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The inability to include accurate damping models for bolted connections limits the
accuracy of structural models to predict dynamic response. Experiments utilizing a
system simulating a bolted shear joint to investigate frictional damping associated with
micro-slip are discussed. Measurement and three computational techniques to quantify
the energy dissipation as a function of the applied force to the shear joint are described.
Parameters of the shear joint include the normal force amplitude and distribution, input
force, frequency, material type, and surface characteristics. An underlying power law
relationship between the energy dissipated per cycle and the applied input force is
revealed and explored for the simplified shear joint.  Methods to directly observe and
measure the damping force at resonance are also discussed. This is a continuation of the
work that was presented last year.

INTRODUCTION

The dynamics of structures with bolted interfaces continue to challenge the ability of analytical models to
predict the structural response of these complex systems. The inclusion of the physics associated with the bolted
interfaces introduces several potentially non-linear mechanisms that must be modeled for these systems. In
particular, the damping (energy dissipation) associated with the bolted interfaces has proved very difficult to model
accurately.  An experimental program to investigate the microslip phenomenon in bolted interfaces has been
initiated at Sandia National Laboratories.  An experimental apparatus, described in last year’s paper, was designed to
isolate a single frictional interface with the parameters of the interface adjustable over selected ranges. For a shear
joint with a single bolt, there are multiple slip interfaces between the head of the bolt, washers, and the structural
members.  Each of these slip interfaces potentially has different surface tractions, material types, surface properties,
and contact areas. This complexity was the motivation to devise an experiment where the number of slip interfaces
could be reduced to one such that the physics could be more easily isolated.  Experiments with the apparatus,
utilizing sinusoidal excitation to measure the energy loss per cycle in a manner similar to that reported by other
investigators [1-10] were performed. Results from these experiments have revealed insight into the physics
associated with the microslip phenomenon and the resulting damping mechanisms.  These experiments also exposed
several pitfalls to avoid in making accurate measurements of the energy loss per cycle for microslip in a simulated
bolted interface.  A description of the experiments and discussion of the results follow.

THE EXPERIMENT
The experimental setup is essentially the same as reported last year [13]. A sketch is shown as Figure 1.
The concept is for an experiment with a single shear joint. The joint is preloaded with a line load using cables
through rollers. The cable loads are monitored with load cells to assure repeatable surface loading conditions.

*--Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.



The rollers are designed to roll on the specimen surface to minimize losses at the roller specimen interface. The
bottom roller was also machined with a large radius along the axis of the applied load to generate essentially a point
load between the roller and the inertial mass. This was necessary to correct for any alignment problems between the
inertial mass and the fixed portion of the specimen. A typical specimen pair is shown as Figure 2. The results
reported last year used a specimen pair with a raised face in the contact area. This produces an approximation of a
uniform interface pressure. The specimens used for the results in this paper were flat. This resulted in a contact
pressure surface more representative of that expected from a bolt. The pressure is maximum under the line load, and
decreases as the location moves away from the line load similar to that in the vicinity of a bolt head.

The inertial mass was supported with soft steel springs. The highest resonance of the suspension system was about 2
Hz. An oscillatory load shear load was applied through the interface with an electrodynamic shaker.

A finite element model of the experiment was constructed and is reported in another paper [14]. The model proved
to be very useful in refining the experiment and interpreting the results.

The force vs. relative displacement was almost a straight line along the stiffness curve with very little apparent area.
This created difficulties measuring the relative acceleration when the system was not at resonance. For this reason
almost all measurements reported in the paper were measured at the fixed base resonance of the system (near 340
Hz). At the fixed base resonance the input acceleration becomes very small. We found that very small contributions
from modes far removed from the driving frequency had large effects on the measurements of the base input
acceleration. To minimize the effects of these modes the accelerometer measuring the input motion was moved to a
point coincident with the force. The input accelerometer is mounted on the bolt directly under the force gage. The
primary measurements for the results reported in this paper are the input force, the coincident input acceleration (the
base motion), and the acceleration of the top inertial mass. The accelerometer on the inertial mass was also placed as
near the centerline of the experiment as possible to reduce the contributions of unwanted bending and rocking
modes.

