
li
s /

SonicandVibrationEnvironments
for GroundFacilities.....

m m m a Design Manual

NATIONAL AERONAUTICS

AND SPACE ADMINISTRATION

PREPARED FOR

GEORGE C. MARSHALL

SPACE FLIGHT CENTER

HUNTSVILLE, ALABAMA

NAS8-!.1217

W LABORATORIES

REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE

NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA 22161

_.', _ _._-_ -_,_;_ _. _ _,__. _



11

WYLE LABORATORIES - RESEARCH STAFF

REPORT NUMBER WR 68-2

SONIC AND VIBRATION

ENVIRONMENTS FOR GROUND
FACILITIES - A DESIGN MANUAL

By

Wyle Laboratories Research Staff

Submitted Under NASA Contract NAS8-11217

Editor and Principal Author - L. C. Sutherland

Date: March 1968

COPY NO:

WYLI[ LABOIIATORI E:$

RESEARCH STAFF

Huntsville Facility Huntsville, Alabama



TABLEOFCONTENTS

INTRODUCTION

TERMINOLOGY

FUNDAMENTALSOFVIBRATION

FUNDAMENTALSOFACOUSTICS

SONICANDVIBRATIONCONTROLPLANNING

SOURCECHARACTERISTICS

PROPAGATIONOFSONICPRESSUREWAVESANDGROUNDVIBRATION

ACOUSTICANDBLASTLOADSONBUILDINGS

ARCHITECTURALACOUSTICSANDVIBRATIONCONTROLFORGROUNDFACILITIES

EFFECTSOFNOISE,VIBRATIONANDBLASTONPERSONNEL

VIBRO-ACOUSTICCONTROLFOREQUIPMENT

CONVERSIONTABLESANDMATERIALPROPERTIES

Chapter

1

2

3

4

5

6

7

8

9

10

11

12



CHAPTER 1

INTRODUCTION

This manual provides a comprehensive engineering guide

for the evaluation of acoustic, vibration and blast environ-

ments in the design and siting of ground facilities for the

launch and testing of rocket vehicles. The manual also

includes related material covering dynamic loads due to

sonic booms.

Since the advent of rocket vehicle testing and develop-

ment, facility designers have been faced with a new set of

design problems created by the intense acoustic noise from

rocket exhausts and the potential blast hazards associated

with an accidental explosion of rocket propellants. These

problems cover a broad area ranging from

• A requirement for structural design concepts to with-

stand intense acoustic or potential propellant blast

loads to

• Detailed studies of land purchase requirements to in-

sure that unacceptable noise or blast environments are

not imposed on adjacent communities.

The design or evaluation effort required for the solution of

these problems has generally increased as rocket boosters

with increasingly greater thrust have been developed. As

illustrated inFigure 1.1, the trend in thrust of existing and

proposed rocket boosters points to a further increase in the

severity of these facility design problems over the next 15

years. Lead time required for their solution will alsofend

to increase. Thus, the objective of this manual has been

to place within one cover, a comprehensive design guide

for the benefit of planners, architects, building and equip-

ment designers, and engineering specialist who must solve

these problems in the future.

The existing facilities now in use at rocket testing and

launch sites have been operated successfully for many

years. However, the real impact of frequent exposure of

ground facility complexes to routlne launches from boosters

in the thrust range of the Apollo/Saturn V system, for ex-

ample, has yet to be experienced. As indicated in Figure

1.2, this type of routine exposure may eventually reach

launch rates which exceed current rates of full scale ground

testing.

The specific type of design problems encountered due to

the dynamic environments created by large rocket boosters

will frequently call for special construction techniques and

unique design specifications. Such special design require-

ments are not readlly sol ved by routine orstandard methods.

As a result, any attempt to establish standard building de-

sign concepts for the type of dynamic loads involved, along

with realistic cost estimates, would be impractical.
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Rather, the objective has been to provide the basic back-

ground data, theory or empirical procedures upon which

specific design studies can be based.

To imply that this manual is only usable for engineering

design of major rocket testing facilities would detract from

the potential value of much of the basic engineering data,

design criteria, and analytical background presented. It

is felt, therefore, that the manual may have value for

lesser, and often just as important, sonic and vibration

problems faced by the engineering specialist or designer.

The design of test facilities for any relatively srnallsources

of sonic or vibration loads can, if not properly handled,

be just as much a problem as for the larger and more ob-

vious sources.
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1-2 Introduction

Organization of the Manual

The major chapters of the manual may be grouped into

four basic areas:

• Fundamentals

- Terminology - Chapter 2

- Vibration Chapter 3

- Acoustics Chapter 4

• System Concepts and Criteria - Chapter 5

• Source-Transmission- Receiver

- Source Definition Chapter 6

- Propagation Chapter 7

- Loads on Buildings - Chapter 8

• Detailed Effects on Receivers

- Internal Environmental Control - Chapter 9

- Effects on Personnel Chapter 10

- Effects on Equipment Chapter 11

A set of conversion charts for units and a comprehensive

set of data on dynamic, static, and acoustic properties of"

building materials is presented in Chapter 12.

The organization outlined above has been selected for
maximum convenience of the reader who is concerned with

a particular facet of the wide variety of problems en-

countered.

It would be impossible to present under one cover full de-

tails covering all of the problems encountered in this

manual. However, every effort has been made to adjust

the depth of coverage according to the degree of relative

importance for each of the areas considered. Without the

benefit of the published books, reports, and articles in

this field, the material presented in this manual could

never have been compiled. It is hoped that the reader

will find the contents useful or may be guided by the

references to further details which could not be included.
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CHAPTER 2

TERMINOLOGY

Definitions of terms which are used frequently in this man-

ual are assembled here. Many of these definitions are se-

lected from the American Standard Terminology, (Z24,

1-1951) and Technical Documentary Report "Study of Li-

quid Propellant Blast Hazards" Number AFRPL-TR-65-144

with modifications as necessary for the sake of brevity or

for consistency with the usage employed in this manual.

ABSORPTION COEFFICIENT (ACOUSTICAL ABSORPTI-

VITY), a

The ratio of the sound energy absorbed by a surface to the

sound energy incident upon the surface. The absorption

coefficient is a function of both angle of incidence and

frequency. The valves normally given in tables of absorp-

tion coefficients, such as in Chapter 12, are obtained by

averaging over all angles of incidence.

ACOUSTIC IMPEDANCE

The ratio of the sound pressure on a surface to the flux

(volume velocity, or linear velocity multiplledbythearea)

through the surface. The acoustic impedance may be ex-

pressed in terms of mechanical impedance divided by the

square of the area of the surface considered. Acoustic

Impedance isa complex quantity. The real component is

called Acoustic Resistance. The imaginary component is

Acoustic Reactance.

ACOUSTIC MOBILITY

The ratio of acceleration of a structure under acoustic ex-

citation to the acoustic driving pressure over the same

frequency band, expressed in g's/psl. Also expressed ;n

logarithm form as 10 times the log to the base 10 of the

square of the ratio of acceleration to sound pressure in dB

re: g per psi.

ACOUSTIC REFRACTION

The process by which the direction of sound propagation is

changed because of spatial variation of the wave velocity

in the medium.

ACOUSTIC SCATTERING

The irregular and diffuse reflection, refraction, or dif-

fraction of a sound in many directions.

AMBIENT NOISE

The residual noise associated with a given environment.

ANGULAR FREQUENCY, ,,

Frequency in radlans per unit time, usually radians per

second. Circular frequency multiplied by 2_.

ANTINODES

A point, llne, or surface in a vlbraHng body at which the

amplitude of motion, relative to that at a node, is a

max imum.

ANTIRESONANCE

The opposite of resonance. (See definition for resonance)

ARCHING EFFECT OF SOIL

The transfer of pressure from a yielding mass of soil onto

adiolning stationary parts.

AUTOCORRELATION FUNCTION

The mean-square value, R(-r) of the product x(t) • x (t- T),

where x(t) is a time-varying quantity, t is time, and'r

is an elapsed time quantity.

BAND PRESSURE LEVEL

The effective sound pressure level for the sound energy

contained within aband of frequencies. The width of the

band and the reference pressure must Be specified. The

width of the band may be indicated by the use of a quali-

fying adjective: e.g., octave-band (sound pressure)level,

third-octave band level, etc. For random noise, the

standard deviation of the band pressure level will not ex-

ceed 1 clB if the product of the bandwidth in cycles per

second by the integration time in seconds exceeds 20.

BLAST SCALING LAWS

Scaling laws formulated from the general laws of similitude

relating blast and environmental parameters. The most

common blast scaling laws (termed "cube root scaling")

relate blast wave parameters (e.g., blast pressure P, posl-

tive-phase impulse I, and positive-phase duration t +) to

distance from an explosion d, and explosion weight W, as

fol lows:

P = f (d/W 1/3) = f(X)

I/W 1/3 = h (d/_V 1/31 = h(X)

t*,/W I/3 = g (d/W I/3) = g(X)

The quantities d/'W I/3 and t+/W I/3 are commonly referred

to as scaled distance and scaled duration, respectively.

BLAST WAVE

A pressure pulse (or wave) in air, propagated continuously

from an explosion characterized by an initial rapid rise of

pressure above ambient values (see Shock Wave).

BOUNDARY LAYER

The laver of fluid on a body where the veloc ity rises rapidly

from 7era to the free stream value.

CHARACTERISTIC IMPEDANCE

The ratio of the effective sound pressure at a given point

to the effective particle velocity at that point in o free

plane progressive sound wave. The characteristic imped-

ance is equal to the product of thedenslty by the speed of

sound in the medium, i.e., (pc).

COMPLETE-REVERSAL LOAD

Loading applied in a cyclic manner with equal absolute

magnitudes of maximum and minimum load.

COMPLIANCE

The reciprocal of stiffness.
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COMPOSITENOISERATING,CNR
Anumericalsubjectivescaleofnoise which takesaccount

of factors that influence community reaction.

COMPRESSIONAL WAVE

A wave in an elastic medium which causes an element of

the medium to change its volume without undergoing

rotation.

COULOMB DAMPING (DRY FRICTION DAMPING)

The dissipation of energy that occurs when a particle in a

vibrating system is resisted by a force whose magnitude is

a constant independent of displacement and velocity, and

whose direction is opposite to the direction of the velocity

of the particle.

COUPLED MODES

Modes of vibration which mutually influence one another

because of energy transfer from one mode to the other.

COVER DEPTH

Depth of earth fill which covers a structure.

CRITICAL DAMPING

The minimum viscous damping that will allow a displaced

system to return to its initial position without oscillation.

CRITICAL SPEED

The rotating speed of a system which corresponds to a

resonant frequency of the system.

CROSS CORRELATION FUNCTION

The mean-square value of the product x(t) • y (t-T),

where t is time, -r is an elapsed time quantity, x(t) and

y(t) are two randomly varying quantities.

CYLINDRICAL WAVE

A wave in which the wave fronts are coaxial cylinders.

DAMAGE-RISK CRITERION

The maximum sound pressure levels of a noise, as a

function of frequency, to which people should be exposed

if risk of hearing loss is to be avoided. This criterion in-

cludes a specification of the time of exposure, amount of

hearing loss considered significant, and the percentage of

the population to be protected.

DAMPING RATIO (CRITICAL DAMPING RATIO)

For a system with viscous damping, the ratio of actual

damping coefficient to the critical damping coefficient.

DECIBEL, dB

A unit of levelwhlch denotes the ratiobetween two quan-

tities that are proportional to power; the number of decibels

corresponding to the ratio of two amounts of power is 10

times the logarithm to the base 10 of this ratio. In many

sound fields, the sound-pressure ratios are not proportional

to the square root of the corresponding power ratios, so that

strictly speaking the term decibel should not be used in

such cases; however, it is common practice to extend the

use of the unit to these cases (see, for example,Sound

Pressure Level).

DEGREES OF FREEDOM

The minimum number of independe:_t coordinates required

to define completely the position of a system at any given
instant.

DIRECTIVITY FACTOR

The ratio of the sound pressure squared, at some fixed dis-

tance and specified direction, to the mean-square sound

pressure at the same distance averaged over all directions

from a sound source. The distance must be great enough

so that the sound appears to diverge spherically from the
effective acoustic center of the sources.

DIRECTIVITY INDEX

Ten times the logarithm to the base 10 of the dlrectlvity
factor.

DIFFRACTED WAVE

A wave whose front has been changed in direction by an

obstacle or other nonhomogeneity in a medium, other than

by reflection or refraction.

DIFFUSE SOUND FIELD (RANDOM-INCIDENCE SOUND

FIELD)

A sound field such that the sound pressure level is every-

where the same, and all directions of energy flux are
equally probable.

DURATION OF POSITIVE PHASE

The time duration of the positive portlonof a blast wave at

a fixed point.

EFFECTIVE DURATION OF SHOCK

The time durat ion, in seconds, correspond ing to atr iangu lar

pressure-time representation having the same positive im-
pulse as the actual blast shock.

EFFECTIVE SOUND PRESSURE (ROOT-MEAN-SQUARE

SOUND PRESSURE), p

The root-mean-square value of the instantaneous sound

pressures, over a time interval at a point under considera-

tion. The interval must be long enough to make the value

obtained essentially independent of small changes in the

length of the interval. The term "effective sound pressure"

is frequently shortened to "sound pressure."

ENDURANCE LIMIT

The maximum value of the stress that may be repeated an

indefinite number of times without causing failure.

EXPLOSIVE YIELD (EQUIVALENT TNT YIELD)

The amount of TNT which if putat the posltionof the

propellant explosion would produce the same value of a

particular shock wave parameter at the same distance as

for the propellant explosion.

EQUIVALENT VISCOUS DAMPING

A value of viscous damping assumed for the purpose of

analysis of a vibratory motion, such that the dissipation of

energy per cycle at resonance is the same for either the

assumed or actual damping force.
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FARFIELD
Thepartofasoundorblastfieldwherethepressurewaves
propagatellkeplanewavesandit canbeassumedthatall
theenergyoriginatesatapoint.
FORCEDOSCILLATION(FORCEDVIBRATION)
Theoscillationof a systemisforcedif theresponseis
imposedbytheexcitation.If theexcitationisperiodic,
theoscillationissteady-state.

FREEFIELDGROUNDMOTION
Groundmotioninahomogeneoussollmedium.

FREEOSCILLATION(FREEVIBRATION)
Theoscillationofsomephysicalquantityofasystemwhen
therearenoexternallyapplieddrivingforces.

FREEPROGRESSIVEWAVE(FREEWAVE)
Awaveinamediumfreefromboundaryeffects.

FREQUENCY
Thereciprocalof theperiodofoperiodicfunctlon.The
unitisthecyclepersecondorHertz(Hz).

FUNDAMENTALFREQUENCY
Thereciprocaloftheshortestperioddurlngwhlchaperiodic
quantityexactlyreproducesitself.

FUNDAMENTALMODEOFVIBRATION
Themode of vibration of a system having the lowest

frequency.

GAUSSIAN DISTRIBUTION (OR NORMAL DISTRIBUTION)

The first-order probability distribution of a normal or

Gausslan process described by the following probability

density function

p(x) - 1 exp[_(x_m)2/2a2]

where m is the mean and n is the standard deviation of

the distribution.

HEIGHT OF BURST

The height above the earth's surface at which an explosive

charge is detonated in the air.

HYSTERESIS DAMPING (OR STRUCTURAL DAMPING)

The dissipation of energy under cyclic deformation of o

material. The amount of energy dissipation is proportional

to the stress-straln hysteresis loop for the material.

IMPEDANCE

An impedance is the complex ratio of a force-like quantity

(force_ pressure, voltage) to a related velocity-like quan-

tity (velocity, volume veloclty_ or current).

IMPULSE (PER UNIT AREA)

The integral, with respect to time, of the overpressure in

a blast wave at a given point.

INFRASONIC FREQUENCY (SUBAUDIBLE FREQUENCY)

A frequency lying below the audlo-frequency range.

INTENSITY LEVEL (SOUND-ENERGY FLUX-DENSITY

LEVEL)

Ten times the logarithm to the base 10 of the ratio of the

intensity ofa soundto the reference intensity. Acommonly

used reference is 10 -16 watt per square centimeters in a

specified direction.

LATERAL STRESS COEFF IC lENT

The ratio of lateral (horizontal) to vertical stresses.

LOAD FACTOR, K L
The factor by which the total load applied on a structural

element is multiplied to obtaln the equivalent concentrated

load for the equivalent single-degree-of-freedom system.

LOAD-MASS FACTOR, KLM

A factor which is formed by combining the load factor and

the mass factor, namely

KLM = KA,f/K L

LOUDNESS

The subject measure of sound intensity. Loudness depends

prlmarily upon the sound pressure of the stimulus,but it also

depends upon the frequency and waveform of the stimulus.

LOUDNESS LEVEL

The level, in phons, of a sound numerically equal to the

sound pressure level in decibels, relative to 0.0002 micro-

bar, of a pure tone of frequency 1,000 Hz., consisting of

a plane progressive sound wave coming from directly in

front of the observer, which is judged by observers to be

equivalent in loudness.

