[image: image1.jpg]To convert the logarithms to a scalar measurement we multiply by 1n lO/Xo
in which Xo is the scalar length of one decade on the logarithm scale

used. The equation becomes

[ = 2:3026 X
- 27 NXO

in which X is the scalar distance representing the difference in

logarithms as shown in the example.

Several useful rule-of-thumb methods for obtaining damping ratio are:

Y, = ¥
s 2T
for small ¢ and ¥, = 1. Note that if a variable scale is used y, can
be set to 1 and y, -y, measured directly. And '
1
(::______-__—
9.08C1/2
where C is the estimate of fhe number of cycles to half amplitude.

178
Off-Line Measurement

Usuallv random time histories areyrecorded on magnetic tape; and
following a test, accurate values of damping are wanted for use in response
prediction. Several examples of damping measurement were worked out on
experimental data obtained by the Aeronautical Structures Branch at Ames
Research Center from vibration of a 0.2286- by 0.3048-meter panel 0.00235-
meter thick in a turbulent boundary layer at Mach numbers from 2.5 to 3. 7

-

Figure 14 (a) shows the spectral density for an isolated mode obtained
by Fast Fourier transform of 4098 points taken at a sample rate of 8000
samples per second. The difficulty of measuring damping by measuring the
bandwidth of the half-power point is obvious. Figure 14(b) shows the
randomdec signature for the same data set with damping measurements
obtained by the method of figure 12. Note the consistent values of ¢
for N=1, 2, and 3. _

est
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[image: image2.jpg]‘Using equation (A-8) in Appendix A at a confidence level of 95 per-
cent, the fractional error 1is

F = 1.96 = .55

& 5(0.51)(4) (0.008) (771)

Values of [ measured on fou: such signatures were 0.007, 0.006,
p.007; 8,010, ©8.011, Q0.012s 0.007, 6.007, 0.007; and 0.009, 0.009, 0.009
which fall within the predicted range of 0.0083 #0.0046. The consistency
of values for N =1, 2, and 3 and the range of values lends confidence
to the record length predictions for ideal single-degree-of-freedom systems

which were obtained in Appendix A.

Figure 15(a) shows the spectral density of two modes which could not
be separated by filtering without excessive distortion of the signature.
The randomdec signature is shown on figure 15(b) and it may be seen that

the values of z are increasing with N which indicates that a beat

phenomenom is preizzt. Consequently, the damping values shown should not
be used in prediction, but the damping values of the separate modes should
be extracted from the signature by a method such as described in ref-
erence 8. Note that methods such as reference 7 for autocorrelation do

not apply to randomdec signatures.

From the above examples, we see that when signatures of unknown
systems are taken and spectral density is not calculated, the randomdec
signature should be obtained for at least four periods of oscillation so

that the consistency and, hence, validity of ¢ can be determined.

e_s t
EXPERIMENTAL PROCEDURES

As was.shown for the autocorrelation method in reference 2, there
are many pitfalls of analysis which affect damping values obtained from
random data. These problems have been studied for the random decrement
method by analysis of computer-generated data and by experience with the
randomdec on-line computer at Ames Research Center. In this section the

problems are discussed and recommendations are made.
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[image: image3.jpg]Calibration

Accurate measurements in any experiment require calibration of the
equipment. Figure 16 shows the steps to be taken in calibrating a ran-
domdec computerl An input test signal of a sine wave generator is needed
which covers the frequency range in which measurements are to be taken.
The figure 1is self-explanatory so only a few comments will be made. The
setup on figure 16 assumes that the calibration of the transducer and
preamplifier is known so that volts can be converted to physical units.
Also the frequency response characteristics of the band-pass filter (i.e.,
fig. 17(a)) should be known so that the effect of filtering can be
estimated. The amplifier should be a calibrated variable-gain amplifier
so that the averager can be operated over its full dynamic range. The
main setting of the randomdec which has to be made is to check the zero
detectors as shown. Once the band-pass filter settings are known, it is
good practice to take a signatuie of the filter using a calibrated random
input before and after a test. This is a simple way to test the filter
to make sure that it has not changed during the test. Some typical filter

signatures are shown on figure 17(b).

