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This paper shows that for small damping the
shock response spectrum
will roll off with a slope of 6 dB/octave on a
An undamped acceleration shock
spectrum and the shock spectrum based on a
relative displacement model will roll off with a

Introduction

The slope of the shock spectrum at low
{requencies 1is typically evaluated by using a
well known relationship between the undamped
residual shock response spectrum and the
=agnitude of the Fourier spectrum [1]. This has
ted to the common belief that the shock response
of shocks with a low velocity change, like a
pvrotechnic shock, will have a low frequency
slope of 12 dB/octave. But anyone who has
rxamined these shocks has seen data which
violates this assumption. Several suggestions
tave been offered to explain the slopes which
are different from 12 dB/octave including:

o The spectrum doesn't really roll off at
12 dB/octave

© Zero offsets cause the spectrum to roll off
at a slope different from 12 dB/octave

? Truncation errors cause the problem

Incorrect algorithms are being used to
calculate the spectrum

Each
raper,

of these suggestions are examined in this

Models

Before I can discuss the shock response
fiecirum we must examine the single-degree-of-
’*eﬂom (SDOF) models which are used to evaluate

'; shock response spectrum. A large number of
‘*ls are used, but they can be reduced to

::riatinns of just two models, which I will
*iBCuss,

Acceleration Model- The input to this model
is the absolute acceleration of the base of the
SDOF system. The response of the SDOF system is
the absolute acceleration of the mass. The

transfer function of this system in the complex
Laplace domain is given by
2
2 fw s + w_

H (s) - . (L)

s2 + 20w s + 92
n n

The impulse response of this model is given by

h_(t) = w (1- qz)'lﬂexp(-cw t)sin(w,t+d)  (2)
a n n d

where
¢ = tan" Y20 c1-¢ B2 1-2¢2)

¢ = the fraction of critical damping
W = the natural frequency, (1'(,‘1“1)1"';2
A the damped natural frequency, w (1 ¢ )11'

This is the most commoniy used model in the

aerospace industry.

Relative Displacement Model- The input to
this model is the absolute acceleration of the
base of the SDOF system. The response of the
system is the relative displacement between <the
base and the mass. 1If the relative displacement
is expressed in terms of an equivalent static
acceleration,

. 2
T = (y-x)w_, (3)



the transfer function becomes

2
@n

H(s) = (4)

52+2§w s+w2
n n
The impulse response of this system is given by
2,-1/2 -
hd(t) - wn(l- Gl exp(-fw_t)sin(w,t). (5)

This model is commonly used in the Navy and the
seismic industry.

The Relationship Between the Fourier Spectrum
and Shock Response Spectrum

A well known relationship exist between the
undamped residual shock response spectrum and
the magnitude of the Fourier spectrum([2].

S, ) = w |a@)] (6)
where

S_ = undamped residual-shock-response spectrum
w_ = natural frequency (rad/s)
A mn) = magnitude of the Fourier Spectrum
of the acceleration input evaluated at
w
n

We will also use the relationship

d"f(t)

— % (J0)"F) )
dt

where #¢ means a Fourier transform pair,

and
f(t) & F(w).

We can now derive the slope of the undamped
residual shock response spectrum. Note that both

models reduce to the same form for the undamped
case., The wvelocity change, Av, of an input
acceleration is given by its Fourier spectrum
“evaluated at =zero frequency. The Fourier
“spectrum 1s continuous and smooth near the
origin. Therefore, for frequencies near =zero
this gives
Sr(wn) - ﬁvwn, (8)

which is, a slope of 1 on a log-log plot or 6
dB/octave .