MACH REGION

The region on the ground at which a

formed as the result of an explosion in alr.

Mach stem has

MACH STEM (MACH FRONT)

The shock front formed by the fusion of the incident and

reflected shock fronts from an explosion.

MASS FACTOR, K M
The factor bywhlch the total distributed mass of an element

is multiplied to obtain the equivalent lumped mass of the

equivalent slngle-degree-of-freedom system.

MATERIAL DAMPING

The process of energy dissipation

dynamic stress.

in o material under

MECHANICAL IMPEDANCE

The complex ratio of force to velocity during simple har-

monic motion. The real part is called mechanical resis-

tance; the imaginary part is called mechanical reactance.

If acceleration or displacement is used in lieu of velocity,

the impedance is called acceleration or displacement im-

pedance. The corresponding real parts become the dyna-

mic mass or stiffness, respectively.

MtCROBAR (la BAR)

Aunit of pressure equal to one dyne per square centimeter.
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MODALNUMBER
Ingeneral,avibratorysystemcanbeanalyzedintermsof
itsnormalmodes.Themodesmay be arranged ina discrete

sequence associated with a set of ordered integers which
are called modal numbers.

MODAL SHAPE

One of the characteristic shapes of a vibrating body or

system. It corresponds to a normal mode of vibration.

MODULUS OF RUPTURE

The stress computed by the bending stress formula Mc/I ,

when M is the maximum bending moment in a beam loaded

to rupture.

NATURAL FREQUENCY, fn

Thefrequencyoffreeoscillatlon ofasystem. Inadamped

system, the natural frequency is a quasl-frequency in that

the motion is not periodic but is generally taken as the

frequencyatwhich thevelocltyreversesslgn. Fora multi-

degree-of-freedom system, the natural frequencies are the

frequencies of vibration in normal modes.

NEAR FIELD

That partof a soundor blast field in the immedlatevlc_nlty

of the source where its relative dimensions cannot be con-

sidered to approximate a point.

NEPERS

A natural logarithmic unit corresponding to a reduction in

amplitude to 1/e of the initial or reference value.

NODES

The points, lines, or surfaces in a standlng-wave system

where some characteristic of the wave field has essentlally

zero amplitude.

NOISE REDUCTION

The sound pressure level outside an area minus the sound

pressure level inside the area, both being measured over

the same frequency band.

NORMAL MODE OF VIBRATION

In an undamped multl-degree-of-freedom system, the

pattern of motion assumed by the system inwhlch the

motion of every particle is simple harmonic with the same

period and phase. Vibration in a normal mode thus occurs

at a natural frequency of the system. In general,any

composite motion of a system is analyzable into a summation

of normal modes. (The terms natural mode, characteristic

mode, and elgen mode are synonymous with normal mode).

NOYS

The unit of perceived noisiness.

OCTAVE

The interval between two frequencies having a ratio of
two.

ONE-THIRD OCTAVE

The interval between two frequencies having a ratio of the

cube root of two.

OVER PRESSURE

The transient pressure in excess of the atmospheric pressure.

PARTICIPATION FACTOR

The fractional contribution of a normal mode of a beam or

plate to the maximum static stress due toa uniform static

pressure load.

PEAK-TO-PEAK VALUE

The algebraic difference

oscll latlng quantity.

between the extremes of an

PERCEIVED NOISE LEVEL, PNL

A rating of a given noise expressed in PNdB which is equal

to the sound pressure level, in dB, of an octave band of"

white noise centered ata frequency of 1,000 Hz. which

is judged to be equally noisy.

PRECIEVED NOISE LEVEL, PNL

A rating of a given noise expressed in PNdB which is equal

to the sound pressure level, in dB, re: 0.002 Mbar of an oc-

tave band of white noise centered at a frequency of 1,000

Hz which is judged to be equally noisy.

PHON

The unit of loudness level.

PLANE WAVE

A wave in which the wave fronts are parallel planes normal

to the direction of propagation.

POWER SPECTRUM LEVEL

Thepower level for theacoustic power contained in a band

1 Hz. wide, centered at a specified frequency.

PRESBYCUSIS

The normal loss of hearing associated with increasing age.

PRESSURE SPECTRUM LEVEL

The effective sound pressure level for the sound energy

contained within a band I Hz.wlde, centered at a speci-

fied frequency.

PURE TONE

A sound wave, the instantaneous sound pressure of which is

a simple slnusoldal function of time.

RANDOM NOISE (RANDOM FUNCTION)

A fluctuating quantity (such as sound pressure) whose in-

stantaneous amplitude is, as a function of tlme,not known,
but itsmean is predictable.

RAYLEIGH DISTRIBUTION

The probability distribution of the peaks of a narrow band

of random Gaussian noise.

REFLECTED PRESSURE

The total pressure at the instant when the front of a blast

wave in air strikes the surface of an object or structure.

RESIDUAL MOTION

Residual motion is the free vibration of a system after the
external excitation force ceases.
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RESISTANCEFACTOR
Thefactorbywhichtheresistanceofastructuralelement
mustbemultipliedtoobtaintheresistanceoftheequiva-
lentsingle-degree-of-freedomsystem.

RESONANCE
Aconditionunderforcedvibrationwhenanysmallincrease
ordecreaseinthefrequencyofexcitationcausesadecrease
intheresponseofthesystem.

RESONANTFREQUENCY
A resonantfrequencyisa
exists.

frequencyat whichresonance

REVERBERATION
Persistenceofsoundatagivenpointafterdirectreception

from the source has stopped.

REVERBERATION TIME

The time required for the average sound pressure level_

originally in a steady state, to decrease 60dBafter the

source is stopped.

ROOT-MEAN-SQUARE SOUND PRESSURE

(See Effective Sound Pressure).

SABIN (SQUARE-FOOT UNIT OF ABSORPTION)

A measure of the sound absorption of a surface; it is the

equivalent of 1 square foot of perfectly absorptive surface.

SABINE ABSORPTION

The Sabine absorption in a room is thesound absorption (a)

defined by the Sabine reverberation-tlme equation

V

T60 = 0.049 --a

where T60 is the reverberation time in seconds, V is the

volume of the room in cubic feet, and a is the total

(Sabine) absorption in sablns (square-foot units).

SCALED DISTANCE

The ground distance between the center of an explosion

and point of measurement divided by the cube root of the

equivalent weight of TNT.

SEISMIC VELOCITY CORRECTION FACTORS

The correction factors used to obtain stresses and motions

for the transelsmic and subseismic conditions.

SHOCK WAVE

A continuously propagated pressure pulse (or wave) in the

surrounding medium, which may be air, water, or earth,

initiated by the expansion of the hot gases produced in an

explosion. A shock wave in air is referred to as a blast

wove.

SHOCK SPECTRUM ENVELOPE

The maximum response spectra of a system relative to the

support subjected to a shock input.

SIMPLE HARMONIC MOTION

Motion in whichthe relatlonshipbetween time t and dis-

placement x canbe expressed intheform x=Asln (gt + _) ,

where A is the amplitude, g the angular frequency, and

the phase angle.

SIMPLE SOUND SOURCE

A source which radiates sc,und uniformly in all directions

under free-fleld conditions.

SONE

A unit of loudness.

SOUND ENERGY DENSITY

The sound energy contained in aglvenlnfiniteslmal part of

the medium divided by the volume of that part of the

medium. The commonly used unit is the ere per cubic

centimeter.

SOUND INTENSITY (SOUND ENERGY FLUX DENSITY)

The average rate of sound energy transmitted in a specified

direction through a unlf area normal to this direction at the

point considered.

SOUND POWER

The total sound energy radiated by a source per unit of
time.

SOUND POWER LEVEL

The level in decibels equal to 10times the logarithm to the

base 10of the ratio ofthesound power radiated by a source

toa reference power. Throughout this manual, the refer-

ence power is 10 -13 watts.

SOUND PRESSURE LEVEL

The level indeclbels equal to20times the logarithm to the

base 10 of the ratio of the pressure of this sound to the

reference pressure. The reference pressure employed

throughout this manual is 0.0002 mlcrobar. In many sound

fields the sound-pressure ratios are not proportional to the

square root of corresponding power ratios and hence cannot

be expressed in decibels in the strict sense; however, it is

common practice to extend the use of the decibel to these

cases ,

SOUND PRESSURE SPECTRUM LEVEL

(See Pressure Spectrum Level).

SOUND TRANSMISSION COEFFICIENT

(See Transmission Coefficient).

SOUND TRANSMISSION LOSS

A quantity expressed in decibels equal to 10 times the

logarithm of the ratio of sound power incident on a surface

to the sound power transmitted through the surface.

SPECIFIC ACOUSTIC IMPEDANCE (UNIT-AREA

ACOUSTIC IMPEDANCE)

The complex ratio of sound pressure to particle velocity.

SPECIFIC ACOUSTIC REACTANCE

The imaginary component of the

pedance.

specific acoustic ira-

SPECIFIC ACOUSTIC RESISTANCE

The real component of the specific acoustic impedance.
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SPECTRUM
A descriptionof theresolutionofatimefunctioninto
sinusoidalfrequencycomponentsofd_fferentfrequencyand
(usually)dlfferentamplitudeandphase.

SPEECHINTERFERENCELEVEL,SIL
Theaverage,indecibels,ofthesoundpressurelevelsof
thenoiseinthethreeoctavebandsoffrequency600-1200,
1200-2400,and2400-4800Hz.

SPHERICALWAVE
Awaveinwhichthewavefrontsareconcentricspheres.

STANDINGWAVES
Periodicwaveshavingafixeddistributioninspacewhich
istheresultofinterferenceofprogressivewavesof the
samefrequencyandkind. Suchwavesarecharacterized
bytheexistenceof nodesorpartialnodesandantl-nodes
thatarefixedinspace.

TERMINALYIELD
Thevalueoftheexplosiveyield in the region where the

explosive yield becomes independent of distance from the

explosion or the shock wave parameter used _n the calcu-
lation.

THRESHOLD OF AUDIBILITY (THRESHOLD OF DETECT-

ABILITY)

The minimum effective sound pressure of the signal capable
of evoking an auditory sensation.

THRESHOLD OF FEELING (OR DISCOMFORT, TICKLE ,
OR PAIN)

The minimum effective sound pressure for which there is

the sensation of feeling (or discomfort, tickle, or pain).

TRANSMISSION COEFFICIENT

The fraction of incident sound power transmitted through a

partition at a specified angle of _ncldence.

TRANSMISSION LOSS

The reduction in the magnitude of some characteristic of a

signal, between two stated paints _n a transmlsslonsystem,
(see Sound Transmission Loss).

TRIPLE POINT

The intersection of the incident, reflected, and fused (or

Mach)shock fronts accompanying an air burst. The height

of the triple paint above the surface, _.e., the height of

the Mach stem, increases with increasing distance from a

given explosion, (see Mach Stem).

VERTICAL ATTENUATION FACTOR

The ratio of surface motion (or stress) to subsurface motion

(or stress) due to propellant explosions.

VISCOUS DAMPING

The dissipation of energy that occurs when a particle in a

vlbratinq system is resisted by a force that has a magnitude

proportional to the magnitude of the velocity of the parti-

cle and direction opposite to the direction of the particle.

WATER CONTENT

The ratio of weight of water to weight of solid matter in a
soil.

WHITE NOISE

White noise is noise of a statistically random nature having

equal energy per unit frequency bandwidth over a specified
total frequency band.
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CHAPTER 3

FUNDAMENTALS OF VIBRATION

3ol INTRODUCTION

The sonic environments, considered in this manual, re-

present a source of dynamic loading on structure. These

loads vary both in position on the structure and in time.

The net result of such dynamic loading is to cause a com-

plex vibratory motion of the structure in response to the

non-uniform time varying load.

The development of a simplified analytical model is a

basic prerequisite for predicting this dynamic response in

a straightforward manner. For example, as illustrated in

Figure 3.1a, the deflection time history of a frame build-

ing, when exposed to a blast wave, can be approximated

by the response of the equivalent dynamic model shown at

the right. This consists of a system of lumped masses re-

presenting the floors of the building connected by massless

springs which simulate the lateral stiffness of the support-

ing columns. Furthermore, it will be shown later how the

motion, x(t), of any one element of this simplified model

can be broken down into various components, each with

its own characteristic period of vibratlon. This concept is

illustrated in Figure 3.1b.

._D,.Blast
Wove

[Z_ -_ -----m.x (t)

Frame Model Mass-Sprlng
Model

a) Simplified Analysis Model

xl(t)

x2(t)

x(t)

Second Mode

(t)'" = + x2(t )

b) Time History of One Mass

FIGURE 3.1 Equivalent Dynamic Model of Building Exposed to
Blast Load and Composite Time History of One Mass
Showing Summation of Normal Modes of Vibration

Therefore, the first part of this chapter starts with a brief

review of the fundamentals of vibration response of simple

mass spring systems to different types of dynamic loads.

These encompass the transient loads due to blast or sonic

boom as well as the continuous random-type of loads

characteristics of rocket engine noise. The discussion on

response to random excitation includes a brief introductory

review of the general characteristics of random vibration.

Following this treatment of the single degree of freedom

system, methods for the analysis of more complex structure

are considered. This begins with a review of classlcal

methods for analyzing the response of lumped mass-spring

systems, such as illustrated in Figure 3.1a. Application

of the analysis methods are illustrated by e;camples. This

is followed by a discussion of the freeand forced vibration

characteristics of continuous structural elements such as

beams and plates. A number of basic vibration design

charts for the stiffness and natural frequencies of vibrating

systems are included at the end of this chapter.

The objective of this chapter has been to provide, within

this manual, one basic reference source of practical

methods for analyzing response of ground structure to sonic

loads. The methods are outlined in detail and provide the

foundation for the design tools developed in subsequent

chapters. The reader is referred to theextenslve litera-

ture for a more thorough development of structural vibra-

tion theory. In particular, References 3.1 - 3.5 provide

an extensive coverage of vibration theory. Additional

background relating vibration and acoustics is provided in

References 3.6 - 3.9.

3.2 STRUCTURAL VIBRATION - SOME

FUNDAMENTALS

Under pure static loading, a linear structure stores the

work done on it by external forces in the form of elastic

energy. For structure loaded beyond its yield point,

additional energy is stored in the form of plastic energy

which can not be recovered. For the most port, this

manual will consider only linear elastic structures.

If the static load is applied suddenly or is changed in a

cyclic manner, then some of the work done by the ex-

ternal forces on the structure is expended in the form of

kinetic energy, - the energy of motion. Thus, a structure

which is displaced initially from its equilibrium position

and then released, will spring back releasing the stored

elastic energy in the form of kinetic energy. If allowed

to continue, the structure will thus oscillate back and

forth about its equilibrium position with a continual flow

of energy from elastic to kinetic and visa versa. The fre-

quency of this oscillation is called a natural frequency.

If an external driving force is applied to the system at

this same frequency, the amplitude of vibration will in-

crease to a maximum resonant response amplitude limited

only by losses in energy due to damping or by non-

linearities in the system.
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For a structure which may be represented by a simple

lumped mass on a single linear spring, this vibration takes

its simplest form - simple harmonic motion or slnusoidal

motion, which is illustrated in Figure 3.2a. This shows

the time history of the displacement q(t) of the center of

a pinned-pinned beam vibrating at its fundamental reson-

ance frequency. The fundamental frequency is the lowest

frequency of vibration for which a system will vibrate

freely without excitation by external forces.

However, for the simple beam in Figure 3.2 and for all

types of structure, higher modes of vibration can occur,

each with its own natural frequency of vibration fn. These

are called the normal modes of vibration. In general, the

motion of any linear structure can be described by the

summation of the motion of its normal modes, each of which

can be treated as a single degree-of-freedom system. Thus,

the general expression for motion at any paint at time t of

a structure may be given by the summation

q (t)

/
_ t

q(t) = ql sin (2_ft) (3.1)

a) Simple Harmonic Motion
(Time Variable)

_y
(y) : sl, T

b) Mode Shape
(Space Variable)

_--y

(3.2)

FIGURE 3.2 Sinusoidal Time History (a) end Mode Shape (b)
of Simply Supported Beam Vibrating in its
Fundamental Mode

The motion of the center of the beam is completely defined

by its peak amplitude qo' its frequency of vlbration_ f,

and time t in equation 3.2 in Figure 3.2b.

To describe the motion at all paints along the beam, an

additional term is required - the mode shape, _(y) - the

variation in the shape of the beam along its length given

by Equation 3.2 in Figure 3.2b. Thus, for this mode of

vibration, the displacement x(y,t) at any point y at time

t is the product

x(y,t) =_(y) • q (t) (3.3)

Since only one time variable is required, this mode of

vibration is equivalent to a single degree-of-freedom

system- that is, the amplitude of a fixed reference point

is completely described by only one time variable, q (t).

N

x(y,t) =C _n (y) qn(t)

n= 1

(3.4)

where
_n(y ) : Mode shape for nth normal mode

qn (t) = Time variation (called generalized
coordinate) of nth normal mode.

