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SEMIDEFINITE TWO-DEGREE-OF-FREEDOM SYSTEM 

SUBJECTED TO A SINUSOIDAL FORCE 

Revision A  
 
 
By Tom Irvine  
Email:  tom@vibrationdata.com 
 
May 2, 2014  
_______________________________________________________________________ 
 
Two-degree-of-freedom System 
 
The method of generalized coordinates is demonstrated by an example. Consider the 

system in Figure 1.  
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 
 

 

A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is 

given in Figure 3. 

 

Consider the case of free vibration. 

The kinetic energy is 
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The potential energy is 
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Equation (6) yields two equations. 
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Divide through by the respective velocity terms 
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Assemble the equations in matrix form. 
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Seek a solution of the form 

 

 tjexpqx                                                                                                    (12) 

 

The q vector is the generalized coordinate vector. 

Note that 

 tjexpqjx                                                                                           (13) 

 tjexpqx 2                                                                                         (14) 

 

By substitution 

    0tjexpqKtjexpqM2                                                              (15) 

    0tjexpqKqM2                                                                          (16)  

0qKqM2
n                                                                                         (17) 

  0qKM2                                                                                         (18) 

 

  0MKdet 2                                                                                          (19) 

 

0
m0

0m

kk

kk
det

2

12 





























                                                                  (20) 

 



4 
 

02k2m2k1m2k 





 





                                                                       (21) 

  02k2m1m4
2m1m2k2k                                                         (22) 

  02m1m4
2m1m2k                                                                        (23) 

  02m1m2
2m1mk2 





                                                                    (24) 

 

Thus the first root is 
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Find the second root 
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The eigenvectors are found via the following equations. 
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For the first mode, 
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The eigenvector is 
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Mass-normalize as follows 
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The mass-normalized eigenvector is 
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For the first mode, 
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The unscaled mode shape is 
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Mass-normalize as follows 
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Let r  be the influence vector which represents the displacements of the masses resulting 

from static application of a unit ground displacement. 

 

Define a coefficient vector L  as 

 

rML T                                                                                       (54)  
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The modal participation factor matrix i  for mode i is 

iim̂

iL
i                                                                                        (59) 

 

Note that iim̂ = 1 for each index if the eigenvectors have been normalized with respect 

to the mass matrix.   
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The effective modal mass i,effm  for mode i is  
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Assemble the equations in matrix form with the applied force. 
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Decoupling 
 

Equation (65) is coupled via the stiffness matrix. An intermediate goal is to decouple the 

equation. 

 

Simplify, 
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and 
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where 

 

I is the identity matrix 

  is  a diagonal matrix of eigenvalues 

 

 

The superscript T represents transpose. 

 

Note the mass-normalized forms 
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Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial. 

 

Further discussion is given in References 1 and 2. 

 

Nevertheless, the orthogonality relationships are demonstrated by an example in this 

tutorial. 

 

Now define a generalize coordinate )t(  such that 
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Substitute equation (76) into the equation of motion, equation (66). 
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Premultiply by the transpose of the normalized eigenvector matrix. 
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The orthogonality relationships yield 

 

FQ̂I T                                                                                  (79) 

 

The equations of motion along with an added damping matrix become 
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Note that the two equations are decoupled in terms of the generalized coordinate. 

 

Equation (81) yields two equations 
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The equations can be solved in terms of Laplace transforms, or some other differential 

equation solution method. 

 

Now consider the initial conditions. Recall 
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Thus 
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Premultiply by  .MQ̂T
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Recall 
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Finally, the transformed initial displacement is 
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Similarly, the transformed initial velocity is 
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A basis for a solution is thus derived. 

 

 

Sinusoidal Force 
 

Now consider the special case of a sinusoidal force applied to mass 1 with zero initial 

conditions. 
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Thus, 
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The equations are solved using the methods in References 3 and 4. 

 

Take the Laplace transform of equation (94). 
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The solution is found via References 3 and 4.  The inverse Laplace transform for the 

first modal coordinate is 
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For zero initial conditions, 
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Recall the equation for the second modal coordinate. 
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From Reference (5), 
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For zero initial conditions, 
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The physical displacements are found via 

 

 Q̂x                                                                                              (108) 

 

 

An example is given in Appendix A. 

