FREE VIBRATION OF A SEMI-DEFINITE SYSTEM SUBJECTED TO INITIAL CONDITIONS

By Tom Irvine
Email: tomirvine@aol.com
November 8, 2008

Two-degree-of-freedom System

Consider a two-degree-of-freedom system, as shown in Figure 1.

Figure 1.

The dashpot element between the masses is omitted for brevity.
The equation of motion from Reference 1 is

$$
\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \tag{1}\\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{\mathrm{x}}_{1} \\
\ddot{\mathrm{x}}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{c} & -\mathrm{c} \\
-\mathrm{c} & \mathrm{c}
\end{array}\right]\left[\begin{array}{c}
\dot{\mathrm{x}}_{1} \\
\dot{\mathrm{x}}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Represent as

$$
\begin{equation*}
M \overline{\mathrm{x}}+C \overline{\mathrm{x}}+K \bar{x}=F \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{M}=\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right] \tag{3}\\
\mathrm{C}=\left[\begin{array}{cc}
\mathrm{c} & -\mathrm{c} \\
-\mathrm{c} & \mathrm{c}
\end{array}\right] \tag{4}\\
\mathrm{K}=\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right] \tag{5}\\
\mathrm{F}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \tag{6}
\end{gather*}
$$

Consider the undamped, homogeneous form of equation (2).

$$
\begin{equation*}
M \overline{\ddot{x}}+K \bar{x}=\overline{0} \tag{7}
\end{equation*}
$$

Seek a solution of the form

$$
\begin{equation*}
\overline{\mathrm{x}}=\overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{8}
\end{equation*}
$$

The q vector is the generalized coordinate vector.
Note that

$$
\begin{gather*}
\overline{\mathrm{x}}=j \omega \overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{9}\\
\overline{\mathrm{x}}=-\omega^{2} \overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{10}
\end{gather*}
$$

Substitute these equations into equation (2).

$$
\begin{align*}
& -\omega^{2} M \bar{q} \exp (j \omega t)+K \bar{q} \exp (j \omega t)=\overline{0} \tag{11}\\
& \left\{-\omega^{2} M+K\right\} \bar{q} \exp (j \omega t)=\overline{0} \tag{12}
\end{align*}
$$

$$
\begin{align*}
& \left\{-\omega^{2} \mathrm{M}+\mathrm{K}\right\} \overline{\mathrm{q}}=\overline{0} \tag{13}\\
& \left\{\mathrm{~K}-\omega^{2} \mathrm{M}\right\} \overline{\mathrm{q}}=\overline{0} \tag{14}
\end{align*}
$$

Equation (14) is an example of a generalized eigenvalue problem. The eigenvalues can be found by setting the determinant equal to zero.

$$
\begin{gather*}
\operatorname{det}\left\{K-\omega^{2} \mathrm{M}\right\}=0 \tag{15}\\
\operatorname{det}\left\{\left[\begin{array}{cc}
\mathrm{k}_{2} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right]\right\}=0 \tag{16}\\
\operatorname{det}\left\{\begin{array}{c}
\mathrm{k}_{2}-\omega^{2} \mathrm{~m}_{1} \\
-\mathrm{k}_{2} \\
\mathrm{k}_{2}-\omega^{2} \mathrm{~m}_{2}
\end{array}\right\}=0 \tag{17}\\
{\left[\mathrm{k}_{2}-\omega^{2} \mathrm{~m}_{1}\right]\left[\mathrm{k}_{2}-\omega^{2} \mathrm{~m}_{2}\right]-\mathrm{k}_{2}^{2}=0} \tag{18}\\
\omega^{4} \mathrm{~m}_{1} \mathrm{~m}_{2}-\omega^{2}\left[\mathrm{~m}_{2} \mathrm{k}_{2}+\mathrm{m}_{1} \mathrm{k}_{2}\right]=0 \tag{19}\\
\omega_{1}=0 \tag{20}\\
\omega^{2} \mathrm{~m}_{1} \mathrm{~m}_{2}-\left[\mathrm{m}_{2} \mathrm{k}_{2}+\mathrm{m}_{1} \mathrm{k}_{2}\right]=0 \tag{21}
\end{gather*}
$$