We also fabricated a solid bar with the same geometry as the friction specimens except there was no friction
interface. We frequently used this bar in the test setup as a sanity check. Any energy dissipation or nonlinear
response measured with the solid bar must be losses not associated with the joint or experimental error. The solid
bar experimental results were quite linear with very low damping.

Figure 2.  Experimental Setup
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Figure 1.  Basic Concept for Single Friction Interface



METHODS FOR MEASURING ENERGY DISSIPATION

1. Measuring the energy loss by finding the area within the force/relative-displacement hysteresis
loop

The traditional way to measure energy loss for harmonic motion in the literature of frictional joints is to measure the
area within the closed plot (hysteresis plot) of force vs. relative-displacement. An example is shown in Figure 10.

2. Measuring the energy loss by looking at the power supplied at the base

The energy dissipated for steady state response in a single input passive system must be equal to the energy supplied
at the input to the system to sustain the steady state response. For a simple harmonic input the input energy is

φsinFXU = (1)

where F is the magnitude of the force input, X is the magnitude of the base displacement and φ is the phase angle
between the force and displacement. The relationship between the magnitude of the acceleration and the magnitude
of the displacement is just

XA 2ω−= (2)

Only the component of displacement out of phase with the force will dissipate energy. At resonance
 1sin =φ . The orthogonality of sine and cosine functions assures that if either the force or acceleration is a pure

sinusoid, then harmonic distortion in the other measure will not dissipate energy. Only the fundamental component
will dissipate energy. If both measures are distorted then the harmonics can dissipate energy. Typically this was a
small effect. For most of our experiments the force input generated by the electrodynamic shaker had little harmonic
distortion. At resonance almost all the harmonic distortion observed was in the base acceleration waveform. The
inertial mass acceleration waveform was nearly a scaled version of the base input force.

3. Measuring the energy loss/cycle, U, by measuring Q

The transmissibility of a viscous damped base excited single degree of freedom system is given by the well known
equation [11]
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At the undamped resonant frequency, nω , 1/ =nωω  and for 1<<ζ the transmissibility is approximately

ζ2/1≈T (4)

For this discussion the motion measures of interest are the acceleration of the base and mass. For this system the
force at the base is just the mass acceleration multiplied by the mass. Therefore the driving point accelerance (base
acceleration / base force) is the reciprocal of the transmissibility scaled by the mass.

The transmissibility at resonance is called the amplification factor or quality factor, ( ) )2/1(, ζω == nTQQ  of

the system. The damping factor is related to the viscous damping coefficient by

nmc ζω2= (5)



For forced harmonic motion Thomson [12] defines an equivalent viscous damping for systems with other types of
damping on the basis of an equivalent energy dissipated per cycle.

2XcU eqωπ= (6)

Which gives
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The log of this equation gives

( ) AmUQ n log2logloglog 2 +=+ ωπ (8)

Therefore for the linear case where Q is a constant independent of input amplitude, the slopes on a log-log plots of Q
vs. A is zero, and U vs. A is two.
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Now consider the case where Q is a function of A, but a log-log plot of Q vs. A is still a straight line with a slope, -n

nKAQ −= (10)

Taking the log of both sides gives

AnKQ logloglog −= (11)
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If the equivalent viscous damping is used instead of Q the results are
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Combining Eq. 8 and 11, and differentiating gives
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For example, if the slope of ζ  vs. A on a log-log plot is +1, the slope of the energy dissipated/per cycle will have a
slope of +3.

Plotting Q or ζ vs. A instead of U vs. A gives better insight for two reasons. First a linear system plots as a horizontal
line, easy for the eye to observe. Second the data are compressed and fewer decades of data are typically required on
the ordinate.



Q is determined directly from the transmissibility, which is measured using a sine sweep test through the resonance.
If the waveforms are distorted, measurement of Q typically looks at only the fundamental component, which is the
component that dissipates energy.

We have used all three methods discussed above to measure energy dissipation. When properly applied all three
gave essentially the same result. Most of the data reported in this report were determined by measuring Q.