The effects of the filter on the rms output of a single-degree-of-
freedom system should be known for the type of filter being used so that
amplifier settings can be estimated when filter settings are changed.
Thi; is also needed to convert vy from volts to physical units. The
effect of R-C filters on ;he filtered.outpu;,'eF, is shown on figure 18
for various ratios of filter cutoff frequency to natural frequency of a

single-degree-of-freedom system..

Aliasing

In reference 4 it is shown that sine waves which have fregquencies
above and below the Nyquist frequency (sample rate/2) may pass through
the same points if they are taken at equal time intervals. Hence, when
data is digitized the frequency components above the Nyquist frequency
are folded back into components below the Nyguist freguency. To simulate
this effect, a very lightly damped mode was programmed at a frequency
which would fold back on the single-degree-of-freedom system with a damping
ratio of 0.02 as shown on figure 19. It may be seen that a large error

in the measured value of damping could be caused by the folding back of
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[image: image4.jpg]the high—frequéncy mode. This problem is ordinarily avoided by passing
the signal through a low-pass filter prior to digitizing. The figure
serves as a reminder that aliasing is a fundamental problem which affects

randomdec as well as autocorrelation and spectral density.

Input Distortion

In reference 2, it was shown that the autocorrelation signature is
distorted by an input spectrum such as isotropic turbulence, and an
expression for the distortion was given in terms of the 3 dB frequency,

w, . Distortion measurements of randomdec signatures were made on the
digital computer and are shown on figure 20. It may be seen that the
randomdec distortion is about half the distortion with the autocorrelation
signature. In either case, input distortion may be avoided by measuring

damping as shown on figure 12.

Two-Mode Response

Another problem which may cause trouble in damping measurement is
the .occurrence of two modes with frequencies so close together that they
cannot be separated without distortion by filtering. To study this
problem, the time history of a two-degree-of-freedom system with closely
-spaced natural freguencies was generated, and the randomdec signature
was computed as shown on figure 21. A check point of the theoretical

free vibration decay curve is shown to fall on the randomdec signature.

For comparison, the autocorrelation function was calculated and it
may be seen that it differs considerably from the randomdec signature.
(Autocorrelation wasonly calculated for the range shown because of limited
computing time available.) This is probably due to cross products which
occur in the autocorrelation of closely coupled modes as discussed in
reference 7, p. 28. 1In this reference, the separation of frequency and
damping is accomplished by taking a one-sided Fourier transform of the
autocorrelation function, and then by applying a Kennedy and Pancu analysis
in the complex plane. 1In all, three Fourier transforms are required in
the method. It appears that the randomdec method offers a much more direct
and rapid means for separating closely coupled modes. The randomdec
computation itself proceeds faster than a single Fourier transform; and,

since the signature is undistorted by cross products, a direct curve
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[image: image5.jpg]fitting method such as described in reference 8 may be used. (Note, a
randomdec analysis of 4098 points required 10 seconds of IBM 360 computing

time as compared to 20 seconds for a Fast Fourier transform.)

Sometimes the two-mode problem can be-solved by location of the
transducer on the node line of one of the closely spaced modes. If this
is done, then two transducers are needed to measure the damping of the
modes simultaneously. In most applications the structural modes, shapes,
and frequencies are known ahead of time and the transducer location can
be chosen to avoid response time histories with closely spaced modes.

If mode shapes are unknown, then locations must be chosen by trial and

error or by an educated guess.