$$
\begin{align*}
& \omega^{2}=\frac{\mathrm{m}_{2} \mathrm{k}_{2}+\mathrm{m}_{1} \mathrm{k}_{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}} \tag{22}\\
& \omega_{2}=\sqrt{\frac{\mathrm{m}_{2} \mathrm{k}_{2}+\mathrm{m}_{1} \mathrm{k}_{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}} \tag{23}
\end{align*}
$$

The eigenvectors are found via the following equations.

$$
\begin{gather*}
\mathrm{K} \overline{\mathrm{q}}_{1}=\overline{0} \tag{24}\\
\left\{\mathrm{~K}-\omega_{2}^{2} \mathrm{M}\right\} \overline{\mathrm{q}}_{2}=\overline{0} \tag{25}
\end{gather*}
$$

where

$$
\begin{gather*}
\overline{\mathrm{q}}_{1}=\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2}
\end{array}\right] \tag{26}\\
\overline{\mathrm{q}}_{2}=\left[\begin{array}{l}
\mathrm{w}_{1} \\
\mathrm{w}_{2}
\end{array}\right] \tag{27}
\end{gather*}
$$

An eigenvector matrix Q can be formed. The eigenvectors are inserted in column format.

$$
\begin{align*}
& \mathrm{Q}=\left[\begin{array}{ll}
\overline{\mathrm{q}}_{1} \mid & \overline{\mathrm{q}}_{2}
\end{array}\right] \tag{28}\\
& \mathrm{Q}=\left[\begin{array}{ll}
\mathrm{v}_{1} & \mathrm{w}_{1} \\
\mathrm{v}_{2} & \mathrm{w}_{2}
\end{array}\right] \tag{29}
\end{align*}
$$

The eigenvectors represent orthogonal mode shapes.
Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized eigenvector matrix \hat{Q} can be obtained such that the following orthogonality relations are obtained.

$$
\begin{align*}
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}}=\mathrm{I} \tag{30}\\
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~K} \hat{\mathrm{Q}}=\Omega \tag{31}
\end{align*}
$$

where
superscript T represents transpose
I is the identity matrix
Ω is a diagonal matrix of eigenvalues

Note that

$$
\begin{align*}
\mathrm{Q} & =\left[\begin{array}{ll}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{w}}_{1} \\
\hat{\mathrm{v}}_{2} & \hat{\mathrm{w}}_{2}
\end{array}\right] \tag{32}\\
\mathrm{Q}^{\mathrm{T}} & =\left[\begin{array}{ll}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{v}}_{2} \\
\hat{\mathrm{w}}_{1} & \hat{\mathrm{w}}_{2}
\end{array}\right] \tag{33}
\end{align*}
$$

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial. Further discussion is given in the references.

Now define a modal coordinate $\eta(t)$ such that

$$
\begin{equation*}
\overline{\mathrm{x}}=\hat{\mathrm{Q}} \bar{\eta} \tag{34}
\end{equation*}
$$

Substitute equation (34) into equation (2).

$$
\begin{equation*}
\mathrm{MQ} \hat{\ddot{\eta}}+\mathrm{C} \hat{\mathrm{Q}} \overline{\dot{\eta}}+\mathrm{K} \hat{\mathrm{Q}} \bar{\eta}=\mathrm{F} \tag{35}
\end{equation*}
$$

Premultiply by the transpose of the normalized eigenvector matrix.

