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Introduction 
 
This tutorial is based somewhat on a section in Reference 1.  The tutorial makes an 
improvement by using a general solution to solve for the response. 
 
Consider a vehicle system traveling along a road at a constant velocity as show in Figure 
1.  The vehicle is modeled as a single-degree-of-freedom system. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. 
 
 
The variables are: 
 

m is the mass 
c is the viscous damping coefficient 
k is the stiffness 
x is the absolute displacement of the mass 
y is the base input displacement   
V is the rigid-body velocity of the mass 
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A free-body diagram is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Figure 2. 
 

 
Summation of forces in the vertical direction 
 

F mx=∑ &&                                                                                           (1) 
 

mx c y x k y x&& ( & & ) ( )= − + −                                                                                    (2) 
 

kyycxkxcxm +=++ &&&&                                                                                   (3) 
 

         ( ) ( ) ( ) ( )ym/kym/cxm/kxm/cx +=++ &&&&                                         (4) 
 
By convention, 

2
n)m/k(

n2)m/c(

ω=

ξω=

 

where  nω  is the natural frequency in (radians/sec), and ξ is the damping ratio. 
 
Substitute the convention terms into equation (4). 
 

y2
nyn2x2

nxn2x ω+ξω=ω+ξω+ &&&&                                                             (5) 
 
 

Take the Fourier transform. 
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Note that 

 

x(t)exp[-j t]dt j x(t)exp[-j t]dt - -
∞ ∞ω = ω ω∞ ∞∫ ∫&                                                        (8)         

 
 

2x(t)exp[-j t]dt x(t)exp[-j t]dt - -
∞ ∞ω = −ω ω∞ ∞∫ ∫&&                                                  (9)         

                         
 

Thus, 
 
 

{ } ( )

{ } ( ) { } ( )∫∫

∫∫∫
∞
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∞
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∞ ωωξω+∞
∞ ωω−
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(10)         
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Define a transfer function. 
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General Approach 
 
Consider the system is subjected to a base input power spectral density (PSD).  The 
resulting response equation is 
 
 

( )
( )

( )
( )nf/if,

N

1i
if)if(DPSDŶ

2
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2
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,fnRMSx =ρ
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⎠
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⎝
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⎥⎦
⎤

⎢⎣
⎡ ξρ+
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(16) 

 
 

where 
 

nf  is the natural frequency 

)if(DPSDŶ  is the base input displacement power spectral density 

 
 
                

Equation (16) is taken from Reference 2. 
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Figure 3. 
 
 

Table 1.  Spatial Displacement PSD 

Scaled 
Wavenumber 

(cycles / meter) 

Displacement  
(mm2/ (cycles/meter))

0.1 10 

2 10 

10 0.1 
 
 
Assume that the PSD level is constant from 0 to 0.1 cycles/meter.  Also assume that it its 
zero beyond 10 cycles/meter. 
 
Now assume that the vehicle travels down a road characterized by the spatial power 
spectral density in Figure 3.  The speed of the vehicle is an independent variable. 
 
The wavenumber expresses the rate of change with respect to distance. 
 
The wavenumber is normally expressed as (rad / meter).  The wavenumber in Figure 3 is 
thus scaled so that its unit is (cycles / meter ).   
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Figure 4. 
 
 
The Spatial PSD is converted to a Time PSD as follows: 
 
 

                        ⎟
⎠
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V
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Both the X and Y-axes must be scaled for the conversion. 
 
The resulting Time PSD curves for two speed cases are shown in Figure 4.  The overall 
displacement of 5.4 mm is maintained in each case.  Again, the PSD plateau is assumed 
to be constant down to zero Hz for each curve. 
 
The breakpoints for the 10 km/hr case are given in Table 2. 
 
 

Table 2.  Equivalent Time Displacement 
PSD for 10 km/hr 

Frequency  
(Hz) 

Displacement  
(mm2/ Hz) 

0.3 3.6 
5.6 3.6 
27.8 0.036 
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Assume that the vehicle has a natural frequency of 1.5 Hz with 10% damping.   Also 
assume that the vehicle’s “wheel” always remains in contact with the ground. 
 
The resulting response for each of five speed cases is given in the following table, as 
calculated using equation (16). 
 
 

Table 1.  Response Results 
 

Speed (km/h) Speed 
(m/sec) 

Displacement 
( mm RMS ) 

Acceleration 
(m/sec^2) RMS 

Acceleration 
(GRMS) 

10 2.78 6.6 0.87 0.09 

20 5.56 4.7 1.08 0.11 

30 8.33 3.8 1.43 0.15 

50 13.9 3.0 2.23 0.23 

100 27.8 2.1 4.34 0.44 
 
Both the displacement and the acceleration are absolute. 
 
The input Displacement Time PSD can be converted to an Acceleration Time PSD by 

multiplying it by .4ω   Equation (16) can then be used to calculate the acceleration 
response.  The acceleration results are also given in Table 1. 
 
The displacement decreases with speed.  The acceleration has the opposite trend. 
 
The displacement response is driven primarily by the resonant response near the natural 
frequency for each speed case. 
 
The acceleration response, however, is driven by both the resonant response and a 
broadband response.  The broadband acceleration becomes more significant as the speed 
increases. 
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