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LONGITUDINAL VIBRATION OF A ROD VIA THE FINITE ELEMENT METHOD 
Revision B 
 
By Tom Irvine 
Email:  tomirvine@aol.com 
 
November 13, 2008 
____________________________________________________________________ 
 
Note that the longitudinal vibration of a rod is analogous to the acoustic pressure 
oscillation in a pipe. 
 
Introduction 
 
Consider a thin rod. 
 
 
 
 
 
 
 
 

 
 E   is the modulus of elasticity 
 A   is the cross-section area 
 m   is the mass per unit length 
 
 
The longitudinal displacement u(x, t) is governed by the equation  
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This equation is taken from Reference 1. 
 
For a uniform cross-section and mass density, the governing equation simplifies to 
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Separate the variables.  Let 
 

)t(T)x(U)t,x(u =                                                                           (3) 
 
By substitution 
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Perform the partial differentiation, 
 

 
)t(T)x(mU)t(T)x(UEA ′′=′′                                                                        (5) 

 
 

Divide through by U(x)T(t). 
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Each side of equation (6) must equal a constant. Let ω be a constant. 
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The spatial equation is 
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                                    0)x(mU2)x(UEA =ω+′′                                                          (10) 
 
 

Again, m is the mass per length. 
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As an aside, the time equation is 
 

0)t(T2)t(T =ω+′′                                                                   (11) 
 

Equation (10) is a homogeneous, second order, ordinary differential equation. 
 
The weighted residual method is applied to equation (10).  This method is suitable for 
boundary value problems.  An alternative method would be the energy method. 
 
There are numerous techniques for applying the weighted residual method.  Specifically, 
the Galerkin approach is used in this tutorial.   
 
The differential equation (10a) is multiplied by a test function )x(φ .  Note that the test 
function )x(φ must satisfy the homogeneous essential boundary conditions.  The essential 
boundary conditions are the prescribed values of p and its first derivative. 
 
The test function is not required to satisfy the differential equation, however.       
 
The product of the test function and the differential equation is integrated over the 
domain.  The integral is set equation to zero. 
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The test function )x(φ can be regarded as a virtual displacement.  The differential 
equation in the brackets represents an internal force.  This term is also regarded as the 
residual.  Thus, the integral represents virtual work, which should vanish at the 
equilibrium condition. 
 
Define the domain over the limits from a to b.  These limits represent the boundary points 
of the entire rod. 
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Integrate the first integral by parts. 
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Consider a free-free rod.  The boundary conditions are 
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Thus, the test functions must satisfy 
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Equations (20a) and (20b) require 
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Apply the boundary conditions to equation (17).  The result is 
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Note that equation (23) would also be obtained for other simple boundary condition 
cases. 
 
Now consider that the rod consists of number of segments, or elements.  The elements are 
arranged geometrically in series form.  Furthermore, the endpoints of each element are 
called nodes. 
 
The following equation must be satisfied for each element. 
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The essence of the Galerkin method is that the test function is chosen as 
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Express the displacement function U(x) in terms of nodal displacement 1ju −  and  ju  . 
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Note that h is the element length.  In addition, each L coefficients is a function of x. 
 

Now introduce a nondimensional natural coordinate ξ . 
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The derivative is 
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Note that h is the segment length. 
 
Change the integration variable in equation (27) using equation (33).  Also, apply the 
integration limits. 
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The displacement function becomes. 
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The slope equation is 
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For a system of n elements, 
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Note that only the upper triangular components are shown due to symmetry. 
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Again, m is mass per length, and h is the element length. 
 
A derivation of the mass and stiffness matrices via the energy method is given in 
Appendix A. 
 
Examples are given in Appendices B and C.   
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APPENDIX A  
 
 

Energy Method 
 
The total strain energy P of a bar is 

 

∫ ⎟
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Assume constant mass density and stiffness. 
 
The strain energy is converted to a localized stiffness matrix as 
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The kinetic energy is converted to a localized mass matrix as 
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{ }∫ ξ=
1
0 dTLLmhjM                                                              (A-7) 

 
 
The total strain energy is set equal to the total kinetic energy per the Rayleigh method.  
 
The result is a generalized eigenvalue problem.  For a system of n elements, 
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Again, m is mass per length. 
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APPENDIX B 

 
 
Example 1:   Free-Free Rod, FE Model, Two Elements 
 

The finite element model of the rod is shown in Figure B-1.  It consists of two elements 
and three nodes.  The rod has length L.  Assume constant mass and stiffness Each 
element has an equal length. 

 
 
 

 
 
 
 
 
 
  Figure B-1. 
 