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}} \overline{\ddot{\eta}}+\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{C} \hat{\mathrm{Q}} \bar{\eta}+\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~K} \hat{\mathrm{Q}} \bar{\eta}=\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~F} \tag{36}
\end{equation*}
$$

The orthogonality relationships yield

$$
\begin{equation*}
\mathrm{I} \bar{\eta}+\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{C} \hat{\mathrm{Q}} \bar{\eta}+\Omega \bar{\eta}=\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~F} \tag{37}
\end{equation*}
$$

Furthermore, the following assumption is made.

$$
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{C} \hat{\mathrm{Q}} \overline{\dot{\eta}}=\left[\begin{array}{cc}
0 & 0 \tag{38}\\
0 & 2 \xi_{2} \omega_{2}
\end{array}\right]
$$

where ξ_{i} is the modal damping ratio for mode i .

$$
\begin{align*}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\ddot{\eta}_{1} \\
\ddot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 2 \xi_{2} \omega_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{\eta}_{1} \\
\dot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & \omega_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{cc}
\hat{v}_{1} & \hat{\mathrm{v}}_{2} \\
\hat{w}_{1} & \hat{w}_{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \tag{39}\\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\ddot{\eta}_{1} \\
\ddot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 2 \xi_{2} \omega_{2}
\end{array}\right]\left[\begin{array}{c}
\dot{\eta}_{1} \\
\dot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & \omega_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \tag{40}
\end{align*}
$$

The two equations are now decoupled in terms of the modal coordinate.

$$
\begin{align*}
& \ddot{\eta}_{1}=0 \tag{41}\\
& \ddot{\eta}_{2}+2 \xi_{2} \omega_{2} \dot{\eta}_{2}+\omega_{2}^{2} \eta_{2}=0 \tag{42}
\end{align*}
$$

The solution to the first is

$$
\begin{align*}
& \eta_{1}(t)=\dot{\eta}_{1}(0) t+\eta_{1}(0) \tag{43a}\\
& \eta_{1}(t)=\dot{\eta}_{1}(0) \tag{43b}
\end{align*}
$$

The following equation is obtained via Reference 5.

$$
\begin{equation*}
\eta_{2}(t)=\exp \left(-\xi_{2} \omega_{2} t\right)\left\{\eta_{2}(0) \cos \left(\omega_{d 2} t\right)+\frac{1}{\omega_{d}}\left[\xi_{2} \omega_{2} \eta_{2}(0)+\dot{\eta}_{2}(0)\right] \sin \left(\omega_{d 2} t\right)\right\} \tag{44}
\end{equation*}
$$

$$
\begin{align*}
& \dot{\eta}_{2}(t)= \\
& \quad-\xi_{2} \omega_{2} \exp \left(-\xi_{2} \omega_{2} t\right)\left\{\eta_{2}(0) \cos \left(\omega_{d 2} t\right)+\frac{1}{\omega_{d 2}}\left[\xi_{2} \omega_{2} \eta_{2}(0)+\dot{\eta}_{2}(0)\right] \sin \left(\omega_{d 2} t\right)\right\} \\
& +\omega_{d 2} \exp \left(-\xi_{2} \omega_{2} t\right)\left\{-\eta_{2}(0) \sin \left(\omega_{d 2} t\right)+\frac{1}{\omega_{d 2}}\left[\xi_{2} \omega_{2} \eta_{2}(0)+\dot{\eta}_{2}(0)\right] \cos \left(\omega_{d 2} t\right)\right\} \tag{45}
\end{align*}
$$

$$
\begin{align*}
& \dot{\eta}_{2}(t)=-\xi_{2} \omega_{2} \eta_{2}(t) \\
& \quad+\omega_{d 2} \exp \left(-\xi_{2} \omega_{2} t\right)\left\{-\eta_{2}(0) \sin \left(\omega_{d 2} t\right)+\frac{1}{\omega_{d 2}}\left[\xi_{2} \omega_{2} \eta_{2}(0)+\dot{\eta}_{2}(0)\right] \cos \left(\omega_{d 2} t\right)\right\} \tag{46}
\end{align*}
$$

$$
\begin{equation*}
\ddot{\eta}_{2}(\mathrm{t})=-2 \xi_{2} \omega_{2} \dot{\eta}_{2}(\mathrm{t})-\omega_{2}^{2} \eta_{2}(\mathrm{t}) \tag{47}
\end{equation*}
$$