If the velocity change is zero, but the
displacement change, Ad, is nonzero, the Fourier
spectrum of the velocity for small frequencies
is given by Ad. The use of Eq (7) and then Eq
(6) yields

2
Sr(un) - wnﬁd (9)
for frequencies near zero. This gives the

spectrum a slope of 2 on a log-log plot or 12
dB/octave near zero frequency.
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If the displacement change is also

but its integral is a nonzero value, 2 ¢ :‘::
undamped residual shock spectrum near ' z,;.
frequency is given by 2
3
Sr(wn) wnﬁc. s

This results in a slope of 3 or 18 dB/octave o-
low frequencies. ’

Slope of the Damped Shock
Spectrum at Low Frequencies

In this section I will investigate :he
correct slope for the damped shock response
spectrum at low frequencies. If the wvelocity

change of the transient is
velocity monotonically increases to its fina:
value, the transient can be represented by ar
impulse when the product of natural frequency ot
the SDOF system and the sampling interval {s
much less than one. I can then represent the
waveform by the impulse

nonzere and the

x(t) = AvVE(t). (11)

Looking first at the acceleration model the
residual response is given by

y(t) = avh (t). ce>” (12)

The primary response for an impulsive input is
zero. If I make the assumption that the damping
is small the maximum of the impulse response is
approximately

hmax(t) - (13
This gives
S(w) = bve . (14)
which 1is the same result as Eq. 8. The same
result is achieved for the relative displacement
model. Thus the common assumption, that the
residual response dominates the low frequency

response and that the relationship between the
Fourier spectrum and the undamped residual shock
spectrum can be used to estimate that response,
is valid for this case. We get a slope of 1 or 6
dB/octave at the low frequencies.

If the wvelocity does not increase
monotonically to its final wvalue (i.e. =zero
crossings of the acceleration waveform exist)

this analysis 1is mnot wvalid. We must now
represent the input waveform as a series of
impulses. To examine this problem I will first
consider the response of a damped SDOF system to
an impulse when the time is small. The impulse

response of the acceleration model can be
approximated for small wvalues of time and
damping by

ha(t) - wn(wnt + 20). (15)
*
A slope of 1 is not precisely 6 dB/oct, but

this value will be used in this paper.



For the relative displacement model

5 (16)
hd(t) w, t
which is the same as for the acceleration model
except the second term is zero. The acceleration
for early times and small damping is

response
then given by
y 5 (17)
y(t) - avwn(unt + 2f)
The response can be approximated by a straight
line for early times. Equation (17) can be
derived in a different way. If we assume that
the mass of the oscillator remains essentially
stationary with respect to the base, the force
on the mass is given by
F = Kx + CX (18)
where
2tw_ = C/M
n

and where x 1is the base input displacement.
acceleration of the mass is then approximately

F(e) = (K/M) x(t) + (C/M) x(t)

or

F(e) = uix(t) + 2 fw x(t) (19)
1€
Rit) = Avé(t)
then

%x(t) = aAv and

x(t) = av t,
These results give

Vig) = &vwzt + Av2iw

n n

which is the same as Eq (17). Equations (17)-

119)

times

show that the mass accelerations for early
is dominated by two terms: a stiffness
proportional to the base displacement and
4 damping force proportional to the base

veloc ity

{orce

These equations will now be used to write a
general expression for the response to a
*equence of impulses. These expressions will
*hen be used to estimate the primary response of
vaveforns where the velocity does not increase
monotonically. Let the input be given by

BOT e

I
*E) = A (c - in) (20)
i=1
::.r- 3 i? the unit impulse function, and A, is
9;. 'Tloclty change of each impulsive input.  If
g£_ total pulse duration is short compared to

period of the SDOF system ( i.e. T L <<1)

The
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and the damping is small, the response of the
system can be approximated by a sum of responses
like zq (17)

L
y(t) = aiwn[wn(t- ir) + 2¢0]U(t-ir)

for t=L

i=1 (21)

where
U{z) = the unit step function.

