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Abstract
     This paper presents the result of using a spatial matrix identification method to estimate the rigid body
properties of a frame structure. Frequency response functions in three directions at 10 points of the
structure are measured by hammer testing. The boundary condition of the structure is free-free. Using the
single-input-multiple-output FRFs, the identification method can estimate the rigid body properties of the
structure with practical accuracy.  The rigid body properties are estimated in three different conditions.
The first estimation is done using FRFs up to a frequency between the third and the fourth resonant
frequency. The second estimation is carried out using FRFs up to a frequency between the second and the
third resonant frequency. The last estimation is carried out using FRFs up to a frequency between the
first and the second resonant frequency.     All results are practically accurate.

1. Introduction

Rigid body properties are defined by the mass
quantity, the center of gravity, the principal inertia
of moments and their associated principal axes.
Rigid body properties are indispensable as well as
dynamic properties for various kinds of analysis,
synthesis and control design with respect to both
structural and mechanical dynamics.  For example,
one of the core roles of CAE is to predict the
dynamic behavior of complex mechanical systems
composed of many mechanical and structural
components accurately and reliably. Such
predictions are carried out synthesizing both the
static and dynamic properties of components
generally. Simulations cannot be successful without
rigid body properties of components.  In practical
situations, both kinds of properties of all
components should be stored in a database. Then,
they are downloaded into various simulation
methods
The theoretical definition of the rigid body
properties is straightforward and well known.
However, it is often difficult in practice to identify
the rigid body properties of actual mechanical

systems and structures accurately due to their
complexity.  Theoretical approaches, such as the
finite element method, need to precise theoretical
model.  Constructing such accurate models,
however, is often difficult due to the geometrical
complexity of the structure. Therefore, experimental
approaches often play an important role in the
identification of rigid body properties in practical
situations.
Among the experimental approaches, pendulum
testing is used as a primitive method.  Another
method uses acceleration frequency response
functions in the low frequency range in which the
inertia is dominant_[1]. This method requires a
priori knowledge of one principal axis of the test
structure.  Using a spatial matrix identification
method_[3], Butsuen and Okuma presented a
method[2] for identifying the rigid body properties
of structures, such as a softly mounted engine.  The
method was developed further in [4]. These
methods assume that the test structure is acting as a
rigid body.  In order to identify the rigid body
properties of flexible structures, a method using the
theory of the modal analysis was presented in [5].  It
requires the measurement of FRFs of a test structure
under the excitation of at least three different



locations. That is, at least three sets of single-input-
multiple-output FRFs (SIMO FRFs) are required.
However, it will be sometimes hard to carry out the
measurement of multiple-input- multiple-output
FRFs (MIMO FRFs) in practical situations due to
the cost of experiments.
One of the authors of this paper has been
developing an experimental method for identifying
spatial matrices of flexible structures using only
SIMO FRFs [6-8].  During his research, it has been
found that the method is capable to identify the
rigid body properties of flexible structures with
practical accuracy. The authors know no other
method that can estimate the full set of the rigid
body properties of a three dimensional flexible
structure using only SIMO FRFs.  At this time, a
collaborative research work is carried out for
investigating the capability using an actual frame
structure. This paper reports the result.

2.  Identification Method

      The identification algorithm was already
presented in the papers listed as references [6] and
[7].  Check these papers for more details.  Only the
outline of the algorithm is mentioned in this section.
     Frequency response functions are measured on
the structure to be identified under the free-free
boundary condition.  Frequency response functions
and the coordinates of measurement points are
essential for the identification. In addition, the
measurement of the coherence functions is
recommended.  After vibration testing, modal
parameters in the frequency range of interest are
estimated by a modal parameter estimation method.
The parameters to be identified are: the residue of
inertia term representing the influence of inertia on
the FRFs in the frequency range of interest, the
natural frequencies, damping ratios, mode shapes
located within the frequency range, and the residual
parameters representing the influence of residual
natural modes.
After vibration testing, one defines the connectivity
between the measurement points, using the
coordinates of the measurement points. The
identification method automatically determines the
location of zero elements in the spatial matrices. In
addition, the method creates a set of constraint
equations about the relation among non-zero
elements in spatial matrices.  The set of constraint
equations regarding the mass matrix is created
based on the physical principle mentioned below.
That is, the mass matrix of any system having multi

degrees of freedom must keep the relation expressed
by

[ ] [ ][ ] [ ]rigid
T MM =ΨΨ  ,         (1)

