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_______________________________________________________________________ 

 

Introduction 
 

The primary purpose of this tutorial is to present the Modal Transient method for calculating 

the response of a multi-degree-of-freedom system to an arbitrary base input. 
 

A secondary purpose is to compare the results of this method to simplified methods for 

multi-degree-of-freedom shock response. 

 

Shock Response Spectrum 
 

The shock response spectrum is inherently a single-degree-of-freedom concept, as discussed 

in Reference 1.  Nevertheless, there is an occasional need to determine the response of a 

multi-degree-of-freedom system to shock response spectrum input for “engineering 

purposes.” 

 

The modal transient method is the formal method for carrying out this calculation, but it 

may require intensive calculations depending on the complexity of the model and the base 

input time history. 

 

Over the years, a number of simplified modal combination methods have been proposed for 

estimating the multi-degree-of-freedom response. Each requires the eigenvalues, 

eigenvectors, and the modal participation factors of the system, or at least estimates of these 

parameters. 

 

Equation of Motion 
 

The governing equation of motion for the displacement iη of mode i within a multi-degree-

of-freedom system subjected to base excitation is 

 

 

yii
2

iiii2i &&&&& Γ−=ηω+ηωξ+η                                                                      (1) 

 

 

iΓ  is the modal participation factor for mode i , as given in Appendix C 

 y&&  is the base excitation acceleration 

iω  is the natural frequency 

iξ  is the viscous damping ratio 
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The response of a physical coordinate in a multiple-degree-of-freedom system can be 

approximated as the summation response of a series of single-degree-of-freedom systems. 

 

The method assumes that the modal frequencies are well-separated. 

The corresponding single-degree-of-freedom response for the relative displacement jD  is 

 

yjD2
ijDii2jD &&&&& −=ω+ωξ+                                                                       (2) 

 

 

The subscript j denotes the connection of D with a particular mode. 

 

Thus, 

 

  )t(jDj)t(j Γ=η                                                                                             (3) 

 

 

The advantage of this approach is that jD  can be calculated with relative ease, thereby 

providing an indirect solution for jη . On the other hand, a direct calculation of jη  

requires intensive calculations. 

 

 

Absolute Sum (ABSSUM) 

 

The absolute sum method is a conservative approach because it assumes that the maxima of 

all modes appear at the same instant of time. 

 

The maximum relative displacement ( )maxiz  is calculated from the modal coordinates as 

 

 

( ) ∑
=

η≤
N

1j
maxjjiq̂maxiz                                                                  (4)  

 

 

where  jiq̂  is the mass-normalized eigenvector coefficient for coordinate i and mode j. 

 

The corresponding ABSSUM method is 

 

( ) max,jDjiq̂
N

1j
jmaxiz ∑

=

Γ≤                                                          (5)  
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Equation (5) is taken from Reference 2, equation (7.53). Again, the maximum relative 

displacement jD  is taken as the single-degree-of-freedom response. 

 

 

Square Root of the Sum of the Squares (SRSS) 
 

The square root of the sum of the squares equation is 

 
 

 

( ) [ ]∑
=

η≈
N

1j

2
max,jjiq̂maxiz                                                              (6)  

 

 

The SRSS method with the single-degree-of-freedom response jD  is 

 

 

( ) [ ]∑
=

Γ≈
N

1j

2
max,jDjiq̂jmaxiz                                                            (7) 

 
 

Naval Research Laboratories (NRL) Method 
 

The maximum relative displacement is calculated from the modal coordinates as 

 
 

( ) ∑
≠=

η+η=
N

jk,1k

)max,k)(kiq̂(max,jjiq̂maxiz                                (8)                                            

 

 

where the j-th mode is the mode that has the largest magnitude of the product 

maxjjiq̂ η . 

 

 

Note that the NRL method is the same as the ABSSUM method for N=2. 

