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Introduction 
 

The internal and transmitted forces of a vibrating system can be determined via a finite element 

model.  This paper explores the uses and limitations of these forces via examples.   
 

One of the findings is that the force transmitted between each nodal pair must be calculated on 

an elemental basis as a post-processing step using a transformation matrix.  This matrix is 

referred to as the “force recovery matrix” in this paper.  The matrix may be non-symmetric.  

Furthermore, the matrix will be shown to be non-square for a beam bending element. 

 

 

Example 
 

Consider the longitudinal vibration of an aluminum, fixed-free, circular rod with the following 

properties. 

 

Length L = 24 inch 

Diameter D = 1 inch 

Area A = 0.785 inch^2 

Area Moment of Inertia I = 0.0491 inch^4 

Elastic Modulus E = 1.0e+07 lbf/in^2 

Mass Density  = 0.1 lbm/in^3 

Speed of Sound in 

Material 
c = 1.96e+05 in/sec 

Viscous Damping Ratio  = 0 
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The fundamental frequency for the fixed-free case is 
 

 

 
Hz 2047

in244

in/sec 05+1.96e

L4

c
1f 

                                                                  (1)
 

 

 

Equation (1) is taken from Reference 1. 

 

Model the rod as series of springs and masses.  The modeling will follow the finite element 

approach in Reference 2 except that a lumped mass matrix will be used for simplicity. 

 

The system is subjected to free vibration due to initial conditions. 

 

The initial velocity is zero. 

 

The initial displacement is equal to the first mode shape scaled so that the free end displacement 

is 0.001 inch.  This initial displacement might be difficult to achieve in reality, but it is useful for 

demonstration purposes because the resulting response will be solely that of the fundamental 

mode. 

 

The following analyses were performed using Matlab script:  mdof_free.m 

 
 

Constrained Model with Two-degrees-of-freedom 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Unconstrained Model 
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Figure 2.  Constrained Model 

 

 

The unconstrained equation of motion is 
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The nodes are equally spaced.  The element length is h=12 in.  
 

The constrained equation of motion is 
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Let E1 and E2 be the forces in springs 1 and 2, respectively.  The axial forces transmitted through 

the springs for the constrained model are thus 
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Note that tension is positive. 
 

The elemental force recovery matrix FR is thus 
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The force recover matrix has some characteristics as the global stiffness matrix, but the matrices 

are fundamentally different.  

 

 

The natural frequencies and mode shapes from the Matlab output are: 

 
Natural Frequencies  

 No.      f(Hz) 

1.        1994.4  

2.        4814.8  

  

  Modes Shapes (column format) 

 

ModeShapes = 

 

   14.3101  -14.3101 

   20.2376   20.2376 

 

The resulting forces are given in Table 1.  The displacement results are given in Figure 3. 



 5 

 

 

-0.002

-0.001

0

0.001

0.002

0 0.001 0.002 0.003 0.004 0.005

Mass 2
Mass 1

TIME (SEC)

D
IS

P
 (

IN
C

H
)

DISPLACEMENT    TWO-DEGREE-OF-FREEDOM MODEL

 
 

 

    Figure 3. 

 

 

Table 1.    Two-degree-of-freedom Model, Force Results 

Element Peak (lbf) Type 

Spring 1 463 Elemental Force  

Spring 2 192 Elemental Force  

Mass 1 271 Nodal Net Force  

Mass 2 192 Nodal Net Force  

 

Note that the spring force is calculated from the relative displacement of the spring’s end points 

multiplied by the spring stiffness, or equivalently by equation (6). 

 

The net force on the point mass is equal to the mass times its acceleration. 
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Constrained Model with Four-degrees-of-freedom 
 

The previous example is repeated with additional degrees-of-freedom. 

 
 
 

 

 

 

 

 

 

 
 

 
 

Figure 4. Unconstrained Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Constrained Model 

 

 

The unconstrained equation of motion is 
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(9) 
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The nodes are equally spaced.  The element length is h=4.8 in. 
 