Except for coupling of energy between modes through

damping forces, each mode responds independently of the

response of other modes. Therefore, a basic understanding

of the single degree-of-freedom system is fundamental to

the analysis of any structure, no matter how complex.

For most structural dynamic problems, the lower order modes

(the first two to four modes in the order of their natural fre-

quencies) exhibit the greatest response, and generally, the

response amplitudes decrease monoton ica I ly w ith increaslng

resonance frequency of the modes. This is due to the fact

that the effective force driving the higher order modes falls

off rapidly with the order of the modes.

This is a fortunate circumstance since internal dynamic

loads in a structure increase with the order of the modes

when each mode has the same deflection amplitude. The

rapid decrease in amplitude of the effective driving force

generally overrides the increasing load factor wlth fie-

quency, so that internal loads alsodecrease with increasing

frequency for most actual external Ioadings.

Complex structures, which have a large number of very

complex modal patterns, aredlfficult to analyze indetail;

however, advantage can be taken of the fact that only the

lower simpler type modes need to be considered. Thus, one

efficient technique for computing or estimating response of

most structural systems is to estimate the resonance frequen-

cies and mode shapes of the first few modes_ find the

response of each mode using a single degree of freedom

model for each mode, and then add up the individual

modal responses to obtain the total response. This method

is not limited to dynamic deflections, but can be used to

obtain dynamic velocities, accelerations, strains, stresses,

reaction loads, etc.

One important exception to this predominant influence of

lower order modes lles in the area of sound transmission

through structure. In this case, the broad frequency range

of the human ear requires that many modes be considered

in the analysis. This topic is treated separately in Chapter
9.
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Because of the importance of the slngle degree-of-freedom

system, it is natural to open this section with a discussion

of the response of such a system by various forms of ex-

citation.

Following this, it is shown how more complex systems can

be treated as a set of single degree-of-freedom modal

systems, and how the effective single degree-of-freedom

properties for a given mode are obtained from the proper-

ties of the complex structure.

Finally, a series of tabulatlons and equatlons for comput-

ing resonance frequencies of various structural systems are

presented as a convenient reference for the reader.

3.2.1 DYNAMICS OF THE SINGLE DEGREE-OF-

FREEDOM SYSTEM WITH VISCOUS DAMPING

The forced response of a damped single degree-of-freedom

system can be represented by a force P(t) applied to a

single mass m, a single spring of stiffness k, andadamplng

element or dashpot having a damping constant c. These

elements are arranged in the form shown in Figure 3.3.

The response displacement of the mass is x(t) and the force

transmitted to the fixed-base is PT(t).

P(g

r PT(t)

FIGURE 3.3 Single Degree-of-Freedom System

It is desirable to review the response of this system to

single frequency steady-state forces, transient force

pulsest and random forces, since all of these types of
forces are encountered in the sonic environment considered

in this manual.

From consideration of thedynamlc balance of forces acting

on the mass, its equation of motion can be derived. This is
stated in two forms below.

EQUATION OF MOTION

m R(t) + ck(t)+ k x(t) = P(t)

where

x(t) = Displacement of mass

_(t) = Velocity of mass

_(t) = Acceleration of mass

(3.5)

ALTERNATE FORM OF EQUATION OF MOTION

_(t)+28Uo_(t)+u 2 x(t) 2 P(t)
O = UO k

where

6 = C/Cc :

c c = 2_--_ =

O

(3.6)

Critical damping ratio

Critical damping constant

Undamped natural frequency

3.2.1.1 General Solution to the Equatlonof Motion

The general solution of Equation 3.6 for an arbitrary in-

put P (t) may be expressed as the sum of two parts: x 1(t) -

the transient solution due only to the initial conditions,

and x2(t), the forced response, so that the general so-

lution for the displacement response x(t) is

x(t) = x1(t)+x2(t) (3.7)

The transient solution Xl(t ) is

x(t) 1

where

01 =

ud =

U 0 =

= _ x(O)cos(udt-O 1) +-_o-o sinud (3.8)

fo =

x(0) :

_(0) :

The forced response solution x2(t ) is

t
/-

x2(t)=j h (t -'r) • P('r) • d'r

-r=o

tan -1 $/_/1-621

uo _ Damped natural frequency -

radlans/sec.

2_ fo Undamped natural frequency -
rad ians/sec .

Undamped natural frequency - Hz

Initial displacement

Initial velocity

(3.9)

which is the convolution integral for forced response and

h(t) is the response of a single degree-of-freedom system

to a unit impulse at time t = 0 and is given by

'.[ ]h(t) - mu d e -Su°t sin udt (3.]0)

The convolution or Duhamel integral solution, is based on

treating the input P(t) as the sum of a series of very short

impulses with a magnitude P('r) at any time -r < t. The

response at time t is then the sum of the responses, to a

unit impulse, given by Equation 3.10.
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Forthespecialcasewheretheinputitselfisaforce
impulseI equalto

t-_o
I= / P(t) dt (3.11)

O

then the forced response is simply equal to

x2(t) = I h(t) (3.12)

where h(t) is given by Equation 3.10. By comparlng

Equation 3,10 with 3.8, it becomes apparent that the

forced response to a unit impulse could be described

equally well as the transient response to an initial ve-

locity x(0)=l/m. This is a useful concept when dealing

with the response of systems to very short duration forces.

3.2.1.2 Transient Response

The transient solution (Equation 3.8) is called "transient"

because of the presence of the exponential damping factor

exp (-8 g t), which causes this motion to be damped out
O

with time. The forced response solutiont (Equation 3.9)

may also include similar transient terms due to initial

application of the excitation.

In both cases, they consist of decaying oscillations at the

damped natural frequency, _d" If no forced excitation

is present, the system will come to rest. If a forced ex-

citation is present, the system will continue to vibrate

but eventually, only at the frequencies present in the ex-

citation. Examples of such transient oscillations are

shown in Figure 3.4. Part a) shows the decaying oscil-

latory response of a simple damped mass-sprlng system to

an initial velocity (or an equivalent impulse) applied to

the mass. Part b) shows the initial transient response due

to application of a sinusoidal excitation of frequency

starting at time t = 0. In this case, the initial transient

response is the summation of motion at the damped natural

frequency gd and the forcing frequency _. The former

decays rapidly, however, leaving only the steady-state

response at the forcing frequency g.

The envelope of the decaying transient responset shown

in Figure 3.4a, is described by

x(t)lmax = Xma x (t---_0) • e-8_°t (3.13)

The rate of decrease of this envelope from one peak to

another is a convenient measure for the amount of damp-

ing. Between any two successive peaks, this envelope

will decrease by a constant factor for llneardamping.

Thus, a useful term to describe this decay is the natural

logarithm of the ratio of two successive peaks which are

separated by the period to=2_/_ d. This quantlty is

called the log decrement and is readily shown to be

x (t n max) 2_ 6

A =log e X(tnma x+to) - __ 82 (3.14)

x (t) -8_ t

I/_.. _ Envelope e °

tn max

a) Transient Response to Initial Velocity

(at Equivalent Force Impulse)

x2(t)

v V V \"
b) Initial Transient Response to Forced

Sinusoidal Excitation Started at Time

t - 0 (Forcing Frequency Equals Un-

damped Natural Frequency of System)

FIGURE 3.4 Transient Responses of a Single Degree-of-Freedom

System Due to a) Initial Conditions end b) Initiation

of Excitation.

3.2.1.3 Alternate General Solution

It is convenient to use another form for the solution of the

equation of motion which separates the initial transients

from the steady state response. This is given by the more

familiar classical form as

x(t) =e -Sg°t [A cosgdt + Bsingd t] + Xp(t) (3.15)

where

A,B = Constants to be defined by initial dis-

placement and velocity of system and

initial value of steady state solution,

x (t = O)
P

x (t) = Particular integral or steady state response
P

The "particular integral" is the function which satisfies

the equation of motion. The remaining part of the so-

lution is the "complimentary function" which defines the

transient response due to an initial displacement x(0) and/

or an initial velocity A(0)of the mass as well as the initial

transients due to the initial application of the excitation.

Thus, several choices are available for solution of the

basic equations of motion given by Equation 3.5 or 3.6.
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Choiceof oneparticularsolutionwillbebasedonthe
particularproblem.

Todeterminetheresponseforafiniteinitial
displacementand/orvelocityonly,useEq.3.8
Todeterminethetotalresponse(includinginitial
transients)to a forcingfunction,useEq.3.9
To determinethesteady-stateresponsetoa
forclngfunction,useonlytheparticularintegral
partofEq.3.15

UsingeitherEquations3._or3.15,thefollowinggeneral
solutionsareobtainedfortheforceddisplacementresponse
ofadampedsysteminitiallyatrest.Fivetypesofforcing
Functionsareshownwhichformthebasicbuildingblocks
formorecomplicatedtypesoflnput.Whenit isnecessary
to accountfor an initial displacementor velocity,
Equation3.8 is addedtotheresponseindicatedinthe
followingtabulation.Thesteadystateresponsepartof
x(t)inthistabulationisrecognizedbytheabsenceofany
exponentialdampingterm.

TABLE3.I

FORCEDRESPONSEOFSINGLEDEGREE-OF-FREEDOMSYSTEMSHOWNINFIGURE3.3

EXCITATIONP(t),(---)

STEP P

IMPULSEI=/P(t)dt =_om

PtRAMP T

SINE Psingt

COSINE Pcosgt

TIMEHISTORY

p ......

T

RESPONSE x(t) (--)

p e-SWo t

-_" 1 _ cos (gd t- @1) '

I [e-SWot sinwdt]
Ud m

P t 28 e-Sg°t
sin (_d t - 82)

k T woT goT

H(_a) sin (_ t - 83) - (_a/_a°)e-8_°t

k _/] _ 82
sin (Wd t - 04)

(_3.16)

(3.17)

(3.18)

P r e_Sgot

H(_o) cos (_at-e3)- _ cos(gdt-@51

(3.19)

(3.20)

81 =tan-1 6/ __ 82 ,,, 8radians(8<0.2) 84 = tan-1 2 8 _ - 82

I - 2 82- (g/_ao)2

02 : tan -1 26 _/_-62/(1-282) __ 28 radlans (8< 0.2)
811 + ( _a/_o)2 ]

85 = tan-1 ----

11-<°/°0)2]

03 = tan-1

26 w/(ao

1 - ((a/Cao)2

= 2-I- I/2
H(_) [(I - (_a/Wo) 2 )2 + (28 _/tao) J
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The last two solutions in Table 3.1 make use of one or more

of the following transformations which provide a useful

alternate form for the solutions to the equation of motion.

Note the particular form chosen is based on the input.

A coswt + Bsln_0t =

-A coswt+ Bslnwt=

Acoswt- Bslnwt=

where
-1

e 1 = tan A/B

e 2 = tan -1 B/A

l sln (_t + el)
or

cos (wt - O2)

(-sin (wt - e 1)
or

l cos (wt + 02)

(3.21)

and A, B are positive real quantities.

3.2.1.4 Steady State Response to a Sinusoldal Input

The simplest form of steady state input is a slnusoidal

force. The steady state response to such an input, with

an amplitude P and frequency w is given by the first

term in Equations 3.19 or 3.20. The second term, repre-

senting the transient response to the initial application of

the load, decays rapidly. Thus, if the input to the mass,

in Figure 3.3, is a force given by

P(t) = Pcos_t

the steady state response is obtalned from Equation 3.20 as

P cos(_t - e3)
× (t) = --

k ÷ <2sO/Oo/2]1/2

Ordinarily, only the amplhude of x(t) is of concern for

vibration design. If this is identified by the frequency of

excitation, w, and the amplitude of the driving force is

similarly identified, then the amplitude of the displace-

ment response x(w) is:

x(w) - P(w) H (w) (3.22)
k

where H(w) has an absolute value given by

H(w)= [(1-(W/Wo)2) 2 + (28W/Wo)2] -1/2 (3.23)

The phase angle 83 or e(w) between the input and response
is

-I 26 w/w °
B(_) = tan

1 - (W/Wo)2

The quantity H(g), called the dynamicmagnificatlon

factor and the phase angle e(w), are plotted on Figure

3.5 for a Few values of the damping ratio 8.

The maximum value of H(g) occursat the resonance fre-

quency Wr=W ° _ which is very nearly equal to the

natural frequency go for the usual amount of damping so

that for practical purposes,

H(_)lmax_ 1/2s = Q (3.24)

where Q = resonant amplification factor.

<
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20.0

10.0

.33

1.0

0.1
0.1 .0 10.0

o

i-
120 _

'iOo 
60

40

0.1 1.0 I0

W/Wo _ Forcing Frequency
Natural Frequency

FIGURE 3.5 Dynamic Magnification Factor (a) and Phase Angle (b)

for Response of Single Degree of F,eedom System to

Sinusoldal Input
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Note that the displacement response amplitude can be

given as

x(u) _ H(u) (3.25)
x

S

where x s is the static displacement that corresponds to a

static load P equal to the amplitude P(_) of the slnusoidal

force at the frequency _.

For analysis of acoustic response of structure, it will be

convenient to define the acceleration amplitude response

a(g) of the structure relative to the driving force P(_).

For acceleration in "g" units, this ratio is

P(co-_ g P(,,,) g (3.26)

Since the total weight W is equal to mg, a convenient
non-dlmensional form of the above is

a IW(°)2P(u) _ H(u) (3.27)

The various relationships given by Equations 3.22- 3.27

will be utilized frequently throughout this manual. For

Equation 3.27, if the force is specified as a force per unit

area or pressure p(_), then W may be considered to be the

weight per unit area, w. It will also be convenient to

substitute frequency in Hz (f) for frequency in radians (_).

This will not change the value of H(_) since it is only a

function of a frequency ratio and damping.

3.2.1.5 Force and Motion Transmlssibility

The single degree-of-freedom system in Figure 3.3 has

been analyzed, so far, only in terms of the absolute dis-

placement x(t) of the mass for a force P(t) applied to the

mass. Clearly, the velocity and acceleration response to

this same excitation can also be determined by differ-

entiating the displacement response equations- once to

obtain the velocity response and twice to obtain the

acceleration response. All three response relationships

will be shown, later on, to be applicable for analyzing

the stress, sound transmission and inertial loads of a wall

due to excitation by acoustic pressures.

However, there is another response function which is de-

sired for the simple damped mass-spring system in Figure

3.3. This is the force PT(t) transmitted through the system

to its foundation. This force is developed by the dis-

placement of the spring and the velocity of the viscous

damper and can be expressed by

PT(t) = cR(t) + kx(t) (3.28)

Restricting consideration to steady state slnusoidal ex-

citation only, then by substituting Equation 3.19 in the

above expression, and utilizing the definitions for H(g)

from Equation 3.23 and 8 from Equation 3.6, and the

transformations in Equation 3.21, the ratio of the magni-

tudes of the transmitted force PT(_) to the driving force
P(_) is given by:

PT/°) _ /. /3.29/
T(_)

P(_) _/(1 - (W/_o)2) 2 + (2 8 _/_o) 2

This ratio is called the Force transmlssibility of the

system. It can be applied to the determLnatlon of re-

action loads at the supports of a wall under acoustic ex-
citation.

Excitation of Foundation

Consider now the response of the same damped spring-mass

system to an excitation of its foundation as illustrated in

Figure 3.6. This is a simplified model of a vibration iso-

lation system or a similar configuration involving ex-

citation of a flexibly mounted mass through its foundation.

L

FIGURE 3.6 Single Deg_ee-of-F,eedom System with Excitation

at Foundation

Several response variables are of interest. The most obvi-

ous is the motion of the mass for a given motion of" the

foundation. The equation of motion, in this case, be-

comes

m_(t) + cx(t) + kx(t) = c0(t) + ku(t) (3.30)

where

u(t), 0(t) = displacement and velocity,

respectively, of the foun-

dation.

The steady state (or particular integral) solution for this

equation is well known(e.g.- References 3.1, 3.3, 3.6).

It can be used to show that the motion transmisslbility, or

ratio of magnitudes of the mass displacement, velocity or

acceleration to the corresponding motion variable for the

foundation is exactly equal to the expression in Equation

3.29 for the force transmisslbility. Thus, the ratio of

steady state response/input amplitudes is

x(w) _ k(_) _ _(_) = T(w) (See Equation 3.29)u(_) o(_) _(_)
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This transmissibility, T(_), is plotted in Figure 3.7as a

function of the relative frequency_/_ o. Note that this

function is significantly different from the dynamic magni-

fication factor, H(g) in Figure3.5(a). For low damping,

the transmisslbility has essentially the same magnitude as

H(g) when u/g o = 1 so that the maximum value is

T(_)lmax__ 1/28 = Q (3.31)

where Q = resonant amplification factor.
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Force or Motion Transmisslbillty of o Linear Viscous

Damped Single Degree-of-Freedom System

However, above resonance, the transmissibillty curve has

a very different shape. It passes through 1.0 at W/go=

_'-and decreases above this frequency at a rate which

depends on damping. For high damping (8_1), thede-

crease is roughly proportional to 1/_ instead of 1/g 2 as in

Figure 3.5(a). Further_theoretical and practical aspects

of vibration isolation are given in Chapters 9 and 11 .

