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Consider a single-degree-of-freedom system.
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where

is the mass
is the nonlinear stiffness term
X is the absolute displacement of the mass

The spring force F for this example is

F=k x2 sign(x)

where
sign(x) = X
X
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The free-body diagram is
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Summation of forces in the vertical direction
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Divide through by m,

%+ (k/m)x2 sign(x) =0 (6)
X+ @2 xzsign(x)zo (7
where
0= 5 (8)
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A numerical method, such as the Runge-Kutta method, is required to solve equation (7), because
a closed-form solution does not exist.

The following pair of equations for the period t of a fully cycle are taken from Reference 1,
equation (2.7).
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where
u is the displacement
Um  is the maximum displacement
The maximum displacement must be found numerically solving equation (7).
For the sample problem,
f(u) = (u')%sign(u) (10)

The sign term can be omitted since the function will be positive values for the integration limits
considered.
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Change the integration variable.
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The integral is evaluated numerically,

j ~1.402 (23)
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Substitute equation (24) into (23).
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The natural period for the sample problem is thus
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A larger maximum displacement yields a shorter period.

Example

A system is governed by equation (5).

m =11Ibm
k = 10,000 Ibf/in~2
damping =0.02

The system is subject to an initial displacement of 2 inches. (This may be unrealistic for a
practical system, but it is useful for demonstration purposes.)

The resulting displacement is shown in Figure 1, as calculated via Matlab script: RK4_fv_nl1.m
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Figure 1.

Additional Systems

An additional case is analyzed in Appendix A.

Reference

1. Weaver, Timoshenko, and Young; Vibration Problems in Engineering, Wiley-
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APPENDIX A

Consider a system governed by the following equation.

X + wzﬂjxsign(x) =0

Recall the equation for the period t of a fully cycle.
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The maximum displacement must be found numerically solving equation (A-1).

For the sample problem,

f(u) =)
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The sign term is omitted from equation (A-4) because the function will be positive over the

integration limits considered.
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Change the integration variable.
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The integral is evaluated numerically,
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By substitution,
r=2 B3umM4 w725) (A-18)
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The natural period for the sample problem is thus

e ~5.975 L (up)4 (A-19)
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A larger peak displacement yields a longer period.

The period approaches zero as the peak displacement approaches zero.



