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Introduction 
 

An avionics component may be mounted with isolator grommets, which act as soft 

springs.  The goal of the isolator design is to provide attenuation of shock and vibration 

energy.  This is achieved primarily by lowering the natural frequency of the component 

system.  In addition, the isolators provide damping. 
 

Consider a component with a complex geometry that is to be mounted via an arbitrary 

number of isolators, as shown in Figures 1 and 2.  Assume that the component’s 

hardmounted natural frequency is at least one octave greater than any of its isolation 

frequencies. 
 

The objective is to derive the equations of motion for this system, accounting for six 

degrees-of-freedom. 
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Derivation 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 
 

Figure 1.  Isolated Avionics Component Model 
 

The mass and inertia are represented at a point with the circle symbol. Each isolator is 

modeled by three orthogonal DOF springs.  Only one spring set is shown for brevity.  

The triangles indicate fixed constraints.  The origin is at the center of gravity.   
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Figure 2.  Isolated Avionics Component Model with Dimensions 

 
 

The variables θ and ,β ,α  represent rotations about the X, Y, and Z axes, respectively, 

using the right-hand rule convention. 
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Derive the equations of motion.  Let n be the number of isolators. 
 

 



n

1i
ibicxi,xkxm                                                                            (1)                                                                                   

 

 



n

1i

0ibicxi,xkxm                                                                         (2)     

 













n

1i

0ibi,xk
n

1i
ici,xk

n

1i
i,xkxxm                                                (3)                                                                        

 

                                                                                                                                                                                       

 



n

1i
iaicyi,ykym                                                                           (4) 

 

 



n

1i

0iaicyi,ykym                                                                         (5) 

 













n

1i

0iai,yk
n

1i
ici,yk

n

1i
i,ykyym                                               (6)                                                                   

                                                                                                                    

 

 

 



n

1i
iaibzi,zkzm                                                                             (7)                                                                                                                                                                                                 

 

  0
n

1i
iaibzi,zkzm 



                                                                          (8)    

                                                                                                                                               

 

0
n

1i
iai,zk

n

1i
ibi,zk

n

1i
i,zkzzm 











                                                     (9)                                                                   
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    ib
n

1i
iaibzi,zkic

n

1i
iaicyi,ykxJ 







                       (10)                                                                                                                                                                

 

    0ib
n

1i
iaibzi,zkic

n

1i
iaicyi,ykxJ 







                    (11)                   

 

    0
n

1i
iciai,yk

n

1i
ibiai,zk

n

1i

2
ibi,zk2

ici,yk

n

1i
ibi,zkz

n

1i
ici,ykyxJ
















 













                        

(12) 

 

 
 

   







n

1i
iaiaibzi,zk

n

1i
icibicxi,xkyJ                                     (13)   

 

    

    

0
n

1i
icibi,xk

n

1i

2
iai,zk2

ici,xk
n

1i
ibiai,zk

ia
n

1i
i,zkz

n

1i
ici,xkxyJ












 

















                                  

 (14)   

 

                                                                                                         

   







n

1i
iaiaicyi,yk

n

1i
ibibicxi,xkzJ                                 (15)                                                                                                                                                                                                                                                               

 

 

    0
n

1i
iaiaicyi,yk

n

1i
ibibicxi,xkzJ 







                                (16)                                                 
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0
n

1i

n

1i

2
ibi,xk2

iai,ykicibi,xk
n

1i
iciai,yk

n

1i
iai,yky

n

1i
ibi,xkxzJ



 




 













 



                              

(17) 

 

 

Typically 

 

xki,xk      for all i                                                                                         (18)    

 

yki,yk      for all i                                                                                         (19)    

 

zki,zk      for all i                                                                                         (20)    

 

 

By substitution, the equations of motion simplify to 
 









n

1i

0ibxk
n

1i
icxkxknxxm                                                                   (21)                

 

 









n

1i

0iayk
n

1i
icykyknyym                                                                  (22)        

 

 

0
n

1i
iazk

n

1i
ibzkzknzzm 







                                                                     (23) 

 

 

 