Selection of Sample Rate

When a random force excites a structural mode of a given frequency,
the-output time history does not contain an'infinite number of independent
points, since adjacent points are correlated. (See Appendix A.) A sine
wayé time history, for example, may be described by its amplitude and
phase and hence has only two inaependent measurements. Any curve, then,
which may be described by a Fourier series may be described by a number
of points equal to two times the number of terms in its Fourier series.
Heﬁge, if we are to extract all of the information from a time history,
welﬁust sample at a rate equal to two times the frequency of the highest
Fourier series component. If we sample at a higher rate, the measured
points cannot be independent and some sort of averaging means must be
used to obtain the independent values. Oftentimes the sample rate is
set equai to 4 or 5 timeé the highest freguency of interest, since a
low-pass filter must be used to avoid aliasing and the higher sample rate
is selected to put the flat portion of the filter over the frequency range
of interest. As shown in Appendix A, randomdec signatures are relatively
insensitive to lbw—pass filtering so that the sample rate regquirements
will depend on the degree of resolution desired in the signature. For
failure detection, a sample rate of only 2 times the frequency of the
failure mode is needed?* For damping measurement, 16 times the frequency
of the highest mode of interest is desirable to define the signature
adequately. At the 16-times rate, the signature has a definition of 16
points per cycle, which for the 4-cycle signature recommended results in
the modest requirement of storage of a 64-point signature.
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[image: image6.jpg]Number of Segments

Selection of N = 500 seems to be an adequate choice of the number
of functions for an accurate signature. The effect on accuracy of more
or less functions may be estimated from Appendix A. Also, the time
required to obtain this number of functions for planning tests may be

obtained from Appendix A.

Transducer Location

A dynamic time history from a single transducer does not necessarily

contain all of the information needed to describe the system completely.

f the measurement is taken at a node line for example, information on

that mode will be missing. Thus we see that on a structure, the resolution
of the measurement needed to extract information on a particular mode is
very dependent on transducer location. If a single transducer location is
to be used, then a point must be found which has a sufficient amplitude in-
all modes of interest (e.g., a wing accelerometer would most likely be
placed near the wing tip and strain gages near the root). In many cases,
the desirable location from a resolution standpoint may not be practical
for other reasons (e.g., accessibility, nearness to noise sources or elec-
trical disturbances, extreme environment such as hot spots, etc.). In
general, we have to select the modes of interest or section of the structure
which we wish to define, and we locate our transducers at points which

emphasize this information and de-emphasize extraneous information.
CONCLUSIONS

Studies of randomdec signaﬁures.obtained from data generated by a
digital computer and by experiments with structural models have led to
the following conclusions:

(1) For single and multi-degree-of-freedom linear systems, the
randomdec signature is eguivalent to a free vibration decay curve with

an initial value at the selection amplitude.

(2) The randomdec signature provides a curve which is stable in
form and $&cale under a wide range of ambient vibration conditions and as
such has application as a failure detector and as a damping measurement
method.

-
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[image: image7.jpg](3) For narrow-band time histories, the randomdec signature compu-
tation is statistically more efficient for failure detection and damping
measurement than spectral density or autocorrelation, and hence is more

suitable for on-line application to these problems.

(4) Experimental examples of failure detection indicated the feasi-
bility of detecting loosé joints and incipient structural failure. However,
considerably more experimental work is needed to define the optimum trans-
ducer locations énd frequency raﬁgé needed to detect a particular flaw to
a given sensitivity. |

(5) Experimental examples of damping measurement indicated that
damping of an isclated mode could be measured and that the precision of
the damping measurement could be specified. For modes which are close in
frequency, the beat phenomenon was detected and a means for separating the
damping ratios and frequencies was indicated. Further work is needed to
define the limitations and precision of measurements for the multi-mdde

case.

Nielsen Engineering & Research, Inc.
Mountain View, California
- October 25, 1972
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STATISTICAL PROPERTIES OF RANDOMDEC SIGNATURES

The randomdec process evolved as a result of experiments in strati-
fication of autocorrelation functions of the response of nonlinear systems
to random inputs. Some of this work has been published in reference 2 and
some was used just to develop the concept. When it was found that randomdec
gave unique signatures under a wide range of conditions, it was decided
that the priméry need in its application was to define its statistical
properties. For this purpose a digital program in Fortran IV was written
for the Ames Research Center IBM 360-67 computer. The program had the
capability of generating random inputs and the response of linear systems
including R-C filtering, and calculating from this time history randomdec
signatures, standard deviation, autocorrelation, and spectral density.
Figure 22 shows a typical narrow-band time history generated by the program
and one measured on.a model in a wind tunnel. The time histories generated
by the computer program appeared to be realistic simulations of the time
histories which were encountered in practice. The advantage of computer-
generated data was that the exact properties of the system were known and .
could be compared with values obtained from signatures of the random output

time history.

