SEMIDEFINITE TWO-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO A SINUSOIDAL FORCE
 Revision A

By Tom Irvine
Email: tom@vibrationdata.com
May 2, 2014

Two-degree-of-freedom System
The method of generalized coordinates is demonstrated by an example. Consider the system in Figure 1.

Figure 1.

A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given in Figure 3.

Consider the case of free vibration.
The kinetic energy is

$$
\begin{equation*}
\mathrm{T}=\frac{1}{2} \mathrm{~m}_{1} \dot{\mathrm{x}}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \dot{\mathrm{x}}_{2}^{2} \tag{1}
\end{equation*}
$$

The potential energy is

$$
\begin{gather*}
\mathrm{U}=\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2} \tag{2}\\
\frac{\mathrm{~d}}{\mathrm{dt}}\{\mathrm{~T}+\mathrm{U}\}=0 \tag{3}\\
\frac{\mathrm{~d}}{\mathrm{dt}}\left\{\frac{1}{2} \mathrm{~m}_{1} \dot{\mathrm{x}}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \dot{\mathrm{x}}_{2}^{2}+\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}\right\}=0 \tag{4}\\
\mathrm{~m}_{1} \dot{\mathrm{x}}_{1} \ddot{\mathrm{x}}_{1}+\mathrm{m}_{2} \dot{\mathrm{x}}_{2} \ddot{\mathrm{x}}_{2}+\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \dot{\mathrm{x}}_{1}-\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \dot{\mathrm{x}}_{2}=0 \tag{5}\\
\left\{\mathrm{~m}_{1} \ddot{\mathrm{x}}_{1}+\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\} \dot{\mathrm{x}}_{1}+\left\{\mathrm{m}_{2} \ddot{\mathrm{x}}_{2}-\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\} \dot{\mathrm{x}}_{2}=0 \tag{6}
\end{gather*}
$$

Equation (6) yields two equations.

$$
\begin{align*}
& \left\{m_{1} \ddot{x}_{1}+k\left(x_{1}-x_{2}\right)\right\} \dot{x}_{1}=0 \tag{7}\\
& \left\{m_{2} \ddot{x}_{2}-k\left(x_{1}-x_{2}\right)\right\} \dot{x}_{2}=0 \tag{8}
\end{align*}
$$

Divide through by the respective velocity terms

$$
\begin{array}{r}
m_{1} \ddot{x}_{1}+k\left(x_{1}-x_{2}\right)=0 \\
m_{2} \ddot{x}_{2}-k\left(x_{1}-x_{2}\right)=0 \tag{10}
\end{array}
$$

Assemble the equations in matrix form.

$$
\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \tag{11}\\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{\mathrm{x}}_{1} \\
\ddot{\mathrm{x}}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Seek a solution of the form

$$
\begin{equation*}
\overline{\mathrm{x}}=\overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{12}
\end{equation*}
$$

The q vector is the generalized coordinate vector.
Note that

$$
\begin{align*}
\overline{\mathrm{x}} & =j \omega \bar{q} \exp (j \omega t) \tag{13}\\
\overline{\mathrm{x}} & =-\omega^{2} \bar{q} \exp (j \omega t) \tag{14}
\end{align*}
$$

By substitution

$$
\begin{align*}
& -\omega^{2} M \bar{q} \exp (j \omega t)+K \bar{q} \exp (j \omega t)=\overline{0} \tag{15}\\
& \left\{-\omega^{2} M \bar{q}+K \bar{q}\right\} \exp (j \omega t)=\overline{0} \tag{16}\\
& -\omega_{n}{ }^{2} M \bar{q}+K \bar{q}=\overline{0} \tag{17}\\
& \left\{-\omega^{2} M+K\right\} \bar{q}=\overline{0} \tag{18}\\
& \quad \operatorname{det}\left\{K-\omega^{2} M\right\}=0 \tag{19}\\
& \operatorname{det}\left\{\left\{\left[\begin{array}{cc}
\mathrm{k} & -k \\
-k & k
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]\right\}=0\right. \tag{20}
\end{align*}
$$

$$
\begin{align*}
& \left(k-\omega^{2} m_{1}\right)\left(k-\omega^{2} m_{2}\right)-k^{2}=0 \tag{21}\\
& k^{2}-k \omega^{2}\left(m_{1}+m_{2}\right)+\omega^{4} m_{1} m_{2}-k^{2}=0 \tag{22}\\
& -k \omega^{2}\left(m_{1}+m_{2}\right)+\omega^{4} m_{1} m_{2}=0 \tag{23}\\
& \omega^{2}\left[-k\left(m_{1}+m_{2}\right)+\omega^{2} m_{1} m_{2}\right]=0 \tag{24}
\end{align*}
$$