where [ƒµ] is the matrix of mutually independent
rigid motion modes, the matrix [M] is the mass
matrix to be identified, and [Mrigid] is a rigid body
mass matrix.  The matrix [ƒµ] is easily formulated
with the coordinates of the measurement points. The
rigid body mass matrix has the proper formation as
described by Eq.(2), provided [ƒµ] is composed of
the translational modes in the direction of x-axis, y-
axis and z-axis in the first, the second and the third
column respectively, and of the rotational modes
about x-axis, y-axis and z-axis in the fourth, the
fifth and the sixth column respectively.
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where m is the mass of the structure; Ixx, Iyy, Izz are
inertia moments around x-axis, y-axis and z-axis
respectively; Iyz, Izx, Izy are products of the moments
of inertia; A, B, C are parameters based on the
relations: A=mxg, B=myg, C=mzg.  ( xg, yg, zg ) is the
coordinate of the center of gravity. Eventually, even
without knowing the rigid body properties of the
structure, several constraint equations among the
elements of the mass matrix [M] can be created.
Namely, some non-zero elements of the mass matrix
[M] are expressed as dependent variables by the
linear combination of the other non-zero elements,
which are dealt with as independent variables.
Furthermore, if some of the rigid body properties
are already known, it is possible to use the known
values to create the constraint equations.
The constraint equations regarding the stiffness
matrix and the damping matrix are created as
follows.  Eq.(3) can be formulated according to the
principle that no stress is generated at any point of
the structure for any feasible rigid body motion:

[ ][ ] [ ]0=ΨK  ,             (3)

where [K] is the stiffness matrix to be identified,
and [0] is a zero element matrix. Constraint
equations regarding the stiffness matrix can be



created using Eq.(3).  The constraint equations of
the damping matrix are identical to those of the
stiffness matrix.
A set of the initial matrices has to be created to
begin the identification method because of the
iterative nature of the method.  The initial values of
the mass matrix and the stiffness matrix are set up
by substituting random numbers into the
independent variables of the constraint equations.
The substitution of random numbers is fast and
simple, and no better way to set up the initial
matrices has been found yet.  After the set up of the
initial matrices, the mass matrix and the stiffness
matrix are improved to become a positive definite
matrix and a positive semi-definite matrix
respectively by a sensitivity based optimization
method with respect to negative eigen-values.
Then, [K] and [M] are fine tuned such that some
lower natural frequencies, computed from the eigen-
value problem expressed by Eq.(4), correspond well
to the experimentally observed natural frequencies.

[ ] [ ]( ){ } { }0=− ii MK φλ              (4)

In addition to the control of eigen-values, also the
correlation between the corresponding model and
measured mode shapes is gradually improved. Once
a high degree of correspondence of the natural
frequencies and modes within the frequency range
of the identification is achieved, the spatial matrices
are further improved in order to make the magnitude
of the model FRFs fit the experimental FRFs.
Since the objective of this research is to estimate the
rigid body properties of flexible structures, it is

unnecessary to determine the damping matrix. The
rigid body properties can be derived from the mass
matrix using Eq.(1) and (2).  However, it is noted
here that the experimental spatial matrix
identification method is not only for the estimation
of rigid body properties but mainly for the
estimation of a set of spatial matrices that can
represent the dynamic characteristics as well as
rigid body properties.

3. Identifications of 3-D frame structure

3.1 The Test Structure and Measurement

Fig.1 shows the test structure to be identified.  This
structure is built of iron pipe with a square cross-
section.  Fig.2 shows its schematic view and the
location of 10 measurement points.

Fig.1 The Test Structure
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Fig.2 Schematic View of Location of Measurement Points
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Three directional accelerometers measured the
responses to hammer excitation. Consequently, the
number of degrees of freedom of the spatial
matrices to be identified is 30. The coordinate
system is also shown in Fig.2. The origin is set at
the center of the measurement points No.1 and
No.2.  Hammer input is applied only in the x-
direction at measurement point No.1.  Fig.3 shows
an example of an experimental FRF.  It is the direct
FRF at measurement point No.1.

Fig.3 Experimental FRFs of the excited freedom(
Point No.1, X-direction)

3.2 Identification using FRFs up to a
frequency between the third and
the fourth resonance

This section presents the results of the rigid body
properties identification using FRFs from 6 Hz up
to 50 Hz.  As shown in Fig.3, the first, second and
third resonances are located in the frequency range.
Using the truncated FRFs, the identification method
determines a set of spatial matrices having 30
degrees of freedom. The identified set of spatial
matrices can represent the input experimental FRFs
accurately as shown in Fig.4 and Fig.5.  The
identified spatial matrices are not shown explicitly
in this paper due to their size.
The identification method is programmed on
MatLab[9] using only the standard Matlab package.
The method is an iterative algorithm_[6,7].
Therefore, initial values of spatial matrices are
required to start the identification method. The
initial values are made using the uniform random
number generation function of MatLab. In order to
investigate the influence of the initial values, the
identifications are carried out ten times using
different initial spatial.  Table 1 shows the
identified rigid body properties.  In the table, the

column labeled as “Mean” describes the mean
values of the results of ten identifications. The
column labeled as “S.D.” describes the standard
deviations of these results. The values listed in the
column labeled as “(Min., Max)” are the minimum
and the maximum output values of the ten
identifications.  The values described in the column
labeled as “Ref.” are obtained by manual
calculation using the geometry and material data.  It
is found that the initial values influence the results
of the rigid body properties. However, the influence
is so slight that the results can be acceptable in
practice.