Most of the work was conducted on a linear sinéle—degree-of-freedom
system which admittedly is an idealized problem, but it does form the
foundation for development of the concept. Figure 23(a) shows part of a
time history which was generated for a single-degree-of-freedom system
with a damping ratio of 0.02 and a period of 16 time units. Two randomdec
samples are shown for illuétration. The first one G(l6), is measured 16
time units after y <crosses with a -positive slope. The second one,
H(16) is measured 16 time units after y crosses Y with a negative
slope. Figure 23(b) shows the average of all such samples over a record
length of 4098 points for sample lags, Q, from 1 to 24. This is called
the "randomdec signature". The point for Q = 16, AVT(16), is used to
check the signature measured damping against the exact value. . For a
damping ratio of 0.02, AVT(16)/ys should be 0.88. Average of plus-slope

values (AVG) and minus-slope values (AVH) is also shown.
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Before the above comparison can be made with significance, the
distribution and independence of the samples must be established.
Figure 24 shows the cumulative distribution of a typical set of samples
of the G(16) and H(l6) values plotted on normal probability paper. (See
reference 9, p. 56.) The closeness to the straight line indicates that
the distribution is approximately normal. The figure also shows that
the mean value is approximately equal to 0.88 of Iys, which is the value
expected for ¢ = 0.02. Also the standard deviation (Ue) of the measured
values is seen to be 2.8 by the intersection of the 1lo (84 percent)

value.

Since a certain amount of overlap occurs in the randomdec sampling
process (i.e., when Y is neér a peak, G and H vaiues are nearly
the same), the degree of independence was checked as shown on figure 25(a)
for e = 0;_25(b) for Yo = cy, and 25(c)‘for ¥e = 20y. Linear regres-
siqn lines, HG
Thé square root of the product of the slopes gives a correlation coeffi-
cient estimate of r = -0.38, 0.15, and 0.71 for the three.selection

levels. Hence, when the selection level ¥e is near the rms level of

and §ﬁ, were calculated as shown (ref. 9, pp. 191-204).

the signal, the measurements taken following a plus slope and then a minus
si%pe on the same peak are nearly independent iSmall r). For low and high
levels of Yoo the measurements on the same peak tend to become more

dependent.

Figure 26 shows the reason for the increase in correlation at the
high aﬁd low selection levels. At the 20 level the plus- and minus-
slope samples tend to be taken near peaks most of the time, which tends
to make the time difference between G(16) and H(l16) samples small; and
since the physical system cannot move very far, the values tend to be
correlated. At the zero level, the samples tend to be separated in time
by one half a period, and because the process is narrow band, the G(16)
and H(16) values tend to be of opposite sign and of similar value which

results in the negative correlation of figure 25(a).

In an on-line computer, the time pvérlap in the sampled segments of
the time history leads to some complication. If the speed cf obtaining
the signature is not critical, segments may be taken without overlap. For
example, on figure 3, instead of takihg the segménts shown, oﬁe would

take the plus-slcpe segment starting at t then the minus-slope segment

1 !
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starting at t, and so on. Figure 27 shows the correlations of samples
taken in this way and it may be seen that the correlation estimate is
quite small (r = 0.08).

