} \ddot{\eta}_{4}$$
(37)

Substitute equation (34) into the equation of motion, equation (11).

$$M\hat{Q} \ \overline{\eta} + K\hat{Q} \ \overline{\eta} = \overline{F}$$
(38)

Premultiply by the transpose of the normalized eigenvector matrix.

$$\hat{Q}^{T} M \hat{Q} \ \overline{\eta} + \hat{Q}^{T} K \hat{Q} \ \overline{\eta} = \hat{Q}^{T} \overline{F}$$
(39)

The orthogonality relationships yield

$$I \ \overline{\ddot{\eta}} + \Omega \ \overline{\eta} = \hat{Q}^T \overline{F}$$

$$\tag{40}$$

For the sample problem, equation (40) becomes

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \ddot{\eta}_1 \\ \ddot{\eta}_2 \\ \ddot{\eta}_3 \\ \ddot{\eta}_4 \end{bmatrix} + \begin{bmatrix} \omega_1^2 & 0 & 0 & 0 \\ 0 & \omega_2^2 & 0 & 0 \\ 0 & 0 & \omega_3^2 & 0 \\ 0 & 0 & 0 & \omega_4^2 \end{bmatrix} \begin{bmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \end{bmatrix} = \begin{bmatrix} \hat{q}_{11} & \hat{q}_{12} & \hat{q}_{13} & \hat{q}_{14} \\ \hat{q}_{21} & \hat{q}_{22} & \hat{q}_{23} & \hat{q}_{24} \\ \hat{q}_{31} & \hat{q}_{32} & \hat{q}_{33} & \hat{q}_{34} \\ \hat{q}_{41} & \hat{q}_{42} & \hat{q}_{43} & \hat{q}_{44} \end{bmatrix} \begin{bmatrix} f_1(t) \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(41)

Note that the four equations are decoupled in terms of the modal coordinate. Now assume modal damping by adding an uncoupled damping matrix.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \ddot{\eta}_{1} \\ \ddot{\eta}_{2} \\ \ddot{\eta}_{3} \\ \ddot{\eta}_{4} \end{bmatrix} + \begin{bmatrix} 2\xi_{1}\omega_{1} & 0 & 0 & 0 \\ 0 & 2\xi_{2}\omega_{2} & 0 & 0 \\ 0 & 0 & 2\xi_{3}\omega_{3} & 0 \\ 0 & 0 & 0 & 2\xi_{4}\omega_{4} \end{bmatrix} \begin{bmatrix} \dot{\eta}_{1} \\ \dot{\eta}_{2} \\ \dot{\eta}_{3} \\ \dot{\eta}_{4} \end{bmatrix} + \begin{bmatrix} \omega_{1}^{2} & 0 & 0 & 0 \\ 0 & \omega_{2}^{2} & 0 & 0 \\ 0 & 0 & \omega_{3}^{2} & 0 \\ 0 & 0 & 0 & \omega_{4}^{2} \end{bmatrix} \begin{bmatrix} \eta_{1} \\ \eta_{2} \\ \eta_{3} \\ \eta_{4} \end{bmatrix} = \begin{bmatrix} \hat{q}_{11} & \hat{q}_{12} & \hat{q}_{13} & \hat{q}_{14} \\ \hat{q}_{21} & \hat{q}_{22} & \hat{q}_{23} & \hat{q}_{24} \\ \hat{q}_{31} & \hat{q}_{32} & \hat{q}_{33} & \hat{q}_{34} \\ \hat{q}_{41} & \hat{q}_{42} & \hat{q}_{43} & \hat{q}_{44} \end{bmatrix} \begin{bmatrix} f_{1}(t) \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(42)$$

Equation (42) yields four equations

$$\ddot{\eta}_{i} + 2\xi_{i}\omega_{i} + \omega_{i}^{2}\eta_{i} = \hat{q}_{i1}f_{1}(t) , \quad i = 1, 2, 3, 4$$
(43)

Now assume a harmonic base input.

$$f_1(t) = A \exp(j\omega t)$$
(44)

Assume a harmonic modal displacement at the same frequency as the applied force.

$$\eta_i = \psi_i \exp(j\omega t) \tag{45}$$

$$\dot{\eta}_{i} = j \omega_{i} \psi_{i} \exp(j\omega t) \tag{46}$$

$$\ddot{\eta}_{i} = -\omega_{i}^{2} \psi_{i} \exp(j\omega t)$$
(47)

By substitution,

$$\left\{ -\omega^{2} + j 2\xi_{i}\omega_{i}\omega + \omega_{i}^{2} \right\} \psi_{i} \exp(j\omega t) = \hat{q}_{i1} \operatorname{Aexp}(j\omega t)$$
(48)

$$\left\{ \left[\omega_{i}^{2} - \omega^{2} \right] + j 2\xi_{i} \omega_{i} \omega \right\} \psi_{i} \exp(j\omega t) = \hat{q}_{i1} \operatorname{Aexp}(j\omega t)$$
(49)

$$\eta_{i} = \psi_{i} \exp(j\omega t) = \frac{\hat{q}_{i1} \operatorname{Aexp}(j\omega t)}{\left\{ \left[\omega_{i}^{2} - \omega^{2} \right] + j 2\xi_{i} \omega_{i} \omega \right\}}$$
(50)

The modal velocity is

$$\dot{\eta}_{i} = j \frac{\omega \hat{q}_{i1} \operatorname{Aexp}(j\omega t)}{\left\{ \left[\omega_{i}^{2} - \omega^{2} \right] + j 2\xi_{i} \omega_{i} \omega \right\}}$$
(51)

