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Two-degree-of-freedom System

Consider a two-degree-of-freedom system, as shown in Figure 1.
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Figure 1.

The dashpot element between the masses is omitted for brevity.

The equation of motion from Reference 1 is
m; 0 || X1 Le el R, k -k x1 _ 0
0 mp||Xp -c ¢ |[Xx2 -k k ||x2 0

Represent as
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Consider the undamped, homogeneous form of equation (2).

MX+Kx=0
Seek a solution of the form

X = gexp(jut)

The q vector is the generalized coordinate vector.

Note that
X = jooﬁexp(joot)

% = -0’ Fexp(jox)

Substitute these equations into equation (2).

-~ ™M Gexp(jot) + K gexp(jot) = 0

{ ~ M+ K} Elexp(joot) =0
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Equation (14) is an example of a generalized eigenvalue problem. The eigenvalues can

be found by setting the determinant equal to zero.
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[kz —(,ozml}[kz —oozmz}—kzz =0

(,04m1m2 —002[m2k2 +m1k2] =0

w =0

002m1m2 —[m2k2 +m1k2] =0
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The eigenvectors are found via the following equations.
Kqp= 0

{K-w,> M| q,=0

where
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An eigenvector matrix Q can be formed. The eigenvectors are inserted in column format.

Q=[ @l @]
Vi Wi
V2 W2
The eigenvectors represent orthogonal mode shapes.

Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized
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eigenvector matrix Q can be obtained such that the following orthogonality relations are

obtained.
QTMQ=1
OTkQ=0

(30)
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where
superscript T represents transpose

I is the identity matrix

Q is a diagonal matrix of eigenvalues

Note that
Vi W
Q ={A . } (32)
V) W
Vi ¥
QT:{A . } (33)
w1 Wp

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.
Further discussion is given in the references.

Now define a modal coordinate n(t) such that

x=Qn (34)

Substitute equation (34) into equation (2).
MQH +CQA+KQN =F (35)
Premultiply by the transpose of the normalized eigenvector matrix.
Q"™MQ7 +Q'cQn +Q'KQN =Q'F (36)
The orthogonality relationships yield

17+QTcQn+Qn=Q'F (37)



Furthermore, the following assumption is made.

Tegr=[" ° (38)
Qfeafi=\y ,e o

where §; isthe modal damping ratio for mode i.
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The two equations are now decoupled in terms of the modal coordinate.
A1 =0 (41)
Ay +28 @y p +wp? Ny =0 (42)
The solution to the first is
N1(t) =N1(0)t+n1(0) (43a)
n1(t) =n1(0) (43b)

The following equation is obtained via Reference 5.
1 . .
n2(t) =exp(-&2 wy 1) {ﬂz(O)COS(de O+ oy 2202120 + A2 O)fsin{wg2 t)}

(44)



N2(t) =

~& oy exp(~&p wy t) {ﬂz(O)COS(wdz t) +w%12[52wzr12(0) +112(0)]sin(cogn t)}

+ 047 exp(— &2 Wy t){‘nz(O)Sin(wdz t%@[izwzrlz(o)mz(o)] cos(wg2 t)}

(45)
N2(t) =—=&2 wp N2 (1)

+wqp exp(-& wy t) {‘ N2 (0)sin(wgy t)+ 0)%12 [£200212 (0) +115 (0)] cos(wyn t)}

(46)
() = =28 Wy M (1) =6 N2 (1) (47)
Recall
X=Qmn (48)
The displacements are
X1(t) =vini() +wpno) (49)
x2(t) =vani(t) +wpna(t) (50)
The velocities are
x1() =vin1t) +wino(y) (51)
X2 () =vo N +wN2(t) (52)

X1(H) =viA10) t+winNo(t) (53)



X2(t) =vp N1(0)t+woNa(t) (54)
The accelerations are

X1(0) = v A1) +wifio(r) (55)

X2 =va A1) +wah2(t) (56)
Recall equation (41). The accelerations simplify to

X1(t) = w1 fio(p) (57)

X (t) =woH2(t) (58)

Now consider the initial conditions. Recall
x=07 (59)
Thus

x(0)=Qn(0) (60)

QT Mx(0)=QT MQ (o) (61)

Recall
QTMO =1 (62)
QT Mx(0)=17(0) (63)

QT Mx(0)=7(0) (64)



Finally, the transformed initial displacement matrix is

A basis for a solution is thus derived.
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