3.2.1.6 Summary of Transfer FunctlonsforSingle Degree-

of-Freedom System to Sinusoidal Excitation

Fortunately_ the two basic functions, H(g), given by

Equation 3.23, and T(g), given by Equation 3.29, form the

basls for all other sinusoldal transfer functions of interest

for the single degree-of-freedom system driven by a force

at its mass or by a motion or force at its foundatlon. The

steady state transfer functions of practical significance

are briefly summarized in Figure 3.9 in a matrix of input-

response relatlonshlps which depend upon the relatlve

frequency parameter _/g and the critical damping ratio
O

8. The matrix includes a definition of the relationship

between the relative displacement of the spring and

damper (a measure of the stress in a support structure) and

the input excitation to the foundatlon. In this case, the

equation of motion of the system can be expressed as

m_ (t) + c_ (t) + kc (t) = - m_J(t) (3.32)

where

(t)

and

_(t)

= the relative displacement of the spring

= the absolute acceleration of the

foundation.

For those transfer functions which exhibit a resonant peak,

the maximum value of the frequency-dependent part of

functions is equal to 1/2 8 _ Q at resonance, for the de-

gree of damping normally encountered in vibration design

(Q > 3). However, the change in these transfer functions,

above or below resonance, varies widely, depending on

the particular input-output variables involved.

3.2.2 RESPONSE OF THE SINGLE DEGREE-OF-FREE-

DOM SYSTEM TO TRANSIENT INPUTS

The next type of excitation to be considered will be the

transient inputs which simulate structural loads imposed

by explosions and sonic boom overpressures. These types

of loads can be approximated by relatively simple transient

pulses without a large number of oscillations such as occur

for earthquake loads on buildings. This usually makes it

possible to neglect the effects of damping on the response

of a simple mass-spring system to such loads.

The significance of damping on the transient response of e

simple mass-sprlng system is illustrated in Figure 3.8. This

shows the maximum dynamlc response Xma x, with damplng,
relative to the undamped response for two extreme forms of

a transient input - an impulse and a unit step input. For

typical critical damping ratios of .02- .I, the maximum

damped response is within 80 percent of the undamped

response.

1.0

.8

.2

o
.Ol

--....

I
I

i

0.1

8-C, itical Damping Ratio

\

FICURE 3.8 Relative Effect of Damping on Maximum

Response of Single Deg, ee-of-Freedom

System to Step Input and Impulse Input

1.0
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INPUT_ Force Input to Mass Acceleration Input Force Input to Base

to Base

RESPONSE

MULTIPLY INPUT 4,,-

BY_
TO OBTAIN la(_)l

Absolute x(_)

Motion of
Mass >_(w)

_(_)

Absolute u(g)

Motion of
Base i_(w)

Relative

Motion of

Sprlng- Damper

H (_),/k

(W/go) H (g)/go m

- (g/_o)2 H (_)/m

NA

NA

T(_)/g 2

T(_)/_

T(w)

1/_ 2

1

PI(_)

(_o/_)2/k

l/gm

1/m

(_) H(_)/k H (g),/Wo2 H(g)/T(g) • k

Force Trans.
to Base PT (_) T(g) NA NA

Legend:

_o = _ , 8 = c/2_om

I [1- (_/_o)2 ]2 1/2H(_) = 1/I + (28_a/'_ao)21

T(w) = [1+(28_/_o)2ll/2 .H(_)

NA - Not Applicable

H(_)lmax: 1/28 _1-82 at_a :go ¢- 282

For 8 < 0.3

H(g)lmax= T(_a) max = 1/28 : Q

FIGURE 3.9
Summary of Absolute Value of Steady State Sinusoidal Transfer Functions la(g)Ifor

Sinusoidal Excitation of Single Degree-of-Freedom System. Amplitude of Response

Variable is equal to Amplitude of Input Variable Times la(g)l. (The complex value

of H(_) will be identified in subsequent sections by H(f).)

Resonance Frequency and Natural Frequency

As shown in the legend in Figure 3.9, the maximum value

of the dynamic magnification factor, H(g)Jma x occurs at

the resonance frequencyg r=go_l - 282 . Aslightlydlf-

ferent resonance frequency is shown for the maximum value

of the transmisslbility T(w)lmaxO

Forother input-response combinations given in Figure 3.9,

similar resonant frequencies can be defined. However, for

the usual amounts of damping, these various resonance fre-

quencles are practically the same as the undamped natural

frequency go or the damped natural frequency _d=go_/1-82 .

Throughout the rest of this manual, therefore, these minor

differences in frequency will be ignored and the term re-

sonance frequency will be used freely to identify the true

resonance frequency where the response is a maximum, or

the natural frequency. It will be specified, as conven-

ience dictates, in terms of rad/sec (go) or Hz (to = _o/2_)"

Similarly, the maximum value of the nondimensional re-

sponse function (i.e. -- H(g), T(g), etc.)will be assumed

to be equal to 1/28 or Q.
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3.2.2.1 Superposition Principle

For a linear system, the response to the sum of a series of

inputs is the sum of the responses to each input. If neces-

sary, one or more of the inputs may be delayed to make

up the overall input. For example, a ramp step input

with a rise time T may be defined by a positive ramp

starting at time t =0 minus a ramp with the same slope

starting at time t = T, as shown in the following diagram.

P(t)

Po-- --

0 T

:Po 
_ t

0 T

.... i
t

0 T 2T

The response to the clelayed ramp is obtained by replacing

t by (t - T) in the response equation for the ramp and then

adding tothis the response due to the first ramp inputwhlch
starts at t = O.

For the triangular pulse, theinput, during the time O<t<T,

may be described as shown below.

P(O

0 T 0 0 T

Po
P(t) = Po -

-T t, t<_ T

3.2.2.2 Response to Triangular Pulse

It will be shown subsequently that a simple triangular

pulse wlth an instantaneous rise is a useful approximation

for a blast overpressure pulse. Response to this type of

pulse is therefore discussed in some detail.

The forced response to the step input minus the forced

response to the ramp input defines the forced response for

the triangular pulse during the duration of the pulse.

Therefore, subtracting Equation (3.17) from (3.16), the

forced response for the damped system can be expressed as

x(t) = 1 t 28 e-8_°t
,., T _ J3cos (gdt - _) (3.33)X /

S O 0

where

1+ 28_oT + (C0oT)211/2
1 - 62

-1
= tan

282+8c0 T- I
0

(_ T + 26)_/_ 'L_
0

and x s = Po/k = static response of system to a static load

equal to the maximum value Po"

For an undamped system, this reduces to

x(t)Xs _1 -_'t + V1 + (1/_oT) 2sin (_o t- tan -1_o T)

(3.34)

Following the end of the triangular pulse, the mass-spring

system is free to vibrate at its natural frequency. Pro-

viding the duration of the pulse is not much greater than

the period of the mass-spring system, clamplngwill not

significantly influence the magnitude of the first peak

reached during this period of free oscillation called the

residual response region.

Residual Response To Triangular Pulse

The displacement and velocity at the end of the forced

excitation is given by Equations 3.33 or 3.34 for t = T.

Applying these values as initial conditions for the residual

or free vibration, and using Equation 3.8, with B = O, the

residual response for the undamped system can be reduced
to

x (t) _<(T)
r

= x(T) cosg (t-T) + -- slngo(t-T )X O tO
S 0

or, for t_T,

Xr(t)_[1 - 2sln,,oT + sln2_oT/2
Xs _oT (goT/2) 2

I/2

sin({aot-E))

(3.35)

-1
e = tan

T- sin_ T
0 0

1 - cos,.,T
0

Equations 3.34 and 3.35 can now be used to determine an

envelope of the peak response to the triangular pulse re-

gardless of when the peaks occur. This envelope of maxi-

ma provides a suitable basis for designing structure to this

type of transient load.
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Maximum Amplitude of Forced Response

Consider only the undamped case. As shown in Figure

(3.8), usualvalues of dampinghave a minor effect on the

peak response to simple transient inputs.

The maximum amplitude occurs when the velocity is zero.

Differentiating Equation 3.34 and setting it to zero,

_(t) - 1 [1 t]= 0x T - cos,.'ot - go T sin go
S

or sin _ in--_-- - go T cos = 0

Thlshas hNo roots for positive and negative peaks given by

g t = 2 tan -I g T
o max o (3.36)

g t . = 2_n, n = 1, 2, etc.
0 mln

Substituting these back into Equation 3.34, the maximum

and minimum instantaneous values of the forced response

are defined by

x [ tan_1 ]max = +2 1 - ( goT)/go T

x
s

(3.37a)

x °
rain

- 2_ n/goT (3.37b)
x s

In this case, the absolute value of the negative peaks will be

always less than the positive peaks for all values of go T .

Maximum Amplitude of Residual Response

The amplitude of the residual response is already given by

Equation (3.35). The time of maximum residual response

is found, in the same manner as above, to be:

-1 cOSgoT- 1

go t = tan > go T (3.38)max g T-slng T -
0 0

Displacement Shock Spectrum for Triangular Pulse

The combined envelope of the maximum response ampli-

tudes of the simple mass-spring system during both the

forced and free vibration phases is called the shock spec-

trum. This envelope, normalized by the static responsexs,

is illustrated in Figure 3.10 for the undamped system and

is Based on Equations3.35, 3.37, and3.38. The time of

occurrence for positive peaks during the forced and free

response is shown in Figure 3.11. As indicated by these

figures, the maximum forced response during the pulse is

equal to or greater than the residual response for all values

of relative response greater than 1. This is not a general

rule, however, for all pulse shapes.

2.0
I I I I l I I I I I i 1 i I i

.u

I

x_
×
o
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Xr max, mln
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I
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2.5 3.0

f T - Resonance Frequency x Duration
O

FIGURE 3.30 Normalized Shock Spectra for Triangular Pulse

For Simulation of Blast Loading
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Thisshockresponsespectra,normalizedbythestaticre-
sponse,providesthebasicdynamicloadfactorforthis
pulseshapeandiswidelyusedforblastloadanalysis.

0.6 r I I I I I 1 I J

This impulse response is shown on Figure 3.10, and as ex-

pected, agrees very closely with the true shock spectra

for the product of resonance frequency times duration of

the pulse less than 0.25. This is the approximate upper

bound of validity for the impulse response approximation

for all pulse shapes with a positive phase only.

E

o

0.4 .._/
f

0.2 t

F > T.,._L pt < T max _/

max _- max

/
0-1 iI I I I i I _ J

0 0.5 1.0 1.5

f T - Resonance Frequency x Duration
o

2.0

FIGURE 3.11 Time of Occurrence of Maximum Positive Response

to Triangular Pulse Multiplied by the Resonance

Frequency, f , of the Mass-Sprlng System
o

Approximation of Shock Response b/ Impulse Response

For shock inputs with a duration less than one-fourth the

natural period of the system being excited, the input may

be approximated byan impulsewith the same total impulse

as the actual shock. Forthetrlangular pulse, the impulse,

I, is

I :/P(t) dt: POT/2

The response to this impulse, or to any impulse I which

has only a positive phase (i .e. - load is always positive),

is purely a residual or free vibration response with a maxi-

mum amplitude given by

3.2.2.3 Acceleration Response to Triangular Pulse

The displacement response to a triangular pulse provides a

basic design tool for analyzing dynamic stress in structures

loaded by blast waves. It is also desirable to define the

acceleration response to this type of load since accele-

ration or inertial loads on secondary structure or equip-

ment attached to a blast-loaded wall can also represent a

significant dynamic load problem.

For steady state slnusoldal excitation of a linear system,

the peak acceleration response is simply equal to

- (2_ fo) 2 or - g2 times the peak displacement response.

However, for transient loads, this is no longer valid dur-

ing the time the load is acting.

Maximum Acceleration Response During Forced Response

During the forced excitation by a triangular pulse, the

acceleration _(t), is equal to the second derivation of the

displacement time history given by Equation 3.34. After

simplification by using the transformations given in

Equation 3.21, the result can be given in non-dlmenslonal
form as

TI ']2 jg X S
0

sin (go t - ¢) (3.40)

X

r max

J Jgo

_m k
0

For the triangular pulse, I is equal to POT/2, so that the

maximum response, relative to the static response, xs:Po/k ,
is

uT
Xrmax o

- - ,rf T (3.39)
x s 2 o

where

-1
¢ = tan g T

0

The time history of acceleration computed by this ex-

pression is compared in Figure 3.12 with the time history

of the displacement response for the case of g T : 4_r or
o

f T : 2. The time scale is normalized by the duration of
0
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the pulse. The normalizing factor in Equation 3.40 is the
product of the square of the resonance frequency g and

o--

the static displacement x . The latter is the displacements

whlch would occur for steady applicationofthe peak
value of the load. The reason for choosing this pseudo-
acceleration to normalize the acceleration response is
clarified by noting, in Figure 3.12, that the initialac-

celeration,at t = 0, is just equal to this parameter or

_(0)/_oZX = 1. This is also readily apparent by examining
S

the basic equation of motion of the system (Equation 3.5)
at time 0. If the system starts at rest, then this equation
reduces to

._(0) - P(0) _ 2 x fort=0 (3.41)
m o s

#
"x

0 0.2 0.4 0.6 0.8 1.0

t/T - Time/Duration of Pulse

FIGURE 3.12 Comparison of Displacement and Acceleration Forced

Response of an Undamped Sprlng-Mass System to a

Triangular Pulse

an acceleration peak (actually a negative acceleration
peak) that can occur during the forced response period is

=1.06 2Xs (3.43)Xmaxlmax f T = 0.45
o

Maximum Acceleration During Residual Response

During the residual response period of free vibration, the

motion is purely slnusoidal and the acceleration k'(t) is
r

now equal to -goXr(t) where Xr(f) is the residual displace-

ment response specified by Equation 3.35. The envelope

of the maxlmum2acceleratlon following the pulse, when
normalized by WoXs, is the same as the envelope of the

normalized residual displacement response or

X

r max r max

2 x

to x s
o s

(3.44)

Acceleration Shock Spectrum for Triangular Pulse

Based on the concepts outlined above, the envelope of
maximum acceleration response to a triangular pulse may
be constructed by superimposing the envelopes of maxi-
mum acceleration for both the forced and residual re-
sponse periods. The result, shown in Figure 3.13, indi-
cates that the maximum possible acceleration occurs dur-
ing the residual response period for f T = 0.625 and is

2 o
equal to 1.26to x .

O S

As shown in Figure 3.12, the next peak acceleration after

t = 0 is a minimum and, for the case chosen, has a magni-
tude only slightly greater(by 0.3 percent) than the initial
acceleration. The envelope of the maximum acceleration
response during the forced motion for any value of the

perometer toot = 21troT, is given by the term in brackets in

Equation 3.40 which issimply the amplitude of the sinu-
soidal acceleration. The time of occurrence tma x of an

acceleration peak during the forced response period can
be expressed as

1 tan-1 go T
f t = m + (3.42)o max 4 2_

However, t can not exceed T if the acceleration peak
max

is to occur during theforced response period. Thus, nega-

tive acceleration peaks are not possible for fo T < 0.45.

When this limiting value is inserted in the term in brackets
in Equation 3.40, it is found that the maximum value of

•= 1.5

E

B
o
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f"% f _max (t < T)

!
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/ Po _,. _(t)

= pd/k

T

I i i i i i i , i i i i i ,

1.0 2.0 3.0 4.0

f T - Resonance Frequency x Duration
o

FIGURE 3.13 Acceleration Sh_k Spectrum for a Triangular

Pulse Applied to Mass of Undamped Mass-

Spring System
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The time of occurrence of the maximum negative accele-

ration during the forced response period, given by

Equation 3.42, is slightly greater than the time of maxi-

mum positive displacement as shown in Figure 3.11. The

difference is less than 5 percent, however, for f T> 1.
• O

During the residual response period, the displacement and

acceleration peaks occur simultaneously, but again, with

opposite sign. Therefore, Figure 3.11 may be used to de-

fine the time of occurrence of maximum negative accele-

ration peaks with negligible error. The time of occurrence

of either the peak displacement or acceleration response

can be useful for two purposes: 1)to correct the undamped

shock spectrum for damping effects and 2) evaluate the

effect of loading rate on failure loads on structure. This

latter effect will be discussed in Chapter 5.

A correction for the effect of damping can be carried out

by reducing the oscillatory part of the transient response

-2_ 8 where
by the exponential damping term, e fotmax '

8 is the damping ratio and f t is the normalized time
o max

of maximum response given by Figure 3.11. Consider,

however, the comparison in Figure 3.14 of the damped

displacement shock spectrum for the trlanguJarpuJse

carrledout by 1) an exact anaJysisand 2) by slmpJy

appJylng the damping correction factor indicated in

Figure 3.7. This indicates that the latter provldesa suf-

ficiently accurate correction for the effect of damping

and also shows that the correction, itself, is small for this

type of shock pulse thus justifying the use of an undamped

system for the shock spectrum analysis.
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o

FIGURE 3.14 Comparison of Undamped and Damped Displacement

Shock Spectrum for Triangular Pulse Applied to Mass

of Single Degree-of-Freedom System.

