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This paper shows that for small damping the
correct acceleration shock response spectrum
will roll off with a slope of 6 dB/octave on a

log-log plot. An undamped acceleration shock
spectrum and the shock spectrum based on a
relative displacement model will roll off with a

slope of 12 dB/octave.

Introduction

The slope of the shock spectrum at low

frequencies is typically evaluated by using a
veIl known relationship between the undamped
residual shock response spectrum and the
2agnitude of the Fourier.spectrum [1]. This has

led to the common belief that the shock response
of shocks with a low velocity change, like a
?yrotechnic shock, will have a low frequency
.lope of 12 dB/octave. But anyone who has
examined these shocks has seen data which

~iolates this assumption. Several suggestions
:-a':e been offered to explain the slopes which
~re different from 12 dB/octave including:

"
The spectrum doesn't really roll off at
12 dB/octave

0
Zero offsets cause the spectrum to roll off

at a slope different from 12 dB/octave

"
Truncation errors cause the problem

0
Incorrect algorithms are being used to

calculate the spectrum

EAch of these suggestions are examined in
i'a?er.

this

Models

Before I can discuss the shock response

'r~ctrum we must examine the single-degree-of-
fr~edom (SDOF) models which are used to evaluate

:h. shock response spectrum. A large number of
~els are used, but they can be reduced to

~:r!ations of just two models, which I will
<:'ICUSS.

Acceleration Model- The input to this model
is the absolute acceleration of the base of the

SDOF system. The response of the SDOF system is
the absolute acceleration of the mass. The

transfer function of this system in the complex

Laplace domain is given ~y

2
2 I"'ns +:.In

Ha(s) - (1)

2 2
s + 21"'ns + "'n

The impulse response of this model is given by

2 -If?
h (t) - '"(1- I) -exp(-I'"t)sin("'dt+~)ann (2)

where

~ - tan-l[21(1-1 2)1/2/(1-212)]

1 - the fraction of critical damping

1/2
'" - the natural frequency, (K/M)n

"'d - the damped natural frequency, "'n(l- 12)1/2

This is the most commonly used model in the

aerospace industry.

Relative Displace~ent Model- The input to
this model is the absolute acceleration of the

base of the SDOF system. The response of the
system is the relative displacement between the
base and the mass. If the relative displacement
is expressed in terms of an equivalent static
acceleration,

Yeq - (y-x)",2 n' (3)



the transfer function becomes

2
"'n

Hd(s)- (4)

2 2
s +21"'ns-k.)n

The impulse response of this system is given by

hd(t)- 2 -1/2
'" (1-r) exp(-rwt)sin(wdt).n n

This model is commonly used in the Navy and the
seismic industry.

The Relationship Between the Fourier Spectrum

and Shock Response Spectrum

A well known relationship exist between the

undamped residual shock response spectrum and
the magnitude of the Fourier spectrum[2].

Sr("'n) - '" IA(", ) In n

where

Sr - undamped residual-shock-response spectrum
'" - natural frequency (rad/s)
A~'" ) - magnitude of the Fourier Spectrum

n of the acceleration input evaluated at
'"
n

We will also use the relationship

dnf(t)
(jw)~(w) (7)

dtn
..

where.. means a Fourier transform pair,

and
f(t) .. F(",).

We can now derive the slope of the undamped
residual shock response spectrum. Note that both
models reduce to the same form for the undamped
case. The velocity change, Av, of an input
acceleration is given by its Fourier sp~
evaluated at zero frequency. The Fourier
spectrum 1s continuous and smooth near the
origin. Therefore, for frequenciesnear zero

th~ gives

Sr(wn) - Av"'n' (8)

which is* a slope of 1 on a log-log plot or 6
dB/octave.

If the velocity change is zero, but the
displacement change, Ad, is nonzero, the Fourier

spectrum of the velocity for small frequencies
is given by Ad. The use of Eq (7) and then Eq
(6) yields

2
Sr("'n) - wnAd

(9)

for frequencies near zero. This gives the
spectrum a slope of 2 on a log-log plot or 12
dB/octave near zero frequency.