This response is just a sequence of straight
linres whose slope changes at each impulsive
inpuz. The maximum response will occur at one of
these changes in slope. The response at the

impulsive input at time mr can be evaluated as

L
F{nr) = % Ao [7 (m-1) r + 20]U(m-1).

i=1
The zrimary response can be approximated by the
largsst of this set of wvalues, vy x(mr), for
some value of m between 1 and L. us for the
dampzd case the maximum response will be of the
form

= 2
?ﬁzx(mf) - Clwn + Czwn. (23)

The mdamped case will always be of the form

" 2
ymax(mr) - ngn. (24)
The relative displacement model will give a
maximum primary response of the form

Faq max(mf) = G
We can now see that the primary response
for the relative displacement model, and for the
undznped acceleration model will always have a
slopt of 2 or 12 dB/octave at low frequencies.
If ==e slope of the residual response is greater
than 12 dB/octave the residual response must be
less than the primary response for a very low
freczency. The final slope of the shock response
speczrum will be 12 dB/octave.
The damped acceleration model will have two

4“0 (25)

regizns of interest. For the intermediate
freczencies where the first term of Eq (23)
domizates, the primary spectrum will have a
slepz of 12 dB/octave. At the wvery low
frec:encies where the second term of Eq (23)
domizates the slope will be 6 dB/octave. Thus
the primary response must be greater than or
equa. to the residual response which rolls of
with a slope of at least 6 dB/octave. The
conc_usion is that for small damping, the

maxinax shock spectrum for the acceleration
mode. will will always have a low frequency
slopz of 6 dB/octave.

The wusual assumption is that the residual
speczrum is larger than the primary spectrum at
low zatural frequencies. We see that this is the
case for single sided waveforms, but is not true
for Zouble sided acceleration pulses.

(22)



Two examples will illustrate this important
result. For the first example, consider an
acceleration input as given by Figure 1. The
velocity and displacement waveforms for this
acceleration are shown in Figures 2 and 3.The
input can be approximated by three impulses

%(t) = 6(t-0.001) - 25(t-0.023) + §(t-0.045)
(26)
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Figure 3 Base Input Displacement

The approximate response given for a time step
of 1 ms is given by Eq (21) as

$107m) = (107) © (1107 _(m-1) + 26]U(n-1)
-2 [107%_(a-23) + 201U(n-23)

+ [107 3w _(m-45) + 2¢]U(m-45)).
n (27)
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Figure 4 Acceleration Response of 1-Hz, 3%
Damped System to the Input of Figure 1.
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Figure 5 Acceleration Response of 1-Hz, 0.01%
Damped System to the Input of Figure 1.
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Figure 6 Acceleration Shock Response Spectrum of
the Input of Figure 1.

The acceleration response for a natural
frequency of 1 Hz and 3% damping is shown as
Figure 4. The inset in Figure 4 is the
acceleration expanded for the early portion of
the period. The primary response is close to the
straight 1line approximation predicted by Eq
(21). Equation (19) predicts that the primary
response at low frequencies will be proportional
to the base displacement if the system 1is



undamped. Figure 5 shows the response for a
damping of 0.01%. A comparison of Figures 3 and
5 confirms the above prediction. In both Figures
4 and 5, the primary response is larger than the

residual response.

The shock spectrum for this input is gi;an
t the low
{n Figure 6. The shock spectrum a il

frequencies can be predicted using Eq (27).
example, the spectrum at 0.1 Hz can be estimated
by noting that the maximum response will occur

near t = 22 ms

S = 20 1107 (10722 (. 1)(21) + 2(.03)]
max (28)

§ -4 X 10-5 in/sz.
max

which agrees with Figure 6.
A second example is given by the WAVSYN in

Figure 7. The WAVSYN pulse is defined by
x(t) = A sin(2 bt) sin(2 fr) for 0 < t <T (29)
=0 elsewhere
wvhere
A = the amplitude )
f = the frequency of the pulse
b = the frequency of a half sine window, £/N
T = the pulse duration, N/(2f)
N = an odd integer greater than 1.
In Figure 7, A =1 g, N =39, and £ = 1 Hz. The
velocity and displacement changes for this

waveform are zero. The above discussion shows
the residuai spectrum should have a slope of 12
dB/octave, and the primary spectrum should have
a final slope of 6 dB/octave. Figure 8 is the
acceleration shock spectrum of this waveform. We

can see the region just below 1 Hz where the
residual response is larger, the area at about
0.5 Hz where the response is dominated by the

primary response damping forces, and at the very
low frequencies the charactistic final slope of
6 dB/octave.

