SEMI-DEFINITE SYSTEM EXAMPLES
 Revision B

By Tom Irvine
Email: tomirvine@aol.com
October 24, 2011

A semi-definite system is a system that has a rigid-body mode as well as an elastic body mode. The rigid-body frequency is zero.

Consider two masses connected by a spring.

Figure 1.

The kinetic energy is

$$
\begin{equation*}
\mathrm{T}=\frac{1}{2} \mathrm{~m}_{1} \dot{\mathrm{x}}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \dot{\mathrm{x}}_{2}^{2} \tag{1}
\end{equation*}
$$

The potential energy is

$$
\begin{gather*}
U=\frac{1}{2} k\left(x_{1}-x_{2}\right)^{2} \tag{2}\\
\frac{d}{d t}\{T+U\}=0 \tag{3}\\
\frac{d}{d t}\left\{\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2}+\frac{1}{2} k\left(x_{1}-x_{2}\right)^{2}\right\}=0 \tag{4}
\end{gather*}
$$

$$
\begin{gather*}
m_{1} \dot{x}_{1} \ddot{x}_{1}+m_{2} \dot{x}_{2} \ddot{x}_{2}+k\left(x_{1}-x_{2}\right) \dot{x}_{1}-k\left(x_{1}-x_{2}\right) \dot{x}_{2}=0 \tag{5}\\
\left\{m_{1} \ddot{x}_{1}+k\left(x_{1}-x_{2}\right)\right\} \dot{x}_{1}+\left\{m_{2} \ddot{x}_{2}-k\left(x_{1}-x_{2}\right)\right\} \dot{x}_{2}=0 \tag{6}
\end{gather*}
$$

Equation (6) yields two equations.

$$
\begin{align*}
& \left\{m_{1} \ddot{x}_{1}+k\left(x_{1}-x_{2}\right)\right\} \dot{x}_{1}=0 \tag{7}\\
& \left\{m_{2} \ddot{x}_{2}-k\left(x_{1}-x_{2}\right)\right\} \dot{x}_{2}=0 \tag{8}
\end{align*}
$$

Divide through by the respective velocity terms

$$
\begin{array}{r}
m_{1} \ddot{x}_{1}+k\left(x_{1}-x_{2}\right)=0 \\
m_{2} \ddot{x}_{2}-k\left(x_{1}-x_{2}\right)=0 \tag{10}
\end{array}
$$

Assemble the equations in matrix form.

$$
\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \tag{11}\\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{\mathrm{x}}_{1} \\
\ddot{\mathrm{x}}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Seek a solution of the form

$$
\begin{equation*}
\overline{\mathrm{x}}=\overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{12}
\end{equation*}
$$

The q vector is the generalized coordinate vector.
Note that

$$
\begin{align*}
& \overline{\mathrm{x}}=j \omega \overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{13}\\
& \overline{\mathrm{x}}=-\omega^{2} \overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{14}
\end{align*}
$$

By substitution

$$
\begin{equation*}
-\omega^{2} M \bar{q} \exp (j \omega t)+K \bar{q} \exp (j \omega t)=\overline{0} \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& \left\{-\omega^{2} M \bar{q}+K \bar{q}\right\} \exp (j \omega t)=\overline{0} \tag{16}\\
& -\omega_{n}{ }^{2} M \bar{q}+K \bar{q}=\overline{0} \tag{17}\\
& \left\{-\omega^{2} M+K\right\} \bar{q}=\overline{0} \tag{18}\\
& \operatorname{det}\left\{K-\omega^{2} M\right\}=0 \tag{19}\\
& \operatorname{det}\left\{\left[\begin{array}{cc}
k & -k \\
-k & k
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]\right\}=0 \tag{20}\\
& \left(k-\omega^{2} m_{1}\right)\left(k-\omega^{2} m_{2}\right)-k^{2}=0 \tag{21}\\
& k^{2}-k \omega^{2}\left(m_{1}+m_{2}\right)+\omega^{4} m_{1} m_{2}-k^{2}=0 \tag{22}\\
& -k \omega^{2}\left(m_{1}+m_{2}\right)+\omega^{4} m_{1} m_{2}=0 \tag{23}\\
& \omega^{2}\left[-k\left(m_{1}+m_{2}\right)+\omega^{2} m_{1} m_{2}\right]=0 \tag{24}
\end{align*}
$$

