20m

Multiple-Degree-of-Freedom Pyrotechnic Shock Simulation

by

Strether Smith, Bill Hollowell Lockheed Palo Alto Research Laboratory

and a
Host of Contributors, Kibitzers, and Doubting Souls

October 22, 1992

CONFUTER ACED TESTED SYSTEMS

Outline

- Explain the Problem
- Discuss the Goals
- Describe Some Methods In Use
- Discuss the Simulation
- Discuss Some New Ideas
- Solicit Your Comments

October 22, 1992

COLFUTER ACID TIETING SYSTEMS

Available Methods

- Mipps Table
- Motorola Air Gun/Longitudinal Beam
- Sandia Bending Beam
- Electrodynamic Shakers
- HDL 3-DOF Machine

October 22, 1992

COLFUTER ADED THE THE SYSTEMS

The Goals

- Realistic Wave Form
 - Matches Recorded Time History?
 - Meets Shock Response Spectra (SRS) Requirements?
- Programmable
 - Linear System
- Reproducible Excitation
 - From Facility-to-Facility
- · Little or No Specimen-Dependent Tuning
 - -Art Not Required
- Safe..Can be Used in A Structural Testing Lab Environment

colober 22, 1992

Frequency Range of Interest

- Conventional Wisdom Suggests That Energy Above 10 KHz Does Not Cause Mechanical Damage.
 - Items That Are Susceptible To Wavelengths Below 1 Inch Are Well Isolated From The Excitation

Payload/Motion/Force Requirements

• Payload:

100 lb.

• Acceleration:

± 500 G

• Velocity:

± 20 In/Sec

• Displacement: ±.010 Inches

At the Real Specimen Measurement Points

or Closest Possible Simulation

If the Mounting Plate/Specimen is Rigid, the required force is 50,000 lb.

October 22, 1992

* "Rigid" Table * "Flexible Fixture"

Flexible Fixture Concept • Emulates the Structure - to "some extent" • Multiple Actuators - and Multi-Axis Control System are Required • Forces Required are Relatively Small Specimen Drivers

Page 9

Emulation Considerations

- "Box" is Stiff Compared to it's Mounting Surface.
 - Fixture Should Be Soft.
- We want to Emulate the Motion at the "Box Boundary Conditions"
 - Need to Measure the Correct Motions.
 - Need to Drive at the Measurement Points.

October 22, 1992

COLEVIEW ADD THING SHITE OF

Candidate Actuator Technologies

- Pyrotechnic
- Hammer
- Electrodynamic
- Piezoelectric
- Magnetostrictive
- Hydraulic
- Hybrid

Recall that the Actuation Time is Very Short (0.1 Seconds) so some "Preconceived Notions" will not hold!

October 22, 1992

COMPUTED AND THE PROPERTY OF

Hybrid and Compound Machines

- Hybrid
 - Piezoelectric-Hydraulic or Magnetostrictive-Hydraulic
 - » Use Hydraulics as a "Lever Arm" to Multiply Motion.
- Compound
 - Piezoelectric or Magnetostrictive Actuators Mounted on Rigid-Table Electrodynamic
 - » Electrodynamic handles 10Hz to 1 KHz.
 - · High displacement, Low Acceleration.
 - » High Frequency Actuators Drive Flexible Fixture
 - · Low Displacement, High Acceleration.
 - · Mass of the Rigid Table Reacts the High-Frequency Forces.

October 22, 1992

Extension to HDL Machine..Concept

October 22, 1992

COMPUTER ADED TESTING SYSTEMS

Conclusions

- The Methods In Use Today Do Not Provide Accurate Simulation.
 - They are also Difficult and Expensive.
- The Flexible Fixture Concept Should Be Investigated.
 - Is it a Better Simulation?
- For the Excitation Requirements Discussed, it Appears that a Compound Machine Might be Appropriate.
 - Needs Further Study!!

October 22, 1992

COMPUTER ACCED THE RESIDENCE