1

N a
I "

Sk

F
gute 7 A 1.4z, l-g, 39-Half Cycle, WAVSYN Pulse
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. spectrum. The error

. offset was added to the waveform and the

Errors Caused by Zero Offsets

of an
in
shock response
occurs because the zero
offset will cause an error in the final velocity
of the waveform. A small error integrated over
the entire length of the time history can result
in a substantial velocity error. The offset will
appear to the shock spectrum calculations as a

A small error in the zero line
acceleration waveform can cause large errors
the low frequency end of the

square wave of a duration equal to the pulse
duration. An example is shown in Figure 9, and
Figure 10 (curves a and c). Figure 9 1is an

acceleration input composed of the sum of two
exponentially decaying sinusoids. One component
is at 100 Hz with an amplitude of 1 g. The
second is a highly damped component at a much
lower frequency whose amplitude and delay were
chosen to force the velocity and displacement
changes to be zero. Figure 10, curve a, is the
shock spectrum of this waveform. A 0.05 g zero
shock
spectrum was recomputed (curve ¢ on Figure 10).
The offset looks like an added square wave with
an amplitude of 0.05 g. The shock spectrum of

this square wave has a peak amplitude of 0.1 g.
Since the duration of this square wave is 0.2048
s the first peak in the shock spectrum of this
component will be at about 2.4 Hz. Curve ¢ of
Figure 10 confirms these predictions.

One of the dangers of these errors is that
the errors can propagate into specifications
derived from the measured shock spectrum, which
in turn leads to tests with unreasonable

velocity and displacement requirements.

Errors Caused by Waveform Truncation

Truncation of an acceleration waveform can
also cause errors in the low frequency end of
the shock response spectrum. As for the offset
errors, these errors are caused by an incorrect
final velocity. The error in the final velocity
divided by the pulse duration and converted to
acceleration units will give an approximation of
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Figure 8 Shock Response Spectrum of a 1-Hz, 1l-g,
39-Half Cycle, WAVSYN Pulse
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Figure 9 Acce.eration of the Sum of Two
Expozentially Decaying Sinusoids

the error. To illustrate, the waveform in Figure
9 was truncezzed at 0.0564 s. The resulting
velocity err:r was about 0.18 in/s. This
translates irzo an acceleration error of about
0.008 g. We would then expect an error in the
shock spectrun of about twice this value ( 0.016
g) with the l:west frequency peak at about 8.9
Hz. Curve b, Figure 10 confirms this error.

As in t=e case of offset errors, the
biggest danger of this error is the propagation
of the error i=to specifications.

Incorrect Algorithms

This sourze of error cannot be discussed in
detail withou: a thorough knowledge of the algo-
rithm in question. Recursive digital filters are
a popular mettcd to calculate the shock response
spectrum, anZ it is known that the filter
weights are sibject to serious roundeff problems
at low naturzl frequencies. Careful attention
must be paid 2 the calculation of these weights
and to the dezails of the implementation at low
natural freguencies. In some methods the data
are filtered vith a low pass digital filter and
the data are then decimated before the spectrum
is calculated at the low frequencies. This could

lead to errczs in calculating the primary
spectrum, whizh has been demonstated to be
important a: the low frequencies. More
investigation is required in this area. A good

test for any zlgorithm is to reproduce Figure 8.