Thus the first root is

$$
\begin{align*}
\omega_{1} & =0 \tag{25}\\
\mathrm{f}_{1} & =0 \tag{26}
\end{align*}
$$

Find the second root

$$
\begin{align*}
& {\left[-\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)+\omega^{2} \mathrm{~m}_{1} \mathrm{~m}_{2}\right]=0} \tag{27}\\
& \omega^{2}=\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}} \tag{28}\\
& \omega_{2}=\sqrt{\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}}} \tag{29}\\
& \mathrm{f}_{2}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}}} \tag{30}
\end{align*}
$$

The eigenvectors are found via the following equations.

$$
\begin{align*}
& \left\{\mathrm{K}-\omega_{1}^{2} \mathrm{M}\right\} \overline{\mathrm{q}}_{1}=\overline{0} \tag{31}\\
& \left\{\mathrm{~K}-\omega_{2}^{2} \mathrm{M}\right\} \overline{\mathrm{q}}_{2}=\overline{0} \tag{32}
\end{align*}
$$

For the first mode,

$$
\begin{align*}
& \omega_{1}=0 \tag{33}\\
& \mathrm{~K} \overline{\mathrm{q}}_{1}=\overline{0} \tag{34}\\
& {\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right] \overline{\mathrm{q}}_{1}=\overline{0}} \tag{35}
\end{align*}
$$

The eigenvector is

$$
\overline{\mathrm{q}}_{1}=\alpha\left[\begin{array}{l}
1 \tag{36}\\
1
\end{array}\right]
$$

Mass-normalize as follows

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \tag{37}\\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{m}_{1} \\
\mathrm{~m}_{2}
\end{array}\right]=\mathrm{m}_{1}+\mathrm{m}_{2}
$$

The mass-normalized eigenvector is

$$
\overline{\mathrm{q}}_{1}=\frac{1}{\sqrt{\mathrm{~m}_{1}+\mathrm{m}_{2}}}\left[\begin{array}{l}
1 \tag{38}\\
1
\end{array}\right]
$$

For the first mode,

$$
\begin{equation*}
\omega_{2}=\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\mathrm{K}-\omega_{2}^{2} \mathrm{M}\right\} \overline{\mathrm{q}}_{2}=\overline{0} \tag{40}
\end{equation*}
$$

$$
\left\{\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \tag{41}\\
-\mathrm{k} & \mathrm{k}
\end{array}\right]-\frac{\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}}\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right]\right\} \overline{\mathrm{q}}_{2}=\overline{0}
$$

$$
\left\{\mathrm{m}_{1} \mathrm{~m}_{2}\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right]-\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right]\right\} \overline{\mathrm{q}}_{2}=\overline{0}
$$

$$
\left\{\mathrm{k}\left[\begin{array}{cc}
\mathrm{m}_{1} \mathrm{~m}_{2} & -\mathrm{m}_{1} \mathrm{~m}_{2} \\
-\mathrm{m}_{1} \mathrm{~m}_{2} & \mathrm{~m}_{1} \mathrm{~m}_{2}
\end{array}\right]-\mathrm{k}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right]\right\} \overline{\mathrm{q}}_{2}=\overline{0}
$$

$$
\left\{\left[\begin{array}{cc}
\mathrm{m}_{1} \mathrm{~m}_{2} & -\mathrm{m}_{1} \mathrm{~m}_{2} \\
-\mathrm{m}_{1} \mathrm{~m}_{2} & \mathrm{~m}_{1} \mathrm{~m}_{2}
\end{array}\right]-\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right]\right\} \overline{\mathrm{q}}_{2}=\overline{0}
$$

$$
\begin{align*}
& \left\{\left[\begin{array}{cc}
\mathrm{m}_{1} \mathrm{~m}_{2}-\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{m}_{1} & -\mathrm{m}_{1} \mathrm{~m}_{2} \\
-\mathrm{m}_{1} \mathrm{~m}_{2} & \mathrm{~m}_{1} \mathrm{~m}_{2}-\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{m}_{2}
\end{array}\right]\right\} \overline{\mathrm{q}}_{2}=\overline{0} \tag{45}\\
& \left\{\left[\begin{array}{cc}
-\mathrm{m}_{1}^{2} & -\mathrm{m}_{1} \mathrm{~m}_{2} \\
-\mathrm{m}_{1} \mathrm{~m}_{2} & -\mathrm{m}_{2}^{2}
\end{array}\right]\right\} \overline{\mathrm{q}}_{2}=\overline{0} \tag{46}
\end{align*}
$$

The unscaled mode shape is

$$
\overline{\mathrm{q}}_{2}=\beta\left[\begin{array}{c}
\mathrm{m}_{2} \tag{47}\\
-\mathrm{m}_{1}
\end{array}\right]
$$