THE DAMPING FORCE

Figure 3 Base Excited Single Degree of Freedom System

The experiment can be represented as a base driven single-degree-of-freedom system as shown in Figure 3. The
inertial mass is the mass, m, and the base is driven by the force, f.  A linear spring, k, and a linear damping element,
c, represent the linear part of the specimen. All the nonlinear elements are lumped into r.  Thompson [12, Sec.3.7]
shows that for a linear single degree of freedom system a plot of force vs. relative displacement, z, will plot as an
ellipse. The major axis will fall on the linear stiffness line. The input force, f, is the same force that drives the mass,
m. If the force is a sinusoid, the force and the acceleration of the mass will be in phase. The force and displacement
of the mass, y, will be 180° out of phase. The relative displacement will consist of three components, a coincident
component (either 0 or 180°), a quadrature component (90 or 270°) and the harmonic distortion. The quadrature
component will be represented by the quadrature component of the fundamental part of the base motion. Generally
for linear lightly damped systems the linear stiffness term, k, will dominate and the hysteresis curve of force vs.
relative-displacement will look like a narrow ellipse with the major axis on the linear stiffness line. For a nonlinear
system the ellipse will be distorted. Integration of this curve to derive the energy loss is difficult because small
errors in phase between the force and relative displacement result in large errors in the energy loss. If the system is
driven at the fixed base resonant frequency the phase between the fundamental component of the base displacement
and the force or mass displacement is 90°; the linear elastic term vanishes. The base displacement then represents
the dissipative fraction of the motion. If only the fundamental component of the base motion is plotted the hysteresis
curve represents the equivalent viscous damping. For a sinusoidal force the harmonic terms of the base displacement
do not dissipate energy.

The system can also be viewed as a passive system being driven from the base. The energy dissipated in the joint
(the only significant energy loss in the experiment) must be supplied through the base motion. When the input force
is plotted as a function of base displacement, the area within the curve represents the input energy. The area within
the curves (force vs. relative displacement, force vs. base motion, force vs. fundamental-part-of-base-motion) are all
the same.

It is useful to subtract all the linear terms from the base displacement waveform. At resonance this is the
displacement at the fundamental. The harmonic motion with the fundamental removed represents the nonlinear
portion of the response. Future work will look closely at this fraction of the response.
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DATA REDUCTION

The data were reduced by assuming the data were periodic with a fundamental frequency equal to the driving
frequency. A least squares fit of the fundamental and harmonics (typically about seven harmonics were sufficient)
were fit to the data. The acceleration and force time histories were then reconstructed from the fit. The velocity and
displacement waveforms were constructed by converting the fundamental and harmonic coefficients to velocity and
displacement and constructing the velocity and displacement waveforms. This procedure removed most of the noise
from the data. The total harmonic distortion in the force was typically about 1%.

EXPERIMENTAL RESULTS
Experiments were performed to measure the energy loss per cycle for a sinusoidal input force over a range of loads
of 60, 120, 180, 240, and 320 lb-peak. with a range of normal forces of 800, 1200, 1600, and 2000 lb. The
experimental apparatus was configured with an Unholtz-Dickie T1000 electrodynamic shaker system.  The
specimens were machined out of 4340 steel with a surface roughness of approximately 32 micro-inch rms.  Data
were also collected for a geometrically identical solid bar with no frictional interface to establish a lower limit for
the unaccounted loss mechanisms in the setup.  The energy loss per cycle was experimentally determined by first
performing a sine sweep controlling the force at a constant value over a frequency bandwidth encompassing the
fixed base resonance of the test apparatus.  The fixed base resonant frequency of the system ranged form 330 to 340
Hz depending on the normal clamping load and excitation level.  The amplitude ratio (transmissibility) between the
acceleration of the mass to the acceleration of the base was then calculated to determine the amplification factor (Q).
A constant bandwidth (10Hz) digital tracking filter was used with a linear sweep rate of 0.50 Hz per second in the
signal processing to compute Q.  The amplification factor was established at the frequency where the phase was
measured to be 90 degrees.

In the beginning of the testing, it was noted that the amplification factor would change (increase) if subsequent
sweeps were made for a particular normal clamping force.  This initially generated concern that the rollers were
moving and changing the pressure distribution within the shear interface.  Specially designed alignment hardware
were used to establish the position of the rollers with respect to the two halves of the test specimens and checks of
the positions after a number of sweeps revealed that the rollers were not changing position.  Scribe lines were made
on the specimens and revealed no macro-slip between the specimens that might explain the change in the response.
The most discouraging aspect of this effect was that after a higher level force test was performed, the results at a
lower level could never be repeated; the Q was always higher (less damping) than for the initial sweep.