If the displacement change is a:so Z&r~
but its integral is a nonzero value. L c. t~~
undamped residual shock spectrum nea~ Zer~
frequency is given by

Sr("'n)- w3!:J.c.
n (10

This results in a slope of 3 or 18 dB/octave .~
low frequencies.

(5) Slope of the Damped Shock

Spectrum at Low Frequencies

(6)

In this section I will investigate the
correct slope for the damped shock respo~.e
spectrum at low frequencies. If the velocity
change of the transient is nonzero and th~
velocity monotonically increases to its fin.:

value, the transient can be represented by A~
impulse when the product of natural frequency 0:
the SDOF system and the sampling interval 1.
much less than one. I can then represent the
waveform by the impulse

;;(t) - AvO(t). \, 'V) '-

Y"'"i, ./'"'-

Looking first at the acceleration model the

residual response is given by

01 )

y(t) - ,Y

( c- ) ,or 02)!:J.vha(t).

The primary response for an impulsive input is

zero. If I make the assumption that the damping
is small the maximum of the impulse response is
approximately

which is the same result as Eq. 8. The same
result is achieved for the relative displacement

model. Thus the common assumption, that the
residual response dominates the low frequency
response and that the relationship between the I

Fourier spectrum and the undamped residual shock!

spectrum can be used to estimate that response,,'
is valid for this case. We get a slope of 1 or 6 .
dB/octave at the low frequencies.

If the velocity does not increase
monotonically to its final value (i.e. zero
crossings of the acceleration waveform exist)
this analysis is not valid, We must now
represent the input waveform as a series of

impulses, To examine this problem I will first

consider the response of a damped SDOF system to
an impulse when 'the time is small. The impulse
response of the accelerationmodel can be
approximated for small values of time and
damping by

ha(t)-Co>n(Co>nt+ 21). (15)

*
A slope of 1 is not precisely 6 dB/oct.
this value will be used in this paper.

but
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max(t) - "'n' (13)

This gives

S(Co>n)- AvCo>n' (14)



For the relative displacement model

2
hd(t) - c.lnt,

(16)

which is the same as for the acceleration model

except the second term is zero. The acceleration

response for early times and small damping is

then given by

yet) - t.vc.ln(c.lnt + 2n.
(17)

The response can be approximated by a straight
line for early times. Equation (17) can be
derived in a different way. If we assume that
the mass of the oscillator remains essentially

stationary with respect to the base, the force
on the mass is given by

F - Kx + Cx
(18)

where

2\"c.ln- C/M

and where x is the base input displacement.
acceleration of the mass is then approximately

yet) - (KIM) x(t) + (C/M) x(t)

or

- 2
yet) - c.lnx(t)+ 2 \"c.lnx(t)

(19)

If

x(t) - l\v5(t)

~hen

it(t) - l\v and

x(t) - t.v t.

:roese results give

yet) - l\Vc.l2t + l\v2\"c.I. n n

vhlch is the same as Eq (17). Equations (17)-
'19) show that the mass accelerations for early

~lmes is dominated by two terms: a stiffness
!orce proportional to the base displacement and
3 damping force proportional to the base
'...lodty-

These equations will now be used to write a

DOre general expression for the response to a
'.1uence of impulses. These expressions will

~h.n be used to estimate the primary response of
v.v.fo~s where the velocity does not increase

~notonically. Let the input be given by

L
Xlt) - Z A.5 (t - iT)

i-Ii
(20)

~r. 6 is the unit impulse function, and Ai is
~h. velocity change of each impulsive input. If
~h. ~otal pulse duration is short compared to

t~~ period of the SDOF system ( i.e. Tc.lnL «1)

and the damping is small, the response of the
syst~ can be approximated by a sum of responses
like ~q (17)

L

yet) - L Aic.ln[c.ln(t- ir) + 2rJU(t-ir)
i-l

for ~L

(21)

where

D(t) - the unit step function.