Mass-normalize as follows

$$
\begin{align*}
& {\left[\begin{array}{ll}
\mathrm{m}_{2} & -\mathrm{m}_{1}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{m}_{2} \\
-\mathrm{m}_{1}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{m}_{2} & -\mathrm{m}_{1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{m}_{1} \mathrm{~m}_{2} \\
-\mathrm{m}_{1} \mathrm{~m}_{2}
\end{array}\right]=\mathrm{m}_{1} \mathrm{~m}_{2}^{2}+\mathrm{m}_{2} \mathrm{~m}_{1}^{2} } \\
&=\mathrm{m}_{1} \mathrm{~m}_{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) \\
& \overline{\mathrm{q}}_{2}=\frac{1}{\sqrt{\mathrm{~m}_{1} \mathrm{~m}_{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}}\left[\begin{array}{c}
\mathrm{m}_{2} \\
-\mathrm{m}_{1}
\end{array}\right] \tag{49}\\
& \mathrm{Q}=\left[\begin{array}{ll}
\frac{1}{\sqrt{\mathrm{~m}_{1}+\mathrm{m}_{2}}} & \left.\overline{\mathrm{q}_{2}}\right] \\
\frac{1}{\sqrt{\mathrm{~m}_{1}+\mathrm{m}_{2}}} & \frac{m_{2}}{\sqrt{\mathrm{~m}_{1} \mathrm{~m}_{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}} \\
\sqrt{\mathrm{m}_{1} \mathrm{~m}_{2}\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}
\end{array}\right] \tag{50}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{Q}=\frac{1}{\sqrt{\mathrm{~m}_{1}+\mathrm{m}_{2}}}\left[\begin{array}{cc}
1 & \frac{\mathrm{~m}_{2}}{\sqrt{\mathrm{~m}_{1} \mathrm{~m}_{2}}} \\
1 & \frac{-\mathrm{m}_{1}}{\sqrt{\mathrm{~m}_{1} \mathrm{~m}_{2}}}
\end{array}\right] \tag{52}\\
& \mathrm{Q}=\frac{1}{\sqrt{\mathrm{~m}_{1}+\mathrm{m}_{2}}}\left[\begin{array}{cc}
1 & \sqrt{\frac{\mathrm{~m}_{2}}{\mathrm{~m}_{1}}} \\
1 & -\sqrt{\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}}
\end{array}\right] \tag{53}
\end{align*}
$$

Let $\overline{\mathrm{r}}$ be the influence vector which represents the displacements of the masses resulting from static application of a unit ground displacement.

Define a coefficient vector \bar{L} as

$$
\left.\begin{array}{c}
\overline{\mathrm{L}}=\phi^{\mathrm{T}} \mathrm{M} \overline{\mathrm{r}} \\
\overline{\mathrm{~L}}=\frac{1}{\sqrt{\mathrm{~m}_{1}+\mathrm{m}_{2}}}\left[\sqrt{\frac{1}{\mathrm{~m}_{2}}}\right. \\
-\sqrt{\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \tag{56}\\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

$$
\begin{align*}
& \overline{\mathrm{L}}=\frac{1}{\sqrt{\mathrm{~m}_{1}+\mathrm{m}_{2}}}\left[\begin{array}{c}
\mathrm{m}_{1}+\mathrm{m}_{2} \\
0
\end{array}\right] \tag{57}\\
& \overline{\mathrm{L}}=\left[\begin{array}{c}
\sqrt{\mathrm{m}_{1}+\mathrm{m}_{2}} \\
0
\end{array}\right] \tag{58}
\end{align*}
$$

The modal participation factor matrix Γ_{i} for mode i is

$$
\begin{equation*}
\Gamma_{\mathrm{i}}=\frac{\overline{\mathrm{L}}_{\mathrm{i}}}{\hat{\mathrm{~m}}_{\mathrm{ii}}} \tag{59}
\end{equation*}
$$

Note that $\hat{\mathrm{m}}_{\mathrm{ii}}=1$ for each index if the eigenvectors have been normalized with respect to the mass matrix.

$$
\begin{align*}
& \Gamma_{1}=\sqrt{\mathrm{m}_{1}+\mathrm{m}_{2}} \tag{60}\\
& \Gamma_{2}=0 \tag{61}
\end{align*}
$$

The effective modal mass $\mathrm{m}_{\mathrm{eff}}$, i for mode i is

$$
\begin{align*}
& \mathrm{m}_{\mathrm{eff}, \mathrm{i}}=\frac{\overline{\mathrm{L}}_{\mathrm{i}}^{2}}{\hat{\mathrm{~m}}_{\mathrm{ii}}} \tag{62}\\
& \mathrm{~m}_{\mathrm{eff}, 1}=\mathrm{m}_{1}+\mathrm{m}_{2} \tag{63}\\
& \mathrm{~m}_{\mathrm{eff}, 2}=0 \tag{64}
\end{align*}
$$

Assemble the equations in matrix form with the applied force.

$$
\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \tag{65}\\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{\mathrm{x}}_{1} \\
\ddot{\mathrm{x}}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{f}_{1}(\mathrm{t}) \\
0
\end{array}\right]
$$

Decoupling

Equation (65) is coupled via the stiffness matrix. An intermediate goal is to decouple the equation.