Applicatizn to Pyrotechnic Shock Data

We can zow use the above results to
establish guidelines when viewing pyrotechnic
and similar shock data when presented in the
form of shock response data. First one must
establish whether the acceleration model or the
relative displacement model was  used to
calculate the shock response. This determines
the final sloze of the data. If the wvelocity
change is zero. the shock response should have a
final slope :f 12 dB/octave or change from a
slope of 12 cd2/octave to 6 dB/octave (depending

10 - {

-

PEAK RESPONSE (g)
(=]

.001 -t PR PR |
10 100 1000

FREQUENCY (Hz)

Figure 10 Shock Response Spectrux ¢f the Accel-
eration Waveform Shown ir Figure %

on the model used) in a smooth manner as ‘i
frequency decreases. The curve will be concaw

If a convex T"bump" is observed at the los
frequencies, the bump likelv represents
velocity change which  appears to thie

computations as a acceleration sgquare wave acdec
to the waveform.

Remember the shock spectrum of a square
wave has an intial slope of 6 dB/oczave, reaches
a peak of twice its amplitude at a frequency
equal to the inverse of twice its duration, has
some ripples with each peak of the ripples
reaching a magnitude of twice the amplitude, anc

continues along a line with a slope of zero at
an amplitude of twice its amplitude as the
frequency increases. Because of this

characteristic shape of the shock spectrum of &
square wave, the shock spectrum with an addecd
square wave can appear to have a slope of zero
at low frequencies. The amplitude of this area
of zero slope will be a function of both the
observed velocity change and the duration of the
digitized waveform. If the velocity change is a
constant and not an error caused by a zero
offset or truncation, the amplitude of this area
will decrease as the duration of the digitized
waveform is increased. The magnitude of the
velocity change can be estimated by dividing the
shock spectrum amplitude in the region of the
zero slope by two, multiplying b¥ the pulse
duration and converting to velocity wunits. If
this wvelocity change is representative of the
environment the data are probably wvalid. But if
the velocity change is unreasonably large, the
low end of the shock spectrum is in error. The
source of the error can then be investigated.

The mnatural frequency where the  shock
spectrum should again start to decline is given
by the inverse of twice the duration. The final
slope at frequencies much less than the inverse
of twice the duration will be 6 dB/octave.



Shock Spectrum at High Natural Frequencies

This
but I
subject.
data reduction
data with a minimum of 10 times
frequency of interest. Some have
this rule to mean the shock response spectrum
should not be calculated above a natural
frequency which is greater than 1/10 th of the
sampling  frequency. Often this is overly
conservative. The frequency content of the data
is of primary concern, not the natural frequency
of the SDOF system used in the shock spectrum
calculations. The data must be  sampled
frequently enough to avoid large errors in the
detection of the peak of the transient. Some
authors [3] have suggested 6 to 10 samples/cycle
for a 5% error bound. This is often conservative
because it was assumed that the input was a sine
wave at the highest frequency. Three or four
samples of the highest frequency may be adequate
for peak detection if the high frequency content
is a small part of the total energy in the
waveform. The important point is that the sample
rate should be picked with only the
charactisties of the input waveform in mind.

The next question is, will the algorithm
used to calculate the shock response spectrum
calculate the correct values for the range of
natural frequencies desired. It is known that
the oldest and simplest form of the recursive
filter algorithm has serious errors as the
natural frequency approaches half the sampling
frequency [4]. Direct integration methods have
similar problems. Using these algorithms the
rule of 1/10 should be followed. But an improved
algorithm (4] avoids this problem. If the
improved algorithm is used the natural frequency
can even be above the sampling frequency if the
input transient peak has been  adequately
detected. The mnew algorithm assumes the input
waveform can be adequately described by a series

is not the main topic of this paper,
would like to make some comments on the

A common rule of thumb 'in transient
is that you should sample the
the highest
interpreted

of straight lines connecting the sample points.
The discontinuties in slope caused by the
straight line segment  approximation will
generally introduce high frequency energy into
the waveform and the shock spectrum will be
slightly higher than the true value at the high

frequencies. The errors of peak detection will
always  bias the results in the negative
¢irection. The peak detection errors are usually
the largest. The value approached for the shock
sPectrum as the natural frequency increases is
the value of the largest sample in the set of
data samples, and is as accurate as the detected
Feak value,
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Appendix A

