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Introduction 
 

Consider a launch vehicle with a payload. 
 

Intuitively, a realistic payload which is more massive than its mounting structure will tend to 
have a lower response to shock and vibration than the base structure’s own response.   This 
hypothesis assumes that the excitation flows from some external source through the base into 
the payload. 
 

MIL-STD-810F gives a reasonable explanation for this mass-loading effect.  An excerpt is given 
in Appendix A. 
 

Furthermore, MIL-STD-810F, TABLE 514.5C-III, Jet Aircraft Vibration Exposure, allows the 
random vibration PSD (G^2/Hz) test level to be scaled by 0.25 due to mass loading for 
equipment 72 kg (160 lbm) or greater.  This is equivalent to a 6 dB reduction.  This table is also 
included in Appendix A. 
 

The purpose of this analysis is to explore and expand upon the MIL-STD-810F 
recommendation, using a “very simplified” approach. 
 

The analysis develops examples to derive a mass-loading reduction formula, particularly for 
launch vehicle equipment and payloads.    
 

The derived method is suitable for liftoff and aerodynamic vibroacoustics, as well as stage 
separation shock.  It may or may not be appropriate for structural-borne random or sine 
vibration from motors where the motor mass is greater than the payload mass. 
 
 

Assumptions 
 

1. The payload and its mounting base can be modeled as a two-degree-of-freedom 
system. 

2. The mass of the payload is 40 lbm or greater. 

3. The natural frequency of the payload by itself is 50 Hz or less. 

4. The natural frequency of the base by itself is approximately 100 Hz, thus satisfying the 
octave rule for frequency separation. 

5. The damping of each mode is 5%. 

6. The random vibration source can be characterized as a harmonic force applied to a base 
mass. 

7. Any significant flight excitation would be at frequencies above the second modal 
frequency, which is approximately 100 Hz. 



8. The reduction factor is calculated by dividing the response of the payload mass by the 
response of the base mass at the second modal frequency. 

9. The resulting reduction factor is then taken to be constant for all excitation frequencies 
for the given payload mass. 

 
Furthermore, the acceleration response of the payload mass in the two-degree-of-freedom 
model may be considered as the base input acceleration applied to the payload for design or 
test purposes.  This is explained more clearly in the next section. 
 
 
Modeling Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Two-degree-of-freedom System 

 
 
 

Modeling Approach 
 

Mass 2m   represents a payload.  The payload may contain circuit boards, stowed solar arrays 

and various instruments, but it is modeled as a discrete mass. 
 

The spring  2k   could represent a payload mounting cone. 
 

The mass  1m  and the spring 1k  could represent an avionics module of some sort. 
 
 

The analysis assumes that the payload mass 2m   would eventually be hardmounted directly to 

a shaker table without spring 2k .  The payload would then be subjected to base excitation.  In 

reality, analysis might be substituted for actual testing. 
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Base Values for the Sample Calculations 
 

The base mass  1m =100 lbm.  The spring stiffness  1k = 1.0e+05 lbf/in. 
 

The single-degree-of-freedom system consisting of base mass  1m  and spring 1k  has a natural 

frequency of 100 Hz. 
 
 

Payload Values for the Sample Calculations 
 

The payload mass 2m   is an independent variable. The spring stiffness 2k  is varied 

accordingly so that the single-degree-of-freedom system consisting of payload mass  2m  and 

spring  2k   has a natural frequency of either 20 or 50 Hz. 
 
 

Modal Damping 
 

The modal damping is 5% for each mode. 

 

Force Input 
 

The forcing frequency is varied from 1 to 10,000 Hz. 
 

The force amplitude is 1000 lbf, but this is unimportant because the goal is simply a ratio of the 
payload acceleration relative to the base acceleration.  