    0
n

1i
iciayk

n

1i
ibiazk

n

1i

2
ibzk2

icyk

n

1i
ibzkz

n

1i
icykyxJ
















 













 

(24) 
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0
n

1i
icibxk

n

1i

2
iazk2

icxk
n

1i
ibiazk

n

1i
iazkz

n

1i
icxkxyJ












 

















 

(25) 

 

0
n

1i

n

1i

2
ibxk2

iaykicibxk
n

1i
iciayk

n

1i
iayky

n

1i
ibxkxzJ



 




 













 



 

(26) 

 

 

 

The equations can be arranged in matrix format. 
 

 






























































































0

0

0

0

0

0

z

y

x

K
z

y

x

M













 

 (27) 

 

 

The mass and stiffness matrices are shown in upper triangular form due to symmetry. 

 
 





























zJ

0yJ

00xJ

000m

0000m

00000m

M  

 (28) 
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K =

   
























































 






 










 























n

1i

2
ibxk2

iayk

n

1i
icibxk

n

1i

2
iazk2

icxk

n

1i
iciayk

n

1i
ibiazk

n

1i

2
ibzk2

icyk

0
n

1i
iazk

n

1i
ibzkzkn

n

1i
iayk0

n

1i
icyk0ykn

n

1i
ibxk

n

1i
icxk000xkn

 

 
 

(29) 

 

 

 

 

 

 



 9 

Base Excitation  

 

Consider three separate base excitation cases, following the convention in Reference 1. 

 

The mass and stiffness matrices in equations (28) and (29) apply in each of the cases. 

 

Let u, x, and w be the base displacement in the X, Y and Z-axes, respectively. 

 

 

X-axis Excitation 

 

Let 

r1 = x – u                                                                                                           (30)                                                                                                                                                                                 

 

The equations can be arranged in matrix format. 

 






























































































0

0

0

0

0

um

z

y

r

K
z

y

r

M

11 













 

 (31) 

 

Y-axis Excitation 

 

Let 

r2 = y – v                                                                                                           (32) 

 

The equations can be arranged in matrix format. 

 
































































































0

0

0

0

vm

0

z

r

x

K
z

r

x

M

22 













 

 (33) 
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Z-axis Excitation 

 

Let 

r3 = z – w                                                                                                      (34) 

 

 

The equations can be arranged in matrix format. 

 

 































































































0

0

0

wm

0

0

r

y

x

K
r

y

x

M
33 













 

(35) 

 

 

The acceleration transmissibility functions of equations (31), (33) and (35) can then be 

determined via Reference 2. 

 

The modal transient response to a base input time history can be calculated via 

References 3 and 4. 
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APPENDIX A 

 

Example 1 
 

A mass is mounted to a surface with six isolators.  The system has the following 

properties. 
 

 

 

M = 35 lbm 

Jx = 804 lbm in^2 

Jy = 1213 lbm in^2 

Jz = 1035 lbm in^2 

kx = 1200 lbf/in 

ky = 1600 lbf/in 

kz = 1200 lbf/in 

 

 

The six springs mount to the box at the following distances (inches) from the box C.G.  

The pattern is shown in Figure A-1. 

 

 

Isolator X  Y Z  

1 5.0 -3.91 -5.3 

2 5.0 -3.91 5.3 

3 7.1 -3.91 0 

4 -5.0 -3.91 5.3 

5 -5.0 -3.91 -5.3 

6 -7.1 -3.91 0 

 

 

Assume uniform modal damping of 10%, which is equivalent to Q=5. 

 

The results are calculated via Matlab script: arbitrary_isolators.m 

 

A partial output listing is given on the next page.  The results agree with a separate finite 

element model which is omitted for brevity. 
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Figure A-1. 

