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Consider a single-degree-of-freedom system. 

 

 

 

 

 

 

 

 

 

 

where 
 

 

m is the mass 

k is the nonlinear stiffness term 

x is the absolute displacement of the mass 

 

 

The spring force F for this example is 

 

   F = k x
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sign(x)                                                                                     (1) 
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The free-body diagram is 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Summation of forces in the vertical direction 

 

F mx                                                                                            (3) 

 

)x(signxkxm 2                                                                                             (4) 

 

    0)x(signxkxm 2                                                                                         (5) 

 

 

Divide through by m, 

 

   0)x(signx)m/k(x 2                                                                                   (6) 

        

 

0)x(signxx 22                                                                                       (7) 

 

where 

m

k
                                                                                                         (8) 

 
 

 

A numerical method, such as the Runge-Kutta method, is required to solve equation (7), because 

a closed-form solution does not exist. 
 

The following pair of equations for the period   of a fully cycle are taken from Reference 1, 

equation (2.7). 
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where 
 

 

u is the displacement 

mu  is the maximum displacement 

 

The maximum displacement must be found numerically solving equation (7). 

 

 

For the sample problem, 
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The sign term can be omitted since the function will be positive values for the integration limits 

considered. 
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Change the integration variable. 
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The integral is evaluated numerically, 
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Substitute equation (24) into (23). 
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The natural period for the sample problem is thus 

 

mu

11
87.6


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A larger maximum displacement yields a shorter period. 

 

 

Example 
 

A system is governed by equation (5). 

 
 

 

m = 1 lbm 

k = 10,000 lbf/in^2 

damping = 0.02 

 

The system is subject to an initial displacement of 2 inches.  (This may be unrealistic for a 

practical system, but it is useful for demonstration purposes.) 
 

The resulting displacement is shown in Figure 1, as calculated via Matlab script: RK4_fv_nl1.m 
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Figure 1.                                                    

 

 

 

Additional Systems 
 

An additional case is analyzed in Appendix A. 

 

 

 

Reference 

 

1. Weaver, Timoshenko, and Young; Vibration Problems in Engineering, Wiley-

Interscience, New York, 1990. 

 



 7 

 

APPENDIX A 

 

 

Consider a system governed by the following equation. 

 

 

2x xsign(x) 0                                                                                   (A-1) 

 

 

Recall the equation for the period   of a fully cycle. 

 

2x f (x) 0                                                                                            (A-2) 

   

 





 m

m

u
0 u

u
'du)'u(f2

du4
                                                                         (A-3) 

 

 

The maximum displacement must be found numerically solving equation (A-1). 

 

 

For the sample problem, 

 

f (u ') (u ')                                                                               (A-4) 

 

 

The sign term is omitted from equation (A-4) because the function will be positive over the 

integration limits considered. 
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Change the integration variable. 
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The integral is evaluated numerically, 
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By substitution, 
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The natural period for the sample problem is thus 
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A larger peak displacement yields a longer period.    

 

The period approaches zero as the peak displacement approaches zero. 

 

 

 

 

 

 

 


