THE LONGITUDINAL VIBRATION RESPONSE
OF A ROD TO AN APPLIED FORCE

By Tom Irvine
Email: tom@vibrationdata.com

July 2, 2014

Revision D

Consider a thin, fixed-free rod subjected to an applied force at the free end.
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Assume uniform mass density and constant cross-section. The governing equation from
Reference 1 is
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The boundary conditions are
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The free end thus has a time-varying boundary condition. Reference 2 gives solution
methods for this equation and boundary condition set, but the methods are abstruse.

Instead, this paper will use the virtual work method from Reference 3.

The displacement due to the force F can be represented by the series

i=1,35,...
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The ¢;jterms are some unknown functions of time which will be determined by the
principle of virtual work.

The natural frequencies for a fixed-free rod are
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The displacement mode shape function for the fixed-free rod is
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The virtual longitudinal displacement du; in terms of the mode shapes are
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The mass of an element between two adjacent cross sections of the rod is pAdx.

The work 6W, done by inertial forces on the assumed virtual displacement is
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By substitution,
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The orthogonality of the normal mode shapes is such that
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Now calculate the virtual work dWE produced by the elastic forces.

The force on each element is EAu” dx.

SWg = IOL [EAU"dx] 8u;

By substitution,
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Apply the orthogonality relationships. The resulting virtual work due to elastic forces is
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Note that the term in equation (18) could have been derived via the incremental strain
energy, as shown in Reference 3.

The virtual work 6WE due to the force F(t) at the free end is

OWE = D; sm( jF(t) (19)

The total virtual work is thus
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Let
F(t) = P sin(cot)

The equation of motion with an added damping term is
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Time Domain

Assume that the initial conditions are zero.

Let
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The displacement can then be found via

i=1,3,5,...
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Steady-State Frequency Response Function
Change the forcing function to a harmonic excitation exponential term.
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The frequency response function Hj(f) is thus
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The Fourier transform ((x, ®) of the displacement response is
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The receptance frequency response function Hqy (X, ®) is
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Receptance is (displacement/force).

The mobility frequency response function Hy(x,f) is
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Example, Sinusoidal Excitation

Consider the longitudinal vibration of an aluminum, fixed-free, circular rod with the
following properties.

Length L = 24inch
Diameter D = 1linch

Area A = 0.785inch"2
Area Moment of Inertia | = 0.0491 inch™M4
Elastic Modulus E = 1.0e+07 Ibf/in"2
Mass Density p = 0.11bm/in"3
Speed_of Sound in c = 1.96e+05 in/sec
Material

Viscous Damping Ratio & = 0.05

The first three natural frequencies are

Table 1. Natural Frequencies
i fi(Hz)
1 2047
3 6140
5 10,230

The following calculations are made via Matlab script: long_force_sine.m.

Let the applied sinusoidal force be P = 100 Ibf at f = 2047 Hz, which coincides with the
fundamental frequency.

Determine the displacement at the free end via equation (43) using the Matlab script.

a(L,f) = 0.0025in (47)
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Determine the stress, strain and reaction force at the fixed end.

The strain equation is
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The strain ¢q at the fixed end per equation (48) and the Matlab script is
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= 0.000162 (49)
OX

€0 =

x=0
The reaction force R at the fixed end is

R =EAg,

= (1.0e + 07 Ibf /in~2)(0.785in"2)(0.000162)

=1272 Ibf
(50)
The normal stress o at the fixed end is
Gp = R/A
=1272 Ibf / 0.785in"2
=1620 psi
(51)
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Example, Random Excitation, Frequency Domain

The rod is subjected to a random force at is free end as shown in the following force

power spectral density.

Table 2. Force PSD

f(Hz) Force (Ibf*/Hz)
10 1
8000 1

The overall level is 89.4 Ibf rms.

Determine the displacement of the free end and the reaction force at the fixed end.

The calculations are made using the following process.

Force
PSD

where H(f) is the frequency response function magnitude for either displacement or

strain.

A 4

Multiply by
H(f)’

Response
PSD

A 4

Integrate to
get overall
RMS

The H(f)? function is also known as the power transmissibility function. These functions
are shown in Figure 2 and 3 for the displacement and strain, respectively.

The calculations are made using Matlab script: long_force_frf.m.

The displacement is

0=0.00045 inchRMS atx=L

The strain ¢q is

gg = 3.3e—-05 RMS

atx=0
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The reaction force R at the fixed end is

=(1.0e + 07 Ibf /in~2)(0.785 in"2)(3.3e — 05 RMS)

=259 Ibf RMS
(54)
The normal stress o at the fixed end is
=259 Ibf RMS/ 0.785 in"2
=330 psi RMS
(55)
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POWER TRANSMISSIBILTY DISPLACEMENT AT FREE END
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Figure 2.

POWER TRANSMISSIBILTY STRAIN AT FIXED END
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Figure 3.
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Example, Random Excitation, Time Domain

The calculations are made using the following process.

Synthesize Time History _| Impulse Response Function,
to Meet the Force PSD | Convolution Integral
A
Response Integrate to get
Time History overall RMS

The Force PSD is the same as that in Table 2.

The convolution integration is performed via a digital recursive filtering relationship for
computational efficiency per Reference 5.

The modal equation is
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The displacement is
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The time history was synthesized using the method in Reference 4 via program:
psdgen.exe. The resulting time history and the corresponding PSD are shown in Figures
4 and 5, respectively.

The response calculation is performed via Matlab script: rod_arbit_f.m. The resulting
displacement, velocity and strain time histories are shown in Figures 6, 7, and 8,
respectively.

The overall response levels from the time history analysis agree with the corresponding
levels from the steady-state, frequency-domain analysis.
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Figure 6.
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Figure 7.
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Figure 8.

Matlab Output

Natural Frequency (Hz)
2047
6140
1.023e+004

Displacement (inch) at x=L
mean = 4.77e-008 std = 0.0004534 rms = 0.0004534
max = 0.002211 min -0.002239

Velocity (in/sec) at x=L

mean = -3.578e-005 std = 6.555 rms = 6.555
max = 33.49 min = -33.006

Strain at x=0
mean = 2.368e-009 std = 3.34e-005 rms = 3.34e-005
max = 0.0001538 min = -0.0001626
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APPENDIX A

Stress-Velocity Relationship

The normal stress is
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The velocity is
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This relationship can be extended to a multi-modal response with some extra work.

The stress magnitude is
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