With the distribution and dependence of samples established, a
hypothesis test of randomdec was conducted using 25 independent cases of
4098 points each of random inputs with a normal distribution and a stan-

dard deviation of 1. The confidence boundary is given by

'coE c 2.05 (96% confidence)
0.88 : (B=13
' V(2 - nK c = 2.88 (99.6% confidence)

i+

where o is the standard deviation of the randomdec process, r 1is the
correlation estimate, and K 1s the number of peaks encountered at the
selection level. Note that (2 - r)K is an estimate of the number of
independent samples and that in this case r 1is an average of values
which range from 0 to 1 depending on wheﬁher the selection level was near
or far from the peak. The linear weighting was selected as a first-order
approximation. As shown on figure 28, about 8 points occurred at the
96-percent confidence level compared to 10 expected and 1 point at the
99.6-percent level compared to 1 expected. Hence, in the 250 cases cal-
culated no significant evidence has been found to justify rejection of the

hypothesis.

During the hypothesis test, it was noted that when AVT(lG)/ys was
above 0.88, the rms of the output (oy) tended to be high and vice versa.
To show this effect a different symbol was used depending on whether qy
of the case was above or below the average of the 25 cases (o5_). The
predominance of the circles above 0.88 and squares below is apparent.

This trend indicates that when the rms of the output is higher than usual,
the signature will tend to give a value of damping ratio which is too
small and vice versa. This effect is a result of the accidental time

sequence of the amplitudes of the random inputs in finite time.

From the above it appears that the signature of a single-degree-of-
freedom linear system excited by wide-band random noise is equivalent to
the free vibration decay curve with an initial displacement. In practice
we often encounter systems excited by band-limited noise; or in order to

obtain an effective single degree of freedom, the time history has to be
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filtered. The question is "What effect does filtering have on the signa-
ture?" 1In order to evaluate this, a particular case of 4098 random inputs
to the single-degree-of-freedom system with a damping ratio of 0.02 was
selected for the filter studies. The program was capablé of filtering the
time history in any combination of high- and low-pass,R—C filters cascaded
and with varying cutoff frequencies (w, is defined as the half-power or

3 dB point frequency of the filter). Figure 29 shows a typical distortion
effect of a low-pass filter. Distortion\}s judged by the change from the
unfiltered signature at the 1/2, 1, and 1-1/2 period points (Q = 8, 16,

24, respectively).

Figure 30(a) shows the effect of a low-pass, single-pole filter and
it may be seen that little or no distortion occurs for filter frequenéies
as low as two times the natural frequency of the system. A similar effect
on the signature would occur if instead of filtering the output, the input
to the system were isotropic turbulence with a half-power point at w,
Infjudginé the distortion, it should be noted that a very sensitive scale
h&s been used on the figure and that even at wl/wn = 1, the distortion 1is

actpally only 1 percent of the selected level (ys).

Similar results are shown in figure 30(b) for a cascaded low-pass
fil¥ter which gives somewhat greéter distortion. However, it must be
remembered that these are the basic distortions of the filter on the
system and that in actual practice the off-resonant effects of other modes
can also distort the signature. The distortion caused by the filtér must
be weighed against the distértions of extraneous modes which it eliminates.
This is beyond the scope of the present rebort and 1is only mentioned here

to put the results in the proper perspective.

Figure 30(c) shows the results which were obtained with a high-pass,
double-pole filter. Some distortion is evident at Q = 16, but this is
small, being only a little greater than 1 percent of the selection level.
The basic distortions of the high-and low-pass filters (fig. 30) serve as
a guide to filter selections in specific applications. It appears that
distortion is not a serious problem except in the extreme cases wl/mn =
0.5 for Fhe low-pass, sing;e-pole filter and wl/wn = 1 for the low-

pass, doubie-pdle filter.
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The objective of this study was to develop expressions for record

length needed to obtain signatures of a given precision relative to the

selection level. The latter part of this statement has been underlined

to emphasize the difference between the approach used here, and the usual
approach in spectral density and autocorrelation. The expressions in
reference 4 give the standard deviation of the individual points on the
signature rather than the standard deviation of the individual points

relative to a reference level as given here. This distinction is very

important in precision measurements of damping ratio and is particularly
critical to the uniqueness of the signature of a system with nonlinear

damping under variable input conditions.