Simplify,

$$
\begin{equation*}
M \overline{\ddot{x}}+K \bar{x}=\overline{\mathrm{F}} \tag{66}
\end{equation*}
$$

where

$$
\begin{align*}
& M=\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right] \tag{67}\\
& K=\left[\begin{array}{cc}
\mathrm{k} & -\mathrm{k} \\
-\mathrm{k} & \mathrm{k}
\end{array}\right] \\
& \overline{\mathrm{x}}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right] \\
& \overline{\mathrm{F}}=\left[\begin{array}{c}
\mathrm{f}_{1}(\mathrm{t}) \\
0
\end{array}\right] \\
& \mathrm{Q}=\left[\begin{array}{ll}
\overline{\mathrm{q}}_{1} & \overline{\mathrm{q}}_{2}
\end{array}\right]
\end{align*}
$$

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}}=\mathrm{I} \tag{72}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~K} \hat{\mathrm{Q}}=\Omega \tag{73}
\end{equation*}
$$

where

> I is the identity matrix
$\Omega \quad$ is a diagonal matrix of eigenvalues

The superscript T represents transpose.
Note the mass-normalized forms

$$
\begin{gather*}
\hat{\mathrm{Q}}=\left[\begin{array}{cc}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{w}}_{1} \\
\hat{\mathrm{v}}_{2} & \hat{\mathrm{w}}_{2}
\end{array}\right] \tag{74}\\
\hat{\mathrm{Q}}^{\mathrm{T}}=\left[\begin{array}{ll}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{v}}_{2} \\
\hat{\mathrm{w}}_{1} & \hat{\mathrm{w}}_{2}
\end{array}\right] \tag{75}
\end{gather*}
$$

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.
Further discussion is given in References 1 and 2.
Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial.

Now define a generalize coordinate $\eta(t)$ such that

$$
\begin{equation*}
\overline{\mathrm{x}}=\hat{\mathrm{Q}} \bar{\eta} \tag{76}
\end{equation*}
$$

Substitute equation (76) into the equation of motion, equation (66).

$$
\begin{equation*}
\mathbf{M} \hat{\mathbf{Q}} \overline{\ddot{\eta}}+\mathrm{K} \hat{\mathbf{Q}} \bar{\eta}=\overline{\mathrm{F}} \tag{77}
\end{equation*}
$$

Premultiply by the transpose of the normalized eigenvector matrix.

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}} \overline{\ddot{\eta}}+\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~K} \hat{\mathrm{Q}} \bar{\eta}=\hat{\mathrm{Q}}^{\mathrm{T}} \overline{\mathrm{~F}} \tag{78}
\end{equation*}
$$

The orthogonality relationships yield

$$
\begin{equation*}
\mathrm{I} \overline{\ddot{\eta}}+\Omega \bar{\eta}=\hat{\mathrm{Q}}^{\mathrm{T}} \overline{\mathrm{~F}} \tag{79}
\end{equation*}
$$

The equations of motion along with an added damping matrix become

$$
\begin{align*}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\ddot{\eta}_{1} \\
\ddot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
2 \xi_{1} \omega_{1} & 0 \\
0 & 2 \xi_{2} \omega_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{\eta}_{1} \\
\dot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\omega_{1}^{2} & 0 \\
0 & \omega_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{cc}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{v}}_{2} \\
\hat{\mathrm{w}}_{1} & \hat{\mathrm{w}}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{f}_{1}(\mathrm{t}) \\
0
\end{array}\right]} \tag{80}\\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\ddot{\eta}_{1} \\
\ddot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 2 \xi_{2} \omega_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{\eta}_{1} \\
\dot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & \omega_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{cc}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{v}}_{2} \\
\hat{w}_{1} & \hat{\mathrm{w}}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{f}_{1}(\mathrm{t}) \\
0
\end{array}\right]} \tag{81}
\end{align*}
$$

Note that the two equations are decoupled in terms of the generalized coordinate.
Equation (81) yields two equations

$$
\begin{align*}
& \ddot{\eta}_{1}=\hat{v}_{1} f_{1}(t) \tag{82}\\
& \ddot{\eta}_{2}+2 \xi_{2} \omega_{2} \dot{\eta}_{2}+\omega_{2}^{2} \eta_{2}=\hat{w}_{1} f_{1}(t) \tag{83}
\end{align*}
$$

The equations can be solved in terms of Laplace transforms, or some other differential equation solution method.