3.2.2.4 Alternate Methods of Defining Transient

Response

Other methods for solution of transient response problems

which are frequently employed are:

• Fourier Transform Method

• Laplace Transform Method

• Numerical Integration Method

• Phase-Plane Graphical Method

• Electrical Analog Computer Method

An example of the application of the first two methods,

which are related, will be given in the next section.

Application of the numerical integration method is made

in Section 2 of Chapter 8 for the analysis of the response

of complex building structure to blast loads. The phase-

plane graphical method provides a useful method for

analysis of the response of simple mass-sprlng systems to

complex shock inputs which can not be readily described

analytically. Most of the transient sonic loads considered

in this manual do not fall in this category since idealized

madels for the pressure time history are assumed. For the

one exception in Chapter 8, where analysis of more com-

plex shock inputs is carried out, the structural system is

too complex for efficient utilization of graphical methods.

In this case, numerical integration methods are used to

solve the equations of motion of the system. For a more

complete discussion of application these various methods,

the reader is referred to standard texts on vibration theory.

Chapters 8, 23, 28 and 2; of Reference 3.1 are particu-

larly useful.

3.2.2.5 Application of Fourier Transform

The pressuretime history of a blast, as observed at a remote

distance, can be approximated mare accurately than by the

triangularpulse, by the classical expression for a blast wave

equal to

P(t) = Po [1- t/T] e-t/T (3.45)

where T is the characteristic duration for the blast pressure

pulse as shown in Figure 3.15. However, the following

analysis will show that the shock spectra for a triangular

_1_..0_1 - t/T) e-t/T

OI _'_1_._

,/T

FIGURE 3.15

| I

2 3

Classical Definition of Blast Wave

Shock Pulse
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pulse is, in fact, sufficiently accurate for many blast de-

sign problems. The analysis is used to illustrate application

of the Fourier and Laplace Transform methods to shock or

transient response problems.

Fourier Series and Fourier Spectrum

Any physical event which can be described by a repetitive

or periodic function of time f(t) can also be described by

the summation of an infinite series of sine and cosine terms

each of which have a frequency n_ equal to an integral
o

multiple n of the basic repetition frequency, ,, . This
o

series is known as the Fourier Series and can be expressed
in the form

CO

oo ]f(t) ="_-- + a n cos n go t + b sin n _aot
n _ ] n

(3.46)

The first term ao/2 is the mean value of the function f(t).

The constants an and bn are the Fourier coefficients which

define the amplitude of the n-th cosine and sine terms and

are given by

+ to/2

a - f(t) cos n _ t dt
n t o o

- 0/2

+to/2 n = 0, 1,2 .... (3.47)

bn - _-o__t- f(t) slnn_ tdto
o/2

to = 2_/g ° = period of cyclic event

Note that the first term ao/2_ can also be determined from

the first integral in Equation 3.47slnce for n = 0, the latter

reduces to the equation for the mean value

+ to/2

ao _ 1 I
f(t) dt

2 t o J
- to/2

The sine and cosine terms of the same frequency can be

combined so that the nth discrete frequency component of

this series can be specified by its amplitude C(n_o)and

phase 1,(ngo) , in the form

fn(t) = C(n go) cos in go t - y(n go) ] (3.48)

where C(ngo) = _an2+b 3

and y(ngo) = tan-1 bn/a n

The frequency interval between any two of these terms is

simply the basic repetition frequency w /2_ = l/t o, Note
O

also that each of these frequency components representsa

steady state sinusoidal excitation.

When the event happens only once, as for a single tran-

sient, the period t o approaches infinity or, conversely,

the repetition frequency go approaches zero. In such a
case, the transient can be considered as a "series"where

the frequency interval between components, I/to, ap-

proaches the differentially small quantity d_/2_ and the

discrete frequency n_ o becomes the continuous frequency

variable g. If Equation 3.471s substituted in Equation 3.46

for the terms an and bn and the limiting conditions that

1/t o _ dg/2_, n_o---* u, and tom_-co are applied, the

series becomes an integral which can be expressed in the
form

OO

(3.49)

where the terms A(g) and B(u) now define the amplitude of

the continuous distribution of spectral components and are

given by

+CO
F*

A(_) = / f(t) cos gt dt

J-CO

+CO
P

B(g) = / f(t) sin ut dt
_ CO-

(3.50)

Although the integration limits are shown as+inflnity in

this equation, the actual duration of the transient is used

for the limits in any given case. As before, the amplitude

and phase angle of this spectrum, called the Fourier

spectrum, are given by

IF(g)l = '_/[A(g); 2 + [B(_)] 2"

(3.5])
-1

e(_) = tan B(_)/A(_)

The similarity beh#een Equations 3.46-3.48 far the

Fourier series and Equations 3.49 - 3.51 for the Fourier

spectrum is clear and helps to provldea clearer under-

standing of the physical significance of the Fourier

spectrum. The essential difference betweer_ the Fourier

series and the Fourier spectrum lies in the discrete fre-

quency content of the former versus the continuous fre-

quency spectrum of the latter. This is illustrated in Figure

3.16 for a continuous and single sawtooth or N wave. In

both cases, however, the frequency components correspond

to steady-state slnusoidal components which extend from
t = -CO to t = +CO.
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o) Fourier Series for Repetitive Event

-,,x,] -_

b) Fourier Spectrum for Single Event

FIGURE 3.16 Comparison of T;me History and Frequency

Spectrum of Repetitive and Single Sawtooth Wave

A more conventional form of Equations 3.50 and 3.51 is

based on the use of complex vector notation to represent

the amplitude and phase of the frequency spectrum (Refer-

ences 3.10 and 3.11 ). Thus, Equatlon 3.51 becomes

F(jw) = A(_)- j B(_)= IFCjw)I e-j 1,(w)

where j = '_'_', the imaginary unit vector

and IF(j_)] = absolute value of F(jg).

(3.52)

The Fourier spectrum is then given in the usual complex

form, known as the Fourier Transform, by

+(3O

FOg) = f f(t) e-jutdt (3.53)
-OO

Equation 3.50 provides equivalent results, however, and

was stated first to introduce the Fourier spectrum in a form

closely comparable to the well-known Fourier Series with-

out resort to complex vector notation.

Equation 3.49, in complex notation, is the Fourier Integral

given by

+gO

I fag eJ_tf(t) = 2--_- F(jg) dw (3.54a)

or, in a form which avoids the integration over physically

meaningless negative frequencies,

f(t) = Real Part of F(jw)e "l_t d (3.54b)

complex quantitiesF(jg)and e Jut in Equation 3.54 inte-

grate to give the same real value of f(t) given by the

trigonometric form in Equation 3.49.

Now that it has been established that a single transient

excitation can be represented by a continuous spectrum of

steady state slnusoldal frequency components, one might

intuitively expect that solutions for the steady state res-

ponse of a system can be used to determine the transient

response through application of the Fourier transform.

This is indeed the case and represents the principal

strength of this method.

The primary applications of the Fourier transform or

Fourier spectrum to transient response problems can be

stated as fol lows.

• The Fourier spectrum R(j_) of the response of a

linear system to any input excitation P(t)is equal

to the product of the Fourier spectrum of the input

P(jg)and the complex sinusoidal transfer functlon

a (_0) for the system.

• The time history corresponding to this response

spectrum can be determined by taking the inverse

Fourier transform of R(j_).

• The Fourier spectrum of a shock pulse can be

used to define the residual shock spectrum of an

undamped slngle degree-of-freedom system to this

pulse. This provides a simple and useful tool for

engineering evaluation of shock response prob-

lems.

These three concepts will be illustrated by the following

analysis of response to a classical blast wave.

Application of Fourier Spectrum to Classical Blast Wave

The first concept stated above may be expressed by

R(jg) = P(j_). a(_) = IP(J_)IJo(_)Je- j 7 (_) (3.55)

where

P(Jw) : IPO,')]e-J _(_) - complex value of Fourier Spec-

trum of excitation

and

a(g)=Ja(u) I e-jg(u)- complex value of s;nusoldal

transfer function

y(g)= _B(w)+ O(w) - sum ofphaseanglesofP(jg)and

a(w), respectively.

For a classical blast wave, the Fourier spectrum can be

found by substituting the expression for the time history

of the pulse P(t) given by Equation 3.45 into Equation

3.50 or 3.53. The absolute value of the resulting
Fourier spectrum is

P

It should be emphasized that Equations 3.54 and 3.49 jp(j_)j _ o -'_gT;2 (3.56)

g;ve identical results. The real part of the product of the g 1 + (_T) 2
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If theblastpulseisassumedtorepresenttheinputforceto
themassofasingledegree-of-freedomsystem,thenP(j_) is

the Fourier spectrum of this excitation. According to

Equation 3.55, the Fourier spectrum of the displacement

response of the mass is the product of P(j_)and the steady

state transfer function a(,'). The latter, in this case, can

be considered as the steady state displacement response of
the mass for a sinusoidal excitation. The absolute value of

this slnusoidal transfer function has already been given

earlier in Figure3.9. (The complex value of a(w) willalso

be required in this analysis and may be specified by

la(_)l exp [- jB(w)] = }a(_)l [cos 8(w)-j sin e(w)] where

e(w) is the phase angle for the sinusoidal transfer functions

given in Figure 3.8.) Thus, the absolute value of the

Fourier spectrum of the displacement response of the mass

to the classical blast wave pulse is

Ix(s_,)l= IR(J_)I=_ (_T)2/ [1+ (_T)2]

(3.57)

The Fourier spectrum of the response to this pulse can

be plotted for a given value of the damping constant 6,

and resonant frequency w° of the single degree of freedom

system, and for a particular duration T of the blast wave.

Such a plot is shown in Figure 3.17 for the case 6 = 0.1 ,

w T=2. The broad peak, at an angular frequencyo

w = l/T, corresponds to the maximum value of the fre-

quency spectrum of the input blast wave, while the sharp

peak at w = 2/T corresponds to the resonance peak of the

frequency response for the mass-spring system.

"6

o_
u.

o

I0.0

1.0

I I I I I

x(t)

P(t) L__k _

T

I I I I

Ix(J_)1
I_ _ Response

ii _ Spectrum

// I %T = 2
/ I 6=0.

P"w Input // I "
I U )l Spectrum / | Wo =

0.1 I I I I I I _1 I I _

0.1 1.0 10.0

wT - Frequency x Duration

FIGURE 3.17 Fourier Spectrum of Classical Blast Wave and

Displacement Response of o Single Degree.of-

Freedom System

While such a plot can be helpful to illustrate the general

nature of the frequency content of the response, it does

not provide any indication of the actual time history or

peak value of the response. This leads to consideration of

the second point made earlier on application of the

Fourier transform.

3.2.2.6 Application of Laplace Transform

If the complex form of the Fourier spectrum of the re-

sponse, in Equation 3.57, is substituted into Equation

3.54, the required integration can be carried out to de-

termine the time history of the displacement response.

However, this integration is more readily accomplished by

utilizing the Laplace Transform. The Laplace Transform

F(s) of a function of time f(t) is given by (References

3.10, 3.12, and 3.13).

(30

F(s) = L f(t) e-st dt
(3.58)

where s = complex Laplace variable = a + jw.

Comparing Equation 3.58 with the Fourier Transform given

by Equation 3.53, it is clear that the two are identical

providing: 1) the time function f(t) is zero for t < O, and

2) the quantity a in the Laplace variable approaches zero.

These conditions are, in fact, met in the solution of most

engineering problems involving transients. Thus, for prac-

tical problems, the Fourier and Laplace Transforms yield

identical results. However, the Laplace Transform has the

advantage of more extensive usage and solutions for the

Laplace Transform and its inverse are well known (Refer-

ences 3.1, 3.12- 3.14).

To find the response time history to the classical blast

wave, the Fourier spectrum for the response must first be

given in complex form. This complex form, comparable to

the absolute magnitude given in Equation 3.57, is

Thecomplex frequency ]w in this equation is then replaced

with the Laplace variable s using the transformation

s ----j w

The resulting algebraic expression in s is the Laplace

Transform of the displacement response to the blast wave
and has the form

s w# Po/k

X(s) = (3.60)

The inverse Laplace Transform, which defines the response

time function x(t) corresponding to this Laplace Transform

X(s), is found in the literature (References 3.12 - 3.14)
and can be shown to be
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where

x+O+xs0 -,+]e+
- 8coot )

+e

sin(coo (3.61)

D = (cooT)2 - 2 6cooT + I

9'= tan -11-62 -2 tan -] gOT q] -62

-62 1 - 8cooT

x(t) = dynamic displacement of mass at time t

Xs = static displacement of mass to peak pressure

Po of the blast wave.

Thus, by carrying out a simple integration to obtain the

Fourier spectrum of the input using Equation 3.53, and

employing the sinusoidal transfer function a(w) for the sys-

tem, then, with the aid of Laplace Transform tables, a

solution to the response of a single degree-of-freedom sys-

tem is obtained without resorting to the classical methods

for determining the transient response.

A typical time history of the displacement response, given

by Equation 3.61, is shown in Figure 3.18 for the case,

fo T = cooT/2_t = 0.5 and 6 = 0 (no damping). The graph is

normalized by plotting the dynamic displacement relative

to the peak pressure static displacement x s and by using a

time scale divided by the positive phase duration T of the

classical blast wave. The peak displacement response ob-

tained in this manner for the classical blast wave will be

compared in the next section to the displacement shock

spectra for the triangular blast pulse model analyzed in

Section 3.2.2.2. First, however, it is desirable to con-

sider the final point regarding application of the Fourier

spectrum to transient response problems.
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FIGURE 3.18 Typical Response of an Undamped Mass-Spring System

to Excitation by a Classical Blast Wave Shock Pulse

3.2.2.7 Relationship Between Fourier Spectrum and

Residual Shock Spectrum

A useful relationship exists between the Fourier spectrum

of a transient excitation and the residual shock response

spectrum of an undamped system for this transient excita-

tion (Reference 3.] - pp. 23-23). For a transient force

excitation of the mass of a fixed-base mass-spring system,

such as in Figure 3.3., this relationship can be expressed

by the equation

coo" IP(J coo)j x r max
(3.62)

Po Xs

The left-hand side is the product of the mass-sprlng reso-

nance frequency Wo, and the absolute value of the Fourier

spectrum of the transient force at this frequency, normal-

ized by its peak value Po" This quantity _s equal to the

maximum residual displacement x r max of the mass normal-

ized by the static displacement x s to this peak force.

This relationship is illustrated in Figure 3.19 for a trian-

gular shock pulse excitation. For ver_ficatlon, the time

history for this pulse is inserted in the equation for the

Fourier spectrum and normalized according to Equation

3.62. The left-hand side of this equation then becomes

_°IP(J_°)I - 1-t/T) e -jcot
-- l_ O

Po (_ co = Wo

2 11/2
sin woT/2 j

s+n%T+ j (3,63)

The right side of Equation 3.63, in this case, is the resld-

ual displacement shock spectrum for this type of pulse. This

can be verified by noting the identity of Equation 3.63

with the amplitude term in Equation 3.35.

P(t)

"L'+x(t) x T

I t -- t

T max \ x(t)

I b)

P
o

_a = k_m

x s = Po/k

T

IP(j_)I = /P(t)

+o I P(J%)I

Po

e -iwt dt

Xr max

x S

FIGURE 3.19 Relationship Betweena) Normalized Fourier Spectrum

of Transient Excitation and b) Residual (tma x > T)

Displacement Shock Response of Undamped Mass-Sprlng

System to a Triangular Shock Pulse
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Comparison of Classical and Triangular Blast Pulse
Response

This concept can also be applied to the classical blast
wave. The only difference is that a clearly defined resid-
ual response does not exist for this pulse shape since its
duration, theoretically, is infinite. However, validity of
Equation 3.62 can be checked by comparison with the com-

puted time history for this pulse given in the preceding
section.

The normalized Fourier spectrum for the classical blast

is found from Equation 3.56. This is inserted in Equation
3.62 and u set equal to Uo to give

%[P(J%)I (% T)2

Po 1 + (uoT) 2

(3.64)

This expression is plotted in Figure 3.20 along with the
maximum and minimum response values computed from
Equation 3.61 for several values of the parameter f T.

o
The overall shock spectrum (both residual and forced) for

the triangular pulse is also plotted ln Figure 3.20. AIog
scale has been used to emphasize the response for small
values of f T. Three conclusions can be drawn from this
figure, o

• The computed maximum response to the classical

blastwave is closely described by the normalized
Fourier spectrum for this pulse for values of f T

o

less than 0.5. In other words, in this low range

of foT, the response of the system is essentially

"residual" and the shock spectrum is predicted by
the normalized Fourier spectrum as expected.

• For f T less than 0.1 the response to the classi-
O #

cal blast wave decreases more rapidly than for
the triangular pulse. This is also expected since
the impulse response of the system should be the
controlling factor in this region. The classical
blast wave has a net zero impulse in contrast to
the finite positive impulse for the triangular
pulse so that a different response is expected. In
fact_.it can be shown that for a shock pulse with

a net impulse of zero, the shock response spectrum
is expected to vary with the square of the pro-
duct f T for f T < < 1 where T is a characteristic

O O

duration of the pulse. This trend is observed for
the classical blast wave.