~is response is just a sequence of straight
lines whose slope changes at each impulsive
input. The maximum response will occur at one of
these changes in slope. The response at the
impU:sive input at time mT can be evaluated as

L

y(nT) - L Aic.l[T (m-i) r + 2r]U(m-i).
i-l n n

(22)

The

The ?rimary

laq;est of
some value

damped case
form

response can be approximated by the
this set of values, y (mr), for
of m between 1 and L. ~~s for the

the maximum response will be of the

..

( )
2

ymax mr - Clc.ln + C2c.1n' (23)

The ~damped case will always be of the form

.. 2
y=x(mr) - C3c.1n'

The relative displacement model will
maximum primary response of the form

(24)

give a

- 2
"t" (mr)- C4c.1..eq max n

we can now see that the primary response

for :he relative displacement model, and for the

undanped acceleration model will always have a

slope of 2 or 12 dB/octave at low frequencies.

If ~e slope of the residual response is greater

than 12 dB/octave the residual response must be

less than the primary response for a very low

fre~~ncy. The final slope of the shock response

spectrum will be 12 dB/octave.

The damped acceleration model will have two

reg~:ns of interest. For the intermediate
fre~~ncies where the first term of Eq (23)
domi=ates, the primary spectrum will have a
slc~~ of 12 dB/octave. At the very low
fre~lencies where the second term of Eq (23)
domi=ates the slope will be 6 dB/octave. Thus

the primary response must be greater than or
equa: to the residual response which rolls of
with a slope of at least 6 dB/octave. The
conc:usion is that for small damping, the
~~inax sh~~spectium--:Eor the acceleration
-mode: -wiil will always have a-low-"-rnquency
slo~-or6-dB7octa:ve -

l_-n;-e-usu:a:r-assumption is that the residual

spectrum is larger than the primary spectrum at

low ~tural frequencies. We see that this is the

case for single sided waveforms, but is not true

for jouble sided acceleration pulses.

(25)
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Two examples will illustrate this important
result. For the first example, consider an

acceleration input as given by Figure 1. The
velocity and displacement waveforms for this
acceleration are shown in Figures 2 and 3.The

input can be approximated by three impulses

x(t) - 6(t-0.001) - 26(t-0.023) + 6(t-0.045)
(26)
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Figure 3 Base Input Displacement

The approximate response given for a time step
of 1 ms is given by Eq (21) as

- -3 -3 -3
y(lO m) - (10 ) wn([lO wn(m-l) + 2r]U(m-l)

-3
-2 [10 wn(m-23) + 2r]U(m-23)

-3
+ [10 W (m-45) + 2r]U(m-45».

n (27)
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Acceleration Shock Response Spectrum of
the Input of Figure 1.

100

The acceleration response for a natural
frequency of 1 Hz and 3% damping is shown as
Figure 4. The inset in Figure 4 is the
acceleration expanded for the early portion of
the period. The primary response is close to the
straight line approximation predicted by Eq
(21). Equation (19) predicts that the primary
response at low frequencies will be proportional

to the base displacementif the system is
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shows the response for a

comparison of Figures 3 and
prediction. In both Figures
response is larger than the

undamped. Figure 5
damping of 0.01\. A
5 confirms the above
4 and 5, the primary

residual response.

The shock spectrum for this input is given

in Figure 6. The shock spectrum at the low

frequencies can be predicted using Eq (27). For
example, the spectrum at 0.1 Hz can be estimated

by noting that the maximum response will occur
near t - 22 ms

.. -3 -3

Ymax - 2~(.1)(10 )[10 (2 ~)(.1)(21) + 2(.03)](28)

-5 2

Ymax - 4 x 10 in/s,

which agrees with Figure 6.

A second example is given by the WAVSYN

Figure 7. The WAVSYN pulse is defined by

x(t) - A sin(2 bt) sin(2 ft)
- 0

for 0 < t <T (29)
elsewhere

where

A - the amplitude

f - the frequency of the pulse

b - the frequency of a half sine window, fIN

T - the pulse duration, N/(2f)

N - an odd integer greater than 1.