Now consider the initial conditions. Recall

$$
\begin{equation*}
\overline{\mathrm{x}}=\hat{\mathrm{Q}} \bar{\eta} \tag{84}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\overline{\mathrm{x}}(0)=\hat{\mathrm{Q}} \bar{\eta}(0) \tag{85}
\end{equation*}
$$

Premultiply by $\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M}$.

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0)=\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}} \bar{\eta}(0) \tag{86}
\end{equation*}
$$

Recall

$$
\begin{align*}
& \hat{Q}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}}=\mathrm{I} \tag{87}\\
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0)=\mathrm{I} \bar{\eta}(0) \tag{88}\\
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0)=\bar{\eta}(0) \tag{89}
\end{align*}
$$

Finally, the transformed initial displacement is

$$
\begin{equation*}
\bar{\eta}(0)=\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0) \tag{90}
\end{equation*}
$$

Similarly, the transformed initial velocity is

$$
\begin{equation*}
\overline{\dot{\eta}}(0)=\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \overline{\mathrm{x}}(0) \tag{91}
\end{equation*}
$$

A basis for a solution is thus derived.

Sinusoidal Force

Now consider the special case of a sinusoidal force applied to mass 1 with zero initial conditions.

$$
\begin{align*}
& \mathrm{f}_{1}(\mathrm{t})=\mathrm{A} \sin (\omega \mathrm{t}) \tag{92}\\
& \mathrm{f}_{2}(\mathrm{t})=0 \tag{93}
\end{align*}
$$

Thus,

$$
\begin{align*}
& \ddot{\eta}_{1}=\hat{v}_{1} A \sin (\omega t) \tag{94}\\
& \ddot{\eta}_{2}+2 \xi_{2} \omega_{2} \dot{\eta}_{2}+\omega_{2}^{2} \eta_{2}=\hat{w}_{1} A \sin (\omega t) \tag{95}
\end{align*}
$$

The equations are solved using the methods in References 3 and 4 .
Take the Laplace transform of equation (94).

$$
\begin{align*}
& \ddot{\eta}_{1}=\hat{v}_{1} \mathrm{~A} \sin (\omega \mathrm{t}) \tag{96}\\
& \mathrm{L}\left\{\ddot{\eta}_{1}\right\}=\mathrm{L}\left\{\hat{\mathrm{v}}_{1} \mathrm{~A} \sin (\omega \mathrm{t})\right\} \tag{97}\\
& s^{2} \hat{\eta}_{1}(s)-s \eta_{1}(0)-\dot{\eta}_{1}(0)=\hat{v}_{1} A\left\{\frac{\omega}{s^{2}+\omega^{2}}\right\} \tag{98}\\
& s^{2} \hat{\eta}_{1}(s)-s \eta_{1}(0)-\dot{\eta}_{1}(0)=\hat{v}_{1} A\left\{\frac{\omega}{s^{2}+\omega^{2}}\right\} \tag{99}\\
& s^{2} \hat{\eta}_{1}(s)=\hat{v}_{1} A\left\{\frac{\omega}{s^{2}+\omega^{2}}\right\}+s \eta_{1}(0)+\dot{\eta}_{1}(0) \tag{100}\\
& \hat{\eta}_{1}(\mathrm{~s})=\hat{v}_{1} \mathrm{~A} \frac{1}{\mathrm{~s}^{2}}\left\{\frac{\omega}{\mathrm{~s}^{2}+\omega^{2}}\right\}+\frac{1}{\mathrm{~s}} \eta_{1}(0)+\frac{1}{\mathrm{~s}^{2}} \dot{\eta}_{1}(0) \tag{101}\\
& \hat{\eta}_{1}(\mathrm{~s})=\hat{\mathrm{v}}_{1} \mathrm{~A} \frac{1}{\omega}\left\{\frac{1}{s^{2}}+\frac{-1}{s^{2}+\omega^{2}}\right\}+\frac{1}{s} \eta_{1}(0)+\frac{1}{s^{2}} \dot{\eta}_{1}(0) \tag{102}
\end{align*}
$$

The solution is found via References 3 and 4. The inverse Laplace transform for the first modal coordinate is

$$
\begin{equation*}
\eta_{1}(t)=\hat{v}_{1} A \frac{1}{\omega^{2}}\{\omega t-\sin (\omega t)\}+\eta_{1}(0)+\dot{\eta}_{1}(0) t \tag{103}
\end{equation*}
$$