 
 
The boundary conditions are 
 

0
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dU
=
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0
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The generalized eigenvalue problem is 
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The elemental stiffness matrix is 
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The generalized eigenvalue problem with global mass and stiffness matrices is 
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⎥
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⎢
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Note that 
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⎜
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Let 
 

m
EAc =                                                                     (B-10) 

 
 

h = L / 2                                                                      (B-11) 
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The eigenvalues are obtained via Matlab as follows.  (See also References 2 and 3.) 
 
k = 
 
     1    -1     0 
    -1     2    -1 
     0    -1     1 
 
m = 
 
    0.3333    0.1667         0 
    0.1667    0.6667    0.1667 
         0    0.1667    0.3333 
 
>> [ModeShapes,Eigenvalues]=eig(k,m); 
>> Eigenvalues 
 
Eigenvalues = 
 
   -0.0000         0         0 
         0    3.0000         0 
         0         0   12.0000 
 
 
The resulting natural frequencies and mode shapes are shown in Table B-1 and B-2, 
respectively.  The mode shapes for the second and third modes are plotted in Figures B-2 
and B-3, respectively. 

 
 

Table B-1.  Free-Free Rod, Natural Frequencies 
 

i 
 

FEM 
iλ  

FEM 
iω  (rad/sec) 

FEM 
if  (Hz) 

Classical Solution 
if  (Hz) 

1 0 0 0 0 

2 3.0 3.464 c / L   0.551   c / L 0.5   c / L 

3 12.0 6.928   c / L    1.103   c / L 1.0   c / L 
 

 
 

Table B-2.  Free-Free Rod,  
Displacement Eigenvectors with Arbitrary Scale 

x / L Mode 1 Mode 2 Mode 3 
0 0.577 0.707 0.577 

0.5 0.577 0.000 -0.577 
1.0 0.577 -0.707 0.577 
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Figure B-2. 
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Figure B-3. 
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APPENDIX C 
 

 
Example 1:  Fixed-Free Rod, FE Model, Four Elements 
 

The finite element model of the rod is shown in Figure C-1.  It consists of four elements 
and five nodes.  The rod has length L.  Each element has an equal length. 

 
 
 

 
 
 
 
 
 
  Figure C-1. 
 
 
 
The boundary conditions are 
 
 

U(0) = 0                            (Fixed end)                                       (C-1) 
 
 

0
Lxdx

dU
=

=
                  (Free end)                                          (C-2) 

 
 
 
The generalized eigenvalue problem with global mass and stiffness matrices is assemble 
in the same manner as the example in Appendix B.  The open boundary condition must 
be considered, however. 
 
Application of the   U(0) = 0   boundary condition causes each entry in the first column 
and first row of each matrix to equal zero.  The last column and last row are thus 
removed from the problem.  The resulting eigenvalue problem is                        
 
 

     0

2100
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0014

6
1100
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⎪
⎪
⎭

⎪
⎪
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⎪
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⎨
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⎥
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⎢
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⎟
⎠
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⎜
⎝
⎛ λ

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣
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−
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Recall 
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⎟
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⎞

⎜
⎜

⎝

⎛ ω
=λ

EA

2m2h
                                                                              (C-4) 

 
 
 

m
EAc =                                                                       (C-5) 

 
 

h = L / 4                                                                      (C-6) 
 
 
The eigenvalues are obtained via Matlab as follows. 
 
m = 
 
    0.6667    0.1667         0         0 
    0.1667    0.6667    0.1667         0 
         0    0.1667    0.6667    0.1667 
         0         0    0.1667    0.3333 
 
 
k = 
 
     2    -1     0     0 
    -1     2    -1     0 
     0    -1     2    -1 
     0     0    -1     1 
 
>> [ModeShapes,Eigenvalues]=eig(k,m); 
>> Eigenvalues 
 
Eigenvalues = 
 
    0.1562         0         0         0 
         0    1.5545         0         0 
         0         0    5.1295         0 
         0         0         0   10.7268 
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The resulting natural frequencies are given in Table C-1.  The first and second mode 
shapes are plotted in Figures C-2 and C-3, respectively.  Each mode shape has an 
arbitrary scale factor. 
 
 
 

Table C-1.  Fixed-Free Rod, Natural Frequencies 
 

i 
 

FEM 
iλ  

FEM 
iω  (rad/sec) 

FEM 
if  (Hz) 

Classical Solution 
if  (Hz) 

1 0.1562 1.581 c / L 0.25  c / L 0.25   c / L 

2 1.5545 4.987 c / L 0.79  c / L 0.75   c / L 

3 5.1295 9.060  c / L 1.44  c / L 1.25  c / L 

4 10.7268 13.101  c / L 2.09  c / L 1.75  c / L 
 
 

Table C-2.  Fixed-Free Rod,  
Displacement Eigenvectors with Arbitrary Scale 
 

x / L Mode 1 Mode 2 Mode 3 
0 0 0 0 

0.25 -0.274 0.733 0.890 
0.50 -0.507 0.561 -0.681 
0.75 -0.662 -0.304 -0.369 
1.00 -0.716 -0.793 0.963 
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Figure C-2. 
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Figure C-3. 
 


