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Note that the longitudinal vibration of a rod is analogous to the acoustic pressure
oscillation in a pipe.

Introduction

Consider a thin rod.

E,A,m

E is the modulus of elasticity
A is the cross-section area
m is the mass per unit length

The longitudinal displacement u(x, t) is governed by the equation
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This equation is taken from Reference 1.

For a uniform cross-section and mass density, the governing equation simplifies to
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Separate the variables. Let

u(x,t) = U(x)T(t)
By substitution
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EA—UX)T(t) = m——=U(X)T(t)
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Perform the partial differentiation,
EAU"(X)T(t) = mU(X)T"(t)
Divide through by U(X)T(t).

EAU"(x) _ T"(t)
muU(x)  T(t)

Each side of equation (6) must equal a constant. Let o be a constant.

EAU'(x) _T"() __ 2
muU(x)  T(t)

The spatial equation is

EAU"(x) _mz
mu(x)

EAU"(X) = —0?mU(x)

EAU"(x) + ®2mU(x) = 0

Again, m is the mass per length.
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As an aside, the time equation is
T"(t) + ©2T(t) = 0 (11)

Equation (10) is a homogeneous, second order, ordinary differential equation.

The weighted residual method is applied to equation (10). This method is suitable for
boundary value problems. An alternative method would be the energy method.

There are numerous techniques for applying the weighted residual method. Specifically,
the Galerkin approach is used in this tutorial.

The differential equation (10a) is multiplied by a test function ¢(x). Note that the test
function ¢(x) must satisfy the homogeneous essential boundary conditions. The essential
boundary conditions are the prescribed values of p and its first derivative.

The test function is not required to satisfy the differential equation, however.

The product of the test function and the differential equation is integrated over the
domain. The integral is set equation to zero.
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The test function ¢(x)can be regarded as a virtual displacement. The differential
equation in the brackets represents an internal force. This term is also regarded as the
residual. Thus, the integral represents virtual work, which should vanish at the
equilibrium condition.

Define the domain over the limits from a to b. These limits represent the boundary points
of the entire rod.
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Integrate the first integral by parts.
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+ mwzjf¢(x) {U(X)}dx=0
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Consider a free-free rod. The boundary conditions are
au =0 (18a)
dx Ix=a
U(b)=0 (18b)
Thus, the test functions must satisfy
g =0 (20a)

dX Ix=a

¢(b) =0 (20b)



Equations (20a) and (20b) require

b
=0 (21)
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Apply the boundary conditions to equation (17). The result is

- Aj{ (X )H—U(x) }dx+mm2j 0(x) {U(x) }dx =0 (22)

EA[ { (X )H—U(x) }dx mo? j o) {U(x) }dx =0 (23)

Note that equation (23) would also be obtained for other simple boundary condition
cases.

Now consider that the rod consists of number of segments, or elements. The elements are
arranged geometrically in series form. Furthermore, the endpoints of each element are
called nodes.

The following equation must be satisfied for each element.

EAI{ ¢(x)H—U(x) }dx mo? [ §(x) {U(x) }dx =0 (24)

The essence of the Galerkin method is that the test function is chosen as
d(x) = U(x) (25)

Thus

EA| { U(x )H—U(x) }dx—mwzj {UX) 12 dx =0 27)

Express the displacement function U(x) in terms of nodal displacement Uj-1 and uj .



UX)=Lpujg+Lauj . (j-Dh <x<ijh (28)

Note that h is the element length. In addition, each L coefficients is a function of x.

Now introduce a nondimensional natural coordinate & .

&=j-x/h (29)
he=hj—x (30)
x=hj-h¢ (31)
X .
(Fj =j-g (32)
The derivative is
dx =-hdg (33)
dt = —%dx (34)

Note that h is the segment length.

Change the integration variable in equation (27) using equation (33). Also, apply the
integration limits.

_EAth{ U(x )H—U(x) }dg+hmm2j0 U(x) }2 de =0 (35)

EAth{ U(g)}{—U(g) }dg hmo?2 fo UE) 12 dg=0 (36)

The displacement function becomes.