Thus the first root is

$$
\begin{align*}
\omega_{1} & =0 \tag{25}\\
\mathrm{f}_{1} & =0 \tag{26}
\end{align*}
$$

Find the second root

$$
\begin{equation*}
\left[-k\left(m_{1}+m_{2}\right)+\omega^{2} m_{1} m_{2}\right]=0 \tag{27}
\end{equation*}
$$

$$
\begin{align*}
& \omega^{2}=\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}} \tag{28}\\
& \omega_{2}=\sqrt{\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}}} \tag{29}\\
& \mathrm{f}_{2}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}}} \tag{30}
\end{align*}
$$

Prescribed Motion

Calculate the response of the system for a prescribed acceleration $\ddot{\mathrm{x}}_{1}$.
Let

$$
\begin{equation*}
\mathrm{z}=\mathrm{x}_{2}-\mathrm{x}_{1} \tag{31}
\end{equation*}
$$

Substitute equation (31) into (11).

$$
\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \tag{32}\\
\mathrm{~m}_{2} & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{c}
\ddot{\mathrm{x}}_{1} \\
\ddot{\mathrm{z}}
\end{array}\right]+\mathrm{k}\left[\begin{array}{c}
-\mathrm{z} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The equation of motion is thus

$$
\begin{align*}
& m_{2} \ddot{z}+k z=-m_{2} \ddot{x}_{1} \tag{33}\\
& \ddot{z}+\left(\frac{k}{m_{2}}\right) z=-\ddot{x}_{1} \tag{34}
\end{align*}
$$

Solve for z and z .
Then solve for $\ddot{\mathrm{x}}_{2}$ using equation (31).

References

1. T. Irvine, The Energy Method, Rev C, Vibrationdata, 2002.
2. T. Irvine, Spring Surge Natural Frequencies, Vibrationdata, 2007.

APPENDIX A

Repeat the example in the main text but also consider the mass of the spring.

Figure A-1.

The kinetic energy of the spring is found in the following steps. Define a local variable ξ which is a measure of the distance along the spring.

$$
\begin{equation*}
0 \leq \xi \leq \mathrm{L} \tag{A-1}
\end{equation*}
$$

The velocity at any point on the spring is thus

$$
\begin{equation*}
\dot{\mathrm{x}}_{1}\left(\frac{\mathrm{~L}-\xi}{\mathrm{L}}\right)+\dot{\mathrm{x}}_{2} \frac{\xi}{\mathrm{~L}} \tag{A-2}
\end{equation*}
$$

Now divide the spring into n segments. The kinetic energy of the spring is thus

$$
\begin{equation*}
\mathrm{KE}_{\text {spring }}=\frac{1}{2} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left\{\left[\dot{\mathrm{x}}_{1}\left(\frac{\mathrm{~L}-\xi}{\mathrm{L}}\right)+\dot{\mathrm{x}}_{2} \frac{\xi}{\mathrm{~L}}\right]^{2} \mu \Delta \xi\right\} \tag{A-3}
\end{equation*}
$$

Take the limit as n approaches infinity.