 
 



Typical FRF 
 
 

 
 
 
Figure 2.    Case with Payload Values:  m2 = 200 lbm, k2 = 5.11e+04 lbf/in, (payload fn=50 Hz) 
 
 
 
Mass 1:  Base Mass, local peaks  
 
    39.17 Hz    6.806 G  
    124.4 Hz    91.29 G  
  
 Mass 2:  Payload Mass, local peaks  
 
    39.17 Hz    17.35 G  
    124.4 Hz    17.62 G 
 
 
The payload mass response is 14.3 dB lower than that of the base mass at 124.4 Hz.  This 
value is taken as the reduction factor even though the attenuation is much greater at higher 
frequencies. 
 
 
 



 
 
Results Summary 
 
 

 
 

Figure 3. 
 

 

 
 

The two frequency curves in Figure 3 were generated by applying the previous values to the 
model in Figure 1 via the method in Reference 2.  
 
The natural frequency is the natural frequency of the payload and its own mounting spring 
behaving as a single-degree-of-freedom system. 
 

The curves show that a greater reduction occurs as either the payload mass is increased or as 
the payload natural frequency is decreased. 
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Recommendations 
 
The recommended attenuation factor for payload mass loading is 
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Again, the mass term in equation (1) is the payload mass. 

 
The slope of equation (1) is -3 dB / (doubling of mass), where payload mass is the independent 
variable. 
 
The recommendation is conservative within the assumptions of this analysis.   
 
Note that the recommendation matches the MIL-STD-810F value of -6 dB for 160 lbm. 
 
Further conservatism can be added by limiting the factor to > -12 dB for mass values > 640 lbm. 
 

Obviously, a better choice would be to perform an analysis on the given system under 
consideration, rather than to rely on equation (1).  The recommended formula can be used, 
however, as a preliminary estimate.   
 
Equation (1) is expressed in metric units as  
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Future Work 
 
The approach presented in this analysis is definitely a simplification. 
 
Additional cases need to be analyzed by varying the mass and stiffness parameters in the two-
degree-of-freedom model. 
 
Furthermore, the analysis needs to be expanded by considering systems with additional 
degrees of freedom.   
 
The reduction factor should be defined as a function of both frequency and mass. 
 



Base excitation should also be modeled. 
 

 

 

Mass Acceleration Curves 
 
As an aside, Mass Acceleration Curves (MAC) are used to represent the combined effects of 
rigid-body launch vehicle acceleration, transient loading, and random vibration. 
 
Examples of Mass Acceleration Curves are given in Appendix B.  The ending slope of each 
curve is about -2.8 dB / (doubling of mass). 
 
 
Force Limited Testing 
 
Force limited testing is a related concern.  See NASA-HBBK-7004B for further details. 
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APPENDIX A 
 
 
Excerpt from MIL-STD-810E, Method 514.5, Annex B 
 

 
2.4 Platform/Materiel and Fixture/Test Item Interaction. 
 
Generally, it is assumed that the vibration environment of the materiel is not affected by the 
materiel itself. That is, the vibration of the platform at the materiel attachment point would be the 
same whether or not the materiel is attached. Since the entire platform, including all materiel, 
vibrates as a system, this is not strictly correct. However, when the materiel does not add 
significantly to the mass or stiffness of the platform, the assumption is correct within reasonable 
accuracy. The following sections discuss the limitations of this assumption. Note that these 
effects also apply to sub-elements within materiel and to the interactions of materiel with 
vibration excitation devices (shakers, slip tables, fixtures, etc.). 
 
