THE HALF POWER BANDWIDTH METHOD FOR DAMPING CALCULATION Revision A

By Tom Irvine
Email: tomirvine@aol.com
September 14, 2009

Introduction

Damping in mechanical systems may be represented in numerous formats. The most common forms are Q and ξ, where
Q is the amplification or quality factor
$\xi \quad$ is the viscous damping ratio or fraction of critical damping

These two variables are related by the formula

$$
\begin{equation*}
\mathrm{Q}=\frac{1}{2 \xi} \tag{1}
\end{equation*}
$$

An amplification factor of $\mathrm{Q}=10$ is thus equivalent to 5% damping.
The Q value is approximately equal to the peak transfer function magnitude for a single-degree-of-freedom subjected to base excitation at its natural frequency. This simple equivalency does not necessarily apply if the system is a multi-degree-of-freedom system, however.

Another damping parameter is the frequency width $\Delta \mathrm{f}$ between the -3 dB points on the transfer magnitude curve. The conversion formula is

$$
\begin{equation*}
\mathrm{Q}=\frac{\mathrm{f}_{\mathrm{n}}}{\Delta \mathrm{f}} \tag{2}
\end{equation*}
$$

where f_{n} is the natural frequency.
The -3 dB points are also referred to as the "half power points" on the transfer magnitude curve.
Equation (2) is useful for determining the Q values for a multi-degree-of-freedom system as long as the modal frequencies are well separated.

Single-degree-of-freedom System Example

Consider the single-degree-of-freedom system in Figure 1.

Figure 1.

Given:

1. The mass is $1 \mathrm{lbm} \quad(0.00259 \mathrm{lbf} \sec \wedge 2 / \mathrm{in})$.
2. The spring stiffness is $1000 \mathrm{lbf} / \mathrm{in}$.
3. The damping value is 5%, which is equivalent to $\mathrm{Q}=10$.

The natural frequency equation is

$$
\begin{equation*}
\mathrm{fn}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \tag{3}
\end{equation*}
$$

The resulting natural frequency is 98.9 Hz .
Now consider that the system is subjected to base excitation in the form of a sine sweep test. The resulting transfer function magnitude is given in Figure 2, as calculated using the method in Reference 1.

Figure 2. Single-degree-of-freedom System
The peak transfer function magnitude is equal to the Q value for this case, which is $\mathrm{Q}=10$.

Two-degree-of-freedom System Example

Consider the two-degree-of-freedom system in Figure 3.

Figure 3.
(The dashpots are omitted from Figure 3 for brevity).

Given:

1. Each mass is 1 lbm ($0.00259 \mathrm{lbf} \sec \wedge 2 / \mathrm{in})$.
2. Each spring stiffness is $1000 \mathrm{lbf} / \mathrm{in}$.
3. Each mode has a damping value of 5%, which is equivalent to $\mathrm{Q}=10$.

The resulting natural frequencies are 61.1 Hz and 160.0 Hz , as calculated using the method in Reference 2.

Now consider that the two-degree-of-freedom system is subjected to base excitation in the form of a sine sweep test. The resulting transfer function magnitude is given in Figure 4.

Figure 4. Two-degree-of-freedom System

Each mass is represented by a separate curve in the transfer function plot. The Q value for each mode cannot be determined by simple inspection for this case.

Figure 5. Two-degree-of-freedom System, First Mode

The -3 dB points occur at 57.9 Hz and at 64.1 Hz
The Q value for the first mode is calculated as

$$
\begin{align*}
& \mathrm{Q}=\frac{\mathrm{f} \mathrm{n}}{\Delta \mathrm{f}} \tag{4}\\
& \mathrm{Q}=\frac{61.1}{6.2}=9.9 \approx 10 \tag{5}
\end{align*}
$$

Figure 6. Two-degree-of-freedom System, Second Mode

The -3 dB points occur at 152.3 Hz and at 167.9 Hz
The Q value for the second mode is calculated as

$$
\begin{align*}
& \mathrm{Q}=\frac{\mathrm{f} \mathrm{n}}{\Delta \mathrm{f}} \tag{6}\\
& \mathrm{Q}=\frac{160}{15.6}=10.3 \approx 10 \tag{7}
\end{align*}
$$

References

1. T. Irvine, The Steady-state Response of Single-degree-of-freedom System to a Harmonic Base Excitation, Vibrationdata, 2004.
2. T. Irvine, The Generalized Coordinate Method for Discrete Systems Subjected to Base Excitation, Vibrationdata, 2004.