$$
\begin{align*}
& \mathrm{KE}_{\text {spring }}=\frac{1}{2} \int_{0}^{L}\left[\dot{\mathrm{x}}_{1}\left(\frac{\mathrm{~L}-\xi}{\mathrm{L}}\right)+\dot{\mathrm{x}}_{2} \frac{\xi}{\mathrm{~L}}\right]^{2} \mu \mathrm{~d} \xi \tag{A-4}\\
& \mathrm{KE}_{\text {spring }}=\frac{1}{2} \int_{0}^{\mathrm{L}}\left[\dot{\mathrm{x}}_{1}^{2}\left(\frac{\mathrm{~L}-\xi}{\mathrm{L}}\right)^{2}+2 \dot{\mathrm{x}}_{1} \dot{\mathrm{x}}_{2} \frac{\xi}{\mathrm{~L}}\left(\frac{\mathrm{~L}-\xi}{\mathrm{L}}\right)+\dot{\mathrm{x}}_{2}^{2}\left(\frac{\xi}{\mathrm{~L}}\right)^{2}\right] \mu \mathrm{d} \xi \tag{A-5}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{KE}_{\text {Spring }}= \\
& \\
& \quad \frac{1}{2} \int_{0}^{\mathrm{L}}\left[\dot{\mathrm{x}}_{1}^{2}\left(\frac{\mathrm{~L}-\xi}{\mathrm{L}}\right)^{2}\right] \mu \mathrm{d} \xi \\
& \quad+\frac{1}{2} \int_{0}^{\mathrm{L}}\left[2 \dot{\mathrm{x}}_{1} \dot{\mathrm{x}}_{2} \frac{\xi}{\mathrm{~L}}\left(\frac{\mathrm{~L}-\xi}{\mathrm{L}}\right)\right] \mu \mathrm{d} \xi \\
& \quad+\frac{1}{2} \int_{0}^{\mathrm{L}}\left[\dot{\mathrm{x}}_{2}^{2}\left(\frac{\xi}{\mathrm{~L}}\right)^{2}\right] \mu \mathrm{d} \xi
\end{aligned}
$$

$\mathrm{KE}_{\text {Spring }}=$

$$
\begin{align*}
& \frac{1}{2} \dot{\mathrm{x}}_{1}^{2} \mu \int_{0}^{\mathrm{L}}\left(1-\frac{2 \xi}{\mathrm{~L}}+\frac{\xi^{2}}{\mathrm{~L}^{2}}\right) \mathrm{d} \xi \\
& +\dot{\mathrm{x}}_{1} \dot{\mathrm{x}}_{2} \mu \int_{0}^{\mathrm{L}}\left(\frac{\xi}{\mathrm{~L}}-\frac{\xi^{2}}{\mathrm{~L}^{2}}\right) \mathrm{d} \xi \\
& +\frac{1}{2} \dot{\mathrm{x}}_{2}^{2} \mu \int_{0}^{\mathrm{L}}\left(\frac{\xi}{\mathrm{~L}}\right)^{2} \mathrm{~d} \xi \tag{A-7}
\end{align*}
$$