2.4.1 Mechanical impedance. 
 
a. Large mass items. At platform natural frequencies where structural response of the platform 
is high, the materiel will load the supporting structures. That is, the mass of the materiel is 
added to the mass of the structure, and it inertially resists structural motions. If the materiel 
mass is large compared to the platform mass, it causes the entire system to vibrate differently 
by lowering natural frequencies and changing mode shapes. If the materiel inertia is large 
compared to the stiffness of the local support structure, it causes the local support to flex, 
introducing new low frequency local resonances. These new local resonances may act as 
vibration isolators (see Annex B, paragraph 2.4.2 below). 
 
b. Items acting as structural members. When materiel is installed such that it acts as a structural 
member of the platform, it will affect vibrations and it will be structurally loaded. This is 
particularly important for relatively large materiel items but it applies to materiel of any size. In 
these cases, the materiel structure adds to the stiffness of the platform and may significantly 
affect vibration modes and frequencies. 
 
Further, the materiel will be subjected to structural loads for which it may not have been 
designed. An example is a beam tied down to the cargo deck of a truck, aircraft, or ship. If the 
tie-downs are not designed to slip at appropriate points, the beam becomes a structural part of 
the deck. When the deck bends or twists, the beam is loaded and it changes the load paths of 
the platform structure. This may be catastrophic for the beam, the platform, or both. Be careful 
in the design of structural attachments to assure that the materiel does not act as a structural 
member. 
 
c. Large item mass relative to supporting structures. When materiel items are small relative to 
the overall platform but large relative to supporting structures, account for the change in local 
vibration levels, if practical. This effect is discussed in Annex A, paragraph 2.3.1 for materiel 
mounted in jet aircraft. Note that due to differences in environments, relative sizes, and 
structural methods, the factor defined in Annex C, table 514.5C-III is only applicable to materiel 
mounted in full sized jet aircraft. 
  



d. Large item size relative to platform. When materiel is large in size or mass relative to the 
platform, always consider these effects. This is imperative for aircraft and aircraft stores. 
Catastrophic failure of the aircraft is possible. It is also imperative to consider these effects in 
design of vibration test fixtures. Otherwise, the vibration transmitted to the test materiel may be 
greatly different than intended. 
 
 

 



APPENDIX B 
 
Mass Acceleration Curves 
 
 
 

 
 
 
 
Specific requirements for payload math models at lower frequencies include the following [8.2]: 
 
a. Finite elements must be used to model the structure and/or hardware. 
 
b. Traditionally, a loads model must first be developed that has adequate fidelity to describe the 
payload dynamic behavior in a frequency range specified by the launch vehicle organization. 
Usually this range extends to 50 Hz, although a lower or higher maximum or cutoff frequency is 
sometimes specified for larger or smaller launch vehicles, respectively. For example, the cutoff 
frequency for the Shuttle is 35 Hz. Overall payload and subsystem modes must be accurately 
modeled up to an upper bound frequency, which must exceed 1.4 times the cutoff frequency of 
the loads analysis. 
 
 



APPENDIX C 
 

FOUR-DOF EXAMPLE 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-1. 
 

 
 
Four-DOF Example 
 
This is a repeat of the example in the main text except that the payload mass is divided into 
three equal parts. 
 
 
Base Values for the Sample Calculations 
 

The base mass  1m =100 lbm.  The spring stiffness  1k = 1.0e+05 lbf/in. 
 

The single-degree-of-freedom system consisting of base mass  1m  and spring 1k  has a natural 

frequency of 100 Hz. 
 
 

Payload Values for the Sample Calculations 
 

The payload masses 2m , 3m  and 4m  are independent variable, but they are equal to the same 

value for each case.   
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The spring stiffnesses 2k , 3k  and 4k  are also equal to the same value for each case. 

 

pk4k3k2k   

 
 
The stiffness values are sent such that 
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Modal Damping 
 

The modal damping is 5% for each mode. 

 

Force Input 
 

The forcing frequency is varied from 1 to 10,000 Hz. 
 

The force amplitude is 1000 lbf, but this is unimportant because the goal is simply a ratio of the 
payload acceleration relative to the base acceleration.  

 
 
 
 



 
 

 
Figure C-2. 
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Figure C-3. 
 
 
 
 

Greater attenuation is achieved for lower base mass. 
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Figure C-4. 
 