• For values of f T> 0.5, the shock response
O

spectrum, or envelope of maximum response, for
the classical blast wave is apparently closely
approximated by the shock spectrum for the tri-
angular pulse. Thus, the latter provides a suit-
able design envelope for the response to a real
blast wave.

#
s

o

o

I0.0

1.0

0. I

/

//
// .,'

/

!

0.011 /
0.01

, f- i i

Xma-----_x- Triangular Pulse --_
x s

i

I , .

,V'>- I II '7 I I I

Classical Blast Wave-_.-

"_ ---F(_ ',o)I,"Pzo - E_ • 3.64

I
! II

O. 1 1.0 10.0

fa T - Resonance Frequency x Duration

FIGURE 3.20 Comparison of Normalized Fourier Spectrum and

Computed Maximum Displacement Response Values

for Classlcal Blast with Displacement Shock Response

Spectrum for Triangular Pulse. Excitation Applied to

Mass of Undamped Fixed-Base Mass-Sprlng System.

General Relationship Between Fourier Spectrum
and Residual Response

The relationship between the Fourier spectrum and the
residual shock response spectrum can be generalized to

cover other forms of _puts and corresponding responses of
an undamped mass-sprlng system. The general form of
Equation 3.62 is (Reference 3.15)

Rrmax uol'CJ_o)l

i i
max max

(3.65)

Rrmax represents the generalized residual shock response

spectrum to a generalized excitation I(t) whose Fourier

spectrum is I(juo)and maximum value is Imax. Several

specific forms of I(t) and the corresponding response and
Fourier spectrum parameters in Equation 3.65 are listed in
Table 3.2. As an example, refer to the third row in the
table. For a base displacement u(t) of an undamped sys-
tem, the maximum residual displacement of the mass

Xrmax, normalized by Umax, is equal tOUolU(JUo)]/Uma x
which is the absolute value of the Fourier spectrum of u(t)

multiplied by u o and divided by the maximum value of
u(t).

Application of Fourier Spectrum to Step-Type Transient
Excltation

Estimating the dynamic forces on rocket test stands during
a static firing is another useful application of thlsconcept.
During rocket ignition, the transient and steadystate thrust
forces imposed on the test stand will have the general form
illustrated in Figure 3.21a. The initial transient lasts for

a time T followed by a static force Pmax. The simulation
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TABLE 3.2

RELATIONSHIP BETWEEN NORMALIZED FOURIER SPECTRUM OF TRANSIENT EXCITATION AND

CORRESPONDING RESIDUAL RESPONSE SHOCK SPECTRUM FOR VARIOUS EXCITATION-RESPONSE

VARIABLES FOR AN UNDAMPED SINGLE DEGREE OF FREEDOM SYSTEM( / )

Non-Dimenslonal Residual Response

Excitation Fourier Spectrum = Shock Spectrum Response

System l(t) Rr max/Imax R(t)
%11(J%)1/lmax

Fixed Force on Mass - P(t)/k _o [P(J_°o)l/Pmax Xr max/Xs (2) x(t) - Displ. of Mass

Base

(Figure 3.3) Force on Mass - P(t) _°o [P(J°_o)l/Pmax PTmax/Pmax PT(t) - TransmittedForce

Base Displ. - u(t) _o lU0 o/I/Umax Xrmax/Umax x(t) - Displ. of Mass

iJ(t) _rmax/(.Jmax _(t) - Accel. of Mass
Moving

Base

(Figure 3.6)

(1)

(2)

Base

Acceleratlon

-u(t)/_ 2

mE(t)

t
olU(J o)l/Umax

I

_ _rmax/Umax

PI max/mUmax

(t) - Relative Displ.

of Spring

Pl(t) - Dynamic
Reaction Force

on Base

Undamped Natural Frequency of System = go - rad/sec.

x s = Pmax/k = Static Displacement to Maximum Input, Pmax"

of the dynamic reaction to this transient force can be made

by treating the thrust stand and rocket, as a lumped mass

on a spring_ where the thrust force is applied to the mass.

The maximum displacement of the spring, analogous to the

maximum stress in the load carrying structure of the test

stand, can be shown to consist of the residual response

Xrmax plus the static response as shown in Figure 3.21b.

Thus, the maximum displacement, Xmax, relative to the

steady state displacement x s is simply

Xmax_ _olP(j%)l
Xs Pmax

+ I . (3.66)

k

/ , ii iPmclx x(t) l /'¢ _x_ °

I/ i L..Y .
T t t

a) b)

FIGURE 3.21 a) Typical ThrustTransient, and b) Simplified
Model of Dynamic Reaction of Static Test Stand

for Ignition of Rocket Engine. xs is Static
Deflection = Pmax/k, and Xrmax is Maximum
Transient Overshoot.

In other words, the normalized Fourier spectrum of the

thrust transient (evaluated at the natural frequency go of

the mass spring system), added to unity, defines the maxi-

mum relative dynamic response of this step-type transient.

This is a general result applicable to any normal step-type

transient excitation which can be described by the second

column in Table 3.2. It is based on the fact that for this

type of transient, the maximum transient response occurs

during the residual response period after the end of the

initial transient of the excitation (Reference 3.1).

The discussion of the Fourier and Laplace Transforms methods

in these last three sections has only touched on some of the

more useful applications of these powerful methodsfor solu-

tion of transient response problems. For a more complete

discussion of their applications and limitations, the reader

is referred to the literature (References 3.1,3.11 and 3.13.

3.2.2.8 Shock Response Spectrum of Sonic Boom
N-Wave

The other transient sonic load considered in this manual is

the sonic boom. A close simulation of the pressure-time

history of a sonic boom is given by the N-shaped transient

pulse shown in Figure 3.22. Using the same analytical

methods covered in Section 3.2.2.2, it can be shown that

the deflection-time history of an undamped mass-spring to

such a transient force during the forced response period is
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x(t)_1_t/T+ _/l+(1/(goT)2sin((got-e)t<2T (3.67)
X s

where

e = tan -1 (goT

(go = 27 fo = undamped natural frequency - rad/sec

x s = Po/k = static deflection to peak pressure.

This isthe same equation which defines the forced response

for the triangular pulse. For the N-wave, it is applicable

for t< 2T instead of t <_ T, as for the triangular wave.

Displacement Shock Spectrum for N-Wave

The displacement shock spectrum for the undamped system

is given by the fol lowing expressions which define the mag-

nitude of the peak positive and negative displacement during

the forced and residual vibration period.

FORCED VIBRATION

Xmax
---=2

x s

t<2T

_IT) t < 2T

= _ , _

2T

0 _ -Po

Xmin 2_n

X s (gO T

I1
t

t<2T

RESI DUAL VIBRATION

r ;jx sin (go T

rmax,minxs = 2L _-_ c°S_o t> 2T

(3.69)

FIGURE 3.22 Pressure Time-History of N-Wave

Sirnuiatlng o Sonic Boom

The residual or free vibration period after the pulse can be

determined by using Equation 3.8 with Equation 3.67 to

define the residual vibration in terms of its initial displace-

ment and velocity. The resulting expression is

x r(t) = 2 r sin (g°T- T]

xs L (goT cos(goj
COS (go(t-T). (3.68)

A typical time history of the response predicted by Equa-

tions 3.67 and 3.68 is shown in Figure 3.23 for the case

faT = 0.5. Similar expressions can also be derived for the

damped response and results are shown in Figure 3.23 for a

damped mass spring system with a dynamic magnification

factor, Q, of 5 and 20.

2-

._" u 0-

i -1-

-2-

Q

oV07oi0 
FIGURE 3.23 Displacement Response of Undamped and Damped

Single Degree-of-Freedom System to an N-Wave

when Natural Frequency fo, times Duration of

Positive Phase T, is 0.5

The displacement shock spectrum for the undamped system

is the envelope of the upper bound of these expressions as

illustrated in Figure 3.24. The shock spectrum for the N-

wave has the complex shape indicated due to the predomi-

nance of peak responses during different periods of the

excitation. In contrast to the shock spectrum for the trl-

angularblast pulse, the residual response controls the upper

limit for theshock spectrum of the undamped system. How-

ever, as shown in Figure 3.23, damping reduces this resid-

ual response appreciably so that for more practical repre-

sentation, the shock spectrum for the N-wave should include

the effects of damping. Such a "damped" shock spectrum

is shown in Figure 3.25, along with the envelope for no

damping from Figure 3.24. For values of the parameter

fo T greater than about 0.7, the maximum displacement of

a system with a typical Q of 5 to 20, will be primarily

determined by the envelope of the positive displacement

during the forced response period.

The displacement response of a damped system to an N-

wave during this period (t < 2T) is given by

x__ = I t 28 e -8(g°t

x s -T + i3 cos ((gd t - _) (3.70)(go T (go T

where

13 =I[1 + 2 8{doT + ((goT)2]/[1- 82]} 1/2

Ud = (go V1 - 82 - damped natural frequency

= tan -1 [282+8go T-1]/[((goT+28) V1-82 ] .
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FIGURE 3.24 Normalized Displacement Shock Spectrum for Ideal Sonic Boom N-Wave

Excitation of Undamped Mass-Spring System

The residual response can be determined from this equation

by the same method as for the undamped case by using

Equation 3.8. The shock spectrum for the damped cases

were obtained directly from peak values of the response

time histories which were calculated with a digital com-

puter using the Duhamel integral approach (see Equation

3.9). This is a common procedure for establishing the

shock spectrum of more complex shock pulses, particularly

when damping is to be accounted for. Direct analytical

solution becomes very cumbersome in such cases.

2.5

Time of Maximum Displacement

The time at which the maximum displacement response

occurs for an N-wave shock load is a complex function of

the parameter fo T and the damping of the system. How-

ever, the following relationships maybe used forestimating

the initial rate of loading of a structure by an ideal N-wave

and for estimating the time of occurrence of the maximum

response.

ForfoT < 0.5

E .0

a

_5 .5

-_ 0

!
#

I

-/
I
i

I

0.5

Q : I/2,5

b e' -. ',:, /,, /,. ,
,', ; '_ / " , , ,
, : ' _- _--

_ 2T
T"--d

1.0 1.5 2.0 2.5

fo T - Resonance Frequency x Duration of Positive Phase

FIGURE 3.25 Normalized Displacement Shock Spectrum for

Ideal Sonic Boom N-Wove Excitation of Damped

and Undamped Mass-Sprlng System

The first peak is positive (in the direction of the load) and

occurs at a time given by

I tan- 1 uoT.fo tmax = _-- (3.71)

For very small values of fo T less than 0.1, the first peak

occurs very close to the end of the N-wave or tma x = 2T.

The highest peak response is the subsequent negative peak

and occurs after the end of the pulse during the residual

response period at a time given by

I

fo trmln ='2" + fo T (3.72)

For fo T -'= 0.5 - 0.7

The first peak is positive and Equation 3.71 applies. The

maximum response is the following negative peak which

occurs before the end of the N-wave at a time given by

fo tmln : 1 (3.73)
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For fa T -_ 0.7 - 0.85

Equation 3.71 still applies tothefirst positive peak response

which is also the maximum response.

For loT _ 0.85 - 1.0

Again, Equation 3.71 applies to the first peak response but

the maxlmum response, for low damping, is the second posi-

tive peak which occurs during the residual response period

at a time given by

fo trmax = 1 + fo T (3.74)

Forfo T_I.0- 1.2

Following the first peak specified by Equation 3.71, the

maximum response will be a negative peak occurring just

prior to the end of N-wave at a time given by

fo tmin = 2 (3.75)

For foT> 1.2

With the usual amounts of damping, the first positive peak

will usually predominate for values of loT> 1.2. In this

case, the time of occurrence of the peak, given by Equa-

tion 3.71, is approximately equal to fo tmax -_ 1/2.

Acceleration Shock Spectrum for N-Wave

As previously discussed for the blast wave, the acceleration

response to a sonic load is useful for evaluating dynamic

loads on equipment attached to walls or roofs which are

loaded by a transient pressure load. The acceleratlon re-

sponse of an undamped system to an N-wave, during the

forced response period, is given by the equation which also

defines the forced response to the triangular pulse. This is

2_(t)
- _l + (I/goT) 2 sin (_o t- tan -I goT)t<2T

_# X S

(3.76)

The normalizing factor,., 2 Xs is also the same initial accel-

eration of the mass due to the suddenly applied force Po

and is equal to g2 times the static deflection to a steady

force with a magnitude equal to the initial peak force.

During the free vibration period, the acceleration ampli-

tude is determined directly from the residual displacement

amplitude or

Xrmax g# Xrmax Xrmax (3.77)

2 _2o Xs Xs_)0 Xs

Therefore, the normalized acceleration shock spectrum is

the envelope of the amplitude term in Equation 3.76 and

the normalized residual displacement shock spectrum in

Figure 3.24. The resulhlCng envelope is shown by the upper

bound labeled "undamped", in Figure 3.26. The effect of

damping on the acceleration shock spectrum has also been

analyzed in the same manner as for the displacement shock

spectrum. The shaded region in Figure 3.26 encompasses

the acceleration shock spectrum for damped systems with a

Q ranging from 5 to 20. The complex shape of this figure

is the result of several factors.

2.5 . ' [ ' I ' '

F Undamped I

ped Q = 5-i0

uu 1.5

o. __

i

1.0
c_ o

0.5
×

0 L
0 0.5 1.0 1.5 2.0 .5

fo T - Resonance Frequency x Duration of Positive Phase

FIGURE 3.26 Acceleration Shock Spectrum for Response of

Damped and Undamped Mass-Sprlng System to

Ideal Sonic Boom N-Wave Pulse Applied to

Mass

The small "hook" in the envelope at the left side

for fo T _ 0.2 isthe limiting acceleratlon that can

occur during the period of the N-wave as speci-

fied by Equation 3.76. The peak cannot occur for

foT less than 0.2.

The major peaks in the spectrumr atvaluesof fo T

approximately equal to integral multiples of

1/2, correspond to cases for which the accelera-

tion response at the end of the pulse is just in-

phase with the posltive-golng "jump" at the termi-

nation of the pulse. As shown by the insert in

Figure 3.26, the time history of the acceleration,

in this case_ undergoes a similar jump at this point

causing a much higher peak acceleration during

the residual vibration period. This frequency-
sensitive characteristic of the acceleration shock

spectrum for the N-wave is very different than the

corresponding spectrum for the triangular blast

pulse.

The theoretical minimum acceleration that will

occur is the initial value given by the quantity

,.,2 Xs" This value is theoretically independent of

damping and may be considered a minimum design
value for sonic boom acceleration loads on struc-

ture. The maximum value will depend on damping

and on the parameter fo T, ranging, for practical

cases, from 1 to 2 times the minimum initial

acceleratlon.
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Further practical aspects of sonic boom loads are discussed

in Chapter 8 along with a consideration of the response of
actual structure to this type of load.

Since the acceleration shock spectrum is dominated by the
peak response during the residual response period, it can
be recognized from the discussion in Section 3.2.2.7 that

the Fourier Spectrum can be used to define the upper bound
of the undamped acceleration shock spectrum for pulse
shapes similar to the ideal N-wave. This is, in fact, a

characteristic of pulse shapes with an instantaneous change
in level at the end of the pulse.

3.2.2.9 Transient Response to Other Types of Pulses

The discussion of response to transient sonic loads charac-
teristic of explosions and sonic booms has been limited to
idealized versions of these transient loads. Much more

complex load time histories will occur, for example, when
diffraction effects are included for loads impinging on finite
size buildings. This subject is conslderedln more detail in
Chapter 8. However, the more complex forms of these
sonic loads can frequently be approximated by the simpler
pulse shapes analyzed in this chapter so that the shock
spectrum given for these idealized versions provide a valu-
able method for simplified design analysis.

Response to the triangular pulse and N-wave, or full cycle
triangular pulse, have already been analyzed in the pre-
ceding sections. Two other useful pulse shapes for transient
load analysis are the rectangular and slnusoldal pulses. The
undamped displacement shock spectrum for the single and
full cycle version of each of these two shapes is shown in
Figures 3.27and3.28, respectively. The same normalizing
factor Xs, for the displacement, is applied again. For the
full cycle pulses, the maximum response is4and 3.26 times
the static displacement for the rectangular and slnusoldal
pulses, respectively. This contrasts with a factor of 2.12
for the N-wave (or full cycle triangular wave) as shown in
Figure 3.24.

For the full cycle rectangular pulse, the response spectrum
is hlghestduHng both the residual and forced motion period

for odd multiples of 0.5 fo T while for the full cycle sinus-
oidal pulse, only one significant peak occurs in the response

spectrum at a value of fo T equal to about 0.57. For both
the rectangular and slnusoldal pulses, the residual response
spectrum is greater than the forced response spectrum for
values of fo T less than 0.5.

The shock spectra shown in Figures 3.27and 3.28 are based
on the following equations derived in the same manner as

for the triangular pulse. In the following, a maximum may
be either positive or negative.