In Figure 7, A-I g, N - 39, and f - 1 Hz. The
velocity and displacement changes for this
waveform are zero. The above discussion shows
the residual spectrum should have a slope of 12
d8/octave. and the primary spectrum should have
a final slope of 6 dB/octave. Figure 8 is the
accelerationshock spectrum of this waveform. We
can see the region just below 1 Hz where the
re.idual response is larger, the area at about
0.5 Hz where the response is dominated by the
primary response damping forces, and at the very

lev frequencies the charactistic final slope of

6 dS/octave.

1.0

';-
c
~.
io.oM ~

-1.0
0.0 9.0

Time (a)

FI~re 7 A 1.Hz, log, 39-Half Cycle, WAVSYN Pulse

18.0

Errors Caused by Zero Offsets

in

A small error in thezero line of an
acceleration waveform can cause large errors in
the low frequency end of the shock response

. spectrum. The error occurs because the zero
offset will cause an error in the final velocity
of the waveform. A small error integrated over
the entire length of the time history can result
in a substantial velocity error. The offset will

appear to the shock spectrum calculations as a
square wave of a duration equal to the pulse
duration. An example is shown in Figure 9, and
Figure 10 (curves a and c). Figure 9 is an
acceleration input composed of the sum of two
exponentially decaying sinusoids. One component

is at 100 Hz with an amplitude of 1 g. The
second is a highly damped component at a much
lower frequency whose amplitudeand delay were
chosen to force the velocity and displacement
changes to be zero. Figure 10, curve a, is the
shock spectrum of this waveform. A 0.05 g zero

. offset was added to the waveform and the shock

spectrum was recomputed (curve c on Figure 10).
The offset looks like an added square wave with

an amplitude of 0.05 g. The shock spectrum of

this square wave has a peak amplitude of 0.1 g.
Since the duration of this square wave is 0.2048
s the first peak in the shock spectrum of this
component will be at about 2.4 Hz. Curve c of
Figure 10 confirms these predictions.

One of the dangers of these errors is that

the errors can propagate into specifications
derived from the measured shock spectrum, which
in turn leads to tests with unreasonable
velocity and displacement requirements.

Errors Caused by Waveform Truncation

Truncation of an acceleration waveform can

also cause errors in the low frequency end of
the shock response spectrum. As for the offset
errors, these errors are caused by an incorrect

final velocity. The error in the final velocity
divided by the pulse duration and converted to

acceleration units will give an approximation of

10.

11.1
II)
z

~ 0.1II)
11.1
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¥
c
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A. 0.01

DA_G=10...

SLOPE= 3

SLOPE=2- 1.0t\2 ~o/
~ /"c.+

J~/o(.-1:

0.001
0.01

RESPONSE DOMINATED BY
PRIMARY RESPONSE WHERE

I 2[< flinT ,
~1 ,~

NATURALFREQUENCY(Hz)
3.0

Figure 8 Shock Response Spectrum of a 1-Hz, 1-g,

39-Half Cycle, ~AVSYN Pulse
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Figure 9 AccE:eration of the Sum of Two
Exp~entially Decaying Sinusoids

the error. To :llustrate, the waveform in Figure
9 was trunc~:ed at 0.0564 s. The resulting
velocity er::r was about 0.18 in/so This
translates i~:o an acceleration error of about

0.008 g. We ~ould then expect an error in the
shock spectrun of about twice this value ( 0.016
g) with the ::west frequency peak at about 8.9
Hz. Curve b, f:gurE 10 confirms this error.

As in ~e case of offset errors, the
biggest danger of this error is the propagation

of the error i=to specifications.

Incorrect Algorithms

This sour~e of error cannot be discussed in

detail withou: a thorough knowledge of the algo-

rithm in ques::on. Recursive digital filters are

a popular metbod to calculate the shock response

spectrum, ant it is known that the filter
weights are sUbject to serious roundoff problems

at low natur~ frequencies. Careful attention

must be paid ~ the calculation of these weights
and to the dEtails of the implementation at low

natural freq~ncies. In some methods the data

are filtered Yith a low pass digital filter and

the data are :hen decimated before the spectrum

is calculated at the low frequencies. This could

lead to errcrs in calculating the primary
spectrum, wh:~ has been demonstated to be

important a: the low frequencies. More
investigation is required in this area. A good

test for any E:gorithm is to reproduce Figure 8.