Solution of the record length problem requireé knowledge of the
effects of filtering and damping ratio on the standard deviation of the
signature. Figure 31 shows these for the filters discussed in the previous
section and for the unfiltered case with various damping ratios. As may
be seen, the standard deviation is insensitive to these variables to a
+10-percent level with the exceptibn of the extreme filter settings which
may be excluded because of their high distortion. These characteristics
of randomdec greatly simplify the solution to the record length problem.

Another variable which has to be considered is the selection level,
Ye- Figure 28 shows the effect of this variable. The ordinate 1is
AVT(lG)/yS so the dispersion seen is in fractions of the selection level.
.For low selection levels, the scatter increases because the standard
deviation, although nearly constant, becomes a larger fraction as selection
level becomes lower. As selection level increases, the fractional error
decreases, but the number of peaks encountered becomes fewer until finally
the dispersion increases again. The fractional accuracy of the signature

FS may be expressed as

Co
F = £ (A=-2)

>y, V(@ -1K

where C 1is the level of confidence factor, . is the standard deviation
of the signature point (Q = 16), Ye is the selection level, r 1is the

correlation coeffigient, and K 1is-the number of peaks encountered.
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Figure 32 shows a relation for the number of peaks expected in a
given time for filtered and unfiltered cases. It may be seen that the
measured number of peaks from the computer runs agrees reasonably well
with a predicted curve based on a Rayleigh distribution of peak values.

The number of peaks encountered is:

K = £ Te Y ' (A-3)

Substituting (A-3) in (A-2) gives:

2
(=)
20
Co e w '
Fs = : ;- (A-4)
¥, V(2 = x)E ® -

From figure 31 we see that allowing deviations of #10 percent that

¢
= 0.47

o ‘
Y= 0.02

Since on figure 31(b) it is seen that O is only weakly dependent on

L, we may write

2
y
Oy; (205}
o.47c< C=°'°‘°‘>ce Y
. o} y
Y 4 §
F, = (A~5)

vo V(2 - 0)f T

and using the relations for Oy from reference 2,

a
Y]r=0.02 _ z

g . 0.02

¥
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and substituting in (A-5)

y
F_ = 2.35 C[f(o—s)]\/fz% (A=6)
Y n

in which

This factor which is a function of ys/oy only varies by 25 percent
for ys/oy values from 0.7 to 2. This means that, for a fixed- s the
random input, O could vary by a factor of 3 without having much effect
on the accuracy at constant record length. Note that r was also a

function of ys/cV as was shown on figure 25.

Solving for record length, we have:

.= LOEL [_g_]z (A=7)

in which L is the function of ys/oy given below: -

/o, | -2 .4 .6 .8 | 1.0 1.2 1.4 |1.6 | 1.8 2.0
L 20 | 4.9 | 2.4 | 1.5 | 1.1 (1.0 | 1.0 J]1.2 | 1.4 | 1.8
C = 2.06 (96% confidence level)
1.96 (95¢% confidence level)
1 (68% confidence level)

. When measuring damping ratio, the reference length for fractional
accuracy 1is 'chys rather than Vo Record length then becomes: '

| fe, P B 15 o
i SR VR i o3 - (A-8)
A[E] et
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in which

FC = fractional accuracy in damping ratio

NOTE: If no overlap is used, above equations should be multiplied by 2.

In using this equation for planning damping measurements, we must
select the lowest damping ratio (Z) which we wish to measure, the con-
fidence level, and the accuracy desired. To minimize testing time, a
selection level of 1.2 to 1.4 should be used so that L will be at its
minimum value of 1. If the system has nonlinear damping, L must be
selected to cover the range of amplitudes desired. In tests which are
extremely costly or dangerous, the damping ratio should be monitored
on-line and record length determined on-line from the equation. Such a
procedure could result in a considerable cost saving and reduction in
risk in wind-tunnel and flight flutter-bdffet tests.