The constrained equation of motion is obtained by removing the first row and column from 

equation (9).  The resulting equation is omitted for brevity. 

 

The elemental spring forces for the constrained model are calculated via 
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The natural frequencies and mode shapes from the Matlab output are: 

 
Natural Frequencies  

 No.      f(Hz) 

1.        2038.1  

2.        5914.9  

3.        9212.7  

4.         11609  

5.         12868  

  

  Modes Shapes (column format) 

 

ModeShapes = 

 

    6.2537   16.3725   20.2376  -16.3725    6.2537 

   11.8953   19.2471   -0.0000   19.2471  -11.8953 

   16.3725    6.2537  -20.2376   -6.2537   16.3725 

   19.2471  -11.8953   -0.0000  -11.8953  -19.2471 

   20.2376  -20.2376   20.2376   20.2376   20.2376 
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The resulting forces are given in Table 2.  The displacements are given in Figure 6. 

 

 

Table 2.    Five-degree-of-freedom Model, Force Results 

Element Peak (lbf) Type 

Spring 1 505 Elemental Force  

Spring 2 456 Elemental Force  

Spring 3 362 Elemental Force  

Spring 4 232 Elemental Force  

Spring 5 80 Elemental Force 

Mass 1 49 Nodal Net Force  

Mass 2 94 Nodal Net Force  

Mass 3 130 Nodal Net Force  

Mass 4 152 Nodal Net Force  

Mass 5 80 Nodal Net Force 
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Figure 6. 
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Comparison 

 

Table 3.  Peak Net Force (lbf) on Point Masses  

Location Two-dof Five-dof 

Midpoint 271  130 

Free End 192 80 

 

 

Table 4.  Peak Transmitted Force (lbf) through Springs 

Two-dof Five-dof 

463 505 

 

The peak transmitted force is also the force transmitted to ground.  The exact force from the 

continuous model in Appendix A is 514 lbf. 

 

 

Normal Stress 

 

The following calculation is made using the Five-dof results. 

 

The peak stress at the fixed boundary is 643 psi for the Five-dof result, as obtained by dividing 

the transmitted force to ground by the cross-sectional area. 

 

The maximum stress can also be calculated using the method in Reference 3, as follows. 

 

The peak velocity was 12.8 in/sec, as measured at the free end. 

 

The characteristic impedance of aluminum bar is c 50.8 psi sec/in.  The peak stress is 

 

 

                  
  psi650sec)/in8.12)(sec/in psi 50.8(max,nmaxn vc 

                                                                               

 

(12) 

 

The exact stress from the continuous model in Appendix A is 654 psi. 
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Conclusions 

 
Net Force on Each Point Mass 

 

The net force on any point mass depends on the number of nodes, or “mesh density.”   
 

The mass value of each point mass decreases as the number of nodes increases, for uniform 

spacing. Yet, the nodal point mass acceleration should ideally remain constant.
1
 

 

Thus a higher nodal density yields lower net forces acting upon each nodal point mass, as shown 

in Table 3. 
 

This can be thought of in terms of the familiar physics equation. 
 

 

Force = mass x acceleration                                                                            (5) 

 

The acceleration should ideally remain constant at a given point on the rod regardless of mesh 

density.  Thus, a decrease in mass must have a corresponding decrease in the applied net force 

for constant acceleration. 
 

The nodal net force thus has limited value as a parameter for a continuous system. 

 
Transmitted Force through Springs 

 

The peak transmitted force to the ground should ideally be the same regardless of mess density.  

The results for the two models were within 10% for this force parameter, as shown in Figure 4. 
 

The spring forces could also be readily used for stress calculations. 

 

 

Future Work 

 

Further work is needed.  Consideration should also be given to: 

 

1. Systems with consistent mass matrices 

2. Damping force 

3. Forced vibration, both sine and random 

4. Additional element types, such as plate and solid elements 

5. Structures with complex geometries and mixed element types 

 

Another topic which was not covered in this paper is the transformation from global to local 

displacement coordinates for the case of elements which do not align with the global axes. 