This effect is shown in Figure 4 where the change in resonance curves for subsequent sweeps is illustrated.  The
change in the resonance curve is most pronounced for the first few sweeps and then tends to stabilize about a final

337 337.5 338 338.5 339 339.5 340 340.5 341
50

60

70

80

90

100

110

120

130

140

150
 1200 Lb Normal Force, 240 Lb Input

Frequency (Hz)

A
m

as
s 

/ A
ba

se
 (

G
/G

)

up sweep #1
up sweep #2
up sweep #3
up sweep #6
up sweep #18
up sweep #19

   Figure 4. Change in Resonance Curves with Sweep Number
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condition after many sweeps.  The equivalent viscous damping ratio was also computed and plotted in Figure 5 for
two load cases as a function of the sweep number, which is related to the number of cycles of vibration.
The decrease in damping is also accompanied by a slight increase in the resonant frequency as if the surfaces are
tending to lock up as the vibration progresses and gradually approaches a steady state. After many unsuccessful
trials in search of some repeatability, it was decided to break the interface and reestablish the surface contact after
each sweep.  We then found that we could achieve repeatable results for a particular test configuration of a particular
normal force and input force level for the initial sweep.  Upon further examination of the literature, this same
phenomenon was reported by other authors [9,10,15] for their experiments.  The authors also noted as we did that
even after many cycles of vibration the surfaces could be reestablished and similar results achieved even though
there has to be some wear occurring. The evolution of the damping was fairly repeatable, similar damping was
observed for the initial sweeps after reestablishing the surfaces, and the subsequent changes were also similar.    This
phenomenon will be further examined in future studies.  The experimental results , which are presented for the
remainder of the paper, were taken for the initial sweep after the surfaces were reestablished after each experiment.
The surfaces were initially cleaned with a solvent and were cleaned with compressed air during each reset of the
surfaces.

The amplification factors were measured for each load sequence for a selected normal force established by
tensioning the cables while observing the load in each cable measured with force transducers.  The amplification
factors were used to compute the equivalent viscous damping ratios and the results are shown in Figure 6 as a
function of the input force.  The data plotted on a log-log plot approach a straight line and the slope of a straight-line
fit, denoted by s on the plot legends, is computed which ranges from 0.59 to 0.83.  The slope of the damping ratio
for the solid bar is essentially zero which indicates a linear system response over these force ranges.

The amplification factors were then used in Equation 7 to compute the energy loss per cycle and the results are
shown in Figure 7.  The data show the anticipated straight line on a log-log plot indicating there exists a power law
relationship between the energy loss per cycle and the input force for given normal force.  The data are fit with a
straight line and the slopes are shown ranging form 2.56 to 2.86. The slope of the solid bar data is almost exactly 2.0
which is what is expected for a linear system.

The data for the energy dissipation are also shown plotted on a linear plot in Figure 8 which emphasizes the relative
amplitudes of the energy loss per cycle as a function of input force level.  It also shows the dramatic increase in
energy loss created by the presence of the friction interface when compared to the solid bar data.  The data are also
plotted in Figure 9 as a function of the non-dimensional force, F/N, obtained by dividing the input force by the
normal force.  The data lie within a band, but do not collapse to a single curve indicating that the data are not simply
a function of the non-dimensional force and other parameters are required in the relationship between the input
force, normal force, and energy loss per cycle.  It is hoped that this relationship will be more fully understood with
further study in the future.
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Time history data was also collected for sinusoidal dwells at resonance to compute the energy loss per cycle by
constructing the classical hysteresis curves.  As mentioned earlier the accelerometer data was fit with the
fundamental and seven harmonics and integrated to obtain the velocity and displacement. Figure 10 shows the
traditional hysteresis curve of force vs. relative displacement for 1200 lb. normal force and an input force of 320 lb.
The hysteresis curve shows most of the dissipation occurs near the center of the curve while the ends are very
compressed indicating small dissipation in these regions.  The integration of this curve yields an energy loss of
almost the exact same value obtained using the amplification factor in Equation 7.

