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Abstract

Two andyticd methods, the Transfer Matrix method (TMM) and the Finite Element method
(FEM), are discussed for evauating the latera naturd frequencies of a shaft rotor system.
Hypotheticd cases are consdered for evduating fundamenta and higher frequencies. A
MATLAB program is developed for the Finite Element method. It may be ussful for evauating
the frequencies of the system's higher modes as well as the fundamentd frequency.

I ntroduction

Condder a rotor shaft system in which the operating speed matches the frequencies of the
higher mode. In this casg, it is necessary to evauate the higher frequencies of the system. It is
necessary to know the higher frequencies while taking the rotor through a critica speed to an
operationa speed. To avoid fallures of shafting, the generd practice in the design of rotorsisto
determine the bending critical speeds as wdl as higher frequencies. For mogt rotors, it is the
fundamentad mode which fdls in the running speed zone. There are severd methods of
cadculation of the critica speed:

1. Dunkerley method

2. Rayleigh method

3. Trander Matrix method
4. Finite Element method

The firgt two methods are suitable for estimating the fundamenta frequency by hand cadculation.
The transfer matrix method and FEM would require the use of computers. The third and fourth
methods are aso useful for evaduating the higher frequencies. In this paper, higher frequency
methods are discussed, specificdly the Transfer Matrix method and Finite Element method.



Transfer Matrix Method

In a manner amilar to Holzer method, Myklestad and Prohl [1] developed highly successful
method of computation for the bending critical speeds of ashaft. Consider an n mass system,
each mass representing agear, adisk, or aflywhed etc. All these masses are teken as
lumped with their gyroscopic inertia neglected. We adopt a root searching technique to
determine the natura frequency w . The agorithm of the program for TMM is asfollows

TMM Algorithm

Takethetrid vaue of frequency w .

Assgn the dement in the matrix with different variable.

Form the mass and field matrix.

Arrange the matrix in the order of multiplication and multiply it.
Apply boundary condition to overadl trandfer matrix.
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Find the determinant value. If it is zero, or nearly zero, then thisw will be natura
frequency, otherwise repesat the same procedure for different values of w ftill the
determinant approaches to zero.

7. After evauating the first mode, repeat the same procedure by starting the frequency vaue
higher than the evaluated one.

Another method for evauating the fundamenta frequency, aswell as higher frequencies, isthe
Finite Element Method.

Finite Element M ethod

The main procedures in the finite dement andyssare [2]

Read input data and alocate proper array sizes.
Cdculate element matrices and vectors for every element.
Assemble matrices and vectors into the system matrix and vector.

Apply condraints to the system matrix and vector.
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Solve the matrix equation for the eigenvaues.
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Figure 1: Beam Element

Input Data
The mgor input parameters needed for the finite dement analys's program are;

the number of tota nodes in the system

the number of totd dementsin the system

coordinate vaues of every nodein termsof the globa coordinate system

types of every dement

information for boundary condition

element properties (modulus of eadticity, moment of inertia, length, area, poison'sratio,
etc.)

Element Matricesfor Stiffnessand Mass

The beam dement is used for analyss of the rotor shaft sysem. A typicd beam dement is
showninFgurel. w, and w, arethe vertica disolacements at points 1 and 2, respectively.

g1 and g, are the dopes at point 1 and 2, respectively. | is length of beam dement. The
derivation of the stiffness and mass matricesis given in Appendix A.

The following are the stiffness matrix and mass matrices used for eva uating the naturd
frequencies.



Thediffnessmatrix [K] is
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Once these matrices are computed, they are assembled into the globa system giffness and mass

matrices.



Application of Congraints

The boundary condition of the smply supported shaft rotor system is gpplied to the globa mass
and giffness matrices, i.e. the deflection at each smply supported node point is zero.

Solving for the eigenvalues

Once the system matrices are modified than smply using following command linein MATLAB
software, we can evauate the eigenvaue of the system.

w = sort(eig(K, M))

This two methods are demonstrated by solving the following three problems.

Problem - |

A uniform shaft with two disks and supported bearingsisshown in Figure 2.  Evauate the
natura frequencies of the system.