Application to Pyrotechnic Shock Data

We can now use the above results to
establish guidelines when viewing pyrotechnic
and similar shock data when presented in the
form of shocL response data. First one must
establish whe:her the acceleration model or the

relative diS?lacement model was used to
calculate thE shock response. This determines
the final slO?E of the data. If the velocity
change is zero, the shock response should have a
final slope :f 12 dB/octave or change from a
slope of 12 C!/octave to 6 dB/octave (depending

10 , h

D>- ,
w
rn
Z
0

~0.1
W
a:
~
<I:
W.01
Q.

.-;

.001
10 100

FREQUENCY (Hz)
1000

Figure 10 Shock Response Spect~ of the Acc~i.
eration Waveform Shown i~ Figur~ ~

on the model used) in a smooth ma:1ner as : 1.,-

frequency decreases. The curve ~::: be co~ca~,
If a convex "bump" is observec at th" 1<,..-

frequencies, the bump likely represent' n

velocity change which appears to :t".
computations as a acceleration square wave ar.c,-C
to the waveform.

Remember the shock spectrum of a sq~ar~

wave has an intial slope of 6 dB/oc~ave, reach",
a peak of twice its amplitude at a frequEncy

equal to the inverse of twice its duration, has

some ripples .with each peak of the rip?l~,
reaching a magnitude of twice the areplitude, and

continues along a line with a slope of zero at
an amplitude of twice its ampli~de as th"
frequency increases. Because of thi5
characteristic shape of the shock spectrum of a

square wave, the shock spectrum with an add"c
square wave can appear to have a slope of zero

at low frequencies. The amplitude of this ar~a
of zero slope will be a function of both th"
observed velocity change and the duration of the
digitized waveform. If the velocity change is a
constant and not an error caused by a zero
offset or truncation, the amplitude of this area
will decrease as the duration of the digitiz"d

waveform is increased. The magnitude of the

velocity change can be estimated by dividing the
shock spectrum amplitude in the region of the

zero slope by two, multiplying by the pulse
duration and converting to velocity units- If
this velocity change is representative of the
environment the data are probably valid. But if

the velocity change is unreasonably large, the
low end of the shock spectrum is in error. The
source of the error can then be investigated.

The natural frequency where the shock
spectrum should again start to decline is given
by the inverse of tWice the duration. The final
slope at frequencies much less than the inverse
of twice the duration will be 6 dB/octave.



Shock Spectrum at High Natural Frequencies

This is not the main topic of this paper,
but I \lould like to make some comments on the

subject. A common rule of thumb in transient
data reduction is that you should sample the
data with a minimum of 10 times the highest

frequency of interest. Some have interpreted
this rule to mean the shock response spectrum
should not be calculated above a natural

frequency which is greater than 1/10 th of the
sampling frequency. Often this is overly
conservative. The frequency content of the data
is of primary concern, not the natural frequency

of the SDOF system used in the shock spectrum
calculations. The data must be sampled

frequently enough to avoid large errors in the
detection of the peak of the transient. Some
authors [3] have suggested 6 to 10 samples/cycle
for a 5% error bound. This is often conservative

because it was assumed that the input was a sine

wave at the highest frequency. Three or four

samples of the highest frequency may be adequate

for peak detection if the high frequency content
is a small part of the total energy in the
waveform. The important point is that the sample
rate should be picked with only the
charactistics of the input waveform in mind.

