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Variables 

 

C torsion constant 

CL longitudinal wave speed 

d diameter 

E elastic modulus 

G shear modulus 

fn natural frequency 

f r ring frequency 

h height 

Ix, Iy cross-sectional area moment of inertia 

m mass per arc length 

t thickness 

  mass per volume 

  Poisson ratio 

 

 

 

Ring Frequency 
 

Consider a ring with a rectangular cross section and with completely free boundary 

conditions. 
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The ring frequency corresponds to the mode in which all points move radially outward 

together and then radially inward together.   This is the first extension mode.  It is 

analogous to a longitudinal mode in a rod. 
 

The ring frequency rf is the frequency at which the longitudinal wavelength in the skin 

material is equal to the vehicle circumference. 
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Note that the wave speed can be calculated as 

 




E
CL                                                                              (2) 

 

 

The longitudinal wave speed in aluminum is approximately 16,700 feet per second. 

 

Thus the ring frequency for aluminum is 
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Note that the ring frequency mode is a higher mode.  It occurs at a much higher 

frequency than the first few bending modes. 
 

Equations (1) through (4) are taken from Reference 1. 

 

 

In-plane Bending Mode 
 

The natural frequency equation for the in-plane bending modes is 
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Note that the Y-axis is the longitudinal axis, with its origin at the center of the cross-

section. 

 

Equation (5) is taken from Reference 2.   Note that the n=1 case corresponds to in-plane 

rigid-body translation, with a frequency of zero. 

 

The area moment of inertia for a thin ring is 
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By substitution, 
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Note that 
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By substitution, 
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Out-of-Plane Bending Mode 

 

The natural frequency equation for the out-of-plane bending modes is 
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Equation (11) is taken from Reference 2.  Note that the n=1 case corresponds to out-of-

plane rigid-body translation, with a frequency of zero. 

 

For a rectangular cross section, 
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By substitution, 
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The torsion constant for a rectangular cross-section is taken as 
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By substitution, 
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Model 

 

A finite element was constructed as shown in Figure 1 and in Table 1. 

 

 

Table 1.  Model Parameters 

Parameter Value 

Number of Nodes 5040 

Number of Elements 2016 

Element Type Solid 

Thickness 0.25 inch 

Height 1.0 inch 

Diameter 40 inch 

Boundary Condition Completely Free 

Material Aluminum 

Mass Density 0.098 lbm/in^3 

Elastic Modulus 9900000.  lbf/in^2 

Software FEMAP and NE/Nastran 

 

 

 

The results of the finite element analysis are given in Figures 2 through 4. 

 

The numerical results are summarized in Table 2, along with the theoretical values. 
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Figure 1.  Undeformed Model 

 

 

 

 
 

Figure 2.  First In-plane Bending Mode, Superimposed on Undeformed Model, 

Frequency = 15.41 Hz 
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Figure 3.  First Out-of-Plane Bending Mode, Superimposed on Undeformed Model, 

Frequency = 34.54 Hz 

 

 

 

 

 

 

 
 

Figure 4.  First Extensional Mode, Superimposed on Undeformed Model, Frequency = 

1581 Hz 
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Table 2.  Finite Element Model Results 

 

Mode 

FEM  

Frequency 

(Hz) 

Theoretical  

Frequency 

 (Hz) 

Theoretical 

Equation 

First In-plane Bending 15.41 15.22 (5) 

First Out-of-plane Bending 34.54 33.73 (11) 

First Extensional 

(Ring Frequency) 
1581. 1595. (1) 

 

 

The agreement is very good for each case. 
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APPENDIX A 

 

 

Extensional Vibration of a Ring 

 

The derivation is taken from Reference 3. 

 

 

u is the radial displacement 

E is the modulus of elasticity 

A is the cross-sectional area 

r is the radius 

d is the diameter 

  is the mass/length 

c is the speed of sound in the material 

 

 

 

The potential energy U is 
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The kinetic energy T is 
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Apply the energy method. 
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APPENDIX B 

 

 

Fairing Ring Frequency Excited during Pyrotechnic Shock 
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Figure B-1.   

 

 

The source device was a frangible joint rail.  The data was measured during a ground test. 

 

The fairing consists of graphite-epoxy skins over an aluminum honeycomb core. 

 

Note that the data is bandpass filtered from 20 to 2000 Hz. 
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The fairing’s ring frequency is 
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LC  = 257,976 in/sec 
Longitudinal wave speed in the composite skin 

material 

d = 92 in Diameter 
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The synthesis consists of ten components.  The first three are given in Table B-1. 

 

Table B-1.  Synthesis Results 

N Amp (G) Freq (Hz) Phase (rad) Damping Delay (sec) 

1 186.2 1888.895 1.682 0.017 0.000 

2 172.7 897.063 3.609 0.037 0.000 

3 112.6 1573.298 1.648 0.026 0.001 

 

 

The second component represents the ring frequency. 