For zero initial conditions,

$$
\begin{equation*}
\eta_{1}(\mathrm{t})=\hat{\mathrm{v}}_{1} \mathrm{~A} \frac{1}{\omega^{2}}\{\omega \mathrm{t}-\sin (\omega \mathrm{t})\} \tag{104}
\end{equation*}
$$

Recall the equation for the second modal coordinate.

$$
\begin{equation*}
\ddot{\eta}_{2}+2 \xi_{2} \omega_{2} \dot{\eta}_{2}+\omega_{2}^{2} \eta_{2}=\hat{w}_{1} A \sin (\omega t) \tag{105}
\end{equation*}
$$

From Reference (5),

$$
\begin{align*}
& \eta_{2}(\mathrm{t})= \\
& +\frac{\hat{\mathrm{w}}_{1} \mathrm{~A}}{\left[\left(\omega^{2}-\omega_{2}^{2}\right)^{2}+\left(2 \xi_{2} \beta \omega_{2}\right)^{2}\right]}\left\{-\left[2 \xi_{2} \omega_{2} \omega\right] \cos (\omega \mathrm{t})-\frac{1}{\omega}\left[\omega^{2}-\omega_{2}^{2}\right] \sin (\omega \mathrm{t})\right\} \\
& +\frac{\hat{\mathrm{w}}_{1} \mathrm{~A}\left[\frac{\omega}{\omega_{\mathrm{d}, 2}}\right] \exp \left(-\xi_{2} \omega_{2} \mathrm{t}\right)}{\left[\left(\beta^{2}-\omega_{2}^{2}\right)^{2}+\left(2 \xi_{2} \beta \omega_{2}\right)^{2}\right]}\left\{\left[2 \xi_{2} \omega_{2} \omega_{\mathrm{d}, 2}\right] \cos \left(\omega_{\mathrm{d}, 2} \mathrm{t}\right)+\left[\omega^{2}-\omega_{2}^{2}\left(1-2 \xi_{2}^{2}\right)\right] \sin \left(\omega_{\mathrm{d}, 2} \mathrm{t}\right)\right\} \\
& +\exp \left(-\xi_{2} \omega_{2} \mathrm{t}\right)\left\{\eta_{2}(0) \cos \left(\omega_{\mathrm{d}, 2} \mathrm{t}\right)+\left\{\frac{\dot{\eta}_{2}(0)+\left(\xi_{2} \omega_{2}\right) \eta_{2}(0)}{\omega_{\mathrm{d}, 2}}\right\} \sin \left(\omega_{\mathrm{d}, 2} \mathrm{t}\right)\right\} \tag{106}
\end{align*}
$$

For zero initial conditions,

$$
\begin{align*}
& \eta_{2}(\mathrm{t})= \\
& +\frac{\hat{\mathrm{w}}_{1} \mathrm{~A}}{\left[\left(\omega^{2}-\omega_{2}^{2}\right)^{2}+\left(2 \xi_{2} \beta \omega_{2}\right)^{2}\right]}\left\{-\left[2 \xi_{2} \omega_{2} \omega\right] \cos (\omega \mathrm{t})-\frac{1}{\omega}\left[\omega^{2}-\omega_{2}^{2}\right] \sin (\omega \mathrm{t})\right\} \\
& +\frac{\hat{\mathrm{w}}_{1} \mathrm{~A}\left[\frac{\omega}{\omega_{\mathrm{d}, 2}}\right] \exp \left(-\xi_{2} \omega_{2} \mathrm{t}\right)}{\left[\left(\beta^{2}-\omega_{2}^{2}\right)^{2}+\left(2 \xi_{2} \beta \omega_{2}\right)^{2}\right]}\left\{\left[2 \xi_{2} \omega_{2} \omega_{\mathrm{d}, 2}\right] \cos \left(\omega_{\mathrm{d}, 2} \mathrm{t}\right)+\left[\omega^{2}-\omega_{2}^{2}\left(1-2 \xi_{2}^{2}\right)\right] \sin \left(\omega_{\mathrm{d}, 2} \mathrm{t}\right)\right\} \tag{107}
\end{align*}
$$

The physical displacements are found via

$$
\begin{equation*}
\bar{x}=\hat{Q} \bar{\eta} \tag{108}
\end{equation*}
$$

An example is given in Appendix A.
The transfer function can be calculated using the method in Appendix B.

References

1. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey, 1982. Section 12.3.1.
2. Weaver and Johnston, Structural Dynamics by Finite Elements, Prentice-Hall, New Jersey, 1987. Chapter 4.
3. T. Irvine, Table of Laplace Transforms, Rev J, Vibrationdata, 2001.
4. T. Irvine, Partial Fraction Expansion, Rev K, Vibrationdata, 2013.
5. T. Irvine, Two-degree-of-freedom System Subjected to a Half-sine Pulse Force, Vibrationdata, 2012.
6. R. Craig \& A. Kurdila, Fundamentals of Structural Dynamics, Second Edition, Wiley, New Jersey, 2006.