The next qu~stion is, will the algorithm
used to calculate the shock response spectrum

calculate the correct values for the range of
natural frequencies desired. It is known that
the oldest and simplest form of the recursive
filter algorithm has serious errors as the
na~ural frequency approaches half the sampling
frequency [4]. Direct integration methods have
similar problems. Using these algorithms the
rule of 1/10 should be followed. But an improved

algori~hm [4] avoids this problem. If the
improved algorithm is used the natural frequency

can even be above the sampling frequency if the

input transient peak has been adequately
detected. The new algorithm assumes the input
waveform can be adequately described by a series

of straight lines connecting the sample points.
The discontinutiesin slope caused by the
straight line segment approximation will
generally introduce high frequency energy into
the waveform and the shock spectrum will be
slightly higher than the true value at the high
frequencies. The errors of peak detection will
always bias the results in the negative
direction. The peak detection errors are usually

the largest. The value approached for the shock

spectrum as the natural frequency increases is

the value of the largest sample in the set of
data samples, and is as accurate as the detected
,eak value.
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Appendix A

Listing of Subroutine for a Ramp Invarient

Simulation of a Single-Degree-of-Freedom

System for the Calculation of the

Shock Response Spectrum

REFERENCE: Smallwood D.O., "An Improved

Recursive Formula for Calculating the Shock

Response Spectra," Shock and Vibration Bulletin,

No. 51, part 2, pp 211-217, May 1981.

SUBROUTINE FILMAX(Y,XX, FN,SR,Z,XMl ,XM2 ,

& YMl,YM2,IFlAG)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

D. SMALLWOOD 4-14-80
MODIFIED 8-15-80

MODIFIED 12-17-84 MADE CALCULATION OF
FILTER WEIGHTS A

A SEPARATE SUBROUTINE

APPROXIMATES A ONE-ZERO-TWO-POLE SINGLE

DEGREE OF FREEDOM RESONATOR USING A RAMP

INVARIENT SIMULATION AND RETURNS THE

RESPONSE.

Y-FILTER OUTPUT

XX-FILTER INPUT

Z-FRACTION OF CRITICAL DAMPING

SR-SAMPLE RATE (SAMPLES/SEC)

FN-NATURAL FREQUENCY OF RESONATOR (HZ)

IFLAG.NE.O FOR FIRST CALL TO ROUTINE

SETUP FILTER COEFF.

-0 USES FILTER COEFF. DETERMINED

FROM A PREVIOUS CALL.

NOTE: IFlAG CHANGED TO 0 AFTER 1ST

CALL, MUST BE RESET BY

USER FOR NEW FILTER.

IFLAG-l SETS UP AN BASE ACCEL. INPUT,

ACCELERATION RESPONSE

SHOCK SPECTRUM

!FLAG--l SETS UP A BASE ACCELEF.i,l'ION,

RELATIVE DISPLACEMENT

(EXPRESSED IN EQUIVALENT STATIC

ACCEL UNITS) SHOCK SPECTRUM.

XMl-lST PAST VALUE OF INTIAL INPUT

XM2-2ND PAST VALUE OF INTIAL INPUT

YMl-lST PAST VALUE OF INTIAL RESPONSE

YM2-2ND PAST VALUE OF INTIAL RESPONSE

285



H(FN) 4,4,5
4 Y-O.

RETURN
C
C
C

1ST CALL SET UP FILTER COE~::~~S

5 IF(IFLAG) 3,10,3
3 CALL WGHT(FN, SR, Z, IFLAG,BO .~:..32 ,AlP2,

& A2Ml)
lFLAG-O

10 Y-BO*XX +Bl*XMl+B2*XM2
& -AIP2*YMI-A2Ml*YM2
YM2-YMI
YMl=Y
XM2-XMl
XMI-XX
RETURN
END

+Y!C- -:~n-YM2)

SUBROUTINE FILTR(X,FN,SR,Z,:::?E,ISIZE,Y)

C
C SUBROUTINE TO FILTER A TIME HlS~~Y WITH A
C SDOF FILTER USING A
C RAMP INVARIENT FILTER SIMULATIJ~

C
C INPUT:
C
C
C
C
C
C
C
C
C
C OUTPUT: Y- OUTPUT DATA ARRAY
C
C DO SMALLWOOD SANDIA NATIONAL ~~S

C ALBUQUERQUE NM 12-17-84
C

X- INPUT DATA ARRAY

FN- NATURAL FREQUENCY (:::::
SR- SAMPLERATE OF INTI."::';'IA ARRAY

(SAMPLES/SEC)
Z- FRACTION OF CRITICAL ~ING

ITYPE-I--ABSOLUTE ACCE~~-rON MODEL
-l--RELATIVE DISP~~~~ MODEL

ISIZE- THE NUMBER OF POTh"":S n;- THE

X AND Y ARRAYS

DIMENSION X(l),Y(l)