Listing of Subroutine for a Ramp Invarient
Simulation of a Single-Degree-of-Freedom
System for the Calculation of the
Shock Response Spectrum

REFERENCE: Smallwood D. 0., "An Improved
Recursive Formula for Calculating the Shock
Response Spectra," Shock and Vibration Bulletin,
No. 51, part 2, pp 211-217, May 1981.

SUBROUTINE FILMAX(Y,XX,FN,SR,Z,XM1,XM2,

& YM1,YM2,IFLAG)

D. SMALLWOOD &4-14-80

MODIFIED 8-15-80

MODIFIED 12-17-84 MADE CALCULATION OF

FILTER WEIGHTS A
A SEPARATE SUBROUTINE

APPROXIMATES A ONE-ZERO-TWO-POLE SINGLE
DEGREE OF FREEDOM RESONATOR USING A RAMP
INVARIENT SIMULATION AND RETURNS THE
RESPONSE.

Y=FILTER OQUTPUT
XX=FILTER INPUT
Z=FRACTION OF CRITICAL DAMPING
SR=SAMPLE RATE (SAMPLES/SEC)
FN=NATURAL FREQUENCY OF RESONATOR (HZ)
IFLAG.NE.O FOR FIRST CALL TO ROUTINE
SETUP FILTER COEFF.
=0 USES FILTER COEFF. DETERMINED
FROM A PREVIOUS CALL.

NOTE: IFLAG CHANGED TO 0 AFTER 1ST
CALL, MUST BE RESET BY
USER FOR NEW FILTER.
IFLAG=1 SETS UP AN BASE ACCEL. INPUT,
ACCELERATION RESPONSE
SHOCK SPECTRUM
IFLAG=-1 SETS UP A BASE ACCELERATION,
RELATIVE DISPLACEMENT
(EXPRESSED IN EQUIVALENT STATIC
ACCEL UNITS) SHOCK SPECTRUM.
XM1=1ST PAST VALUE OF INTIAL INPUT
XM2=2ND PAST VALUE OF INTIAL INPUT
YM1=1ST PAST VALUE OF INTIAL RESPONSE
YM2=2ND PAST VALUE OF INTIAL RESPONSE

OO0O0000000000000000000000000000000000 0



o000 OO0O00n

000

IF(FN) 4,4,5
4  Y=0.
RETURN

1ST CALL SET UP FILTER COEFr_ITENTS

5 IF(IFLaAG) 3,10,3
3 CALL WGHT(FN,SR,Z,IFLAG,BO.E. 32 AlP2,
& AZM1)
IFLAG=0

10 Y-BO*XX +B1*XM1 +B2*¥M2 +Y¥_- M1-YM2)

& -ALP2*YM1-A2M1*YM2

YM2=YM1

TM1=Y

XM2=XM1

XM1=XX

RETURN

END

SUBROUTINE FILTR(X,FN,SR,Z TTZ7E,ISTZE,Y)

SUBROUTINE TO FILTER & TIME HISTTEY WITH A
SDOF FILTER USING A
RAMP INVARIENT FILTER SIMULATIZX

INPUT: X= INPUT DATA ARRAY
FN- NATURAL FREQUENCY (=
SR= SAMPLE RATE OF INPUT IaTA ARRAY
(SAMPLES /SEC)
Z=- FRACTION OF CRITICAL D2¥PING
ITYPE~1--ABSOLUTE ACCELEZ:TION MODEL
-1--RELATIVE DISPLiTIMENT MODEL
ISIZE= THE NUMBER OF POIXT:= IN THE
X AND Y ARRAYS

OUTPUT: Y= OUTPUT DATA ARRAY

DO SMALLWOOD SANDIA NATIONAL LAES
ALBUQUERQUE NM 12-17-84

DIMENSION X(1),Y(1l)

FIND FILTER WEIGHTS

& A2M1)
FILTER

YM2=0.
YM1=0.
¥M1=0.
XM2=0.