 

The simplified formula is 

 

  ( ) ( )( ) ∑
≠=

Γ+Γ=
N

jk,1k

)max,kDk)(kiq̂(
max,jDjjiq̂maxiz                   (9)                              
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Acceleration Response 

 

Equations (6) through (7) can be extended for the absolute acceleration response, by making 

the appropriate substitutions. 
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APPENDIX A 

 

 
Two-degree-of-freedom System, Modal Analysis  
 

The method of generalized coordinates is demonstrated by an example.  Consider the system 

in Figure A-1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1. 

 
 

The system also has damping, but it is modeled as modal damping. 
 

A free-body diagram of mass 1 is given in Figure A-2. A free-body diagram of mass 2 is 

given in Figure A-3. 

 

 
 

 

 

 

 

 

 

 

 
 
 

Figure A-2. 

 

 

 

Determine the equation of motion for mass 1. 

x1 
  m1 

 k1 ( x1 - y )  

k3 ( x2 - x1 ) 

  m1 

 k 1 

m2 

k 2 

 

x1 

x2 

y&&  
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11 xmF &&=Σ                                                                                                     (A-1) 

 

( ) ( )y1x1k1x2x3k1x1m −−−=&&                                                                  (A-2) 

 

( ) y1k1x2x3k1x1k1x1m =−−+&&                                                                (A-3) 

 

( ) y1k2x1x3k1x1k1x1m =−++&&                                                                (A-4) 

 

( ) y1k2x3k1x3k1k1x1m =−++&&                                                                (A-5) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure A-3. 

 
 

 

Derive the equation of motion for mass 2. 

 

22 xmF &&=Σ                                                                                      (A-6) 

 

( ) ( )y2x2k1x2x3k2x2m −−−−=&&                                              (A-7) 

 

( ) y2k1x2x3k2x2k2x2m =−++&&                                             (A-8) 
 

( ) y2k1x3k2x3k2k2x2m =−++&&                                               (A-9) 

 
 

Assemble the equations in matrix form. 

 









=

















+−

−+
+

















y2k

y1k

2x

1x

3k2k3k

3k3k1k

2x

1x

2m0

01m

&&

&&
                             (A-10) 

m2 

k2 (x2 - y) 

k3 (x2-x1) 

x2 
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Define a relative displacement z such that 

 
 

y1z1x +=                                                                                         (A-11) 
 

y2z2x +=                                                                                        (A-12) 

 

 

Substitute equations (A-11) and (A-12) into (A-10). 

 

 









=









+

+









+−

−+
+









+

+









yk

yk

yz

yz

kkk

kkk

yz

yz

m0

0m

2

1

2

1

323

331

2

1

2

1

&&&&

&&&&
                       (A-13) 

 

 









=

















+−

−+
+

















+−

−+
+








+

















y2k

y1k

y

y

3k2k3k

3k3k1k

2z

1z

3k2k3k

3k3k1k

y2m

y1m

2z

1z

2m0

01m

&&

&&

&&

&&
                        

 

 (A-14) 

 

 









=








+

















+−

−+
+








+

















y2k

y1k

y2k

y1k

2z

1z

3k2k3k

3k3k1k

y2m

y1m

2z

1z

2m0

01m

&&

&&

&&

&&
              (A-15)     

 

 

                       










−

−
=

















+−

−+
+

















y2m

y1m

2z

1z

3k2k3k

3k3k1k

2z

1z

2m0

01m

&&

&&

&&

&&
                           (A-16)                                

 

 
Decoupling  

 

Equation (A-16) is coupled via the stiffness matrix.  An intermediate goal is to decouple the 

equation. 

 

Simplify, 
 

FzKzM =+&&                                                                                            (A-17) 
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where 
 









=

2

1

m0

0m
M                                                                                           (A-18) 

 










+−

−+
=

323

331

kkk

kkk
K                                                                             (A-19) 

 
 









=

2z

1z
z                                                                                                     (A-20) 

 

 










−

−
=

y2m

y1m
F

&&

&&
                                                                                              (A-21) 

 

 

Consider the homogeneous form of equation (A-17). 
 

  0zKzM =+&&                                                                                              (A-22) 
 

 

Seek a solution of the form 

 

( )tjexpqz ω=                                                                                                 (A-23) 

 

The q vector is the generalized coordinate vector. 
 