Single Rectangular Pulse

Forced Response, t_< T

Xmax
-- = 2, foT_ 0.5 (3.78)

x s

i
x_

0

0

fo T - Resonance Frequency x Duration of Positive Phase

FIGURE 3.27 Displacement Shock Spectrum Envelope for
Single and Full Cycle Rectangular Pulse

Excitation of Undamped Mass-Spring System
when Excitation is Applied to Mass
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FIGURE 3.28
Displacement Shock Spectrum Envelope for
Single and Full Cycle Sinusoidal Pulse

Excitation of Undamped Mass-Spring System
when Excitation is Applied to Mass

Residual Response, t > T

Xr max
: 2 sin _ fo T

x S
(3.79)
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\

Full Rectangular Pulse

Forced Response, t < 2T

Xmax

x s
- [V5-4cos2_foT+l], loT20.5

Residual Response, t>2T

Xrmax -[2sin_ foTI 2
X s

(3.80)

(3.81)

Half-Cycle Sinusoldal Pulse

Forced Response, t_T

Xmax sin [2_n/(l+2foT) ] tfo T > I/2
--=

x s 1-(1/2fo T) ' _n=1,2,3 ....
(3.82)

= _/2 , fo T=1/2

Residual Response, t> T

Xr max _ 4 fo T [cos _ foT I
Xs 1 - (2 foT) 2

(3.83)

Full Cycle Sinusoldal Pulse

Forced Response, t <_2T

Same as Equation 3,82, except //Xmax 1
,_, = _ for fa T=-_"

Residual Response, t<_2T

X mox I
xs 1 - (2 loT) 2

For a more thorough treatment of the shock spectrum of
other types of idealized pulse shapes, the reader is referred

to Chapter8 of Reference 3.1. A presentation of graphical
and numerical methods for evaluating the Fourier spectrum
of more complex transient excitations is covered in Chapter
23 of Reference 3.1. As indicated in Section 3.2.2.7 and

3.2.2.8, the Fourier spectrum of a shock pulse can provide
useful information about the shock spectrum and lsa valu-
able analytical tool for transient response analysis.

3.2.3 RESPONSE OF LINEAR SINGLE DEGREE-OF-
FREEDOM SYSTEMS TO RANDOM
EXCITATION

The type of excitation considered so far may be classified
as deterministic; that is, its magnltude can be described
exactly at any point in time. However, the other source
of sonic loading considered in this manual is noise

generated by rocket engines. Its magnitude can only be

defined statistically; that is, an exact magnitude cannot
be predicted at any given instant. This type of excitation
is called random and the noise generated by rockets which
produce this type of excitation is called random acoustic
noise or simply, random noise.

Although numerous publications now exist on response of
systems to random excitation, this relatively new field is
not treated in most of the existing classical texts on vibra-

tion theory. Most of the basic literature in the field has
been published since 1954. This section, then, attempts
toprovide a minimum background on random response theory
for convenient reference within this manual. Foramore

thorough treatment of random noise theory, References 3.1
(Chapter 11), 3.2(Chapter 10), 3.3, 3.16, 3.17 and 3.18,

listed in approximate ascending order of detail, provide a
basic background of the subject. Response of structure to
random excitation is alsocovered extensively in References
3.19- 3.21.

Practical methods for analyzing the response of systems to
random loads can be related to the more familiar concepts
of slnusoidal response. Before developing this, however,
some of the basic characteristics of random noise will be

considered along with definitions of basic terminology and
a discussion of measurement of random noise. The appli-
cation of the random noise parameters to response predic-
tions is then briefly outlined followed by material on the
statistical parameters of random noise. Finally, the basic
equations for response to random noise are derived followed
by a discussion of practical engineering methods for solving
random response problems for a single degree-of-freedom

system.

3.2.3.1 Characteristics of Random Noise

Random noise may be visualized as the sum of a large num-
ber of steady state slnusoidal components whosefrequencies
are not harmonically related to each other and whose rela-
tive phases vary randomly with time.

Summation of Sinusoidal Components

Consider, for example, just two such components, xl(t )
and x2(t), shown in Figures 3.29 a) and b), whose ampli-
tudes are equal but which have different frequencies gl

and w2 where w2 is only slightly higher than w1 . Neglect-
ing any phase difference, the time history of the sum of
these two components will then be

x(t) = xl(t ) + x2(t ) = x o sin.-,i t + x o sin w2t (3.85)

This summation can also be expressed as the product of two
new sinusoidal components as

Thus, as illustrated in Figure 3.29 c), the instantaneous
value of these two components looks llke o single sinusoidal

component with a frequency equal to the average frequency
(w 1 +w2)/2 of the two but with an amplitude modulation
which varies with a frequency equal to 1/2 the difference
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frequency (t02 - _al) between the two components. How-

ever, the effective frequency of the envelope of the ampll-

tude peaks istwlce the modulation frequency and is, there-

fore, simply the difference frequency (t02 - _1)" Although
this tlme history of two slnusoids is complex, it is com-

pletely predictable. Consider, now, what happens when

additional sinusoldal components are added.

a) Sinusoidal Component - Frequency gl

_2('_ /", A A ,', A A
V V _k/ V V t

b) Sinusoldal Component - Frequency _2 > _al _

_- _Envelope_ 2XoCOS ( 22 1/

x,,,R £ ×0£/t
.... . " "-....... V-" '-.._'__ _-" "-

c) Summation of Two Sinusoldol Components

I-A" -.. ,/(/_,_ En velope - R(t) ,

%/

d) Narrow Band Random Noise

x(t)l _, ,_k ]1_ _I__ I_,, Ak J_, ,._./_V - t

q v v' 1"'Y vV
e) Wide Band Random Noise

FIGURE 3.29 Time History of Instantaneous Magnitude of:

(a,b) Two Sinusolda[ Components with Frequency

t_ 1 and w2; c) Their Summation; d) Narrow Band,

Random Noise with a Frequency Spectrum from _a l

to _a2 and e) Wide Band Random Noise with a

Wide Range of Frequencies

Narrow Band and Wide Band Random Noise

If many more slnusoidal frequency components are added

with frequencies between _1 and t02 and with randomly
varying phases, and theamplitudes of eachcomponent cor-

respondingly reduced, a time history characteristic of
narrow band random noise is obtained as illustrated in

Figure 3.29 d). Thus, narrow band random noise may be

considered to be the summation of an infinite number of

infinitesimally small randomly phased slnusoidal compo-

nents with frequencies continuously distributed over a nar-

row frequency interval _2 - gl " The time history of this

noise is similar to the summation of two closely spaced

slnusolds in two respects.

Narrow band random noise has an average fre-

quency which is approximately equal to the aver-

age of its upper and lower bounding frequencies.

The envelope of the peaks in a narrow band of

noise has a randomly varying amplitude but an

average frequency approximately equal to the

difference between its upper and lower bounding

frequencies.

The similarity stops here, however, since the envelope of

the narrow band of noise, indicated in Figure 3.29d) by

the variable R(t), can only be defined statistically. Such

a time history is typical of the response time history of a

single degree-of-freedom system excited by random noise.

As the frequency bandwidth of the random noise is in-

creased, so that more and more components of different

frequencies are added, a time history characteristic of wlde

band noise is achieved, as shown in Figure 3.29e). The

time history no longer has a readily dlscernable "average

frequency" or a clearly defined envelope and is onlydefln-

able by statistical means. Sucha time history is typical of

the acoustic noise generated by a rocket engine exhaust.

3.2.3.2 Basic Parameters of Random Noise

The variables which can be used to describe random noise

which are of primary practical importance to the structural

engineer or equipment designer concerned with design of

rocket testing facilities are:

• Time average value of the random noise

• Root mean square (rms) value

• Power spectral density

• Peak magnitude

• Number of peaks per second

• Number of zero crossing per second

• Probability of simultaneous occurrence of peak

responses of two separate systems

Many other variables are significant for a thorough analysis

of random processes; these are not considered in this manual

and the reader is referred to the literature cited in 3.2.3

for further details. Before defining the variables listed, it

is important to emphasize again that they can only be de-

fined statistically and by the methods discussed which are

valid only when the random phenomena is stationary.

Stationary and Ergodlc Random Processes

Astationary random time history is one which has the same

statistical properties regardless of the time at which they

are measured. This is anagolous to the constant parame-

ters of a steady-state vibration - one which has the same

magnitude and spectral content for all time.

It is also frequently assumed that random excitation and

response processes are ergodic. This term can best be de-

fined by an example. Assume that the acceleration of a

particular point on a rocket test stand has been measured
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for a very large number of test firings of the same rocket
motor. Assume the time histories of these measurements

are assembled, as shown in Figure 3.30, and statistical
properties of the instantaneous acceleration at the same
instant of time following rocket ignition, are obtained over
the ensemble of measurements. The vibration records repre-
sent an ergodic random process if the same statistical
properties are obtained when only one time history is
sampled over a long period of time. Thus, a very long
time sample from one occurrence of an ergodic random
process is a valid measurement of the statistical properties
fora theoretically infinite number of repeated occurrences,
either past or future, of the same process. The practical
importance of the assumption is clear. Without the ability
to anticipate random loads for future occurrences of the

same process from an analysis of the random variable for
one occurrence, the process of designing for random loads
would become enormously complex. The key to an ergodlc
process is the assumption of "the same event or process."
Thus, in the above example, a significant change in the
noise characteristics of the rocket motor, or in the dynam-
ics of the test stand would invalidate this assumption so
that a new measurement would be required to define the
new random process.

J' I

xl(t) VVVi _ - v _ .... s- t
I

'.2(t/^., A .^ k A,'X ,-.,,x ^ ^ _

I

^AJ .I^ A., A .
Xn(t)_/- V V? _V vVV V _ _/V _t

0 tl

N T

-N" Xn(tl) =T co E x2(t)
_co = _ t=0

Ensemble Average = Time Average

FIGURE 3.30 Illustration of Ensemble of Vibrotion Records

from Repeated Occurrences of the Some Type

of Event to Illustrate an Ergodic Random

Process

Finally, it should be clear from the preceding discussion

that a single random time hlstorycan be stationary without
being ergodlc but an ergodlc process is always, inherently,
stationary. The random noise variables to be defined in the
following assume a stationary random process.

3.2.3.3 Mean Value

The long time average or mean value of random vibration
or random acoustic noise is normally zero. This can be
seen in Figures 3.29 and 3.30 since for each of the time
histories, theareas aboveand below the x = 0 line (abscissa
axis) will be equal over a long period of time.

3.2.3.4 Mean Square Value

Since the instantaneous power or energy in vibrating sys-
tems is proportional to the square of the instantaneous
vibration amplitude, the long time average or mean value
of the square of this instantaneous amplitude is a physically
meaningful measure of vibration intensity. This average is

called the mean square value x 2 and is equal to

T

/2 1
x = llm _-- x2(t) dt (3.87)

T--co
0

For a zero mean value, the square root of x2 is called the

root mean square (rms) value of x(t) where x(t) is any time
varying quantity such as displacement, velocity, stress,
force, etc.

If x(t) is a complex time history made up of the sum of
many discrete slnusoidal components, the square of the
instantaneous value of their summation will be the sum of

self squared terms and cross product terms in the form

x2(t) = {x 1 sln ult + x 2 slnu2t + ...12

2 2
= x 1 sln2ult+x 2 sln2_2t+ ... (3.88)

+ 2x 1 x 2sinultsing2t+ ...

When this is inserted in Equation 3.86 and the integration
carried out term by term, the cross terms drop out and the
mean square value of x(t) becomes

2 2

x--_" x 1 x 2=--+--+

2 2 "'"

=_ Xn (Un)
n=l

(3.89)

wherexnis the amplitude of the nth component with a fre-
quency Un" This simple result is obtained by utilizing the
basic expression for the time average value of the product
of two slnusoidal components which is

T T

sin _lt sln u2t dt 1

0 0 (3.90)

1/2, u i =u 2

- cos(u 1 +u 2) tj dt

0 ' Ul '_u2

Equation 3.90 is valid providing the averaging time T is an
integral multiple of the period of the lowest frequency
component or many times larger than this period. For the

case gl '_ g2' the effective period of the product sin u]t

sin _2 t is the period of the difference frequency (g2 - Ul )"
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3.2.3.5 Power Spectral Density

For random noise, instead of the summation of discrete
sinusoidal components used in Equation 3.89 to obtain a
mean square value of a complex time history, a continuous
integral is required to "sum up" the mean square values of
the infinitesimally small components which make up a ran-
dom noise signal. However, discrete frequency components
are no longer truly identifiable at any given frequency.
Therefore, to establish some measure of the spectral inten-
sity or power of the random noise, the concept of Power
Spectral Density is used. For now, let this be defined as
the mean square value of all the vanishingly small sinus-
oldal components with frequencies within a one cycle per
second (one hertz) bandwidth centered on a frequency f.
It w_ll be identified by the symbol W(f). (Circular fre-
quency is used in this case to be consistent with engi-
neering and measurement practice.) The units of power
spectral density are the square of the linear time variable,
x(t) (i.e. -- acceleration, displacement, force, pressure,
etc.) per unit Hertz. The factor of 2 involved in Equation
3.89 for discrete components is absorbed in the mathe-

matical definition of W(F) so that for a continuous frequency
distribution from 0 to co, the mean square value of the ran-
dom noise signal is equal to the integral

co

:/W(F) • df (3.9])

0

Thus, as shown in Figure 3.31a, a plot of the power spec-
tral density W(f) of a random time history is a continuous

curve and, at a frequency to, the power spectral density is
represented by the average height of a rectangle of unit
width centered about the frequency to" Figure 3.31 a shows
a typical spectrum for a wide band and a narrow band of
noise. For the latter, the bandwidth Af is much less than

the center frequency to" In either case, the mean square
value of the random variable x(t) is simply the area under
the frequency spectrum plot W(f) times the graphical scale
factor and the rms value is the square root of this scaled
area. (It is necessary, of course, that the plot be con-
structed with linear scales for both W(f) and f.)

With this simplified explanation of power spectral density
as a background, it is desirable to examine this very im-
portant parameter more carefully, for it is a basic variable
to be used for quantifying response of structure to random
noise. It is also necessary for defining the magnitude of a

random noise signal in terms of a measurable frequency
spectrum instead of using the statistically uncertain time
history.

Spectral Density Measurement Techniques

Consider first, then, the method of measuring the power
spectral density of a random variable. Three techniques
which are in current use are:

• Direct analysis of continuous random noise by an
analog spectrum analyzer

• Analysis of a tape recorded finite length sample
by an analog spectrum analyzer

• Digital filtering and analysis of a finite length

sample by a computer

For stationary random noise, all three methods will, theo-
retically, produce equivalent results. However, the meth-
ods introduce similar inherent errors in the measurement of

a power spectral density which should be recognized when
using measured data for design purposes. These errors are
due to:

• Inadequate frequency discrimination of spectrum
analyzer

• Finite duration of data sample

• Finite overall frequency bandwidth of analysis

Error Due to Inadequate Frequency Resolution

A

w(f)
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fo

a) Wide Band and Narrow Band Spectra

x
I' I ! 1 I fo

\
[ "andom] ; IF.torw.hl; IlntegrotorI
I Noise _ Variable fo _ and _ WIf

[ S..... I I ondZ'_fo I I A ging I '°"....

b) Spectral Analysis of Random Noise

FIGURE 3.31 a) Typical Power Spectral Density Plots of Random

Noise, and b) Simplified Block Diagram of Spectrum

Analyzer with Illustration of Time History of Raw

and Filtered Data Before and After Passing Through
Selective Filter of Analyzer

Frequency discrimination of the spectral analysis of a ran-
dom signal is fixed by the frequency selectivity or filter
bandwidth of the analyzer. This filtering process is illus-
trated in the simplified diagram in Figure 3.31b where the
filterbandwidth is identified as Af a . It is normally defined
as the interval between thefrequencies for which the filter
power transmission is I/2 of its maximum value. The filter

itself can consist of frequency selective electronic analog
circuits (Reference 3.1 - Chapter 22) or can be simulated
by digital analysis on a computer (Reference 3.22). In the
case of the analog spectrum analyzer, the output of the
filter is a narrow band of noise with a bandwidth Z_fa which
is passedthrough additional circuitry which determines the

mean square value of the filtered signal. Digital analysis
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accomplishes the same result through computer processing.

This mean square value is then divided by the effective

bandwidth Af a of the analyzer to obtain an observed power

spectral density Wo(f ) which may be defined as

+ Z_fa/21
1 W(f) df / (3.92)

W°(f) = A f'_-" Afa/2 J

For a very long time sample of the random noise, as the

analyzer filter bandwidth approaches zero, the observed

power spectral densitywould approach the true valueW(f).

Clearly, when the latter changes rapidly within the filter

bandwidth Afa, the observed value of W(f) will not be an

accurate estimate of the true value. Therefore, the first

requirement foraccurate measurement of the power spectral

densltyof o random noise signal is that the analyzer band-

width, Afa, should be appreciably less than the narrowest

bandwidth At of any narrow band noise "spikes" in the true

power spectrum. The analyzer bandwidth should be I/4 to

1/5 of the narrowest bandwidth of noise to be analyzed.