C
C
C

FIND FILTER WEIGHTS

CALL WGHT(FN,SR,Z,ITYPE,BO,B:.32,AIP2,

& A2Ml)
C
C
C

FILTER

YM2-0.
YMI-O.
XMI-O.
XM2-0.

DO 10 I-l,ISIZE

Y(I)-BO*X(I) +Bl*XMl +B2*X¥~ -~1
& +(YMI-YM2)-AIP2*YMl-~T~
YM2-YMI
YMI-Y(I)

XM2-XMl
10 XMI-X(I)

RETURN
END

SUBROUTINE WGHT(FN,SR,Z,IFLAG,BO,Bl,B2,

& AIP2,A2Ml)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C OUTPUT:
C BO,Bl,B2,AlP2,A2Ml
C
C

D. SMALLWOOD 12-17-84

FINDS THE WEIGHTS FOR A ONE-ZERO-TWO-POLE
SINGLE DEGREE OF FREEDOM RESONATOR
WITH A RAMP INVARIENT SIMULATION.

INPUTS:
FN- NATURAL FREQUENCY (HZ)

SR- SAMPLE RATE (SAMPLES/SEC)

Z-FRACTION OF CRITICAL DAMPING

IFLAG-l SETS UP AN BASE ACCEL INPUT
ACCEL RESPONSE

SHOCK SPECTRUM

IFLAG--l SETS UP A BASE ACCEL.

RELATIVE DISPLACEMENT

(EXPRESSED IN EQUIVALENT

STATIC ACCEL UNITS) SHOCK

SPECTRUM.

THE FILTER WEIGHTS

DOUBLE PRECISION PI,W,WD,E,SP,DY,SQ,FACT,

& C,DZ
DATA PI/3.1415926535DO/

C
3 W-2.0DO*PI*DBLE(FN)/DBLE(SR)

IF(W-l.0D-3) 1,2,2

1 X-SNGL(W)

c
C
C
C

USE THESE COEFFICIENTS WHEN W IS SMALL,
FOR BOTH MODELS

AIP2- 2.0*Z*X +X*X*(1.0-2.0*Z*Z)

A2Ml--2.0*Z*X +2.0*Z*Z*X*X

IF(IFLAG) 35,10,20

2 DZ-DBLE(Z)

C
C
C
C
C
C

THESE ARE EXACT EXPRESSIONS,

USED WHEN W IS LARGE

USE THESE EXACT EXPRESSIONS WHEN W IS LARGE

SQ-DSQRT(1.0DO-DZ*DZ)

E-DEXP(-DZ*W)

WD-W*SQ
SP-E*DSIN(WD)

FACT-(2.0DO*DZ*DZ -1.0DO)*SP/SQ

C-E*DCOS(WD)
C
C
C
C

AIP2 AND A2Ml ARE THE SAME FOR BOTH MODELS
AIP2-Al+2 A2MI-A2-1

AIP2-SNGL(2.0DO-2.0DO*C)
A2MI-SNGL(-1.0DO+E*E)
IF(IF1AG) 6,10,30

C
C
C
C

EXACT EXPRESSIONS, W LARGE,
RELATIVE DISPLACEMENT MODEL

6 BO-SNGL«2.0DO*DZ*(C-l.0DO) +FACT +W)jW)

Bl-SNGL«-2.0DO*C*W +2.0DO*DZ*(1.0DO-E*E)

& -2.0DO*FACT)jW)

B2-SNGL«E*E*(W+2.0DO*DZ) -2.0DO*DZ*C

& +FACT)jW)
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GO TO 10
G
C
G
G

USE THESE COEF. FOR SHALL W,
RELATIVE DISPLACEMENT MODEL

3S BO-X*Xj6.
BI-2.0*X*Xj3.