Fig.4 Fitting of FRFs between Experiment and
Identification (X-direction of Measurement Point No.1)

Fig.5 Fitting of FRFs between Experiment and
Identification (Y-direction of Measurement Point No.10)
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3.3 Identification using FRFs up to a
frequency between the second
and the third resonance

This section presents the results of the identification
using FRFs from 6 Hz up to 26 Hz.  The resonant

peaks located in the frequency range are only the
first and second natural frequency as shown in
Fig.3.  Table 2 lists the result.  These values are the
results of ten identifications.  The results are not
different from the ones in Table 1. The identified
values can be also practically acceptable.

Table 1.  Rigid Body Properties identified using FRFs from 6 Hz to 50 Hz

Table 2.  Rigid Body Properties identified using FRFs from 6 Hz to 26 Hz

Mean S.D. (Min., Max.)
5.2 0.21 (5.0, 5.7) 5.7

X coordinate 0.4 0.0071 (0.389, 0.410) 0.4
Center of Gravity Y coordinate 0.41 0.0043 (0.396, 0.410) 0.439

(m) Z coordinate 0.0029 0.013 (- 0.035, 0.014) 0
I11 0.78 0.03 (0.750, 0.841) 0.697

Principal Inert ia of I22 0.89 0.028 (0.853, 0.956) 0.684
Moment  (kgm^2) I33 1.53 0.065 (1.43, 1.67) 1.48

    x- coord. - 0.98 0.0052 (- .972,- 0.999) 1
V1:y- coord. 0.0079 0.19 (- 0.181, 0.220) 0

Principal Axes of     z- coord. 0.0095 0.055 (- 0.0623, 0.069) 0
Inert ia of Moments     x- coord. 0.079 0.19 (- 0.179, 0.217) 0

V2:y- coord. 0.98 0.049 (0.971, 0.997) 1
(Direct ional Cosine)     z- coord. - 0.045 0.073 (- 0.141, 0.0906) 0

    x- coord. - 0.0036 0.068 (- 0.0808, 0.0708) 0
V3:y- coord. 0.0382 0.079 (- 0.074, 0.139) 0
    z- coord. 0.995 0.0036 (0.990, 0.999) 1

Ident ificat ion using 6Hz- 50Hz Ref.

Mass (kg)

Methods
Propert ie

Mean S.D. (Min., Max.)
5.2 0.16 (5.0, 5.5) 5.7

X coordinate 0.4 0.0063 (0.387, 0.408) 0.4
Center of Gravity Y coordinate 0.41 0.0029 (0.406, 0.416) 0.439

(m) Z coordinate 0.00035 0.012 (- 0.0185, 0.024) 0
I11 0.81 0.057 (0.773, 0.826) 0.697

Principal Inert ia of I22 0.87 0.025 (0.908, 0.829) 0.684
Moment  ( kgm^2) I33 1.51 0.064 (1.42, 1.63) 1.48

    x- coord. - 0.99 0.0014 (- .999,- 0.958) 1
V1:y- coord. 0.0011 0.14 (- 0.286, 0.227) 0

Principal Axes of     z- coord. - 0.0014 0.055 (- 0.103, 0.125) 0
Inert ia of Moments     x- coord. 0.0019 0.14 (- 0.287, 0.217) 0

V2:y- coord. 0.99 0.013 (0.956, 0.999) 1
(Direct ional Cosine)     z- coord. - 0.034 0.057 (- 0.137, 0.0654) 0

    x- coord. - 0.0026 0.058 (- 0.0958, 0.0142) 0
V3:y- coord. 0.019 0.042 (- 0.066, 0.0627) 0
    z- coord. 0.99 0.005 (0.985, 0.999) 1

Identificat ion using 6Hz- 26Hz Ref.

Mass (kg)

Methods
Propert ie



Table 3.  Rigid Body Properties identified using FRFs from 6 Hz to 20 Hz

3.4 Identification using FRFs up to a
frequency between the first and
the second resonance

In this section, it is investigated how accurately the
full set of the rigid body properties can be estimated
using FRFs in the frequency range including only
the first resonance.  The frequency range is from 6
Hz up to 20Hz. Only the first resonant peak is
located in the frequency range as shown in Fig.3.
Table 3 lists the results.  The values are the results
of six identifications with different starting values.
Since extra identifications runs yield the same
results, no more identifications are carried out for
this case.  The accuracy of the estimated values is
also practically acceptable.  It becomes clear that
the rigid body properties can be estimated with
practical accuracy even using SIMO FRFs in a
frequency range including only the first resonant
peak by the experimental spatial matrix
identification method. All results show that the
principal inertia moments are always overestimated.
Research is going on in order to remove the bias
errors theoretically.

4. Conclusions

This paper presented the results of estimating the
rigid body properties of a flexible frame structure
using its FRFs measured by a hammer test.  For the
experimental identification, only SIMO FRFs are
necessary. Using the FRFs in the frequency ranges

including only a few resonant frequencies, the rigid
body properties can be estimated accurately in
practice.  As a typical condition, it has been found
that the identification of rigid body properties is
possible even using FRFs in a narrow frequency
range including only the first resonant peak.  The
initial random values of spatial matrices influence
the identified rigid body properties only a little.  It
can be ignored in practice.
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