Problem - |1

A stepped shaft with one disk and supported bearingsis shown in Figure 3. Evaduate the
natura frequencies of the system.

Problem - 111

A uniform shaft with three disks and supported bearingsis shown in Figure4.  Evauate the
natura frequencies of the system.

Solution

The Trandfer Matrix Method and modified computer program are used to obtain the natura
frequencies shown in Table 1. The table dso shows the natural frequencies using FEM.

6, 4, and 4 beam elements are considered for evauating the frequencies of problemsl,
1 and I, respectivdy. Typicd FEM modds for the above three problems are shown in
Figures 5, 6 and 7. In these figures, Roman letters denote the number of eements. The length
of each dement isdso given.  All problems are evauated using consstent, lumped and diagond
mass matrix. The results are shown in Table 2. Table 1 shows a comparison of the Transfer
matrix method and the Finite dement method using alumped mass matrix.
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Figure 2: Example 1. Two disk and shaft system

All dimengons are in mm unless otherwise specified.
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Figure 3: Example 2. Step shaft and disk system

All dimengons are in mm unless otherwise specified.
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Figure 4: Example 3. Three disk and shaft system

All dimensons arein mm unless otherwise specified.
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Figure 6: FEM modd for example 2
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Figure 7. FEM modd for example 3

Table 1. Comparison of naturd frequencies using trandfer matrix method with FEM

Problem Transfer Matrix Method Finite Element Method with
Lumped Mass Matrix
fn 1(H2) fn 2 (H2) fn 3 (H2) fn1(H2) fn 2 (H2) fn 3 (H2)
I 18.34 78.06 * 18.42 77.24 873.36
[ 24.26 * * 24.31 906.09 1320.00
Il 16.52 88.87 167.52 15.70 81.23 151.67
1l 15.54** 79.24** 147.85 15.70 81.23 151.67

* - unable to evaluate using developed program due to divergence problem.

** - ghaft massis added into rotor mass for transfer matrix method.
1,2,3 - denotes firgt, second, and third mode frequencies respectively.
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Table 2: Comparison of naturd frequencies usng FEM with different mass matrix

Problem | Consistent Mass Matrix Lumped Mass Matrix Diagond Mass Matrix
No.
fn fn2 fn3 fnl fn2 fn3 fnl fn2 fn3
1(H2) (H2) (H2) (H2) (H2) (H2) (H2) (H2) (H2)
I 1841 7731 1009.03 | 1842 77.24 87336 | 1841 77.18 1113.09
Il 24.32 1026.18 | 1804.68 | 24.31 906.09 | 1320.00 | 24.29 1162.11 | 1526.99
Il 15.70 81.42 15377 | 15.70 81.23 151.67 | 15.69 80.84 150.88

1,2,3 - denotesfirgt, second, and third mode frequencies respectively.

The corresponding mode shapes of the above examples are shown in Figures 8, 9, and 10. The
mode shapes are plotted as relaive amplitude versus length of beam.

Conclusion

Both the Transfer Matrix method and the Finite Element method are suitable for evauating the
fundamenta as wdl as higher frequencies. The Transfer Matrix method gave very smilar results
to the Finite Element modd with lumped mass for the fundamental frequency, as shown in Table
1

The Transfer Matrix method for problem 11 was only able to obtain the fundamenta frequency.
It was unable to converge a higher frequencies. When the number of dements is increased
from 2 to 4, the values of higher frequencies is obtained, as shown in Table 1. The Transfer
Matrix method and FEM give nearly same vaues of the frequencies when the mass of the shaft

isnegligible.

Problem I11 gives a better idea of neglecting mass and adding mass on the system with TMM.
The effect of mass matrix in FEM isaso observed in Table 2. For higher modes, TMM takes
more computation time due to iterations, but that is not case with FEM.  If engineers take more
eements in the same system, then it will take more time for computation otherwise it is faster
than TMM. Sometimes more elements are required for increasing precison of egenvalues to
achieve exact solution and mode shapes.