Note that 
 

( )tjexpqjz ωω=&                                                                                           (A-24) 
 

 

( )tjexpq2z ωω−=&&                                                                                        (A-25) 

 
Substitute equations (A-23) through (A-25) into equation (A-22). 
 

 

( ) ( ) 0tjexpqKtjexpqM2 =ω+ωω−                                                             (A-26) 

 

{ } ( ) 0tjexpqKqM2 =ω+ω−                                                                         (A-27) 

  

0qKqM2
n =+ω−                                                                                        (A-28) 
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{ } 0qKM2 =+ω−                                                                                        (A-29) 

 

{ } 0qMK 2 =ω−                                                                                        (A-30) 

 

 

Equation (A-30) is an example of a generalized eigenvalue problem.  The eigenvalues can 

be found by setting the determinant equal to zero. 
 

 

{ } 0MKdet 2 =ω−                                                                                  (A-31) 

 

 

0
m0

0m

kkk

kkk
det

2

12

323

331
=

















ω−









+−

−+
                                        (A-32) 

 

 

( )
( )

0
mkkk

kmkk
det

2
2

323

31
2

31 =












ω−+−

−ω−+
                                     (A-33) 

 

 

( )[ ] ( )[ ] 0kmkkmkk 2
32

2
321

2
31 =−ω−+ω−+                                       (A-34) 

 

( ) ( )[ ] 0kkkmkkmmm 2
3312321

2
21

4 =−+++ω−ω                              (A-35) 

 

 

The eigenvalues are the roots of the polynomial. 

 

a2

ac4bb 2
2

1
−−−

=ω                                                                              (A-36) 

 

a2

ac4bb 2
2

2
−+−

=ω                                                                              (A-37) 

 

where 
 

21mma =                                                                                                     (A-38) 

 

( ) ( )[ ]312321 kkmkkmb +++−=                                                             (A-39) 
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2
3kc −=                                                                                                       (A-40) 

 

The eigenvectors are found via the following equations. 
 

{ } 0qMK 1
2

1 =ω−                                                                                    (A-41) 

 

{ } 0qMK 2
2

2 =ω−                                                                                   (A-42) 

 
where 









=

12

11
1

q

q
q                                                                                            (A-34) 

 









=

22

21
2

q

q
q                                                                                           (A-44) 

 
 

An eigenvector matrix Q can be formed.  The eigenvectors are inserted in column format. 

 

 

[ ]21 q|qQ =                                                                                       (A-45) 

 

 









=

2212

2111

qq

qq
Q                                                                                         (A-46) 

 
 

The eigenvectors represent orthogonal mode shapes.   
 

Each eigenvector can be multiplied by an arbitrary scale factor.  A mass-normalized 

eigenvector matrix Q̂ can be obtained such that the following orthogonality relations are 

obtained. 

 

IQ̂MQ̂T =                                                                                  (A-47) 
 

and 
 

Ω=Q̂KQ̂T                                                                                  (A-48) 

 

where 
 

  superscript T represents transpose 
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 I is the identity matrix 

  Ω  is a diagonal matrix of eigenvalues 

 

Note that 

 









=

2221

1211

q̂q̂

q̂q̂
Q̂                                                                                       (A-49a) 

 









=

2212

2111T

q̂q̂

q̂q̂
Q̂                                                                                       (A-49b) 

 

 

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.  

Further discussion is given in References 5 and 6. 
 

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial. 
 

Now define a modal coordinate )t(η  such that 

 

η= Q̂z                                                                                      (A-50a) 

 

 

2121111 q̂q̂z η+η=                                                               (A-50b) 

 

2221212 q̂q̂z η+η=                                                             (A-50c) 

 

 

Recall 

y1z1x +=                                                                                         (A-51a) 
 

y2z2x +=                                                                                       (A-51b) 

 

The displacement terms are 

 

2121111 q̂q̂yx η+η+=                                                               (A-51a) 
 

2221212 q̂q̂yx η+η+=                                                              (A-52b) 

 

The velocity terms are 

 

2121111 q̂q̂yx η+η+= &&&&                                                               (A-53a) 
 

2221212 q̂q̂yx η+η+= &&&&                                                              (A-53b) 
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The acceleration terms are 

 

2121111 q̂q̂yx η+η+= &&&&&&&&                                                               (A-54a) 
 

2221212 q̂q̂yx η+η+= &&&&&&&&                                                             (A-54b) 

 

 

Substitute equation (50a) into the equation of motion, equation (A-17). 