                                                 
1
  In practice, mesh density has an effect on the solution accuracy.  A greater number of degrees-

of-freedom tends to yield a more accurate solution until numerical error overcomes the benefit. 
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APPENDIX A 

 

 

Continuous System Solution for the Longitudinal Vibration of a Fixed-Free Rod 

 

The variables are 

 

L is the length 

c is the longitudinal wave speed 

n  is the natural frequency of mode n 

u(x, t) is the longitudinal displacement 

 
 

The displacement for a fixed-free rod is per Reference 1 is 

 

 
































 








 
















 


,...5,3,1n
L2

tcn
cosnB

L2

tcn
sinnA

L2

xn
sin)t,x(u                                (A-1) 

 

 

The velocity is 
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The natural frequencies are 
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For the case of zero initial velocity across all locations, nA = 0.   
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Thus, 
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Set the initial displacement as 
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Integrate  
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Orthogonality requires that m=n. 
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For n=1, 
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For n≠1,  
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L2

L2

x)1n(
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)1n(

L2

2

1L

0
dx

L2

xn
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L2

x
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

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





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
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

















 


















 







 
                       

 

(A-14)                                                                                                                               
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0
L

0
dx

L2

xn
sin

L2

x
sin 







 







 
                                                                             (A-15)                                                                                                                               

              

Thus, 

 

 
0nB      for   n=3,5,7, ….                                                                               (A-16)                                                                                                                               

 

 

The resulting displacement equation is 

 

 








 







 


L2

tc
cos

L2

x
sin)t,x(u                                                                                  (A-17) 

 

 

Now assume that the initial displacement was scaled such that 

 








 


L2

x
sinD)0,x(u                                                                                              (A-18) 

 

where D is the initial displacement at the free end. 

 

The solution becomes 

 








 







 


L2

tc
cos

L2

x
sinD)t,x(u                                                                                  (A-19) 

 

The strain is 

 








 







 


L2

tc
cos

L2

x
cosD

L2
)t,x(u

dx

d
                                                                      (A-20) 

 

 

The normal stress is 

 








 







 


L2

tc
cos

L2

x
cosD

L2

E
)t,x(                                                                   (A-21) 
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The maximum normal stress is 

 

 

D
L2

E
max


                                                                                          (A-22) 

 

 

For the sample problem in the main text, 

 

 

 
 in001.0

)in24(2

psi07e0.1
max


                                                                    (A-23)                                                                        

 

 

psi654max                                                                                                 (A-24)                                                                        

 

 

The peak transmitted force is thus 

 

 

   lbf514AmaxmaxF                                                                                   (A-25)    

 

 

Note that the critical static buckling load P for this rod is 

 

 

 

 
lbf2103

2in244

4in0.0491psi07e0.12

2L4

EI2
P 














                                         

 (A-26)                                                                                                                                                       

 

 

The critical dynamic buckling load would be higher, but this is a subject for a future paper. 
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APPENDIX B 

 

 

Rod, Steady-State Longitudinal Vibration due to an Applied Force 

 

The following is taken from Reference 6. 

 

The variables are: 

 

 

f Excitation frequency 

f r Natural frequency for mode r 

N Total degrees-of-freedom 

)f(H ji  The steady state displacement at coordinate i due to a harmonic force 

excitation only at coordinate j 

r  Damping ratio for mode r 

ri  Mass-normalized eigenvector for physical coordinate i and mode number r   

  Excitation frequency (rad/sec) 

r  Natural frequency (rad/sec) for mode r 

 

 

 

Receptance 

 

The steady-state displacement at coordinate i due to a harmonic force excitation only at 

coordinate j is: 

 
 

 

 






















 




N

1r rr
2

r
2

r

rjri
ji

2j1

1
)f(H

                                                                (B-1) 

where 
 

rr f/f                                                                                                                    (B-2)                                                                                                                                      
 

1j                                                                                                                      (B-3) 

 

Note that j is used both as an index and as an imaginary number in equation (B-1). 
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Note that the phase angle is typically represented as the angle by which force leads displacement.  

