NOTES ON MODE SHAPES AND BENDING GAIN UNITS IN NASTRAN

By Tom Irvine

Email: tomirvine@aol.com

April 22, 2003

The bending gain BG is calculate as

$$BG = \frac{\varphi_{pivot} \varphi_{comp}}{\varphi_{comp}^2}$$

where

 ϕ_{pivot} = RSS of Y and Z mode shape coefficients at engine pivot point (translational)

 ϕ_{comp} = RSS of Y and Z rotation mode shape coefficients at GCA center of computation (rotational)

The rotational mode dimension is $\left[\frac{\text{rad}}{\text{inch } x \text{ sqrt(mass)}}\right]$

The translational mode dimension is $\left[\frac{1}{\text{sqrt}(\text{mass})}\right]$

The mass unit is (12 x slugs).

The rotational mode dimension is $\left[\frac{\text{rad}}{\text{inch x sqrt}(12 \text{ x slugs})}\right]$

The translational mode dimension is $\left[\frac{1}{\operatorname{sqrt}(12 \times \operatorname{slugs})}\right]$

Note that

$$\omega^2 = \frac{K}{M}$$

where

K is the stiffness in lbf/ft

M is the mass in slugs

The term ω^2 thus has units of $\frac{lbf/ft}{slugs}$

The bending gains units for the term

$$BG = \frac{\phi_{pivot} \, \phi_{comp}}{\omega^2}$$

are

$$\left[\frac{\text{rad}}{\text{inch x sqrt}(12 \text{ x slugs})}\right] \left[\frac{1}{\text{sqrt}(12 \text{ x slugs})}\right] \left[\frac{\text{slugs } \cdot \text{ft}}{\text{lbf}}\right]$$

$$= \left[\frac{\text{rad}}{12 \text{ inch slugs}} \right] \left[\frac{\text{slugs } \cdot \text{ft}}{\text{lbf}} \right]$$

$$=\left[\frac{\text{rad}}{\text{lbf}}\right]$$