UE=Ljujg+Louj, 0 <&<l (37)



The slope equation is

U'€)=L1'yj1+L2'h6j1 , 0 <E<1

L1 =1-¢

Now Let

Ux)=LT &, (j-Dhs<xsjh, &=j-x/h

where

U(x)=diLT a, (j-Dh<x<ijh, &=j-x/h
o
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iU(x)z(-ijL'T a,  (j-Dh<x<ijh, &=j-x/h
dx h)—

where

Note that primes indicate derivatives with respect to &.

Equation (36) becomes
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For a system of n elements,

Kj-AMj=0, j=12..n
where
EA -1 A
K j TO{I:I: }da
Mi= h 1{|_|_T}d
J Mo == E
kz(oz

Note that only the upper triangular components are shown due to symmetry.
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LLT =
(22
Recall
. 1 T }
M j= hmj0 {I__L ds
. 1-26+8%2  g-g?
M j= hmj0 , de
g
2 1 1.2 1.3 1
p— +_ R
E-¢ 3 zé’ 3§
Mj= hm
1§3
3 0
-1+ L1
3 2 3
Mj— hm
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Mj= hm (71)
1/3

M = hﬂ[z 1} (72)
6 2

Again, m is mass per length, and h is the element length.

A derivation of the mass and stiffness matrices via the energy method is given in
Appendix A.

Examples are given in Appendices B and C.
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APPENDIX A

Energy Method

The total strain energy P of a bar is

2
1L du
P_EIO EA[d—Xj dx

The total kinetic energy T of a bar is
1 o2cL rp2
T=2on J.O m{u]¢ dx

Again let

Ux)=L' &, (j-Dh<xsjh, &=j-x/h

iU(x)z(—ijL'T a, (j-Dh<x<ijh, E=j-—x/h
dx h)—
d& = —dx/h

Assume constant mass density and stiffness.

The strain energy is converted to a localized stiffness matrix as
EA (1 o T
Kj= T-[O { LL } dg

The kinetic energy is converted to a localized mass matrix as

12

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)



M= hmjé{lzﬂ}dg (A7)

The total strain energy is set equal to the total kinetic energy per the Rayleigh method.

The result is a generalized eigenvalue problem. For a system of n elements,

Kj-w?Mj=0,  j=1,2,3 ... (A-8)
where
M | = h_mv 1} (A-9)
6| 2
Kj :EF ‘1} (A-10)
h 1

Again, m is mass per length.
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APPENDIX B

Example 1: Free-Free Rod, FE Model, Two Elements

The finite element model of the rod is shown in Figure B-1. It consists of two elements
and three nodes. The rod has length L. Assume constant mass and stiffness Each
element has an equal length.

E1l E2

N1 N2 N3

Figure B-1.

The boundary conditions are

au =0 (B-1)
dx x=0
e (B-2)
dX |y
The generalized eigenvalue problem is
Kj—xMj:O, j=12,...,n (B-3)
The elemental mass matrix is
M= mz ot (B-4)
6 2
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The elemental stiffness matrix is

The generalized eigenvalue problem with global mass and stiffness matrices is

det< —|-1 2 -1|-

1 -1 0 )
EA hmo
h

0 -1 1

6EA

1 -1 0 2
2 2
detd -1 2 —1—{h m‘”}l

0 -1 1

1 -1 0 2
dets -1 2 -1 —(%}1
0 -1 1 0
Note that
k_[hzmmzl
EA
Let
EA
C=,—
m
h=L/2
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The eigenvalues are obtained via Matlab as follows. (See also References 2 and 3.)

k =
1 -1 0
-1 2 -1
0 -1 1
m =
0.3333 0.1667 0

0.1667 0.6667 0.1667
0 0.1667 0.3333

>> [ModeShapes,Eigenvalues]=eig(k,m);
>> Eigenvalues

Eigenvalues =
-0.0000 0 0
0 3.0000 0
0 0 12.0000

The resulting natural frequencies and mode shapes are shown in Table B-1 and B-2,
respectively. The mode shapes for the second and third modes are plotted in Figures B-2
and B-3, respectively.