The modal acceleration is

$$\ddot{\eta}_{i} = -\frac{\omega^{2} \hat{q}_{i1} \operatorname{Aexp}(j\omega t)}{\left\{ \left[\omega_{i}^{2} - \omega^{2} \right] + j \, 2\xi_{i} \, \omega_{i} \, \omega \right\}}$$
(52)

Recall

$$\ddot{x}_{i} = \hat{q}_{i1} \ddot{\eta}_{1} + \hat{q}_{i2} \ddot{\eta}_{2} + \hat{q}_{i3} \ddot{\eta}_{3} + \hat{q}_{i4} \ddot{\eta}_{4}$$
(53)

$$\begin{split} \ddot{x}_{i}(t) &= \frac{\hat{q}_{i1}^{2}}{\left\{ \left[\omega_{1}^{2} - \omega^{2} \right] + j2\xi_{1}\omega_{1}\omega \right\}} \omega^{2}A \exp(j\omega t) \\ &+ \frac{\hat{q}_{i2}^{2}}{\left\{ \left[\omega_{2}^{2} - \omega^{2} \right] + j2\xi_{2}\omega_{2}\omega \right\}} \omega^{2}A \exp(j\omega t) \\ &+ \frac{\hat{q}_{i3}^{2}}{\left\{ \left[\omega_{3}^{2} - \omega^{2} \right] + j2\xi_{3}\omega_{3}\omega \right\}} \omega^{2}A \exp(j\omega t) \\ &+ \frac{\hat{q}_{i4}^{2}}{\left\{ \left[\omega_{4}^{2} - \omega^{2} \right] + j2\xi_{4}\omega_{4}\omega \right\}} \omega^{2}A \exp(j\omega t) \end{split}$$

$$(54)$$

The Fourier transform equation is

$$\hat{X}_{i}(f) = \int_{-\infty}^{\infty} \ddot{x}_{i}(t) \exp[-j\omega t] dt$$
(55)

Take the Fourier transform of each side of equation (54).

$$\begin{split} \hat{X}_{i}(\omega) / F_{1}(\omega) &= \frac{\hat{q}_{i1}^{2} \omega^{2}}{\left\{ \left[\omega_{1}^{2} - \omega^{2} \right] + j 2\xi_{1} \omega_{1} \omega \right\}} \\ &+ \frac{\hat{q}_{i2}^{2} \omega^{2}}{\left\{ \left[\omega_{2}^{2} - \omega^{2} \right] + j 2\xi_{2} \omega_{2} \omega \right\}} \\ &+ \frac{\hat{q}_{i3}^{2} \omega^{2}}{\left\{ \left[\omega_{3}^{2} - \omega^{2} \right] + j 2\xi_{3} \omega_{3} \omega \right\}} \\ &+ \frac{\hat{q}_{i4}^{2} \omega^{2}}{\left\{ \left[\omega_{4}^{2} - \omega^{2} \right] + j 2\xi_{4} \omega_{4} \omega \right\}} \end{split}$$

(56)

References

- 1. T. Irvine, An Introduction to the Shock Response Spectrum Revision P, Vibrationdata, 2002.
- 2. T. Irvine, Response of a Single-degree-of-freedom System Subjected to a Classical Pulse Base Excitation, Revision A, Vibrationdata, 1999.
- 3. R. Cook, Finite Element Modeling for Stress Analysis, Wiley, New York, 1995.
- 4. NE/Nastran User's Manual, Version 8, Noran Engineering, Los Alamitos, CA, 2001.
- 5. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey, 1982.
- 6. Weaver and Johnston, Structural Dynamics by Finite Elements, Prentice-Hall, New Jersey, 1987.
- 7. L. Meirovitch, Analytical Methods in Vibrations, Macmillan, New York, 1967.

APPENDIX A

EXAMPLE 1

Consider the system in Figure A-1. Assign the values in Table A-1. The natural frequencies, mode shapes and frequency response function curves are found using Matlab script: four_dof_force_frf.m.

Table A-1. Parameters		
Variable	Value	
m ₁	5.0 kg	
m ₂	1.0 kg	
m ₃	2.0 kg	
m4	3.0 kg	
k ₁	500,000 N/m	
k ₂	200,000 N/m	
k ₃	250,000 N/m	
k4	300,000 N/m	
f ₁	100 N	

Figure A-2.

Peak Values

Mass 1:			Mass 3:	
604.1	Hz	54.42 G	604.1 Hz	77.44 G
1046	Hz	4.15 G	1108 Hz	37.98 G
1280	Hz	15.47 G	1280 Hz	43.72 G
1863	Hz	130.2 G	1863 Hz	70.77 G
Mass 2:			Mass 4:	
604.1	Hz	66.87 G	604.1 Hz	86.53 G
1076	Hz	9.918 G	1016 Hz	29.53 G
1318	Hz	100.8 G	1280 Hz	22.9 G
1863	Hz	166.1 G	1863 Hz	51.17 G

The mass matrix is

m =

0.0130	0	0	0
0	0.0026	0	0
0	0	0.0052	0
0	0	0	0.0078

The stiffness matrix is

k =

1250000	-200000	-250000	-300000
-200000	200000	0	0
-250000	0	250000	0
-300000	0	0	300000

Natural Frequencies =

596.2 Hz 1050 Hz 1299 Hz 1859 Hz

Modes Shapes (column format) =

4.647	0.9781	-2.23	-7.048
5.679	2.244	-16.25	9.197
6.552	10.04	5.86	3.86
7.301	-7.627	3.073	2.783

Participation Factors =

0.1656 0.01123 -0.01674 -0.02584 Effective Modal Mass = 10.59 lbm 0.0487 lbm 0.1081 lbm 0.2578 lbm Total Modal Mass = 11.0000 lbm