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Introduction

Damping in mechanical systems may be represented in numerous formats. The most common
forms are Q and &, where

Q s the amplification or quality factor

& s the viscous damping ratio or fraction of critical damping

These two variables are related by the formula

Q= (1)

An amplification factor of Q=10 is thus equivalent to 5% damping.
The Q value is approximately equal to the peak transfer function magnitude for a single-degree-
of-freedom subjected to base excitation at its natural frequency. This simple equivalency does

not necessarily apply if the system is a multi-degree-of-freedom system, however.

Another damping parameter is the frequency width Af between the -3 dB points on the transfer
magnitude curve. The conversion formula is

Q=-2 @)

where f, is the natural frequency.

The -3 dB points are also referred to as the “half power points” on the transfer magnitude curve.

Equation (2) is useful for determining the Q values for a multi-degree-of-freedom system as long
as the modal frequencies are well separated.



Single-degree-of-freedom System Example

Consider the single-degree-of-freedom system in Figure 1.

Figure 1.

Given:

1. Themassis1llbm (0.00259 Ibfsec”2/in).
2. The spring stiffness is 1000 Ibf/in.

3. The damping value is 5%, which is equivalent to Q=10.

The natural frequency equation is

The resulting natural frequency is 98.9 Hz.

3)

Now consider that the system is subjected to base excitation in the form of a sine sweep test. The
resulting transfer function magnitude is given in Figure 2, as calculated using the method in

Reference 1.
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Figure 2. Single-degree-of-freedom System

The peak transfer function magnitude is equal to the Q value for this case, which is Q=10.



Two-deqgree-of-freedom System Example

Consider the two-degree-of-freedom system in Figure 3.
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Figure 3.

(The dashpots are omitted from Figure 3 for brevity).

Given:
1. Eachmassis1llbm (0.00259 Ibfsec”2/in).

2. Each spring stiffness is 1000 Ibf/in.

3. Each mode has a damping value of 5%, which is equivalent to Q=10.

The resulting natural frequencies are 61.1 Hz and 160.0 Hz, as calculated using the method
in Reference 2.

Now consider that the two-degree-of-freedom system is subjected to base excitation in the
form of a sine sweep test. The resulting transfer function magnitude is given in Figure 4.
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Figure 4. Two-degree-of-freedom System

Each mass is represented by a separate curve in the transfer function plot. The Q value
for each mode cannot be determined by simple inspection for this case.
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Figure 5. Two-degree-of-freedom System, First Mode

The -3 dB points occur at 57.9 Hz and at 64.1 Hz

The Q value for the first mode is calculated as

f
Q:A—r; (4)
Q=%:9.9=10 (5
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Figure 6. Two-degree-of-freedom System, Second Mode

The -3 dB points occur at 152.3 Hz and at 167.9 Hz

The Q value for the second mode is calculated as

f
Q:A—r; (6)
Q:%=10.3=10 (7)
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APPENDIX A

Half-Power Points for a SDOF System

The receptance function (displacement/force) for an SDOF system is

2
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(A-1)

The peak value at resonance is

2
Wn

zonf

The frequencies at which the half-power points occur are determined as follows

(A-2)

(A-3)

Vo2 -0 + 2200, 7 % o)
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The roots of equation (A-13) can be determined by the quadratic formula. The positive

® roots are the frequencies corresponding to the half-power points.
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