$\mathrm{KE}_{\text {spring }}=$

$$
\begin{align*}
& \left.\frac{1}{2} \dot{\mathrm{x}}_{1}^{2} \mu\left(\xi-\frac{\xi^{2}}{\mathrm{~L}}+\frac{\xi^{3}}{3 \mathrm{~L}^{2}}\right)\right|_{0} ^{\mathrm{L}} \\
& +\left.\dot{\mathrm{x}}_{1} \dot{\mathrm{x}}_{2} \mu\left(\frac{\xi^{2}}{2 \mathrm{~L}}-\frac{\xi^{3}}{3 \mathrm{~L}^{2}}\right)\right|_{0} ^{\mathrm{L}} \\
& +\left.\frac{1}{2} \dot{\mathrm{x}}_{2}^{2} \mu\left(\frac{\xi^{3}}{3 \mathrm{~L}^{2}}\right)\right|_{0} ^{\mathrm{L}} \tag{A-8}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{KE}_{\text {spring }}=\frac{1}{6} \mu \mathrm{~L}\left(\dot{\mathrm{x}}_{1}^{2}+\dot{\mathrm{x}}_{1} \dot{\mathrm{x}}_{2}+\dot{\mathrm{x}}_{2}^{2}\right) \tag{A-9}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{dt}\left\{\frac{1}{2} \mathrm{~m}_{1} \dot{\mathrm{x}}_{1}{ }^{2}+\frac{1}{2} \mathrm{~m}_{2} \dot{\mathrm{x}}_{2}{ }^{2}+\frac{1}{6} \mu \mathrm{~L}\left(\dot{\mathrm{x}}_{1}^{2}+\dot{\mathrm{x}}_{1} \dot{\mathrm{x}}_{2}+\dot{\mathrm{x}}_{2}^{2}\right)+\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}\right\}=0} \begin{array}{r}
\mathrm{m}_{1} \dot{\mathrm{x}}_{1} \ddot{\mathrm{x}}_{1}+\mathrm{m}_{2} \dot{\mathrm{x}}_{2} \ddot{\mathrm{x}}_{2}+\mu \mathrm{L}\left(\frac{1}{3} \dot{\mathrm{x}}_{1} \ddot{\mathrm{x}}_{1}+\frac{1}{6} \dot{\mathrm{x}}_{2} \ddot{\mathrm{x}}_{1}+\frac{1}{6} \dot{\mathrm{x}}_{1} \ddot{\mathrm{x}}_{2}+\frac{1}{3} \dot{\mathrm{x}}_{2} \ddot{\mathrm{x}}_{2}\right) \\
+\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \dot{\mathrm{x}}_{1}-\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \dot{\mathrm{x}}_{2}=0
\end{array} \tag{A-10}\\
& \begin{array}{r}
\left\{\mathrm{m}_{1} \ddot{\mathrm{x}}_{1}+\mu \mathrm{L}\left(\frac{1}{3} \ddot{\mathrm{x}}_{1}+\frac{1}{6} \ddot{\mathrm{x}}_{2}\right)+\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\} \dot{\mathrm{x}}_{1} \\
+\left\{\mathrm{m}_{2} \ddot{\mathrm{x}}_{2}+\mu \mathrm{L}\left(\frac{1}{6} \ddot{\mathrm{x}}_{1}+\frac{1}{3} \ddot{\mathrm{x}}_{2}\right)-\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\} \dot{\mathrm{x}}_{2}=0
\end{array}
\end{align*}
$$

Equation (A-12) yields two equations.

$$
\begin{align*}
& \left\{\mathrm{m}_{1} \ddot{x}_{1}+\mu \mathrm{L}\left(\frac{1}{3} \ddot{\mathrm{x}}_{1}+\frac{1}{6} \ddot{\mathrm{x}}_{2}\right)+\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\} \dot{\mathrm{x}}_{1}=0 \tag{A-13}\\
& \left\{\mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}+\mu \mathrm{L}\left(\frac{1}{6} \ddot{\mathrm{x}}_{1}+\frac{1}{3} \ddot{\mathrm{x}}_{2}\right)-\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\} \dot{\mathrm{x}}_{2}=0 \tag{A-14}\\
& \mathrm{~m}_{1} \ddot{\mathrm{x}}_{1}+\mu \mathrm{L}\left(\frac{1}{3} \ddot{\mathrm{x}}_{1}+\frac{1}{6} \ddot{\mathrm{x}}_{2}\right)+\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \tag{A-15}\\
& \mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}+\mu \mathrm{L}\left(\frac{1}{6} \ddot{x}_{1}+\frac{1}{3} \ddot{x}_{2}\right)-\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \tag{A-16}
\end{align*}
$$

Assemble the equations in matrix form.