DO 10 I=1,ISIZE
Y(I)=BO*X(I) +B1#*XM1 +B2*¥MI -™M1
& +(YM1-YM2)-A1P2*YM1-AZM_»TM2
YM2=YM1
YM1=Y(I)
XM2=XM1
10 XM1-X(I)

RETURN
END

o000 0o0o00000000n

o000

O0O0O000

OO0

s Es N E>]

SUBROUTINE WGHT(FN,SR,Z,IFLAG,BO,B1,B2,
& AlP2 ,A2M1)

D. SMALLWOOD 12-17-84

FINDS THE WEIGHTS FOR A ONE-ZERO-TWO-POLE
SINGLE DEGREE OF FREEDOM RESONATOR
WITH A RAMP INVARIENT SIMULATION.

INPUTS:

FN= NATURAL FREQUENCY (HZ)

SR= SAMPLE RATE (SAMPLES/SEC)

Z=FRACTION OF CRITICAL DAMPING

IFLAG=1 SETS UP AN BASE ACCEL INPUT
ACCEL RESPONSE
SHOCK SPECTRUM

IFLAG=-1 SETS UP A BASE ACCEL.
RELATIVE DISPLACEMENT
(EXPRESSED IN EQUIVALENT
STATIC ACCEL UNITS) SHOCK
SPECTRUM.

OUTFUT:

3

1

BO,B1,B2,A1P2,A2M1 THE FILTER WEIGHTS

DOUBLE PRECISION PI,W,WD,E,SP,DY,SQ,FACT,
& C,DZ
DATA PI/3.1415926535D0/

W=2 . 0DO*PI*DBLE(FN) /DBLE(SR)
IF(W-1.0D-3) 1,2,2
X=SNGL(W)

USE THESE COEFFICIENTS WHEN W IS SMALL,
FOR BOTH MODELS

AlP2= 2.0%Z%X +X#X#(1.0-2.0%Z*Z)
A2M1=-2 0*Z#*X +2. 0% Z#*ZXX*X
IF(IFLAG) 35,10,20

2 DZ=DBLE(Z)

THESE ARE EXACT EXPRESSIONS,
USED WHEN W IS LARGE

USE THESE EXACT EXPRESSIONS WHEN W IS LARGE

SQ=DSQRT(1.0D0-DZ*DZ)
E=DEXP ( -DZ*W)

WD=W*5Q

SP=E*DSIN(WD)

FACT=(2.0D0*DZ*DZ -1.0D0)*SP/SQ
C=E*DCOS (WD)

AlP2 AND A2M1 ARE THE SAME FOR BOTH MODELS
AlP2=A1+2 A2M1=A2-1

AlP2=SNGL(2.0D0-2.0D0*C)
A2M1=SNGL(-1.0DO+E*E)
IF(IFLAG) 6,10,30

EXACT EXPRESSIONS, W LARGE,
RELATIVE DISPLACEMENT MODEL

BO=SNGL((2.0DO*DZ*(C-1.0D0) +FACT +W) /W)
B1=SNGL((-2.0DO*C*W +2.0D0*DZ*(1.0D0-E*E)
&  -2.0DO*FACT) /W)
B2=SNGL( (E*E*(W+2.0D0*DZ) -2.0DO*DZ*C
&  +FACT) /W)
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GO TO 10

USE THESE COEF. FOR SMALL W,
RELATIVE DISPLACEMENT MODEL

BO=X*X/6.
B1=2.0%X*X/3.
B2=X*X/6.