In terms of a C++ or Matlab type equation, the phase angle would be 

 

 

Phase  =  - atan2(imag(H), real(H))                                                         (B-4) 

 

 

Note that both the phase and the transfer function vary with frequency.  

 

A more formal equation is 

 

 

 
  












)f(Hreal

)f(Himag
arctan)f(Phase

ji

ji

                                                         (B-5) 

 

 

Relative Displacement 
 

Consider two translational degrees-of-freedom i and j.  A force is applied at degree-of-freedom k. 
 

The steady-state relative displacement transfer function Rij between i and j due to an applied 

force at k is 

 

 

   

 






















 


























 






N

1r rr
2

r
2

r

rkrj
N

1r rr
2

r
2

r

rkri

kjkiji

2j1

1

2j1

1

)f(H)f(H R

                   

(B-6)                                               
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Figure B-1. 

 

 

Recall the two-degree-of-freedom model from the main text.   Change the model so the modal 

damping is 5%.  Set all initial conditions to zero. 

 

Apply a force on the second mass. 

 

 

 

x2 

  m1 

k1 k2 

x1 

  m2 F 
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Frequency Response Function 
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Figure B-2. 
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Figure B-3. 
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Sine Excitation 

 

Let the applied sinusoidal force be 100 lbf at 1994.4 Hz, which coincides with the fundamental 

frequency. 

 

 

Table B-1.  Force Transmitted via Springs 

Spring No. (in) (lbf) 

1 1.84E-05 1207 

2 7.85E-06 513 

 

 

The longitudinal rod continuous model in Reference 7 yielded a reaction force of 1272 lbf, which 

corresponds to the force transmitted via Spring no. 1.  

 

Again, the two-degree-of-freedom system is a discrete model of the rod. 

 

 

Random Excitation 

 

To be included in a future revision. 
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APPENDIX C 

 

Bernoulli-Euler Beam Bending, Free Vibration 

 

Consider a beam, such as the cantilever beam in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure C-1. 

 

 

where 

 

  E    is the modulus of elasticity. 

  I     is the area moment of inertia. 

L    is the length. 

    is mass per length. 

 

The product EI is the bending stiffness. 

 

The following equations are based on Reference 4.   

 

EI,  

L 
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Figure C-2. 

 

 

The element free-body diagram is shown in Figure C-2. 

 

The displacement vector for beam bending is 

 

 

                                























2

2

1

1

y

y

                                                                                           (C-1) 

 

 

 

x (j-1) h j h 

1jy   jy
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The stiffness matrix for beam bending is 

 

 








































2h4

h612

2h2h62h4

h612h612

3h

EI
jK                                                         (C-2) 

 

 

 

The mass matrix for beam bending is 

 

 
































 


2h4

h22156

2h3132h4

h1354h22156

420

h
jM                                                   (C-3) 

 

 

Note that h is the element length.  Also, j is the node number in the following formulas. 

 

The following limits apply to the next set of equations. 

 

          10,h/xj,jhxh)1j(   

 

 

The transverse displacement Y(x) for a given element is 

 

 

   
    j

32
j

32

1j
32

1j
32

h2y231

hy23)x(Y



 
 

 (C-4) 

 

 

     

    j
2

j
2

1j
2

1j
2

h341y661

h32y66h/1)x(Y
dx

d



 
 

 (C-5) 
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     

    jj

1j1j
2

2

2

h64y126

h62y126h/1)x(Y
dx

d



 
 

 (C-6) 

 

 

 

   jj1j1j
3

3

3

h6y12h6y12h/1)x(Y
dx

d
                           (C-7) 

 

 

 

The bending moment M(x) is 

 

)x(Y
dx

d
EI)x(M

2

2

                                                                                                       (C-8) 

  

 

            

          jj1j1j
2 h64y126h62y126h/1EI)x(M    

 

(C-9) 

 

The bending moment at the starting point ( =0) is 

 

 

 jj1j1j21j h4y6h2y6
h

EI
M                                                       (C-10) 

 

 

The bending moment at the ending point ( =1) is 

 

 jj1j1j2j h2y6h4y6
h

EI
M                                                      (C-11) 
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The shear force V(x) is 

 

 

)x(Y
dx

d
EI)x(V

3

3

                                                                                                    (C-12) 

 

 

 

 jj1j1j3
h6y12h6y12

h

EI
)x(V                                                   (C-13) 

 

 

Note that the shear force is constant over the element per the modeling method. 