APPENDIX A

Half-Power Points for a SDOF System

The receptance function (displacement/force) for an SDOF system is

$$
\begin{equation*}
\frac{\omega_{n}^{2}}{k \sqrt{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega \omega_{n}\right)^{2}}} \tag{A-1}
\end{equation*}
$$

The peak value at resonance is

$$
\begin{equation*}
\frac{\omega_{\mathrm{n}}^{2}}{\mathrm{k} \sqrt{\left(2 \xi \omega_{\mathrm{n}}^{2}\right)^{2}}} \tag{A-2}
\end{equation*}
$$

The frequencies at which the half-power points occur are determined as follows

$$
\begin{equation*}
\frac{\frac{\omega_{n}^{2}}{\mathrm{k} \sqrt{\left(\omega_{\mathrm{n}}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega \omega_{\mathrm{n}}\right)^{2}}}}{\frac{\omega_{\mathrm{n}}^{2}}{\mathrm{k} \sqrt{\left(2 \xi \omega_{\mathrm{n}}^{2}\right)^{2}}}}=\frac{\sqrt{2}}{2} \tag{A-3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\sqrt{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega \omega_{n}\right)^{2}}}=\frac{\sqrt{2}}{2} \tag{A-4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\frac{\sqrt{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega \omega_{n}\right)^{2}}}{\frac{1}{2 \xi \omega_{n}^{2}}}}=\frac{\sqrt{2}}{2} \tag{A-5}
\end{equation*}
$$

$$
\begin{align*}
& \frac{2 \xi \omega_{\mathrm{n}}^{2}}{\sqrt{\left(\omega_{\mathrm{n}}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega \omega_{\mathrm{n}}\right)^{2}}}=\frac{\sqrt{2}}{2} \tag{A-6}\\
& 2 \xi{\omega_{\mathrm{n}}}^{2}=\frac{\sqrt{2}}{2} \sqrt{\left(\omega_{\mathrm{n}}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega \omega_{\mathrm{n}}\right)^{2}} \tag{A-7}\\
& \frac{4}{\sqrt{2}} \xi{\omega_{\mathrm{n}}}^{2}=\sqrt{\left(\omega_{\mathrm{n}}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega \omega_{\mathrm{n}}\right)^{2}} \\
& 8 \xi^{2} \omega_{\mathrm{n}}^{4}=\left(\omega_{\mathrm{n}}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega_{\mathrm{n}}\right)^{2} \tag{A-9}\\
& 8 \xi^{2} \omega_{\mathrm{n}}^{4}=\omega_{\mathrm{n}}^{4}-2 \omega^{2} \omega_{\mathrm{n}}^{2}+\omega^{4}+4 \xi^{2} \omega^{2} \omega_{\mathrm{n}}^{2} \tag{A-10}\\
& \omega_{\mathrm{n}}^{4}-2 \omega^{2} \omega_{\mathrm{n}}^{2}+\omega^{4}+4 \xi^{2} \omega^{2} \omega_{\mathrm{n}}^{2}-8 \xi^{2} \omega_{\mathrm{n}}^{4}=0 \tag{A-11}\\
& \omega^{4}+\left(-2 \omega_{\mathrm{n}}^{2}+4 \xi^{2} \omega_{\mathrm{n}}^{2}\right) \omega^{2}+\omega_{\mathrm{n}}^{4}-8 \xi^{2} \omega_{\mathrm{n}}^{4}=0 \tag{A-12}\\
& \omega^{4}+2 \omega_{\mathrm{n}}^{2}\left(-1+2 \xi^{2}\right) \omega^{2}+\omega_{\mathrm{n}}^{4}\left(1-8 \xi^{2}\right)=0 \tag{A-13}\\
& { }^{2}=0
\end{align*}
$$

The roots of equation (A-13) can be determined by the quadratic formula. The positive ω roots are the frequencies corresponding to the half-power points.

