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Abstract

Two analytical methods, the Transfer Matrix method (TMM) and the Finite Element method
(FEM), are discussed for evaluating the lateral natural frequencies of a shaft rotor system.
Hypothetical cases are considered for evaluating fundamental and higher frequencies.  A
MATLAB program is developed for the Finite Element method.  It may be useful for evaluating
the frequencies of the system's higher modes as well as the fundamental frequency.

Introduction

Consider a rotor shaft system in which the operating speed matches the frequencies of the
higher mode.  In this case, it is necessary to evaluate the higher frequencies of the system. It is
necessary to know the higher frequencies while taking the rotor through a critical speed to an
operational speed.   To avoid failures of shafting, the general practice in the design of rotors is to
determine the bending critical speeds as well as higher frequencies.  For most rotors, it is the
fundamental mode which falls in the running speed zone.  There are several methods of
calculation of the critical speed:

1.  Dunkerley method
2.  Rayleigh method
3.  Transfer Matrix method
4.  Finite Element method

The first two methods are suitable for estimating the fundamental frequency by hand calculation.
The transfer matrix method and FEM would require the use of computers. The third and fourth
methods are also useful for evaluating the higher frequencies.  In this paper, higher frequency
methods are discussed, specifically the Transfer Matrix method and Finite Element method.
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Transfer Matrix Method

 In a manner similar to Holzer method, Myklestad and Prohl [1] developed highly successful
method of computation for the bending critical speeds of a shaft.   Consider an  n mass system,
each mass  representing   a gear,   a disk,   or a flywheel etc.   All these masses are taken as
lumped with their gyroscopic inertia neglected.  We adopt a root searching technique to
determine the natural frequency ω .  The algorithm of the program for TMM is as follows:

TMM Algorithm

1.   Take the trial value of frequency ω .

2.   Assign the element in the matrix with different variable.

3.   Form the mass and field matrix.

4.   Arrange the matrix in the order of multiplication and multiply it.

5.   Apply boundary condition to overall transfer matrix.

6. Find the determinant value.  If it is zero, or nearly zero, then this ω  will be natural
frequency, otherwise repeat the same procedure for different values of ω  till the
determinant approaches to zero.

7. After evaluating the first mode, repeat the same procedure by starting the frequency value
higher than the evaluated one.

Another method for evaluating the fundamental frequency, as well as higher frequencies, is the
Finite Element Method.

Finite Element Method

The main procedures in the finite element analysis are  [2]

1.   Read input data and allocate proper array sizes.

2.   Calculate element matrices and vectors for every element.

3.   Assemble matrices and vectors into the system matrix and vector.

4.   Apply constraints to the system matrix and vector.

5.   Solve the matrix equation for the eigenvalues.



3

Figure 1:  Beam Element

Input Data

The major input parameters needed for the finite element analysis program are:

• the number of  total nodes  in the system
• the number of total elements in the system
• coordinate values of  every  node in  terms of the global  coordinate system
• types of every element
• information for  boundary condition
• element properties (modulus of elasticity, moment of inertia, length, area, poison's ratio,

etc.)

Element Matrices for Stiffness and Mass

The beam element is used for analysis of the rotor shaft system. A typical beam element is
shown in Figure 1. w1   and w2   are the vertical displacements at points 1 and 2, respectively.

1θ  and 2θ  are  the slopes at point 1 and 2, respectively.   l is length of beam element.  The
derivation of the stiffness and mass matrices is given in Appendix A.

The following are the stiffness matrix and mass matrices used for evaluating the natural
frequencies.
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The stiffness matrix ]K[  is
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 The consistent mass matrix consM ][   is
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The lumped mass matrix LumpedM ][   is
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The diagonal mass matrix diagM ][   is
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Assembly of  Element  Matrices

Once these matrices are computed, they are assembled into the global system stiffness and mass
matrices.
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Application of  Constraints

The boundary condition of the simply supported shaft rotor system is applied to the global mass
and stiffness matrices, i.e. the deflection at each simply supported node point is zero.

Solving for the eigenvalues

Once the system matrices are modified than simply using following command line in MATLAB
software, we can evaluate the eigenvalue of the system.

ω = sqrt eig K M( ( , ))

This two methods are demonstrated by solving the following three problems.

Problem - I

A uniform shaft with two disks and supported bearings is shown in Figure 2.    Evaluate the
natural frequencies of the system.

Problem - II

A stepped shaft with one disk and supported bearings is shown in Figure 3.    Evaluate the
natural frequencies of the system.

Problem - III

A uniform shaft with three disks and supported bearings is shown in Figure 4.    Evaluate the
natural frequencies of the system.

Solution

The Transfer Matrix Method and modified computer program are used to obtain the natural
frequencies shown in Table 1.  The table also shows the natural frequencies using FEM.

6, 4, and 4 beam elements are considered for evaluating the frequencies of problems I,
II  and III, respectively. Typical FEM models for the above three problems are shown in
Figures 5, 6 and 7.  In these figures, Roman letters denote the number of elements. The length
of each element is also given.   All problems are evaluated using consistent, lumped and diagonal
mass matrix.  The results are shown in Table 2.  Table 1 shows a comparison of the Transfer
matrix method and the Finite element method using a lumped mass matrix.
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Figure 2: Example 1.  Two disk and shaft system

All dimensions are in mm unless otherwise specified.
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Figure 3:  Example 2.  Step shaft and disk system

All dimensions are in mm unless otherwise specified.
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Figure 4: Example 3.  Three disk and shaft system

All dimensions are in mm unless otherwise specified.
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The dimensions are in units of mm.