APPENDIX A

Example

Consider the system in Figure 1 with the values in Table A-1.
Assume 5\% damping for each mode. Assume zero initial conditions.

Table A-1. Parameters		
Variable	Value	Unit
m_{1}	2	lbm
m_{2}	1	lbm
k	2000	$\mathrm{lbf} / \mathrm{in}$
A	1	lbf
f	171.3	Hz

The analysis is performed using a Matlab script. Note that the system is driven at its second natural frequency.

```
>> semidefinite_force
    semidefinite_force.m ver 1.4 May 2, 2014
    Response of a semi-definite two-degree-of-freedom
    system subjected to an applied sinusoidal force.
    By Tom Irvine Email: tom@vibrationdata.com
    Enter unit: 1=English 2=metric
    1
        Mass unit: l.bm
    Stiffness unit: lbf/in
    Enter mass 1
    2
    Enter mass 2
    1
    Enter stiffness for spring between masses 1 & 2
    2000
```

```
                Natural Participation Effective
Mode Frequency Factor Modal Mass
1 5.096e-07 Hz 0.08816 0.007772
2 171.3 Hz
    modal mass sum = 0.007772
    mass matrix
m =
            0.0052 0
            0 0.0026
    stiffness matrix
k =
\begin{tabular}{rr}
2000 & -2000 \\
-2000 & 2000
\end{tabular}
ModeShapes =
    11.3431 -8.0208
    11.3431 16.0416
    Enter viscous damping ratio 0.05
    Apply sinusoidal force to mass 1
    Enter force (lbf) 1
    Enter excitation frequency (Hz) 171.3
    Enter duration (sec) 0.1
```


Figure A-1.

Figure A-2.

Figure A-3.

Figure A-4.

Figure A-5.
The rigid-body mode has been suppressed.

Figure A-6.
The rigid-body mode has been suppressed.

Transfer Function Magnitude H 22

Figure A-7.
The rigid-body mode has been suppressed.

APPENDIX B

Transfer Function

The following is taken from Reference 6.
The variables are:

F	Excitation frequency
f_{r}	Natural frequency for mode r
N	Total degrees-of-freedom
$\mathrm{H}_{\mathrm{ij}}(\mathrm{f})$	The steady state displacement at coordinate i due to a harmonic force excitation only at coordinate j
ξ_{r}	Damping ratio for mode r
ϕ_{ir}	Mass-normalized eigenvector for physical coordinate i and mode number r
ω	Excitation frequency (rad/sec)
ω_{r}	Natural frequency (rad/sec) for mode r

The following equations are for a general system. Note that r should be given an initial value of 2 in order to suppress the rigid-body mode for the case of the semi-definite, two-degree-of-freedom system. This is needed since the fundamental frequency is zero, aside from numerical error.

Receptance

The steady-state displacement at coordinate i due to a harmonic force excitation only at coordinate j is:

$$
\begin{equation*}
H_{i j}(f)=\sum_{r=1}^{N}\left\{\frac{\phi_{i r} \phi_{\mathrm{jr}}}{\omega_{\mathrm{r}}^{2}} \frac{1}{\left(1-\rho_{\mathrm{r}}^{2}\right)+\hat{j}\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)}\right\} \tag{B-1}
\end{equation*}
$$

where

$$
\begin{gather*}
\rho_{\mathrm{r}}=\mathrm{f} / \mathrm{f}_{\mathrm{r}} \tag{B-2}\\
\hat{\mathrm{j}}=\sqrt{-1} \tag{B-3}
\end{gather*}
$$

Note that the phase angle is typically represented as the angle by which force leads displacement. In terms of a C++ or Matlab type equation, the phase angle would be

$$
\begin{equation*}
\text { Phase }=-\operatorname{atan} 2(\operatorname{imag}(\mathrm{H}), \operatorname{real}(\mathrm{H})) \tag{B-4}
\end{equation*}
$$

Note that both the phase and the transfer function vary with frequency.
A more formal equation is

$$
\begin{equation*}
\operatorname{Phase}(\mathrm{f})=-\arctan \left\{\frac{\operatorname{imag}\left(\mathrm{H}_{\mathrm{ij}}(\mathrm{f})\right)}{\operatorname{real}\left(\mathrm{H}_{\mathrm{ij}}(\mathrm{f})\right)}\right\} \tag{B-5}
\end{equation*}
$$