 
A higher natural frequency yields greater attenuation for payload mass values above 12 lbm. 
 
 
A factor of -12 dB is achieved if all of the following conditions are met: 
 

1. The base mass is < 100 lbm 

2. The base fn is > 50 Hz 

3. The individual payload mass is > 126 lbm 

4. The individual payload fn is < 100 Hz 
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Sample Output File 
 
Base mass=100 lbm  Payload mass=126 lbm (individual) 

Base fn=50 Hz  Payload fn=100 Hz 

 
 
The mass matrix is 

 

m = 

 

    0.2591         0         0         0 

         0    0.3264         0         0 

         0         0    0.3264         0 

         0         0         0    0.3264 

 

  

 The stiffness matrix is 

 

k = 

 

      411960     -128800     -128800     -128800 

     -128800      128800           0           0 

     -128800           0      128800           0 

     -128800           0           0      128800 

 

  

  Natural Frequencies =  

 

      22.4 Hz 

     99.97 Hz 

     99.97 Hz 

     223.1 Hz 

  

  Modes Shapes (column format) = 

  

       -0.862             0             0        -1.765 

       -0.908         0.028         1.429        0.4436 

       -0.908        -1.251         -0.69        0.4436 

       -0.908         1.223        -0.739        0.4436 

 

 Total Modal Mass =     478.0000 lbm 

  

 

 Mass 1:   

    22.63 Hz    19.07 G  

    221.6 Hz    79.22 G  

 



 Mass 2:   

    22.63 Hz    20.09 G  

    221.6 Hz    20.32 G  

 

  

Mass 3:   

    22.63 Hz    20.09 G  

    221.6 Hz    20.32 G  

 

Mass 4:   

    22.63 Hz    20.09 G  

    221.6 Hz    20.32 G 

 

 

 

20*log10(20.32/79.22)  = -11.8 dB 

 

  



APPENDIX D 
 

MASS LOADING VIA MECHANICAL IMPEDANCE 
 
 

 
The following approach applies to a panel excited by random vibration.  A mass is to be added 
to the panel.  The method is taken from Reference 6. 
 

 

Variables 

 

LC  = Longitudinal wave speed 

LG  = Power spectral density for mass-loaded panel 

UG  = Power spectral density for unloaded panels 

h  = Thickness 

M  = Added local mass 

sZ  = Panel impedance 

  = Angular frequency (rad/sec) 

  = mass/volume 

 
 
 
The power spectral density ratio is 
 

 2M2
sZ

2
sZ

UG

LG


                                                                        (D-1) 

 
 
The mechanical impedance for an infinite panel is 

 

2hLC3.2sZ                                                                                               (D-2) 

 
 
Equation (D-2) is taken from Reference 7. 
 
 
 
  



 
APPENDIX E 

 
 
 
Mass Loading 
 
Consider the case where vibration predictions are desired at points where heavy components 
will be mounted.   
 
Assume that the acceleration PSD for the new vehicle has been predicted, but that component 
weight was omitted in the calculation. 
 
NASA CR-1302, section 5.7.1, suggests the following correction factor: 

 
 

 

)f(nG
cWnW

nW
)f(ncG


                                                                                    (E-1) 

 

 

where 
 

)f(nG  
Acceleration PSD of the new vehicle structure without 
components 

nW  
Weight of new vehicle in general region of interest 
without components 

cW  
Weight of all attached component in general region of 
interest 

)f(ncG  
Acceleration PSD of the new vehicle structure with 
components attached 

 

 

 

Equation (E-1) is referred to as the Barrett method, as given in NASA TN D-1836, equation (22). 

Substituting the square of the weight ratio would seem to be more consistent with the laws of 
physics.   
 
Nevertheless, empirical data has shown a better match with the form in equation (E-1). The 
analytical response of a multi-degree-of-freedom system can be used to evaluate this claim, as 
shown in Reference 11.    