 

The elemental shear force and moments can be arranged as 
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2
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1j                                           (C-14)                                                   

 

 

The shear and normal stresses can then be calculated from the shear force and bending moments 

in equation (C-2).   Note that the force recovery matrix is embedded in equation (C-14). 

 

 

Example 

 

Consider the rod from the main text.   
 

The rod will have rotation and transverse displacement due to bending for this example.  

Longitudinal motion will be excluded. 

 

The system is subjected to free vibration due to initial conditions. 

 

The initial velocity is zero. 

 

The initial displacement is equal to the first mode shape scaled so that the free end displacement 

is 0.010 inch.  This initial displacement might be difficult to achieve in reality, but it is useful for 

demonstration purposes because the resulting response will be solely that of the fundamental 

mode. 
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The following analyses were performed using Matlab scripts:  beam.m & mdof_free.m. 

 

Two models are analyzed.  The first has 24 elements.  The second has 48 elements. 

 

The first, four modal frequencies from the 48-element model are: 

 

 
        Natural    Participation    Effective   

Mode   Frequency      Factor        Modal Mass  

1       47.72 Hz      0.05469     0.002991 

2         299 Hz      0.03035     0.0009209 

3       837.3 Hz      0.01775     0.0003151 

4        1641 Hz      0.01273     0.0001621 

 

 

 

 

The moment and shear forces for the two models are shown in Table C-1 as calculated from 

equation (C-14).  The results from two other methods are shown for comparison.  The 

calculation details for the other methods are given after Table C-1. 

 

 

Table C-1.  Maximum, Moment and Shear Results 

 

Model 

Maximum 

Bending 

Moment  

(in lbf) 

Maximum 

Normal Stress 

(psi) 

Maximum  

Shear Force  

(lbf) 

24 Elements 26.5 270 1.72 

48 Elements 28.2 287 1.72 

Stress-Velocity - 304 - 

Equivalent Static 25.6 260 1.1 

Exact 30.0 305 1.72 

 

Notes 

 

1. The maximum values occur at the fixed boundary. 
 

2. The exact solution is taken from the continuous model in Reference 5. 
 

3. The static deflection shape differs from the fundamental mode shape. 

 

 

The 48-element results agree reasonably well with the exact results.  Again, the results for the 

two finite element models were obtained via the force recovery matrix.
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Figure C-3. 

 

 

The first mode shape of the rod from the 48-element model is shown.  The absolute displacement 

is uncalibrated.   
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Figure C-4. 
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Figure C-5.
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Stress-Velocity Method 

 

The maximum velocity is 3.0 in/sec, which occurs at the free end of the rod. 

 

The maximum stress can be calculated per the method in Reference 3.  The characteristic 

impedance of aluminum bar is c 50.8 psi sec/in.   

 

The peak stress is 

 

max,nvck̂max                                                                           (C-15)     

 

Values for the k̂ constant for typical cross-sections are:  

 

Cross-section k̂  

Solid Circular 2 

Rectangular 3  

 

 

 

  psi304sec)/in0.3)(sec/in psi 50.8(2vc max,nmaxn 
                               

 

(C-16)     

 

 

 

Equivalent Static Method 

 

The stiffness at the free end of the rod is 

 

 

  

 
in/lbf5.106

3in24

in^4 0.04912^in/lbf07e0.13

3L

EI3
k 


                                (C-17)                                                                        

 

 

 

The equivalent force at the rod’s free end for a 0.01 inch displacement at the free end is thus 1.07 

inch. 

 

The reaction moment at the rod’s fixed end is 25.6 in-lbf, which is the force multiplied by the 24 

inch length. 

 

 