Mobility

The steady-state velocity at coordinate i due to a harmonic force excitation only at coordinate j is

$$
\begin{equation*}
\hat{H}_{i j}(f)=j \omega \sum_{r=1}^{N}\left\{\frac{\phi_{i r} \phi_{j r}}{\omega_{r}^{2}} \frac{1}{\left(1-\rho_{\mathrm{r}}^{2}\right)+\hat{j}\left(2 \xi_{r} \rho_{r}\right)}\right\} \tag{B-6}
\end{equation*}
$$

Accelerance

The steady-state acceleration at coordinate i due to a harmonic force excitation only at coordinate j is

$$
\begin{equation*}
\tilde{H}_{i j}(f)=-\omega^{2} \sum_{r=1}^{N}\left\{\frac{\phi_{i r} \phi_{j r}}{\omega_{r}^{2}} \frac{1}{\left(1-\rho_{r}^{2}\right)+\hat{j}\left(2 \xi_{r} \rho_{r}\right)}\right\} \tag{B-7}
\end{equation*}
$$

Relative Displacement

Consider two translational degrees-of-freedom i and j. A force is applied at degree-offreedom k.

The steady-state relative displacement transfer function R_{ij} between i and j due to an applied force at k is

$$
\begin{aligned}
\mathrm{R}_{\mathrm{ij}} & =\mathrm{H}_{\mathrm{ik}}(\mathrm{f})-\mathrm{H}_{\mathrm{jk}}(\mathrm{f}) \\
& =\sum_{\mathrm{r}=1}^{\mathrm{N}}\left\{\frac{\phi_{\mathrm{ir}} \phi_{\mathrm{kr}}}{\omega_{\mathrm{r}}^{2}} \frac{1}{\left(1-\rho_{\mathrm{r}}^{2}\right)+\hat{\mathrm{j}}\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)}\right\}-\sum_{\mathrm{r}=1}^{\mathrm{N}}\left\{\frac{\phi_{\mathrm{jr}} \phi_{\mathrm{kr}}}{\omega_{\mathrm{r}}^{2}} \frac{1}{\left(1-\rho_{\mathrm{r}}^{2}\right)+\hat{\mathrm{j}}\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ij}}=\sum_{\mathrm{r}=1}^{\mathrm{N}}\left\{\frac{\left(\phi_{\mathrm{ir}}-\phi_{\mathrm{jr}}\right) \phi_{\mathrm{kr}}}{\omega_{\mathrm{r}}^{2}} \frac{1}{\left(1-\rho_{\mathrm{r}}^{2}\right)+\hat{\mathrm{j}}\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)}\right\} \tag{B-9}
\end{equation*}
$$

The steady-state relative displacement transfer function R_{ij} between i and j due to an applied force at k is

$$
\begin{align*}
\mathrm{R}_{\mathrm{ij}} & =\mathrm{H}_{\mathrm{ik}}(\mathrm{f})-\mathrm{H}_{\mathrm{jk}}(\mathrm{f}) \\
& =\sum_{\mathrm{r}=1}^{\mathrm{N}}\left\{\frac{\phi_{\mathrm{ir}} \phi_{\mathrm{kr}}}{\omega_{\mathrm{r}}^{2}} \frac{1}{\left(1-\rho_{\mathrm{r}}^{2}\right)+\hat{\mathrm{j}}\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)}\right\}-\sum_{\mathrm{r}=1}^{\mathrm{N}}\left\{\frac{\phi_{\mathrm{jr}} \phi_{\mathrm{kr}}}{\omega_{\mathrm{r}}^{2}} \frac{1}{\left(1-\rho_{\mathrm{r}}^{2}\right)+\hat{\mathrm{j}}\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)}\right\} \tag{B-10}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{ij}}=\sum_{\mathrm{r}=1}^{\mathrm{N}}\left\{\frac{\left(\phi_{\mathrm{ir}}-\phi_{\mathrm{jr}}\right) \phi_{\mathrm{kr}}}{\omega_{\mathrm{r}}^{2}} \frac{\left(1-\rho_{\mathrm{r}}^{2}\right)}{\left(1-\rho_{\mathrm{r}}^{2}\right)^{2}+\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)^{2}}\right\} \\
& \quad-\mathrm{j} \sum_{\mathrm{r}=1}^{\mathrm{N}}\left\{\frac{\left(\phi_{\mathrm{ir}}-\phi_{\mathrm{jr}}\right) \phi_{\mathrm{kr}}}{\omega_{\mathrm{r}}^{2}} \frac{\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)}{\left(1-\rho_{\mathrm{r}}^{2}\right)^{2}+\left(2 \xi_{\mathrm{r}} \rho_{\mathrm{r}}\right)^{2}}\right\}
\end{aligned}
$$

(B-11)