 

FQ̂KQ̂M =η+η&&                                                                                  (A-55) 

 

Premultiply by the transpose of the normalized eigenvector matrix. 
 

 

FQ̂Q̂KQ̂Q̂MQ̂ TTT =η+η&&                                                               (A-56) 

 

 

The orthogonality relationships yield 

 

FQ̂I T=ηΩ+η&&                                                                                (A-57) 

 
For the sample problem, equation (A-57) becomes 

 










−

−








=








η

η













ω

ω
+









η

η









y2m

y1m

22q̂12q̂

21q̂11q̂

2

1
2

20

02
1

2

1

10

01

&&

&&

&&

&&
                              (A-58) 

 

 

Note that the two equations are decoupled in terms of the modal coordinate. 
 

Now assume modal damping by adding an uncoupled damping matrix. 
 

 










−

−








=








η

η













ω

ω
+








η

η









ωξ

ωξ
+









η

η









y2m

y1m

22q̂12q̂

21q̂11q̂

2

1
2

20

02
1

2

1

2220

0112

2

1

10

01

&&

&&

&

&

&&

&&
 

                              

 (A-59) 
 

Now consider the initial conditions.  Recall 

 

 η= Q̂z                                                                                               (A-60) 
 

Thus, 

( ) ( )0Q̂0z η=                                                                                         (A-61) 
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Premultiply by MQ̂T . 

 

( ) ( )0Q̂MTQ̂0zMTQ̂ η=                                                                         (A-62) 

 

Recall 

IQ̂MQ̂T =                                                                                               (A-63) 

 

( ) ( )0I0zMTQ̂ η=                                                                                  (A-64) 

 

( ) ( )00zMTQ̂ η=                                                                                    (A-65) 

 

 

Finally, the transformed initial displacement is 

 

( ) ( )0zMTQ̂0 =η                                                                                      (A-66) 

 

Similarly, the transformed initial velocity is 

 

( ) ( )0zMTQ̂0 && =η                                                                                      (A-67) 
  

 

 

The product of the first two matrices on the left side of equation (A-59) equals a vector of 

participation factors. 

 

















=













Γ−

Γ−

22m

11m

22q̂12q̂

21q̂11q̂

2

1
                                                                (A-68) 

 

 













Γ−

Γ−
=








η

η













ω

ω
+









η

η









ωξ

ωξ
+









η

η









y2

y1

2

1
2

20

02
1

2

1

2220

0112

2

1

10

01

&&

&&

&

&

&&

&&
           

 

(A-69)                            

 

 

Equation (A-69) can be solved in terms of Laplace transforms, or some other differential 

equation solution method. As an example, the solution for a half-sine input is given in 

Reference 6. 
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APPENDIX B 

 

EXAMPLE 1 

 

 

Normal Modes Analysis 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1. 

 

 

 

Consider the system in Figure B-1.  Assign the values in Table B-1. 

 

Table B-1.  Parameters 

 

Variable Value 

1m  3.0 kg    

2m  2.0 kg   

1k  400,000 N/m    

2k  300,000 N/m 

3k  100,000 N/m 

 
Furthermore, assume 

 

1. Each mode has a damping value of 5%. 

2. Zero initial conditions 

 

Next, assume that the base input function is a half-sine pulse. 

y 

  m1 

 k 1 

m2 

k 2 x1 

x 2 

k 3 
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-100

-50

0

50

100

0 0.02 0.04 0.06 0.08 0.10 0.12

TIME (SEC)

A
C

C
E

L
 (

G
)

BASE INPUT
 50 G, 11 msec HALF-SINE PULSE

 
 

Figure B-2. 