Recall

$$
\begin{equation*}
\bar{x}=\hat{Q} \bar{\eta} \tag{48}
\end{equation*}
$$

The displacements are

$$
\begin{align*}
& x_{1}(t)=v_{1} \eta_{1}(t)+w_{1} \eta_{2}(t) \tag{49}\\
& x_{2}(t)=v_{2} \eta_{1}(t)+w_{2} \eta_{2}(t) \tag{50}
\end{align*}
$$

The velocities are

$$
\begin{align*}
& \dot{x}_{1}(t)=v_{1} \dot{\eta}_{1}(t)+w_{1} \dot{\eta}_{2}(t) \tag{51}\\
& \dot{x}_{2}(t)=v_{2} \dot{\eta}_{1}(t)+w_{2} \dot{\eta}_{2}(t) \tag{52}\\
& \dot{x}_{1}(t)=v_{1} \dot{\eta}_{1}(0) t+w_{1} \dot{\eta}_{2}(t) \tag{53}
\end{align*}
$$

$$
\begin{equation*}
\dot{x}_{2}(t)=v_{2} \dot{\eta}_{1}(0) t+w_{2} \dot{\eta}_{2}(t) \tag{54}
\end{equation*}
$$

The accelerations are

$$
\begin{align*}
& \ddot{x}_{1}(t)=v_{1} \ddot{\eta}_{1}(t)+w_{1} \ddot{\eta}_{2}(t) \tag{55}\\
& \ddot{x}_{2}(t)=v_{2} \ddot{\eta}_{1}(t)+w_{2} \ddot{\eta}_{2}(t) \tag{56}
\end{align*}
$$

Recall equation (41). The accelerations simplify to

$$
\begin{align*}
& \ddot{\mathrm{x}}_{1}(\mathrm{t})=\mathrm{w}_{1} \ddot{\eta}_{2}(\mathrm{t}) \tag{57}\\
& \ddot{\mathrm{x}}_{2}(\mathrm{t})=\mathrm{w}_{2} \ddot{\mathrm{\eta}}_{2}(\mathrm{t}) \tag{58}
\end{align*}
$$

Now consider the initial conditions. Recall

$$
\begin{equation*}
\overline{\mathrm{x}}=\hat{\mathrm{Q}} \bar{\eta} \tag{59}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\bar{x}(0)=\hat{Q} \bar{\eta}(0) \tag{60}
\end{equation*}
$$

Premultiply by $\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M}$.

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0)=\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}} \bar{\eta}(0) \tag{61}
\end{equation*}
$$

Recall

$$
\begin{align*}
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}}=\mathrm{I} \tag{62}\\
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0)=\mathrm{I} \bar{\eta}(0) \tag{63}\\
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0)=\bar{\eta}(0) \tag{64}
\end{align*}
$$

Finally, the transformed initial displacement matrix is

$$
\begin{equation*}
\bar{\eta}(0)=\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0) \tag{65}
\end{equation*}
$$

Similarly, the transformed initial velocity is

$$
\begin{equation*}
\overline{\dot{\eta}}(0)=\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0) \tag{66}
\end{equation*}
$$

A basis for a solution is thus derived.

References

1. T. Irvine, Semi-Definite System Examples, Vibrationdata, 2008.
2. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey, 1982. Section 12.3.1.
3. Weaver and Johnston, Structural Dynamics by Finite Elements, Prentice-Hall, New Jersey, 1987. Chapter 4.
4. T. Irvine, Response of a Single-degree-of-freedom System Subjected to a Classical Pulse Base Excitation, Vibrationdata, 1999.
5. T. Irvine, Free Vibration of a Single-degree-of-freedom System, Rev B, Vibrationdata, 2005.