GO TO 10

USE THE COEFF FOR ACCEL INPUT,
ACCEL OUTPUT MODEL

EXACT EXPRESSIONS FOR W LARGE.
ACCEL OUTPUT MODEL

SP=SP/WD

BO=SNGL(1.0D0-SP)
B1-SNGL(2.0DO* (SP-E*DCOS (WD)))
B2=-SNGL(E*E-SP)

GO TO 10

USE THESE COEFF FOR SMALL W,
ACCEL OUTPUT MODEL

BO=Z*X+(X*X)*((1.0/6.0)-2.0%Z*Z/3.0)

Bl=2.0*X*X*(1.0-Z*Z)/3.0

B2=-Z*X+ X#*X%((1.0/6.0)-4,0%Z*Z/3.0)

RETURN
END



Discussion

Mr. Galef (TRW): I haevs been investigating some
of these things in considerable detail over
recent years, and I havz come to a different
conclusion than you hew=. My conclusion has
been that damping is & second order effect, or a
considerably higher orizr effect, at low
frequencies and high frsquencies; damping is
also a considerably hiszer order effect for many
pulses, for the rest ol the frequencies as

well. The only time damping is really important
is in an oscillatory fizction, such as the
damped sine wave that v>u were using, and then
damping is only importz=t at frequencies near
where the Fourier transiorm peaks., I believe
your different conclusiza may have resulted from
using physically invaliZ pulses. That
particular sine wave w-zre you put a
compensating acceleratica at a low value for a
long time prior to the thing, that does not
happen in the real worli. 1In the real world we
have a very large, verry short duration,
compensating pulse to zive us a net velocity of
zero and a net displacexsnt of zero. For that
case, my results very clsarly show the 12 dB per
octave. Until I can perhaps clarify this with
you, I thfik I will corzinue to reject data that
shows 6 dB per octave wvizh the same enthusiasm
that I reject data tha: shows zero shift.

Mr. Smallwood: I encouTage you to read the
written version of the szper, because I think
you will see my mathemztics is fairly straight
forward and indicates & aroblem. 1 agree with
your conclusions on single-sided wave forms.
They roll off at 6 dB per octave anyway. But I
think you will see dampiag is important for the
double-sided wave forms at the very low natural
frequencies. The net result is you cannot
represent these compliczted wave forms as simple
impulses, because you hzve to represent them by
multiple impulses. Whez you do that, the
primary response becomes dominant.

Mr. Rehard (National Tec*nical Systems): If we
are looking at frequencies of one Hz, when we
calculate the response spectra from that low
frequency, what kind of error would come in
between one Hz and DC? SZow do you know that
there isn’t a zero shif: only by looking at the
time history? You woull have to look at the
time history, because it will try to look flat
the closer you get to zerc.

Mr. Smallwood: When the natural period of the
single degree—cf-freedom system gets long,
compared to the complete data window through
which you look at the dzta, then I think you
will ultimately see the shock spectrum start to
roll off. It is flat only to those natural
frequencies whose period is comparable to the
period of the data window that you use to look
at the data. If the period of the window you
use to look at the data is one second long, I
would expect frequencies a decade below one Hz
will start to show a slope again of 6 dB per
octave, That flatness does not go on forever
down to DC. Eventually, it will turn around and

roll off. Often, it is so far down, 4C dB8 or &
dB down, that people really do not worrr abou:
it; they are not concerned about it. So, you
never even plot the shock spectrum, but vou use
very low frequencies.

Mr. Rehard: It is a tough question for me

because I do not know where the two would end.
I do not know if I could ever prove it, or not,
that it really turns around and does 6 ZE.

Mr. Smallwood: The only thing that you can de

is to extend the natural frequency down lower

and lower. That gets to be computationally
expensive. That is the reason people do not
normally do it.