 

 

 

The circles represent the isolator mounting points.  The view is looking down along the 

Y-axis to the XZ plane. 
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The mass matrix is 

 

m = 

 

    0.0907         0         0         0         0         0 

         0    0.0907         0         0         0         0 

         0         0    0.0907         0         0         0 

         0         0         0    2.0829         0         0 

         0         0         0         0    3.1425         0 

         0         0         0         0         0    2.6813 

 

  

 The stiffness matrix is 

 

k = 

 

  1.0e+005 * 

 

    0.0720         0         0         0         0    0.2815 

         0    0.0960         0         0         0    0.0000 

         0         0    0.0720   -0.2815    0.0000         0 

         0         0   -0.2815    2.8985    0.0000         0 

         0         0    0.0000    0.0000    3.7582         0 

    0.2815    0.0000         0         0         0    4.3139 

 

  

 Eigenvalues  

 

lambda = 

 

  1.0e+005 * 

 

    0.3794    0.5001    1.0587    1.1959    1.8062    1.9028 

 

  

  Natural Frequencies =  

 1.         31 Hz 

 2.      35.59 Hz 

 3.      51.79 Hz 

 4.      55.04 Hz 

 5.      67.64 Hz 

 6.      69.43 Hz 
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Modes Shapes (rows represent modes)  

  

    x        y        z      alpha    beta    theta    

0 0 2.8 0.374 0 0 

-2.95 0 0 0 0 0.28 

0 -3.32 0 0 0 0 

0 0 0 0 -0.564 0 

0 0 -1.79 0.584 0 0 

-1.52 0 0 0 0 -0.543 
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Figure A-2. 

 

 

Both the Y and Z-axes responses were below the lower amplitude plot limit. 
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Figure A-3. 

 

 

Both the X and Z-axes responses were below the lower amplitude plot limit. 
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Figure A-4. 

 

 

 

Both the X and Y-axes responses were below the lower amplitude plot limit. 
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                                                         APPENDIX B 

 

Example 2 
 

A mass is mounted to a surface with six isolators.  The system has the following 

properties. 
 

 

 

M = 9.0 lbm 

Jx = 90.17 lbm in^2 

Jy = 105.2 lbm in^2 

Jz = 42.08 lbm in^2 

kx = 500 lbf/in 

ky = 500 lbf/in 

kz = 500 lbf/in 

 

 

The six springs mount to the box at the following distances (inches) from the box C.G.  

The pattern is shown in Figure B-1. 

 

Isolator X Y Z 

1 -3 -2 -3 

2 -3 -2 1 

3 -3 -2 5 

4 3 -2 -3 

5 3 -2 1 

6 3 -2 5 

 

 

 

The results are calculated via Matlab script: arbitrary_isolators.m 

 

A partial output listing is given on the next page.  The results agree with the example in 

Reference 1. 
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Figure B-1. 
 

 

The circles represent the isolator mounting points.  The view is looking down along the 

Y-axis to the XZ plane. 
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The mass matrix is 

 

m = 

 

 

0.0233 0 0 0 0 0 

0 0.0233 0 0 0 0 

0 0 0.0233 0 0 0 

0 0 0 0.2336 0 0 

0 0 0 0 0.2725 0 

0 0 0 0 0 0.109 

 

  

 The stiffness matrix is 

 

k = 

 

3000 0 0 0 3000 6000 

0 3000 0 -3000 0 0 

0 0 3000 -6000 0 0 

0 -3000 -6000 47000 0 0 

3000 0 0 0 62000 6000 

6000 0 0 0 6000 39000 

 

 

Eigenvalues  

 

lambda = 

 

  1.0e+005 * 

 

    0.6707    0.7501    1.2867    2.1907    2.6280    4.1983 

 

  

  Natural Frequencies =  

 1.      41.22 Hz 

 2.      43.59 Hz 

 3.      57.09 Hz 

 4.      74.49 Hz 

 5.      81.59 Hz 

 6.      103.1 Hz 
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  Modes Shapes (rows represent modes)  

  

             x        y       z     alpha     beta     theta    

 

1 0 2.42 4.85 1.16 0 0 

2 6.01 0 0 0 -0.273 -1.12 

3 0 -5.86 2.93 0 0 0 

4 -0.254 0 0 0 -1.84 0.831 

5 0 -1.64 -3.29 1.71 0 0 

6 2.58 0 0 0 0.455 2.69 

 