$$
\begin{align*}
& {\left[\begin{array}{cc}
\mathrm{m}_{1}+\frac{1}{3} \mu \mathrm{~L} & \frac{1}{6} \mu \mathrm{~L} \\
\frac{1}{6} \mu \mathrm{~L} & \mathrm{~m}_{2}+\frac{1}{3} \mu \mathrm{~L}
\end{array}\right]\left[\begin{array}{c}
\ddot{\mathrm{x}}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \tag{A-17}\\
& \operatorname{det}\left\{\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
\mathrm{m}_{1}+\frac{1}{3} \mu \mathrm{~L} & \frac{1}{6} \mu \mathrm{~L} \\
\frac{1}{6} \mu \mathrm{~L} & \mathrm{~m}_{2}+\frac{1}{3} \mu \mathrm{~L}
\end{array}\right]\right\}=0 \tag{A-18}\\
& {\left[\mathrm{~m}_{11} \mathrm{~m}_{22}-\mathrm{m}_{12} \mathrm{~m}_{21}\right] \omega^{4}+\left[-\mathrm{m}_{11} \mathrm{k}_{22}-\mathrm{m}_{22} \mathrm{k}_{11}+\mathrm{m}_{12} \mathrm{k}_{21}+\mathrm{m}_{21} \mathrm{k}_{12}\right] \omega^{2}} \\
& +\left[\mathrm{k}_{11} \mathrm{k}_{22}-\mathrm{k}_{12} \mathrm{k}_{21}\right]=0 \tag{A-19}\\
& \\
& +\mathrm{k}\left[-\mathrm{m}_{1}-\frac{1}{3} \mu \mathrm{~L}-\mathrm{m}_{2}-\frac{1}{3} \mu \mathrm{~L}-\frac{1}{6} \mu \mathrm{~L}-\frac{1}{6} \mu \mathrm{~L}\right] \omega^{2}=0 \tag{A-20}
\end{align*}
$$

Thus the first root is

$$
\begin{align*}
\omega_{1} & =0 \tag{A-21}\\
\mathrm{f}_{1} & =0 \tag{A-22}
\end{align*}
$$

$$
\begin{align*}
& {\left[\left(m_{1}+\frac{1}{3} \mu \mathrm{~L}\right)\left(\mathrm{m}_{2}+\frac{1}{3} \mu \mathrm{~L}\right)-\frac{1}{36} \mu^{2} \mathrm{~L}^{2}\right] \omega^{2}+\mathrm{k}\left[-\mathrm{m}_{1}-\mathrm{m}_{2}-\mu \mathrm{L}\right]=0} \tag{A-23}\\
& \omega_{2}=\sqrt{\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}+\mu \mathrm{L}\right)}{\left(\mathrm{m}_{1}+\frac{1}{3} \mu \mathrm{~L}\right)\left(\mathrm{m}_{2}+\frac{1}{3} \mu \mathrm{~L}\right)-\frac{1}{36} \mu^{2} L^{2}}} \tag{A-24}\\
& \mathrm{f}_{2}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}+\mu \mathrm{L}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}+\frac{1}{3} \mu \mathrm{~L}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)+\frac{1}{12} \mu^{2} \mathrm{~L}^{2}}} \tag{A-25}
\end{align*}
$$

Special Case

Consider the case where both masses equal zero.

$$
\begin{equation*}
\mathrm{f}_{2}=\frac{1}{2 \pi} \sqrt{\frac{12 \mathrm{k}}{\mu \mathrm{~L}}} \approx 0.551 \sqrt{\frac{\mathrm{k}}{\mu \mathrm{~L}}} \tag{A-26}
\end{equation*}
$$

The "exact" frequency per Reference 2 is

$$
\begin{equation*}
\mathrm{f}_{2}=0.500 \sqrt{\frac{\mathrm{k}}{\mu \mathrm{~L}}} \tag{A-27}
\end{equation*}
$$

The energy method thus-over predicts the frequency by 10%. The energy method could be improved by modeling the spring with a higher-order interpolation or with additional nodes.

APPENDIX B

Consider a three-degree-of-freedom system with mass-less springs.