 

The transfer function can be calculated using the method in Appendix B. 
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APPENDIX A 

 

Example 

 

Consider the system in Figure 1 with the values in Table A-1.   

 

Assume 5% damping for each mode.  Assume zero initial conditions. 

 

 

Table A-1.  Parameters 

Variable Value Unit 

1m  2 lbm 

2m  1 lbm 

k 2000 lbf/in 

A
 

1 lbf 

f 171.3 Hz 

 
 

The analysis is performed using a Matlab script.  Note that the system is driven at its 

second natural frequency. 

 

 
>> semidefinite_force 

 semidefinite_force.m  ver 1.4   May 2, 2014 

  

 Response of a semi-definite two-degree-of-freedom  

 system subjected to an applied sinusoidal force.  

  

 By Tom Irvine  Email: tom@vibrationdata.com 

  

  

 Enter unit:  1=English  2=metric  

 1 

      Mass unit: lbm 

 Stiffness unit: lbf/in  

 

 Enter mass 1  

 2 

 

 Enter mass 2  

 1 

 

 Enter stiffness for spring between masses 1 & 2  

 2000 
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        Natural    Participation    Effective   

Mode   Frequency      Factor        Modal Mass  

1   5.096e-07 Hz      0.08816     0.007772 

2       171.3 Hz            0            0 

 

 modal mass sum = 0.007772  

 

  

 mass matrix  

 

m = 

 

    0.0052         0 

         0    0.0026 

 

  

 stiffness matrix  

 

k = 

 

        2000       -2000 

       -2000        2000 

 

  

 

ModeShapes = 

 

   11.3431   -8.0208 

   11.3431   16.0416 

 

  

 Enter viscous damping ratio 0.05 

  

 Apply sinusoidal force to mass 1  

  

 Enter force (lbf) 1 

  

 Enter excitation frequency (Hz) 171.3 

  

 Enter duration (sec) 0.1 
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Figure A-1. 
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Figure A-2.  
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Figure A-3. 
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Figure A-4. 
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Figure A-5. 

 

The rigid-body mode has been suppressed. 
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Figure A-6. 

 

The rigid-body mode has been suppressed. 
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Figure A-7. 

 

The rigid-body mode has been suppressed. 
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APPENDIX B 

 

Transfer Function 

 

The following is taken from Reference 6. 

The variables are: 

F Excitation frequency 

f r Natural frequency for mode r 

N Total degrees-of-freedom 

)f(H ji  The steady state displacement at coordinate i due to a harmonic force 

excitation only at coordinate j 

r  Damping ratio for mode r 

ri  Mass-normalized eigenvector for physical coordinate i and mode number r   

  Excitation frequency (rad/sec) 

r  Natural frequency (rad/sec) for mode r 

 

The following equations are for a general system.  Note that r should be given an initial 

value of 2 in order to suppress the rigid-body mode for the case of the semi-definite, 

two-degree-of-freedom system.  This is needed since the fundamental frequency is zero, 

aside from numerical error. 

 

Receptance 

The steady-state displacement at coordinate i due to a harmonic force excitation only at 

coordinate j is: 
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rr f/f                                                                                                     (B-2)                                                                                                                                          

1ĵ                                                                                                       (B-3) 
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Note that the phase angle is typically represented as the angle by which force leads 

displacement.  In terms of a C++ or Matlab type equation, the phase angle would be 

 

Phase  =  - atan2(imag(H), real(H))                                                         (B-4) 

 

Note that both the phase and the transfer function vary with frequency.  

A more formal equation is 
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Mobility 

The steady-state velocity at coordinate i due to a harmonic force excitation only at 

coordinate j is 
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Accelerance 

The steady-state acceleration at coordinate i due to a harmonic force excitation only at 

coordinate j is 
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Relative Displacement 

Consider two translational degrees-of-freedom i and j.  A force is applied at degree-of-

freedom k. 

The steady-state relative displacement transfer function Rij between i and j due to an 

applied force at k is 
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The steady-state relative displacement transfer function Rij between i and j due to an 

applied force at k is 
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