 

 

 













>

≤≤






 π

=

Tt,0

Tt0,
T

t
sinA

)t(y&&  

(B-1) 

 

Assign A = 50 G and T = 0.011 seconds. 
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Figure B-3. 

 

 

 
 

Figure B-4. 
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Solve for the acceleration response time histories.   The homogeneous, undamped problem is 

 

 










−

−
=

















+−

−+
+

















y2m

y1m

2z

1z

3k2k3k

3k3k1k

2z

1z

2m0

01m

&&

&&

&&

&&

                                       (B-2)                                

 
 

 









=

















−

−
+

















0

0

2z

1z

000,400000,100

000,100000,500

2z

1z

20

03

&&

&&
                                             (B-3) 

 
 

The eigenvalue problem is  
 









=





















ω−−

−ω−

0

0

2q

1q

2000,400000,100

000,10022000,500
                                                        (B-4) 

 

 

Set the determinant equal to zero 

 

0
2000,400000,100

000,10022000,500
det =













ω−−

−ω−
                                                                  (B-5) 

 

 

The roots of the polynomial are 

 

sec/rad1.3731 =ω                                                                                           (B-6) 
 

sec/rad9.4762 =ω                                                                                           (B-7) 
 

 

Hz4.591f =                                                                                                  (B-8) 
 

Hz9.752f =                                                                                                  (B-9) 

 

The frequencies are rather close together, which is a concern relative to an assumption 

behind the modal combination methods. 
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The corresponding eigenvector matrix is  

 









=

22q21q

12q11q
Q                                                                                                         (B-10) 

 

 








 −
=

11

549.0215.1
Q                                                                                                    (B-11) 

 

The next goal is to obtain a normalized eigenvector matrix Q̂  such that 

 

IQ̂MQ̂T =                                                                                                          (B-12) 

 

 

The normalized eigenvector matrix is  

 








 −
=

5869.03943.0

3220.04792.0
Q̂                                                                                    (B-13a) 

 

 










−
=

5869.03220.0

3943.04792.0TQ̂                                                                                 (B-13b) 

 

 
 

Note that the eigenvector in the first column has a uniform polarity.  Thus, the two masses 

vibrate in phase for the first mode.   
 

The eigenvector in the second column has two components with opposite polarity.  The two 

masses vibration 180 degrees out of phase for the second mode. 

 

 

























=













Γ

Γ

1

1

2m0

01m

22q̂12q̂

21q̂11q̂

2

1
                                                          (B-14) 

 

 

















=













Γ

Γ

2m

1m

22q̂12q̂

21q̂11q̂

2

1
                                                                         (B-15) 
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
















−
=













Γ

Γ

2

3

5869.03220.0

3943.04792.0

2

1
                                                           (B-16) 

 

 









=













Γ

Γ

2079.0

2264.2

2

1
                                                                                    (B-17) 

 

 

 

Modal Transient Analysis  

 

The combination of equations (B-1) and (B-6) are solved using the method in Reference 6, 

as modified for a multi-degree-of-freedom system. The modifications are made via 

equations (A-69) and (A-50a). 

 

The resulting relative displacement maxima are given in Table B-2. The time history 

responses are plotted in Figure B-5. 

 
 

 

Table B-2.   Modal Transient Analysis, Relative Displacement 

Parameter 
Mass 1 

(inch) 

Mass 2 

(inch) 

Maximum Absolute 0.229 0.211 
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Figure B-5. 

 

 

 

SDOF Response 

 

The peak acceleration value for a single-degree-of-freedom can be calculated per the method 

in Reference 6.  The resulting maxima are shown in Table B-3. 

 

 

Table B-3. SDOF Response Values, Q=10 

Mode 

Natural 

Frequency 

(Hz) 

Peak Relative 

Displacement 

(inch) 

1 59.4 0.222 

2 75.9 0.140 

 

 

Note that the coordinates in Table B-3 occur on the response spectrum curve in Figure B-4. 
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SRSS Method 

 

Again, the SRSS equation is 

 

 

( ) [ ]∑
=

Γ≈
N

1j

2
max,jDjiq̂jmaxiz                                                             (B-18) 

 

 

 

Equation (B-18) is solved using 

 

1.  The eigenvalues from equation (B-13a) 

2.  The participation factors from equation (B-17) 

3.  The displacement values from Table B-3 

 

The results are given in Table B-4. 