Table B-1. Free-Free Rod, Natural Frequencies
[ FEM FEM FEM Classical Solution
A o j (rad/sec) fi (Hz) fi (Hz)
1 0 0 0 0
2 3.0 3.464 c/L 0551 c/L 05 c/L
3 12.0 6.928 c/L 1.103 c/L 10 c/L

Table B-2. Free-Free Rod,
Displacement Eigenvectors with Arbitrary Scale
x/L Mode 1 Mode 2 Mode 3
0 0.577 0.707 0.577
0.5 0.577 0.000 -0.577
1.0 0.577 -0.707 0.577
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FREE-FREE ROD SECOND MODE
1.0

— — Classical
—— FE Model, 2 Elements

DISPLACEMENT
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POSITION (X/L)
Figure B-2.

FREE-FREE ROD THIRD MODE

1.0

— — Classical
—— FE Model, 2 Elements

DISPLACEMENT

1.0 ; ; ;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

POSITION (X/L)
Figure B-3.
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APPENDIX C

Example 1: Fixed-Free Rod, FE Model, Four Elements

The finite element model of the rod is shown in Figure C-1. It consists of four elements
and five nodes. The rod has length L. Each element has an equal length.

El E2 E3 E4

N1 N2 N3 N4 N5

Figure C-1.

The boundary conditions are

u@)=0 (Fixed end) (C-1)
a =0 (Free end) (C-2)
dx [y

The generalized eigenvalue problem with global mass and stiffness matrices is assemble
in the same manner as the example in Appendix B. The open boundary condition must
be considered, however.

Application of the U(0) =0 boundary condition causes each entry in the first column
and first row of each matrix to equal zero. The last column and last row are thus
removed from the problem. The resulting eigenvalue problem is

2 -1 0 0 4100
1 2 -1 0 1410

det _(~ -0 (C-3)
0 -1 2 -1/ (6)/0 1 4 1
0 0 -1 1 00 1 2
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Recall
h22

mao
A= —— C-4
EA (C-4)
c= |EA (C-5)
m
h=L/4 (C-6)

The eigenvalues are obtained via Matlab as follows.

m =

0.6667 0.1667 0 0
0.1667 0.6667 0.1667 0
0 0.1667 0.6667 0.1667
0 0 0.1667 0.3333
k =
2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 1

>> [ModeShapes,Eigenvalues]=eig(k,m);
>> Eigenvalues

Eigenvalues =
0.1562 0 0 0
0 1.5545 0 0
0 0 5.1295 0
0 0 0 10.7268
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The resulting natural frequencies are given in Table C-1. The first and second mode
shapes are plotted in Figures C-2 and C-3, respectively. Each mode shape has an
arbitrary scale factor.

Table C-1. Fixed-Free Rod, Natural Frequencies
[ FEM FEM FEM Classical Solution
A o j (rad/sec) fi (Hz) fi (Hz)
1 0.1562 1581c/L 025 c/L 025 c/L
2 1.5545 4987c/L 0.79 c/L 0.75 c/L
3 5.1295 9.060 c/L 144 c/L 1.25 c/L
4 10.7268 13.101 c/L 209 c/L 175 c/L

Table C-2. Fixed-Free Rod,

Displacement Eigenvectors with Arbitrary Scale
x/L Mode 1 Mode 2 Mode 3

0 0 0 0

0.25 -0.274 0.733 0.890
0.50 -0.507 0.561 -0.681
0.75 -0.662 -0.304 -0.369
1.00 -0.716 -0.793 0.963
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1.0

DISPLACEMENT

-1.0

Figure C-2.

1.0

0.5

DISPLACEMENT
o

-1.0

Figure C-3.

FIXED-FREE ROD FIRST MODE

— — Classical
—— FE Model, 4 Elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

POSITION (X/L)

FIXED-FREE ROD SECOND MODE

3 3 3 | —— Classical
T T | | —— FE Model, 4 Elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

POSITION (X/L)
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