B2-X*Xj6.

GO TO 10
C
G
G
G
G
G
C
G

USE THE GOEFF FOR ACGEL INPUT,
ACCEL OUTPUT MODEL

EXACT EXPRESSIONS FOR W LARGE.
AGGEL OUTPUT MODEL

30 SP-SPjWD
BO-SNGL(I.0DO-SP)

BI-SNGL(2.0DO*(SP-E*DCOS(WD»)

B2-SNGL(E*E-SP)

GO TO 10
c
c
c
c

USE THESE COEFF FOR SMALL W,
AGGEL OUTPUT MODEL

20 BO-Z*X+(X*X)*«1.0j6.0)-2.0*Z*Zj3.0)
BI-2.0*X*X*(1.0-Z*Z)j3.0

B2--Z*X+ X*X*«1.0j6.0)-4.0*Z*Zj3.0)
10 RETURN

END



Discussion

Mr. Galef (T~): I ha~ been investigatingsome
of these things in con>:derable detail over

recent years, and I h~: come to a different

conclusion than you ha~. My conclusion has

been that damping is a second order effect, or a

considerably higher or&=r effect, at low

frequencies and high :~~uencies; damping is

also a considerably hi~er order effect for many

pulses, for the rest 0: the frequencies as

well. The only time ~an?ing is really important

is in an oscillatory fu=ction, such as the

damped sine wave that :YJ were using, and then

damping is only importa~t at frequencies near

where the Fourier traD£:orm peaks. I believe

your different conclus:~3 may have resulted from

using physically invali~ pulses. That

particular sine wave ~:re you put a

compensating accelerati=3 at a low value for a

long time prior to the t~ing, that does not

happen in the real wor"~. In the real world we

have a very large, very short duration,

compensating pulse to g:ve us a net velocity of

zero and a net displac~ent of zero. For that

case, my results very c:early show the 12 dB per

octave. Until I can pe~aps clarify this with

you, I th: 1k I will co~t:nue to reject data that

shows 6 dB per octave .:th the same enthusiasm

that I reject data that shows zero shift.

Mr. Smallwood: I encou~age you to read the
written version of the ?aper, because I think

you will see my mathematics is fairly straight
forward and indicates a problem. I agree with

your conclusions on si~le-sided wave forms.
They roll off at 6 dB per octave anyway. But I
think you will see damp:~ is important for the
double-sided wave forms at the very low natural
frequencies. The net result is you cannot

represent these complicated wave forms as simple
impulses, because you hzoe to represent them by
multiple impulses. Whe~ you do that, the
primary response becomes dominant.

Mr. Rehard (National TeL~ical Systems): If we

are looking at frequencies of one Hz, when we
cal cula te the response s;:-ectra from that low

frequency, what kind of error would come in

~etween one Hz and DC? Sow do you know that

there isn't a zero shift only by looking at the

time history? You woult have to look at the

time history, because it viII try to look flat

the closer you get to zero.

Mr. Smallwood: \o'hen the natt'.ral period of the

single degree-of-freed~ system gets long,

compared to the complete data windov through

which you look at the da:~, then I think you

will ultimately see the shock spectrum start to

roll off. It is flat o~y to those natural

frequencies whose period is comparable to the

period of the data windoO" that you use to look

at the data. If the period of the window you

use to look at the data is one second long, I

would expect frequencies a decade below one Hz

will start to show a slo;>e again of 6 dB per

octave. That flatness does not go on forever

down to DC. Eventually, it will turn around and

roll off. Often, it is so far down, 40 dB or ~~

dB down, that people really do not worry about

it; they are not concerned about it. So, you

never even plot the shock spectrum, but you us~

very low frequencies.

Mr. Rehard: It is a tough question for me
because I do not know where the two would end.

I do not know if I could ever prove it, or not,
that it really turns around and does 6 cB.

Mr. Smallwood: The only thing that you can do
is to extend the natural frequency down lower

and lower. That gets to be computationally
expensive. That is the reason people do not
normally do it.
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