The kinetic energy is

$$
\begin{equation*}
\mathrm{T}=\frac{1}{2} \mathrm{~m}_{1} \dot{\mathrm{x}}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \dot{\mathrm{x}}_{2}^{2}+\frac{1}{2} \mathrm{~m}_{3} \dot{\mathrm{x}}_{3}^{2} \tag{B-1}
\end{equation*}
$$

The potential energy is

$$
\begin{align*}
& \mathrm{U}=\frac{1}{2} \mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\frac{1}{2} \mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)^{2} \tag{B-2}\\
& \frac{\mathrm{~d}}{\mathrm{dt}}\{\mathrm{~T}+\mathrm{U}\}=0 \tag{B-3}\\
& \frac{\mathrm{~d}}{\mathrm{dt}}\left\{\frac{1}{2} \mathrm{~m}_{1} \dot{\mathrm{x}}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \dot{\mathrm{x}}_{2}^{2}+\frac{1}{2} \mathrm{~m}_{3} \dot{\mathrm{x}}_{3}^{2}+\frac{1}{2} \mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\frac{1}{2} \mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)^{2}\right\}=0 \tag{B-4}\\
& \mathrm{~m}_{1} \dot{\mathrm{x}}_{1} \ddot{\mathrm{x}}_{1}+\mathrm{m}_{2} \dot{\mathrm{x}}_{2} \ddot{\mathrm{x}}_{2}+\mathrm{m}_{3} \dot{\mathrm{x}}_{3} \ddot{\mathrm{x}}_{3} \\
& +\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \dot{\mathrm{x}}_{1}-\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \dot{\mathrm{x}}_{2}+\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right) \dot{\mathrm{x}}_{2}-\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right) \dot{\mathrm{x}}_{3}=0 \tag{B-5}
\end{align*}
$$

$$
\begin{align*}
\left\{m_{1} \ddot{x}_{1}+k_{1}\left(x_{1}-x_{2}\right)\right\} \dot{x}_{1}+\left\{m_{2} \ddot{x}_{2}-k_{1}\left(x_{1}-\right.\right. & \left.\left.x_{2}\right)+k_{2}\left(x_{2}-x_{3}\right)\right\} \dot{x}_{2} \\
& +\left\{m_{3} \ddot{x}_{3}-k_{2}\left(x_{2}-x_{3}\right)\right\} \dot{x}_{3}=0 \tag{B-6}
\end{align*}
$$

Equation (B-6) yields three equations.

$$
\begin{align*}
& \left\{\mathrm{m}_{1} \ddot{\mathrm{x}}_{1}+\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\} \dot{\mathrm{x}}_{1}=0 \tag{B-7}\\
& \left\{\mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}-\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)\right\} \dot{\mathrm{x}}_{2}=0 \tag{B-8}\\
& \left\{\mathrm{~m}_{3} \ddot{\mathrm{x}}_{3}-\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)\right\} \dot{x}_{3}=0 \tag{B-9}
\end{align*}
$$

Divide through by the respective velocity terms

$$
\begin{align*}
& m_{1} \ddot{x}_{1}+\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \tag{B-10}\\
& \mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}-\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)=0 \tag{B-11}\\
& \mathrm{~m}_{3} \ddot{x}_{3}-\mathrm{k}_{3}\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)=0 \tag{B-12}
\end{align*}
$$

Assemble the equations in matrix form.

$$
\left[\begin{array}{ccc}
\mathrm{m}_{1} & 0 & 0 \tag{B-13}\\
0 & \mathrm{~m}_{2} & 0 \\
0 & 0 & \mathrm{~m}_{3}
\end{array}\right]\left[\begin{array}{l}
\ddot{\mathrm{x}}_{1} \\
\ddot{\mathrm{x}}_{2} \\
\ddot{\mathrm{x}}_{3}
\end{array}\right]+\left[\begin{array}{ccc}
\mathrm{k}_{1} & -\mathrm{k}_{1} & 0 \\
-\mathrm{k}_{1} & \mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
0 & -\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