 

 

 

Table B-4. 

Comparison of SRSS Results with Modal Transient Analysis, Relative 

Displacement 

Mass 

Modal Transient 

Analysis (inch) 

 

SRSS 

Analysis (inch) 

 

Error 

 

1 0.229 0.237 3.5 % 

2 0.211 0.196 -7.1 % 

                                              

 

Sample Calculation 

 

( ) [ ]2max,2D12q̂2

2

max,1Dq̂1max1z
11

Γ+




Γ≈                              (B-19a)                                             

 

  

( ) [ ] [ ]2)140.0)(3220.0)(2079.0(2)222.0)(4792.0)(2264.2(max1z −+≈         (B-19b)                     

 

 

( ) 237.0max1z ≈  inch                                                                                             (B-19c) 
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The acceleration results are 

 

 

Table B-5. Comparison of SRSS Results with Modal Transient Analysis, 

Absolute Acceleration 

Mass 
Modal Transient 

Analysis (G) 

SRSS 

Analysis (G) 

Error 

 

1 81.0 86.1 6.2% 

2 79.9 71.4 -10.7% 

 

 

 

 

ABSSUM Method 

 

Again, the ABSSUM equation is 

 

 

( ) max,jDjiq̂
N

1j
jmaxiz ∑

=

Γ≤                                                           (B-20) 

 

 

Equation (B-20) is solved using 

 

1.  The eigenvalues from equation (B-13a) 

2.  The participation factors from equation (B-17) 

3.  The displacement values from Table B-3 

 

The results are given in Table B-6. 
 

 

Table B-6. 

Comparison of the Sum of the Absolute Magnitudes with Modal 

Transient Analysis, Relative Displacement 

Mass 
Modal Transient 

Analysis (inch) 

ABSSUM 

(inch) 

Error 

 

1 0.229 0.246 7.4 % 

2 0.211 0.212 0.5 % 
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( ) max,2D12q̂2max,1D11q̂1max1z Γ+Γ≤                                           (B-21a)                                                          

 

 

( ) )140.0)(3220.0)(2079.0()222.0)(4792.0)(2264.2(max1z −+≤             (B-21b) 

 

 

( ) 246.0max1z ≤  inch                                                                                     (B-21c) 

 

 

 

The acceleration results are: 

 

Table B-7. Comparison of ABSSUM Results with Modal Transient Analysis, 

Absolute Acceleration 

Mass 
Modal Transient 

Analysis (G) 

ABSSUM 

Analysis (G) 

Error 

 

1 81.0 91.4 12.8% 

2 79.9 80.7 1.0% 
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APPENDIX C 

 

 

Modal Participation Factor 

 

Consider a discrete dynamic system governed by the following equation 

 

 

FxKxM =+&&                                                                                           (C-1) 

 

where  

 

M is the mass matrix 

K is the stiffness matrix 

x&&  is the acceleration vector 

x  is the displacement vector 

F  is the forcing function or base excitation function 

 

 

A solution to the homogeneous form of equation (1) can be found in terms of eigenvalues 

and eigenvectors.  The eigenvectors represent vibration modes. 

 

Let φ  be the eigenvector matrix. 

 

The system’s generalized mass matrix m̂ is given by  

 

φφ= MTm̂                                                                                               (C-2) 

 

Let r  be the influence vector which represents the displacements of the masses resulting 

from static application of a unit ground displacement. 

 

Define a coefficient vector L  as 

 

rMTL φ=                                                                                       (C-3)  

 

The modal participation factor matrix iΓ  for mode i is 

 

iim̂

iL
i =Γ                                                                                       (C-4) 



 25 

 

The effective modal mass i,effm  for mode i is  

                              

iim̂

2
iL

i,effm =                                                                          (C-5) 

 