The above equations give the basic time needed to obtain signatures
of épecified accuracy for a single-degree-of-freedom system excited by
band-limited Gaussian noise. In practice, additional variance may be
introduced by added noise and inaccuracies in starting times at the
selection level. Also, when more than one degree of freedom is present,
the signatures contain contributions from all of the modes. This does
not cause serious problems in failure detection, but it may require
further processing of signatures when damping of individual modes is

needed.

g

It is interesting to compare the above result with the equation for

autocorrelation derived from reference 4, page 195

RZ(0) + R*(1?) (A-9)
4me?cf
n

T =

As  approaches zero, we note that the time required for a ran-
domdec signature, equation (A-7), .approaches zero as compared to time
required for autocorrelation, equation (A-9), which approaches infinity.
The reason for this différence is that randomdec has a fixed amplitude
reference so that as' [ approaches zero and the time history becomes
essentially a sine wave in a finite record, only a very short record is

needed to define the signature. The autocorrelation on the other hand
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has a variable amplitude reference which increases with the inverse of

the damping ratio and thus an infinite record is needed to define the
signature.

Using equation (A-7), we may obtain a rule-of-thumb number of segments
needed for 5-percent accuracy at 95-percent confidence level, 4 set at
o and ¢ < 0.025.
¥

. 1.9671° _
TE = (10) (0.025) (1.1) [gige] = 422
Using equation (A-3) for the number of peaks and noting that there are two
segments per peak, we obtain
- . (2)(422)

which is ‘the number of segments which was found experimentally to give
signatures with small variance in reference 6. ';
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COMPARISON OF RANDOMDEC AND AUTOCORRELATION SIGNATURES

In Appendix A it has been shown that to a 99.6~-percent confidence
level that the randomdec signature has the same form as the free vibration
curve of a linear single-degree-of-freedom system with an initial dis-
placement. Reference 2 shows that the autocorrelation function gives this
form too in the limit as record length approaches infinity. It appears,
then that randomdec and autocorrelation signatures are identical in form
but not in scale for linear single-degree-of-freedom systems excited by
white noise. The question is "Are autocorrelation and randomdec signatures

the same or are there significant differences?"”

Figure 33 shows a comparison of values at the 1P point for auto-
correlation and randomdec signatures of a single-degree-of-freedom system.
The circled symbols represent the white noise input, and it may be seen
that although agreement is fairly good that there are significant differ-
éﬁées between signatures when record length is finite. Also shown on this
figure are the effects of change in damping ratio and the filters used
in figure 30. Again geheral agreement is good, but referring back to
figure 20, it may be seen that distortion due to filtering is generally
less for randomdec than for autocorselation signatures. This might be
significant in some applications, but generally speaking, there does not
seem to be a significant difference between the two for the linear single-

degree-of-freedom case.




[image: image18.jpg]Computationwise there is a very significant difference between the
two signatures. For a record length of 4098 points, the randomdec calcu-
lation required 315 operations per point as compared to 16,321 for direct
autocorrelation. The computational advantage of randomdec is not so
great if autocorrelation is calculated by the Fast Fourier Transform. In

this case, randomdec is about four times faster.




[image: image19.jpg]The computational advantage of randomdec becomes more and more
significant as damping ratio decreases as shown on figure 33. This is
a plot of the standard deviation of the 1P point on the signature with
a fixed set of 4098 random inputs. As damping rwtio varies, it may be
seen that the standard deviation of the randomdec remains approximately

constant while the standard deviation of the autocorrelation signature

approaches very large values. ’s
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Perhaps the most significant difference between the two signatures
is shown on figure 21, which shows a dramatic difference for the two-
degree-of~freedom case. This result definitely establishes randomdec
as a distinctly different signature from autocorrelation. From unpub-
lished work with nonlinear systems, it is known that significant
differences occur for systems with nonlinear damping, but this is beyond
the scope of the present work.
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After local structural failure

Figure l.- Autocorrelation signature of strain
gage output observed on an Apollo wind
tunnel model during test.
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Figure 2.- Typical characteristic structural signatures
obtained from a random response.
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