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A METHOD FOR POWER SPECTRAL DENSITY SYNTHESIS Revision B

By Tom Irvine
Email:  tomirvine@aol.com
November 28, 2000
________________________________________________________________________

INTRODUCTION

The power spectral density function is described in Reference 1.  Certain situations arise
whereby a specified power spectral density must be converted to an acceleration time
history for test or analytical purposes.  Conventionally, the underlying time history has a
random character.  The purpose of this report is to give a synthesis method based on white
noise.

PHASE ANGLE NOTE

The power spectral density calculation discards phase angles.  Thus, a given power
spectral density function does not have a unique corresponding time history.

METHOD OUTLINE

The synthesis steps are given in Table 1.

Table 1.  Synthesis Steps
Step Description
1 Generate a white noise time history.  The initial overall level is arbitrary.  The

corresponding histogram should have a Gaussian or normal distribution.  The
sample rate should be ten times the highest frequency of interest.

A sample program which performs this step is given in Appendix A.  Further
information is given in Reference 2.

2 Lowpass filter the time history.  The cutoff frequency should be slightly above
the maximum frequency of interest.  This step is optional.  Filtering algorithms
are discussed in Reference 3.

3 Divide the data into manageable segments.  The segment length is constrained
by the maximum allowable input into the available Fast Fourier transform
program.  Note that only one segment may be needed if the computer software
and hardware have sufficient memory.

4 Take the Fast Fourier transform of each segment, using the method in Reference
4.  Use a rectangular window.

5 Scale the magnitude of each Fourier transform component in each segment so
that it will meet the power spectral density specification.
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Table 1.  Synthesis Steps (continued)
Step Description
6 Take the inverse Fourier transform of each Fourier transform segment.

7 Reassemble the segments from the inverse Fourier transform.  The resulting time
history is the synthesized time history.

8 Take a histogram or probability density function of the time history to verify a
normal distribution.  Also check kurtosis, as explained in Appendix B.

9 Take the power spectral density of the time history to verify compliance with the
specification.

SYNTHESIS EXAMPLE

Specification

The specification was taken as the component acceptance power spectral density in MIL-
STD-1540C.  The breakpoints are given in Table 2.

Table 2.
MIL-STD-1540C Acceptance
Level,
6.1 GRMS Overall
Frequency
(Hz)

PSD

(G
2
/Hz)

20 0.0053
150 0.04
600 0.04
2000 0.0036

Step 1

A white noise time history was generated.  Note that this time history is independent of
the specification, except for duration and sample rate.

Steps 2 through 6

The white noise signal was lowpass filtered and then divided into segments.  Each segment
was manipulated in terms of Fourier spectra.

Step 7

The resulting time history is shown in Figure 1.
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Step 8

The kurtosis value is 3.02, which is consistent with random vibration.  Kurtosis is
explained in Appendix B.

The probability density function is given in Figure 2.  It has the shape of a normal
distribution.  Note that a probability density function is calculated by dividing the
histogram curve by the total number of points.

Step 9

The power spectral density of the synthesized time history is shown in Figure 3.  The
specification level is also shown in Figure 3.  The agreement is excellent.

ALTERNATE METHOD

A series of sine functions may be used to synthesize a time history which satisfies a power
spectral density.  This method does not produce a random time history, however.
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APPENDIX A

WHITE NOISE PROGRAM

Method

The white noise program uses a random number function to generate a number between 0
and 1.  This number then represents a probability area under the normal distribution curve.
The corresponding sigma value is then determined from the probability area.  This sigma
value is taken as the amplitude.  A second random number is then generated to determine
whether the amplitude is positive or negative.

Source Code

#include <math.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

#define MAX 2000000

void gauss(void);

long i,j,np;

double a[MAX],aq,ave,delta,dt,ms,sdg,sr,ss,stddev,t,tmax,var,x,y,z;
double b[1000],sum[1000];

const double pi=atan2(0.,-1.);
const double e=1./sqrt(2.*pi);
const double max=32767.;

char filename[2][16];
FILE *pFile[2];

void main()
{

  
printf("\n ");
printf("\n white.cpp \n");
printf("\n by Tom Irvine");
printf("\n Email: tomirvine@aol.com ");
printf("\n ");
printf("\n This program generates a white noise time history. \ n");

strcpy(filename[0],"a.out");
pFile[0]=fopen(filename[0],"w");
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printf("\n Enter sampling rate (sample/seconds): \n");
scanf("%lf",&sr);

dt=1./sr;

printf("\n Enter duration (sec): \n");
scanf("%lf",&tmax);

printf("\n Enter standard deviation: \n");
scanf("%lf",&sdg);

np=long(tmax/dt);

if(np > MAX){np=MAX;}

printf("\n np= %ld",np);

if( np > 2 )
{
//  The gauss function determines the probability for
//  each Nsigma value.

     gauss();

ave = 0.;
ms = 0.;

for(i=0; i<np; i++)
{

      x=rand()/max;
           a[i]=0.;

for(j=1; j<= 599; j++)
{

//   x is a probability value.  0 < x < 1

                  if( x >= sum[j] &&  x <= sum[j+1] )
{

//  a = Nsigma value which corresponds to probability x.

                    a[i]=b[j];
                    break;
                 }
      }

//   50% of the amplitude points are multiplied by -1.

     y=rand()/max;

     if(y <= 0.5){a[i]*=-1;}
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     ave+=a[i];
     ms+=pow(a[i],2.);

}

ave/=double(np);
ms/=double(np);

var=ms-pow(ave,2.);
stddev=sqrt(fabs(var));

// print the output file

for(i=0; i<np; i++)
{

t=dt*i;
a[i]=(a[i]-ave)*(sdg/stddev);
fprintf(pFile[0],"%14.7e %14.7e \n",t,a[i]);

     }

printf("\n\n The output file is:  a.out ");
printf("\n\n This file has two columns:  time(sec) and amplitude.");
printf("\n Please call this file into your own plotting program.\n\n");

}
fclose(pFile[0]);

printf("\n Press any key to exit.");
getch();

exit(1);

}

void gauss(void)
{
strcpy(filename[1],"gauss.out");
pFile[1]=fopen(filename[1],"w");

/*
b[j] is a standard deviation.  The maximum b[j] is six sigma.

     
sum[j] is the area under the Gaussian curve from 0 to b[j].

*/

double ab;
   
for( j=1;j<=600;j++)
{

b[j]=j/100.;
ab=-b[j];
ss=0.;
delta=(b[j]-ab)/1000.;

for( i=0; i<=1000; i++)
{
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z=(delta*i)+ab;
ss+=exp( ( -pow(z,2.) )/2.);

}

sum[j]=ss*e*delta;
aq=1.-sum[j];

fprintf(pFile[1]," %14.7e %14.7e %14.7e \n",b[j],sum[j],aq);

}
fclose(pFile[1]);
}
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APPENDIX B

KURTOSIS THEORY

Kurtosis is a measurement of the “peakedness" of the data.  A sine wave, for example, has
a kurtosis value of 1.5.  A pure Gaussian random signal has a kurtosis value of 3.0.  A
higher kurtosis value may indicate the presence of higher sigma peaks on the time history
than would be expected from a Gaussian distribution.  These peaks could, for example,
represent a transient event.  On the other hand, they may simply represent random
vibration which has a probability density function which departs from the Gaussian ideal.

The kurtosis equation is:

kurtosis
x X

n
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Note that the kurtosis value appears dimensionless.