The Rayleigh Ritz method dso gives the higher frequencies, but it requires judgement of the
mode shape. It istedious and time consuming.
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Figure 8. Mode Shape of Example 1
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Figure 9. Mode Shape of Example 2

13



Displacement

Displacement

Displacement

FIRST MODE

-0.2
-0.4
0 500 1000 1500 2000
X (mm)
SECOND MODE
04

-0.4
0 500 1000 1500 2000
X (mm)
THIRD MODE
04

0 500 1000 1500 2000

x (mm)

Figure 10. Mode Shape of Example 3
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Appendix A

Stiffness M atrix

A two-node beam dement having four degree of freedom is shown in Figure 1 [3]. Rotation q
isassumed to be small, sothat q = dw / dx.

Four degree of freedom define acubic latera displacement field,

w=[N][wy gz Wy go]" =[N]{d} 5
where,

[N] = assumed shape functions is corresponding to cubic latera displacement and are given
inTable 3,

gp = rotation at node 1,
g, = rotation at node 2,
w, = latera digplacement at node 1,
w, = lateral displacement at node 2,

15



X
® |
o
X
o !

(@)

m
(b)

©

<

Figure 11:
Typica shape functions of a cubic fitted to ordinatesand dopesat x = Oand at x = |
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Table 3:

Typica shape functions of a cubic fitted to ordinates and dopesat x=0 and at x= |.

Figure Shape function At x=0 At x= |
N| Ni,x Ni
1lla 3x? 2x° | 1 0 0
N1:1'|L2+ |3
11b 2x2 x* | 0 1 0
No =X+
11c 3x? 2x° 0 0 1
N, = E E
11d x> X3 0 0 0
LT
For constant El, the dement stiffness matrix given by
gl2 61 -12 6l
é 2 2 U
Elz61 4° -6 2°;
= ~ T =—e u 6
(KI=GBI'EBIN=178 1, g 15 - qy (6)
g6l 27 -6l 42§
d? € 6 12 4 6x 6 12x 2 6xU
B=_FN=E Z+5 Tz s T ?
dx g 1° 1 N L 17y

Mass Matrix

A mass matrix isadiscrete representation of a continuous digtribution of mass. A consstent
mass matrix is defined by

[M]cons= ¢y [NIT[N]aV =

6156 22l 54 -13y
mS22 42 13 -32!
420654 13 156 - 22I0
13 -32 -220 42§
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It istermed “consgstent” because [N] represents the same shape functions as are used to
generate dement diffness matrix. A smpler and historicaly earlier formulation is the lumped
mass matrix, which is obtained by placing particle masses M, at nodes i of an element, such

that é m isthetota dement mass. Paticle “lumps’ have no rotary inertia unless rotary

inertia is arbitrarily assigned. A lumped mass matrix is diagond, but a conggent matrix is
not. Historica lumped mass matrix is given by Lumped mass matrix,

én/2 0 0 Ou
8 ¥
0 0 o0 oY
M =8 G
[ ]Lumped €0 0 m/2 od
€0 0o o0 of

9)

Ancther scheme is HRZ Lumping scheme.  The HRZ scheme is an effective method for
producing a diagona mass matrix. It isrecommenced for arbitrary dements. Theideaisto use
only the diagona terms of the consstent mass maitrix, but to scale them in such a way that the
total mass of the dement is preserved. The specific procedure steps are as follows.

1. Compute only diagond coefficients of the congstent mass matrix.
2. Compute the total mass of the dement, m

3. Compute anumber s by adding the diagond coefficients M. associated with trandation
d.o.f (but not rotationa d.of, if any) that are mutudly pardld and in the same direction.

4. Scde dl the diagond coefficients by multiplying them by the ratio Vs, thus preserving the
total mass of the dement.

As an example, consder a beam eement, and follow the steps.
1. Diagond eement of consstent mass matrix,

g5 0 0 0y
- mgo 42 0 og
[ ]_420§0 0 156 04

e u
€0 0 0 47

(10)
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2. Totd massdement isdement ism,
_ _ _ 312 m _ 420
3. S—M(l,].)+M(3,3) —m(156+156)—4—20m Hence ?—m
4. Hence Diagond mass matrix [M]diag’
m
[Mldiag =—_[m] (11)
ém/2 0 0 0 U
é 2 u
~0 m</78 O 0o =
[Mlgiag = § / o (12)
o 0 m2 0
é 1]
g0 0 0 m?/78f
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