# FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM WITH NONLINEAR STIFFNESS <br> Revision B 

By Tom Irvine
Email: tomirvine@aol.com
September 21, 2010

Consider a single-degree-of-freedom system.

where
m is the mass
$\mathrm{k} \quad$ is the nonlinear stiffness term
$\mathrm{x} \quad$ is the absolute displacement of the mass

The spring force F for this example is

$$
\begin{equation*}
\mathrm{F}=\mathrm{kx}^{2} \operatorname{sign}(\mathrm{x}) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{sign}(x)=\frac{x}{|x|} \tag{2}
\end{equation*}
$$

The free-body diagram is


Summation of forces in the vertical direction

$$
\begin{align*}
& \sum F=m \ddot{x}  \tag{3}\\
& m \ddot{x}=-k x^{2} \operatorname{sign}(x)  \tag{4}\\
& m \ddot{x}+k x^{2} \operatorname{sign}(x)=0 \tag{5}
\end{align*}
$$

Divide through by m,

$$
\begin{gather*}
\ddot{\mathrm{x}}+(\mathrm{k} / \mathrm{m}) \mathrm{x}^{2} \operatorname{sign}(\mathrm{x})=0  \tag{6}\\
\ddot{\mathrm{x}}+\omega^{2} \mathrm{x}^{2} \operatorname{sign}(\mathrm{x})=0 \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \tag{8}
\end{equation*}
$$

A numerical method, such as the Runge-Kutta method, is required to solve equation (7), because a closed-form solution does not exist.

The following pair of equations for the period $\tau$ of a fully cycle are taken from Reference 1 , equation (2.7).

$$
\begin{equation*}
\ddot{\mathrm{x}}+\omega^{2} \mathrm{f}(\mathrm{x})=0 \tag{9a}
\end{equation*}
$$

$$
\begin{equation*}
\tau=\frac{4}{\omega} \int_{0}^{u_{\mathrm{m}}} \frac{\mathrm{du}}{\sqrt{2 \int_{\mathrm{u}}^{\mathrm{u}_{\mathrm{m}}} \mathrm{f}\left(\mathrm{u}^{\prime}\right) \mathrm{du}^{\prime}}} \tag{9b}
\end{equation*}
$$

where

$$
\begin{array}{cl}
\mathrm{u} & \text { is the displacement } \\
\mathrm{u}_{\mathrm{m}} & \text { is the maximum displacement }
\end{array}
$$

The maximum displacement must be found numerically solving equation (7).

For the sample problem,

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{u}^{\prime}\right)=\left(\mathrm{u}^{\prime}\right)^{2} \operatorname{sign}\left(\mathrm{u}^{\prime}\right) \tag{10}
\end{equation*}
$$

The sign term can be omitted since the function will be positive values for the integration limits considered.

$$
\begin{align*}
& \int_{\mathrm{u}}^{\mathrm{u}_{\mathrm{m}}} \mathrm{f}\left(\mathrm{u}^{\prime}\right) \mathrm{du}=\int_{\mathrm{u}}^{\mathrm{u}_{\mathrm{m}}}\left(\mathrm{u}^{\prime}\right)^{2} \mathrm{du}  \tag{11}\\
& \int_{\mathrm{u}}^{\mathrm{u}_{\mathrm{m}}} \mathrm{f}\left(\mathrm{u}^{\prime}\right) \mathrm{du} \mathrm{u}^{\prime}=\left.\frac{1}{3}\left(\mathrm{u}^{\prime}\right)^{3}\right|_{\mathrm{u}} ^{\mathrm{u}_{\mathrm{m}}}  \tag{12}\\
& \int_{\mathrm{u}}^{\mathrm{u}_{\mathrm{m}}} \mathrm{f}\left(\mathrm{u}^{\prime}\right) \mathrm{du}=\frac{1}{3}\left[\left(\mathrm{u}_{\mathrm{m}}\right)^{3}-(\mathrm{u})^{3}\right]  \tag{13}\\
& \tau=\frac{4}{\omega} \int_{0}^{\mathrm{u}_{\mathrm{m}}} \frac{\mathrm{du}}{\sqrt{\frac{2}{3}\left[\left(\mathrm{u}_{\mathrm{m}}\right)^{3}-(\mathrm{u})^{3}\right]}} \tag{14}
\end{align*}
$$

