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Introduction

An avionics component may be mounted with isolator grommets, which act as soft
springs. The goal of the isolator design is to provide attenuation of shock and vibration
energy. This is achieved primarily by lowering the natural frequency of the component
system. In addition, the isolators provide damping.

Consider a component with a complex geometry that is to be mounted via an arbitrary
number of isolators, as shown in Figures 1 and 2. Assume that the component’s
hardmounted natural frequency is at least one octave greater than any of its isolation
frequencies.

The objective is to derive the equations of motion for this system, accounting for six
degrees-of-freedom.
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Figure 1. Isolated Avionics Component Model

The mass and inertia are represented at a point with the circle symbol. Each isolator is
modeled by three orthogonal DOF springs. Only one spring set is shown for brevity.
The triangles indicate fixed constraints. The origin is at the center of gravity.
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Figure 2. Isolated Avionics Component Model with Dimensions

The variables o,B,and 0 represent rotations about the X, Y, and Z axes, respectively,
using the right-hand rule convention.



Derive the equations of motion. Let n be the number of isolators.
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By substitution, the equations of motion simplify to
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The equations can be arranged in matrix format.
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The mass and stiffness matrices are shown in upper triangular form due to symmetry.
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Base Excitation

Consider three separate base excitation cases, following the convention in Reference 1.
The mass and stiffness matrices in equations (28) and (29) apply in each of the cases.

Let u, X, and w be the base displacement in the X, Y and Z-axes, respectively.

X-axis Excitation

Let
rf=X-u (30)

The equations can be arranged in matrix format.
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Y-axis Excitation
Let
rp=y-v (32)
The equations can be arranged in matrix format.
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Z-axis Excitation

Let
r=z—-w (34)

The equations can be arranged in matrix format.
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(35)
The acceleration transmissibility functions of equations (31), (33) and (35) can then be
determined via Reference 2.

The modal transient response to a base input time history can be calculated via
References 3 and 4.
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APPENDIX A

Example 1

A mass is mounted to a surface with six isolators. The system has the following
properties.

M = 35Ibm

Jx = 804 Ibm in"2
Jy = 1213 1bmin"2
Jz = 1035 Ibm in"2
kx = 1200 Ibf/in

ky = 1600 Ibf/in

kz = 1200 Ibf/in

The six springs mount to the box at the following distances (inches) from the box C.G.
The pattern is shown in Figure A-1.

Isolator X Y z
1 5.0 -3.91 -5.3
2 5.0 -3.91 5.3
3 7.1 -3.91 0
4 -5.0 -3.91 5.3
5 -5.0 -3.91 -5.3
6 -7.1 -3.91 0

Assume uniform modal damping of 10%, which is equivalent to Q=5.
The results are calculated via Matlab script: arbitrary_isolators.m

A partial output listing is given on the next page. The results agree with a separate finite
element model which is omitted for brevity.
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ISOLATOR PATTERN EXAMPLE 1
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Figure A-1.

The circles represent the isolator mounting points. The view is looking down along the
Y-axis to the XZ plane.
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The mass matrix is

0.0907

O O O O o

The stiffness matrix is

k =
1.0e+005 *

0.0720

Eigenvalues
lambda =
1.0e+005 *

0.3794

0 0
0.0907 0
0 0.0907
0 0
0 0
0 0
0 0
0.0960 0
0 0.0720
0 -0.2815
0 0.0000
0.0000 0

0.5001 1.0587

Natural Frequencies =

1.

2. 35.
3. 51.
4. 55.
5. 67.
6. 69.

31
59
79
04
64
43

Hz
Hz
Hz
Hz
Hz
Hz

2.082

O O W o oo

-0.2815
2.8985
0.0000

1.1959
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0.0000
0.0000
3.7582

1.8062

0.2815
0.0000

4.3139

1.9028



Modes Shapes (rows represent modes)

X y zZ alpha beta theta
0 0 2.8 0.374 0 0
-2.95 0 0 0 0 0.28
0 -3.32 0 0 0 0

0 0 0 0 -0.564 0

0 0 -1.79 0.584 0 0
-1.52 0 0 0 0 -0.543
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Accel Transmissibility Magnitude X-axis Excitation
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Figure A-2.

Both the Y and Z-axes responses were below the lower amplitude plot limit.
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Accel Transmissibility Magnitude Y-axis Excitation
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Figure A-3.

Both the X and Z-axes responses were below the lower amplitude plot limit.
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Accel Transmissibility Magnitude Z-axis Excitation
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Both the X and Y-axes responses were below the lower amplitude plot limit.
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APPENDIX B

Example 2

A mass is mounted to a surface with six isolators. The system has the following
properties.

M = 9.0lbm

Jx = 90.17 Ibm in"2
Jy = 105.2 Ibm in"2
Jz = 42.08Ilbmin"2
kx = 500 Ibf/in

ky = 500 Ibf/in

kz = 500 Ibf/in

The six springs mount to the box at the following distances (inches) from the box C.G.
The pattern is shown in Figure B-1.

Isolator X Y z
1 -3 -2 -3
2 -3 -2 1
3 -3 -2 5
4 3 -2 -3
5 3 -2 1
6 3 -2 5

The results are calculated via Matlab script: arbitrary_isolators.m

A partial output listing is given on the next page. The results agree with the example in
Reference 1.
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ISOLATOR PATTERN EXAMPLE 2
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Figure B-1.

The circles represent the isolator mounting points. The view is looking down along the
Y-axis to the XZ plane.
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The mass matrix is

m =
0.0233 0 0 0 0 0
0 0.0233 0 0 0 0
0 0 0.0233 0 0 0
0 0 0 0.2336 0 0
0 0 0 0 0.2725 0
0 0 0 0 0 0.109

The stiffness matrix is

k =
3000 0 0 0 3000 6000
0 3000 0 -3000 0 0
0 0 3000 -6000 0 0
0 -3000 -6000 47000 0 0
3000 0 0 0 62000 6000
6000 0 0 0 6000 39000
Eigenvalues
lambda =
1.0e+005 *

0.6707 0.7501 1.2867 2.1907 2.6280 4.1983

Natural Frequencies =
41.22 Hz
43.59 Hz
57.09 Hz
74.49 Hz
81.59 Hz
103.1 Hz

o U b W DN
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Modes Shapes (rows represent modes)

X
1 0
2 6.01
3 0
4 -0.254
5 0
6 2.58

y

2.42

0

-5.86

-1.64

-3.29
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alpha

1.

16
0
0
0

.71

0

beta

-0.273

-1.84

0.455

theta

-1.12

0.831