For the base excited system, another hysteresis curve can be constructed by plotting the force vs. the absolute
motion of the base.  As discussed earlier this hysteresis curve should yield the same energy loss per cycle as the
hysteresis curve generated for the relative motion since the motion of the mass is in phase with the force and the
only out of phase response is the base motion.  The energy loss per cycle calculations by the three methods, shown
in Table 1, show very close agreement among the methods.

Input
Force (lb.)

Q Method (in-lb.) Relative Hysteresis (in-lb.) Base Hysteresis (in-lb.)

120 1.3426x10-4 1.3045x10-4 1.2889x10-4

180 3.6580x10-4 3.5980x10-4 3.6247x10-4

240 8.3285x10-4 8.1720x10-4 8.1645x10-4

320 2.0817x10-3 2.0417x10-3 2.0428x10-3

Table 1.  Comparison of  Energy Dissipation Calculations, 1200 lb. Normal Force

At the fixed base resonance, the motion of the base to maintain a steady state response with a prescribed force is
very small for a lightly damped system and without an analytical fit to the data, this hysteresis could not be
constructed due to signal to noise problems.  Utilizing the analytical fit, the force vs. base motion hysteresis curves
shown in Figure 11 demonstrate some intriguing qualities.  As discussed earlier, a linear response would exhibit an
ellipse and as seen in the plot the curves deviate significantly from ellipses.  The deviation from a linear response is
shown in Figure 12 where the data for 1200 lb. normal force and an input force of 320 lb. is plotted with only the
component at the fundamental frequency yielding an ellipse compared with the data retaining all seven harmonics in
the response.  The energy was computed by integrating both curves and very close agreement was achieved
indicating that almost all of the energy is dissipated at the fundamental frequency.  The higher harmonics are a result
of and contain information regarding the non-linear response of the system.
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SUMMARY AND CONCLUSIONS
An experiment has been described for determining the energy loss mechanism in a frictional joint in shear. The
experiments are yielding insights into the physics of the microslip phenomenon and the associated damping
mechanism. Several pitfalls in making these measurements were described. It was shown that several different
methods for measuring the energy loss in the joint yield essentially the same result. It was shown that an equivalent
viscous damping coefficient could be measured that describes the energy loss in the joint. An efficient way to
measure the energy loss was developed which uses the transmissibility curve near the fixed base resonant frequency
of a single-degree-of-freedom system. Performing the experiments at resonance offers several advantages.  First the
phase difference between the force and motion becomes much more measurable since it approaches 90 degrees at
resonance. At resonance, the mass and inertia forces balance and the damping force (albeit it very small) is isolated
and can be directly observed. The measurement of the amplification factor, Q, at resonance allows the energy loss
per cycle to be calculated without the need to difference accelerometers. At the fixed base resonance, the energy
supplied to the system is equal to the energy dissipated in the system to sustain steady state response. The harmonics
of the response contain the non-linear portion of the response and contain information regarding the physics of the
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microslip phenomenon. This information should prove valuable to researchers attempting to build physics based
models of a joint.

The data indicate a power law relationship typically applies to the energy losses in the joint. For the material and
loading conditions we measured, slopes on a log-log plot of energy loss/cycle vs. force were from about 2.5 to 2.9.
The data show that the slope increases slightly as the normal force is relaxed. It also was shown that this
measurement gave essentially equivalent results as integrating both the relative displacement and base displacement
hysteresis curves. Using Q, the equivalent viscous damping ratio can also be computed and plotted as a function of
the input force. It was shown that this data also falls on a straight line on a log-log plot and the slope of this plot is
directly related to the slope of the energy dissipation curve.

Much work needs to be done. We need to investigate the functional form of the observed nonlinearities. We still
need to investigate the influence of several parameters including-- materials, surface finish, frequency, a larger range
of force levels, different interface pressure distributions, and non-periodic excitation. The change in the damping as
a function of the number of vibration cycles also needs to be investigated further.  In future experiments, we intend
to include a bolt to see if the information gathered for the simple shear interface can be extended to the more
complicated case of a bolted joint. The removal of the linear part of the response to isolate the nonlinear portion will
be further investigated to help develop models to capture the nonlinear system response.
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