$$
\begin{align*}
& \tau=\frac{4}{\omega} \sqrt{\frac{3}{2}} \int_{0}^{u_{\mathrm{m}}}\left\{\frac{\mathrm{du}}{\sqrt{\left(\mathrm{u}_{\mathrm{m}}\right)^{3}-(\mathrm{u})^{3}}}\right\}  \tag{15}\\
& \tau=\frac{4}{\omega} \sqrt{\frac{3}{2}} \int_{0}^{\mathrm{u}_{\mathrm{m}}}\left\{\frac{\mathrm{du}}{\left(\mathrm{u}_{\mathrm{m}}\right)^{3 / 2} \sqrt{1-\left(\mathrm{u} / \mathrm{u}_{\mathrm{m}}\right)^{3}}}\right\}  \tag{16}\\
& \tau=\frac{4}{\omega} \sqrt{\frac{3}{2}}\left(\mathrm{u}_{\mathrm{m}}\right)^{-3 / 2} \int_{0}^{\mathrm{u}_{\mathrm{m}}}\left\{\frac{\mathrm{du}}{\sqrt{1-\left(\mathrm{u} / \mathrm{u}_{\mathrm{m}}\right)^{3}}}\right\} \tag{17}
\end{align*}
$$

Change the integration variable.

$$
\begin{gather*}
\xi=\left(\frac{u}{u_{m}}\right)  \tag{18}\\
d \xi=\left(\frac{d u}{u_{m}}\right)  \tag{19}\\
u_{\mathrm{m}} \mathrm{~d} \xi=\mathrm{du}  \tag{20}\\
\tau=\frac{4}{\omega} \sqrt{\frac{3}{2}}\left(u_{\mathrm{m}}\right)^{-3 / 2} \int_{0}^{1}\left\{\frac{u_{\mathrm{m}} \mathrm{~d} \xi}{\sqrt{1-\xi^{3}}}\right\}  \tag{21}\\
\tau=\frac{4}{\omega} \sqrt{\frac{3}{2}}\left(u_{\mathrm{m}}\right)^{-1 / 2} \int_{0}^{1}\left\{\frac{\mathrm{~d} \xi}{\sqrt{1-\xi^{3}}}\right\} \tag{22}
\end{gather*}
$$

The integral is evaluated numerically,

$$
\begin{equation*}
\int_{0}^{1}\left\{\frac{\mathrm{~d} \xi}{\sqrt{1-\xi^{3}}}\right\} \approx 1.402 \tag{23}
\end{equation*}
$$

Substitute equation (24) into (23).

$$
\begin{equation*}
\tau=\frac{4}{\omega} \sqrt{\frac{3}{2}} \frac{1}{\sqrt{\mathrm{u}_{\mathrm{m}}}}(1.402) \tag{24}
\end{equation*}
$$

The natural period for the sample problem is thus

$$
\begin{equation*}
\tau \approx 6.87 \frac{1}{\omega} \frac{1}{\sqrt{\mathrm{u}_{\mathrm{m}}}} \tag{25}
\end{equation*}
$$

A larger maximum displacement yields a shorter period.

## Example

A system is governed by equation (5).

$$
\begin{aligned}
\mathrm{m} & =1 \mathrm{lbm} \\
\mathrm{k} & =10,000 \mathrm{lbf} / \mathrm{in}^{\wedge} 2 \\
\text { damping } & =0.02
\end{aligned}
$$

The system is subject to an initial displacement of 2 inches. (This may be unrealistic for a practical system, but it is useful for demonstration purposes.)

The resulting displacement is shown in Figure 1, as calculated via Matlab script: RK4_fv_nl1.m


Figure 1.

## Additional Systems

An additional case is analyzed in Appendix A.

## Reference

1. Weaver, Timoshenko, and Young; Vibration Problems in Engineering, WileyInterscience, New York, 1990.

## APPENDIX A

Consider a system governed by the following equation.

$$
\begin{equation*}
\ddot{x}+\omega^{2} \sqrt{x \operatorname{sign}(x)}=0 \tag{A-1}
\end{equation*}
$$

Recall the equation for the period $\tau$ of a fully cycle.

$$
\begin{gather*}
\ddot{\mathrm{x}}+\omega^{2} \mathrm{f}(\mathrm{x})=0  \tag{A-2}\\
\tau=\frac{4}{\omega} \int_{0}^{\mathrm{u}_{\mathrm{m}}} \frac{\mathrm{du}}{\sqrt{2 \int_{\mathrm{u}}^{\mathrm{u}_{\mathrm{m}}} \mathrm{f}\left(\mathrm{u}^{\prime}\right) \mathrm{du}^{\prime}}} \tag{A-3}
\end{gather*}
$$

The maximum displacement must be found numerically solving equation (A-1).

