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Consider a thin, fixed-free rod subjected to an applied force at the free end. 

 

 

 

 

 

 

 

 
 

 

  

 

 

Figure 1. 

 

The variables are 

 

Cross-section area A 

Elastic Modulus E 

Length L 

Mass per Volume   

Mass per Length m 

Displacement u(x,t) 

Applied Force )t(F  

Excitation Frequency (rad/sec)   

Natural Frequency (rad/sec) n  

Viscous Damping Ratio  
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Assume uniform mass density and constant cross-section.  The governing equation from 

Reference 1 is 
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The boundary conditions are 

 

u(0, t)=0                                                                                                 (2) 
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The free end thus has a time-varying boundary condition.  Reference 2 gives solution 

methods for this equation and boundary condition set, but the methods are abstruse. 

 

Instead, this paper will use the virtual work method from Reference 3. 
 

 

The displacement due to the force F can be represented by the series 
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The i terms are some unknown functions of time which will be determined by the 

principle of virtual work. 

 

The natural frequencies for a fixed-free rod are 
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The displacement mode shape function for the fixed-free rod is 
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The virtual longitudinal displacement iu  in terms of the mode shapes are 
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The mass of an element between two adjacent cross sections of the rod is .Adx  
 

The work IW  done by inertial forces on the assumed virtual displacement is 
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By substitution, 
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The orthogonality of the normal mode shapes is such that 
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Now calculate the virtual work EW  produced by the elastic forces. 
                              

The force on each element is .dxuEA   
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By substitution, 
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Apply the orthogonality relationships.  The resulting virtual work due to elastic forces is 
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Note that the term in equation (18) could have been derived via the incremental strain 

energy, as shown in Reference 3. 

 

The virtual work FW  due to the force F(t) at the free end is 
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The total virtual work is thus 
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Let 
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The equation of motion with an added damping term is 
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Time Domain 
 

Assume that the initial conditions are zero. 

 

Let  
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The displacement can then be found via 
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Steady-State Frequency Response Function 
 

Change the forcing function to a harmonic excitation exponential term. 
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The frequency response function Hi(f) is thus 
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The Fourier transform ),x(û   of the displacement response is 
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The receptance frequency response function ),x(Hd   is  
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Receptance is (displacement/force). 

 

The mobility frequency response function Hv(x,f) is  
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Mobility is (velocity/force). 
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Example, Sinusoidal Excitation 

 

Consider the longitudinal vibration of an aluminum, fixed-free, circular rod with the 

following properties. 
 

 

Length L = 24 inch 

Diameter D = 1 inch 

Area A = 0.785 inch^2 

Area Moment of Inertia I = 0.0491 inch^4 

Elastic Modulus E = 1.0e+07 lbf/in^2 

Mass Density   = 0.1 lbm/in^3 

Speed of Sound in 

Material 
c = 1.96e+05 in/sec 

Viscous Damping Ratio   = 0.05 

 

 

The first three natural frequencies are 

 

Table 1. Natural Frequencies 

i f i (Hz) 

1 2047 

3 6140 

5 10,230 

 

 

The following calculations are made via Matlab script:  long_force_sine.m. 

 

Let the applied sinusoidal force be P = 100 lbf at f = 2047 Hz, which coincides with the 

fundamental frequency. 

 

Determine the displacement at the free end via equation (43) using the Matlab script. 
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Determine the stress, strain and reaction force at the fixed end. 

 

The strain equation is 
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The strain o  at the fixed end per equation (48) and the Matlab script is 

 

 

    0.000162
0x

)f,x(û
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The reaction force R at the fixed end is 
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The normal stress o  at the fixed end is 

 

                         

psi1620

in^2 0.785/lbf1272

A/Ro







                                                                                              

 

(51) 

 



 

 12 

Example, Random Excitation, Frequency Domain 
 

The rod is subjected to a random force at is free end as shown in the following force 

power spectral density. 

 

Table 2.  Force PSD 

f (Hz) Force (lbf
2
/Hz) 

10 1 

8000 1 

 

The overall level is 89.4 lbf rms. 

 

Determine the displacement of the free end and the reaction force at the fixed end. 

 

The calculations are made using the following process.    

 

 

 

 

 

 

 

where  H(f) is the frequency response function magnitude for either displacement or 

strain.   

 

The H(f)
2 

function is also known as the power transmissibility function.  These functions 

are shown in Figure 2 and 3 for the displacement and strain, respectively. 

 

The calculations are made using Matlab script: long_force_frf.m. 
 

The displacement is 
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The strain o  is 
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The reaction force R at the fixed end is 
 

 

                      

RMSlbf259 

RMS05e3.3in^2 0.7852^in/lbf07e0.1

EAR o







                                                                                   

 (54) 

 

The normal stress o  at the fixed end is 
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Figure 2. 
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Figure 3. 
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Example, Random Excitation, Time Domain 
 

The calculations are made using the following process.    

 

 

 

 

 

 

 

 

 

 

 

The Force PSD is the same as that in Table 2. 

 

The convolution integration is performed via a digital recursive filtering relationship for 

computational efficiency per Reference 5. 

 

The modal equation is 
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The displacement is 
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The time history was synthesized using the method in Reference 4 via program:  

psdgen.exe.  The resulting time history and the corresponding PSD are shown in Figures 

4 and 5, respectively. 

                                                                                                                                                                                                                                                               

The response calculation is performed via Matlab script:  rod_arbit_f.m.  The resulting 

displacement, velocity and strain time histories are shown in Figures 6, 7, and 8, 

respectively. 

 

The overall response levels from the time history analysis agree with the corresponding 

levels from the steady-state, frequency-domain analysis. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 

 

 

 

 
Matlab Output 

 
Natural Frequency (Hz)  

     2047  

     6140  

 1.023e+004  

  

 

 Displacement (inch) at x=L  

   mean = 4.77e-008    std = 0.0004534    rms = 0.0004534  

   max  =  0.002211    min = -0.002239              

 

  

 Velocity (in/sec) at x=L 

   mean = -3.578e-005    std =    6.555    rms =    6.555  

   max  =     33.49    min =    -33.06              

 

  

 Strain at x=0  

   mean = 2.368e-009    std = 3.34e-005    rms = 3.34e-005  

   max  = 0.0001538    min = -0.0001626   
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APPENDIX A 

 

Stress-Velocity Relationship 

 

The normal stress is 
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For the first mode only, 
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The natural frequencies for a fixed-free rod are 
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The velocity is 
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For the first mode only, 
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This relationship can be extended to a multi-modal response with some extra work. 

 

The stress magnitude is 
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