Figure 5: FEM model for example 1

Node point

Element

Rotor mass added in the node

1 2 3 4 5 6 7

I II III IV V VII

62.5 62.5 125 125 125 125

Node point

Element

Rotor mass added in the node

1 2 3 4 5

I II III IV

125 125 125 125



10

Figure 6: FEM model for example 2

Figure 7: FEM model for example 3

Table 1: Comparison of natural frequencies using transfer matrix method with FEM
Problem Transfer Matrix Method  Finite Element Method with

 Lumped Mass Matrix
fn 1(Hz) fn 2 (Hz) fn 3 (Hz) fn 1 (Hz) fn 2 (Hz) fn 3 (Hz)

I 18.34 78.06 * 18.42 77.24 873.36
II 24.26 * * 24.31 906.09 1320.00
III 16.52 88.87 167.52 15.70 81.23 151.67
III 15.54** 79.24** 147.85 15.70 81.23 151.67

 * -  unable to evaluate using developed program due to divergence problem.
** -  shaft mass is added into rotor mass  for transfer matrix method.
1,2,3 - denotes first, second, and third mode frequencies respectively.

Node point

Element

Rotor mass added in the node

1 2 3 4 5

I II III IV

500 500 500 500
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Table 2: Comparison of natural frequencies using FEM with different mass matrix
Problem
No.

Consistent Mass Matrix Lumped Mass Matrix Diagonal Mass  Matrix

fn
1(Hz)

fn 2
(Hz)

fn 3
(Hz)

fn 1
(Hz)

fn 2
(Hz)

fn 3
(Hz)

fn 1
(Hz)

fn 2
(Hz)

fn 3
(Hz)

I 18.41 77.31 1009.03 18.42 77.24 873.36 18.41 77.18 1113.09
II 24.32 1026.18 1804.68 24.31 906.09 1320.00 24.29 1162.11 1526.99
III 15.70 81.42 153.77 15.70 81.23 151.67 15.69 80.84 150.88

 1,2,3 - denotes first, second, and third mode frequencies respectively.

The corresponding mode shapes of the above examples are shown in Figures 8, 9, and 10.  The
mode shapes are plotted as relative amplitude versus length of beam.

Conclusion

Both the Transfer Matrix method and the Finite Element method are suitable for evaluating the
fundamental as well as higher frequencies. The Transfer Matrix method gave very similar results
to the Finite Element model with lumped mass for the fundamental frequency, as shown in Table
1.

The Transfer Matrix method for problem II was only able to obtain the fundamental frequency.
It was unable to converge at higher frequencies.  When the number of elements is increased
from 2 to 4, the values of higher frequencies is obtained, as shown in Table 1.  The Transfer
Matrix method and FEM give nearly same values of the frequencies when the mass of the shaft
is negligible.

Problem III gives a better idea of neglecting mass and adding mass on the system with TMM.
The effect of mass matrix in FEM is also observed in Table 2.   For higher modes, TMM takes
more computation time due to iterations, but that is not case with FEM.   If engineers take more
elements in the same system, then it will take more time for computation otherwise it is faster
than TMM.  Sometimes more elements are required for increasing precision of eigenvalues to
achieve exact solution and mode shapes.

The Rayleigh Ritz method also gives the higher frequencies, but it requires judgement of the
mode shape.  It is tedious and time consuming.
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Figure 8.  Mode Shape of Example 1
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Figure 9.  Mode Shape of Example 2
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Figure 10.  Mode Shape of Example 3
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Appendix A

Stiffness Matrix

A two-node beam element having four degree of freedom is shown in Figure 1 [3].  Rotation  θ
is assumed to be small, so that  θ = dw / dx.

Four degree of freedom define a cubic lateral displacement field,

}d]{N[]][N[ T
2211 =θθ= www (5)

where,

[N] =   assumed shape functions  is  corresponding to cubic lateral displacement and are given
in Table 3,

1θ   = rotation at node 1,

2θ  = rotation at node 2,
w1  = lateral displacement at node 1,
w2  = lateral displacement  at node 2,
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Figure 11:
Typical shape functions of a cubic fitted to ordinates and slopes at x = 0 and at x =  l

l

x = 0 x = l
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1
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Table 3:
Typical shape functions of a cubic fitted to ordinates and slopes at x=0 and at x= l.
Figure Shape function  At  x = 0 At  x = l

Ni               Ni x, Ni               Ni x,
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For constant EI, the element stiffness matrix given by
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Mass  Matrix

A mass matrix  is a discrete  representation of a continuous distribution  of mass.    A consistent
mass matrix is defined by
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It is termed  “consistent”  because [N]  represents the same  shape  functions as are  used to
generate element stiffness matrix.  A simpler and historically earlier formulation is the lumped
mass matrix, which is obtained by placing particle masses M i  at nodes i of an element, such

that mi∑  is the total  element  mass.   Particle  “lumps”  have no rotary inertia  unless  rotary
inertia  is arbitrarily assigned.  A  lumped mass matrix  is diagonal, but a  consistent  matrix  is
not.  Historical lumped mass matrix is given by Lumped mass matrix,
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Another scheme is  HRZ Lumping scheme.    The HRZ scheme is an effective method for
producing a diagonal mass matrix.  It is recommenced for arbitrary elements.  The idea is to use
only the diagonal terms of the consistent mass matrix, but to scale them in such a way that the
total mass of the element is preserved.  The specific procedure steps are as follows.

1.  Compute only diagonal coefficients of the consistent mass matrix.

2.  Compute the total mass of the element, m

3.  Compute a number s by adding the diagonal coefficients M ii  associated with translation
d.o.f (but not rotational d.o.f, if any) that are mutually parallel and in the same direction.

4.  Scale all the diagonal coefficients by multiplying them by the ratio m/s, thus preserving the
total mass of the element.

As an example, consider a beam element, and follow the steps.

1.  Diagonal element of consistent mass matrix,
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2.  Total mass element is element is m,
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