For the sample problem,

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{u}^{\prime}\right)=\sqrt{\left(\mathrm{u}^{\prime}\right)} \tag{A-4}
\end{equation*}
$$

The sign term is omitted from equation (A-4) because the function will be positive over the integration limits considered.

$$
\begin{gather*}
\int_{u}^{u_{m}} f\left(u^{\prime}\right) d u^{\prime}=\int_{u}^{u_{m}} \sqrt{\left(u^{\prime}\right)} d u^{\prime}  \tag{A-5}\\
\int_{u}^{u_{m}} f\left(u^{\prime}\right) d u^{\prime}=\left.\frac{2}{3}\left(u^{\prime}\right)^{3 / 2}\right|_{u} ^{u_{m}} \tag{A-6}
\end{gather*}
$$

$$
\begin{align*}
& \int_{u}^{u_{\mathrm{m}}} \mathrm{f}\left(\mathrm{u}^{\prime}\right) \mathrm{du}=\frac{2}{3}\left[\left(\mathrm{u}_{\mathrm{m}}\right)^{3 / 2}-(\mathrm{u})^{3 / 2}\right]  \tag{A-7}\\
& \tau=\frac{4}{\omega} \int_{0}^{u_{\mathrm{m}}} \frac{\mathrm{du}}{\sqrt{\frac{4}{3}\left[\left(\mathrm{u}_{\mathrm{m}}\right)^{3 / 2}-(\mathrm{u})^{3 / 2}\right]}}  \tag{A-8}\\
& \tau=\frac{4}{\omega} \sqrt{\frac{3}{4}} \int_{0}^{u_{\mathrm{m}}}\left\{\frac{\mathrm{du}}{\sqrt{\left.\left(\mathrm{u}_{\mathrm{m}}\right)^{3 / 2}-(\mathrm{u})^{3 / 2}\right]}}\right\}  \tag{A-9}\\
& \tau=\frac{2}{\omega} \sqrt{3} \int_{0}^{u_{\mathrm{m}}}\left\{\frac{\mathrm{du}}{\left(\mathrm{u}_{\mathrm{m}}\right)^{3 / 4} \sqrt{1-\left(\mathrm{u} / \mathrm{u}_{\mathrm{m}}\right)^{3 / 2}}}\right\}  \tag{A-10}\\
& \tau=\frac{2}{\omega} \sqrt{3}\left(\mathrm{u}_{\mathrm{m}}\right)^{-3 / 4} \int_{0}^{u_{\mathrm{m}}}\left\{\frac{\mathrm{du}}{\sqrt{1-\left(\mathrm{u} / \mathrm{u}_{\mathrm{m}}\right)^{3 / 2}}}\right\} \tag{A-11}
\end{align*}
$$

Change the integration variable.

$$
\begin{align*}
& \xi=\left(\frac{\mathrm{u}}{\mathrm{u}_{\mathrm{m}}}\right)  \tag{A-12}\\
& \mathrm{d} \xi=\left(\frac{\mathrm{du}}{\mathrm{u}_{\mathrm{m}}}\right)  \tag{A-13}\\
& \mathrm{u}_{\mathrm{m}} \mathrm{~d} \xi=\mathrm{du} \tag{A-14}
\end{align*}
$$

$$
\begin{align*}
\tau & =\frac{2}{\omega} \sqrt{3}\left(u_{m}\right)^{-3 / 4} \int_{0}^{1}\left\{\frac{u_{m} \mathrm{~d} \xi}{\sqrt{1-\xi^{3 / 2}}}\right\}  \tag{A-15}\\
\tau & =\frac{2}{\omega} \sqrt{3}\left(u_{m}\right)^{1 / 4} \int_{0}^{1}\left\{\frac{\mathrm{~d} \xi}{\sqrt{1-\xi^{3 / 2}}}\right\} \tag{A-16}
\end{align*}
$$

The integral is evaluated numerically,

$$
\begin{equation*}
\int_{0}^{1}\left\{\frac{\mathrm{~d} \xi}{\sqrt{1-\xi^{3 / 2}}}\right\} \approx 1.725 \tag{A-17}
\end{equation*}
$$

By substitution,

$$
\begin{equation*}
\tau=\frac{2}{\omega} \sqrt{3}\left(\mathrm{u}_{\mathrm{m}}\right)^{1 / 4}(1.725) \tag{A-18}
\end{equation*}
$$

The natural period for the sample problem is thus

$$
\begin{equation*}
\tau \approx 5.975 \frac{1}{\omega}\left(\mathrm{u}_{\mathrm{m}}\right)^{1 / 4} \tag{A-19}
\end{equation*}
$$

A larger peak displacement yields a longer period.
The period approaches zero as the peak displacement approaches zero.