The rate of attenuation of the analyzer filter outside its

frequency pass band influences its effective bandwidth and

should be as high as possible.

Error Due to Inadequate Time Sample

The measured duration of a random data sample is neces-

sarily limited to a finite value of time T. This is the prl-

mary source of error in the measurement of a random noise

signal. The error is due to fluctuation in the output of the

analyzing filter, which is a narrow band of noise. As

shown earlier in Figure 3.29, the envelope of this type of

random noise varies with a frequency approximately equal

to the bandwidth Z_f a of the analyzing filter. This assumes

that the latter is less than the actual bandwidth of the noise

being analyzed. The magnitude of this envelopefluctuates

randomly so that to obtain an accurate measurement of the

power spectral density, the analyzer must integrate the

instantaneous mean square output of the filter over an

averaging time T which is large relative to the period

(~ 1/Afa) of the envelope fluctuation. Thus, the product

TAt a must be large for accurate spectrum measurements of
random noise.

The fluctuation of the envelope of a band of noise has

been analyzed in detail in References 3.18 and 3.23. It

is shown that for a spectral density measurement with an

ideal "rectangular" filter, the ratio of the standard devia-

tion aw of the spectral measurement to the true value W(f),
is

°w 2W(f) = 2T_fo) (3.93)

where

T = duration of thedata sample or averagingtime,
whichever is less

Z_f a = bandwidth of ideal filter.

The quantity 2T Af a is commonly identified as the degrees

of freedom for spectral analysis of random noise. Thus, as

indicated qualitatively, this product is the controlling

parameter which determines accuracy of spectral density

measu rements.

The statistical variation in random noise spectrum measure-

ments is illustrated more clearly in Figure 3.32. This shows

the upper and lower bounds of the deviation of a measured

spectrum from the true value as a function of the degrees

of freedom. For example, if the spectral density of 5-

second samples of random noise are measured using an

effective filter bandwidth of 2 Hz, the degrees of freedom

will be 20 so that 80 percent of the measured spectra will

fall within a range of 0.62 to 1.42 times the true value

and 95 percent of thedata will fall within a range of 0.48

to 1.71 times the true value. For this case, 50 percent of

the data would fall below 0.96 times the true value. (For

practical purposes, the effective bandwidth of the filter

Af a may be considered to be approximately equal to the

width of an equivalent ideal "rectangular" filter, with zero

transmission outside its pass band, which transmits the same

power as the actual filter. For an exact definition of the

equivalent bandwidth, refer to Reference 3.18.)
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FIGURE 3.32 Statistical Variation in Measured Spectral

Density as a Function of Degrees of Freedom.

[ T = Sample Length - sec, Z_f a = Effective

Bandwidth of Analyzing Filter ° Hz] .

[ From Reference 3.231

The variation in random noise transmitted through a simple

resonant filter, corresponding to a single degree-of-freedom

system, has also been analyzed and is reported in Refer-

ence 3.24. The statistical variation in the average noise

power transmitted through such a filter is essentially the

same as shown in Figure 3.32 for 2T Z_fa _> 20.

To summarize, power spectrum measurement errors, due to

a finite averaging time, can be reduced to an acceptable

level if the product 2T Afa exceeds 100 where T is the

sample length or averaging time, whichever is less, and

Af a is the effective bandwidth of the filter.
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Error Due to Inadequate Overall Frecluenc X Range

The final source of error in spectral density measurements
to be considered is concerned with limitations in the fre-
quency range of the spectrum analyzer. The variation of

random nolse spectra with frequency can vary widely. At
one extreme, random noise spectra may closely approxi-
mate a so-called white noise, namely, a random noise with

a constant power spectral density at all frequencies. For
example, in the low frequency range, the spectral density
of the fluctuating pressures near a rocket exhaust will vary
slowly with frequency. On the other hand, structural sys-
tems subjected to random loads will tend to show a very
ragged vibration response spectrum with high spectral den-
sities at very high frequencies.

In either case, inadequate definition of the true spectra,
due to a limited frequency range of thespectrum analyzer,
must be avoided to ensure accurate measurement of struc-

tural or equipment loads. The increased low frequency
energy of large rocket boosters, coupled with the increasing
significance of acoustically-generated structural loads at
these frequencies will often make it necessary to analyze

random noise down to 1 Hz. Adequate frequency resolu-
tion is also important in this low frequency range in order
to clearly define the true value of resonant peaks in the
spectrum. At high frequencies, elimination of part of the
true spectrum, due to analyzer frequency limitations, may
eliminate significant information about the shock or ac-

celeration loads. Fortunately, by using such techniques
as playing back a tape recording of the data at higher or
lower speeds, data can be brought within the measurement

range of conventional spectrum analyzers. Digital com-
puter processing of data also provides a flexible means of
spectrum analysis which can provide any reasonable fre-
quency resolution or effective filter bandwidth desired
(Reference 3.22).

By now, the significance of sources of error or random
noise measurements should be clear. Without some knowl-
edge of the variation inherent in measurement of random

loads, a structural or facllity designer is handicapped when
reasonable design safety factors must be defined.

3.2.3.6 Application of Power Spectral Density Data for
Definin 9 Random Response of a Single Degree-
of-Freedom System

It has already been established that random noise may be
aonsldered to be the summation of a large number of van-
ishingly small sinusoidal components with random phases.
As indicated earlier by Equation 3.91, the power spectral
density W(f) of such a random noise at a frequency f is
equivalent to the mean square value of these sinusoldal

components wlthln a one cycle per second bandwidth
centered around the frequency f. Since all slnusaldal
components withln this band of noise have essentially the
same frequency, the sinusoldal response functions discussed
in Section 3.2.1.4 and summarized in Figure3 °9should be

applicable for defining the response to each of the hypo-
thetical slnusoidal components in this one-cycle-per-second
(one Hertz) frequency band. It has also been shown, by
Equation 3.89, that the mean square value of the sum of

these sinusoidal components (i.e. -- the power spectral
density) is equal to the sum of the mean square value of

each component. Thus, at a given frequency f, the power
spectral density of the response Wx(f) of a linear single

degree of freedom system to random excitation is simply
equal to the product of the power spectral density of the

excitatlon Wp(f)and the square of the absolute value of the

sinusoidal transfer function ta (f)l 2 at this same frequency
or

Wx(f) = Wp(f) • la(f)l 2 (3.94)

The absolute value of the transfer function, la (f)l is the
ratio of the amplitude of the sinusoldal response of the
single degree of freedom system to the amplitude of a
sinusoidal excitation at a frequency f. In general, it will
be the product of a nondimensional response function that
varies with frequency, and a constant which relates the

form of the input to the response. Consider the example
shown in Figure 3.33a. When the mass of a flxed-base

mass spring system is excited by a sinusoldal force P(t), the
Sinusoidal Transfer Function a (fl is equal to H(f)/k where

k is the spring constant and H(f) is the Frequency Response
Function. For this case, the absolute value of H(f I is
the Dynamic Magnification Factor H(_) given by Equation
3.23, page 3-6.
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FIGURE 3.33 Power Spectral Density of Displacement Response

of o Damped Fixed-Base Mass Spring System to a

Wide-Band Random Force Excitation of Moss

As illustrated in Figure 3.33 b-d, for a random force

excitation of the mass, the power spectral density Wx(f)of
the displacement response x(t) is equal to the product of
the power spectral density Wp(f) of the input force P(t)
and the square of I H(f)I/k. The narrow rectangle at the

frequency fo shown in each figure corresponds to the input
spectral density, square of the response function and the
response spectral density, respectively, at the resonance
frequency of the mass-spring system.
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For the general case_ the mean square response of a single
degree of freedom system to random excitation is obtained
by combining Equations 3.91 and 3.94 to give

(30 CO

_= f Wx(f)df = / Wp(f) la(f)12df

0 0

(3.95)

For the example in Figure 3.33, this is equivalent to the

area under the response spectral density curve in part d.
For this case, with a constant power spectral density input
Wp(f) (i .e. -- white noise), this area can be defined by a

closed solution for the integral in Equation 3.95so that the
mean square displacement of the mass is

x'-"_" = ,_ Wp(fo) fo Q
2 k2 (3.96)

where

fo = resonant frequency

Q = resonant amplification factor.

It will be shown subsequently that an equation of this same
form can be used, in most practical cases, for defining the
mean square value of any resonant response variable of a
linear single degree-of-freedom system to a random excita-

tion with a constant spectral density Wp(fo) in the vicinity
of the resonance frequency. The only difference will be
in the units of the input and response and the proportionality
constant (i .e. -- the spring constant k in the above exam-

ple) which relates these units. This basic expression takes
on a clearer physical meaning if recast in the form

[w ]b]x2= #to) 2 Qj Q2 (3.97)

The first bracketed term in Equation 3.97 is the product of

the input spectral density at the resonance frequency to,
and an effective resonant bandwidth. This term is simply
the effective mean square value of the excitation. As
shown in Figure 3.33c and by the above equation, this
effective bandwidth is equal to the so-called half-power

bandwidth fo/Q of the resonant system times a correction

factor _/2 which accounts for response outside this band-
width. The second term in brackets in Equation 3.97 is the
square of the maximum value of the dynamic magnification

factor for sinusoidal excitation. Finally, the third term
is, again, the proportionality factor relating in this case,

(force) 2 to (displacement) 2.

For a sinusoidal excitation, Po sin tJt, of the same system
at resonance, the mean square response would be defined

by the same equation if the first term [Wp(fo) 1, to/2 Q I

were replaced with the square of the amplitude p2 of the

sinusoidal input. Note that while the "sinusoldal" input

components for either random or slnusoldal excitation are
amplified by the square of the dynamic maqniflcatlon

factor r Q2 r the mean square response for random excita-

tion increases bX Q instead of Q2 since the effective mean

square value of the random excitation decreases inversel X
with Q.

Equations 3.94- 3.96 constitute the basic relationships for
engineering calculations of the response of single degree
of freedom systems to random excitation. They form the
foundation for analyzing response of more complex multi-

degree systems to random excitation. Lengthy derivations
have been omitted at this point in order to emphasize the
physical significance of these expressions and illustrate the
application of power spectral density for defining the re-
sponse of simple systems to random excitation. Before
reviewing the basic steps in the derivation, it isdesirable
to consider the statistical variation in the instantaneous

and peak value of a random response.

3.2.3.7 Statistics of Random Noise

The statistical variation in the long-time average of the
mean square value of a random variable and design appli-
cation of this value has been considered in the last two
sections. However, the design of structures to random exci-
tation must also include consideration of the short time

variation in the random response. Specifically, it is neces-
sary to determine the probable value of an instantaneous
peak response for a given mean square response. It will be

shown, for example, that for a stationary narrow band of
random noise, the instantaneous peak value of the noise
will exceed three times the root mean square value 1.1
percent of the time.

Statistics of Instantaneous Amplitude of Random Noise

If the instantaneous value of a time varying quantity x(t)
is sampled continuously or at repeated uniform intervals for
a long period of time, the proportion of time or number of

samples for which the observed value is equal to or less
than an arbitrary fixed value x 1 is called the cumulative
probability distribution or simply distribution function iden-
tified as P(x <__xl). If this sampling process is carried out
on a narrow band of random noise with a zero mean value,
such as shown in Figure 3.29d, as the number of samples
approaches infinity, this cumulative probabilityapproaches
the smooth S-shaped curve shown in Figure 3.34. For this

figure, the absissca is the value of the threshold level x 1
normalized by the root mean square (or standard deviation)
of x(t). The rate of change of the cumulative probability

distribution, as a function of the threshold level Xl, is
called the probability density defined as

dP(x <_x 1)

p(x) = d x 1 (3.98)

For a narrow band of random noise, this probability density
has thewell-known bell shaped curve, also shown in Figure
3.34, which corresponds to a Gaussian or normal proba-
bility distribution. Its probability density is given by

1 e-X12/2 c_2

P(Xl) : a
(3.99)



3-32 Fundamentals of Vibration

where

e = root mean square(rms) value of x(t)

This can be expressed in the nondimenslonal form plotted

in Figure 3.34 by multiplying both sides by a to give

/___1/ I _x12/2 e2
aP(Xl) =p = -'_--e . (3.100)

Thus, to convert the normalized plot of probability density

in Figure 3.34 to a plot for a specific value of a, the

ordinate scale is divided by a and the abscissa multiplied

by a. t
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FIGURE 3.34 Normalized Cumulative Probability and

Probability Density for Instantaneous Value

of Narrow Band of Random Gausslan Noise

The probability that the instantaneous value of x will fall

withlnasmall interval x 1 to x 1 + Ax is equal to the proba-

bility density times this interval Z_x or

Ax _2
p(x 1) Z_x = _ e-x12/2 (3.101)

Thus, the cumulative probability that x will fall between

-ao and x 1 can be expressed in the nondimensional form

plotted in Figure 3.34, as the integral

(_x<x,/ : i f e-x''2°"d(x/o)(3.1021

In this case, normalizing only involves the independent

variable x/a since the integral is inherently nondimen-

sional. Tabulations of Equations 3.100 and 3.102 are

commonly available in the literature (e.g., Reference

3.25). Typical numerical values from these probability

curves for the instantaneous value of narrow band random

noise are:

• The most probable value of x(t) is zero if the mean

value of x(t) is zero.

The instantaneous value of x(t) exceeds :l:a about

32 percent of the time, :k 2e about 4.6 percent,

and :l:3a about 0°26 percent of the time.

• Fifty percent of the time, the instantaneous value
falls between :k0.68a.

• The average absolute value _s 0798o

• The area underthe normalized probability density

curve is unity.

There are two characteristics of Gausslan noise which are

very important for defining statistical variation of random

structural loads. 1) The summation of a large number of

random signals, each of which may not necessairly be

Gaussian, tends to have a Gaussian distribution. 2) If a

wide band random noise, even a non-Gaussian noise, is

passed through a narrow band linear filter such as a struc-

tural resonance, the response of the filter will be a narrow
band of noise which tends to have a Gaussian distribution.

These characteristics can be attributed to the central limit

theorem (Reference 3.26). The one significant deviation

from a Gaussian dlstribuHon in the response of a structure

to random excitation occurswhen the structure is nonlinear.

The basic conclusion to be drawn regarding the instan-

taneous amplitude distribution of narrow band random noise

is that its statistical variation is defined completely in

terms of its rms value or a. This assumes the noise has a

zero mean value and a Gaussian distribution.

If the noise x(t) has a finite mean value_, then the rms

value (or standard devlatlon)of the fluctuating portion, a,
is

where

m
2

x = mean square value of x(t)

(_)2 = square of the mean value.

As shown in Figure 3.35, the Gausslan distribution of the

fluctuating portion is then centered about the mean value

_'. The mean square value, x 2 can theoretically be deter-

mined by integration of the spectral density of the noise,

as discussed in the previous section (see Figure 3.33).

However, frequency bandwidth limitations of conventional

analog spectrum analyzers will usually reject any mean

value of the random signal so that only the rms value a of

the fluctuatlng portion is normally measured by the spectral

analysis.



Response of Linear Single Degree-of-Freedom Systems to Random Excitation 3-33

×(t)

P t

FIGURE 3o35 Gousslon Distribution of a NoHow

Bond of Random Noise with a Finite

Mean Value

For wide band noise, thestatlstlcal variation of the instan-
taneous amplitude also tends to follow the Gausslan dis-
tribution shown in Figure 3.34. However, as indicated
earlier, a summation of random processes, which indi-
vidually may be non-Gaussian, tends to have a Gausslan
distribution. Therefore, a Gaussion distribution of the
overall wide band noise isnot a reliable indication of non-

linear or non-Gaussian processes wlth;n the overall noise.
Thus, a wide band random noise should be first passed
through a narrow band filter to evaluate its statistical dis-
tribution of instantaneous amplitudes. Additional details
on methods for analyzing the amplitude distribution of a
random signal are given in Reference 3.1 - Chapter 22.

Statistics of Peak Amplitude of Random Noise

Current methods for predicting fatique llfe of structure
under random loads are based on the statistical distribution

of the envelope of the instantaneous peak amplitudes of the
random loads. This distribution is also significant for
evaluating "rattle space" requirements for equipment sub-
jected to random vibration. Adequate clearance space is
needed, in this case, to insure that the vibrating equip-
ment does not momentarily impact a hard surface resulting
in high shock loads°

Peak Distribution of Narrow Band Random Noise

For a narrow band of Gaussian noise, the time varying
envelope R(t)of the positive or negative peak amplitude of
x(t), such as shown in Figure 3.29, page 3.26, is a random
variable with a Raylei_lh distribution. The cumulative
probability that the instantaneous value of the envelope
R(t), relative to the rms value eofx(t), will be equal to or

less than an arbitrary value R1/e is given by

(R < RI 1 e_R12/2 e2P\;_-2) -- 1- (3.104)

The compliment of this distribution, plotted in Figure 3.36,
is the cumulative probability that R/e will be greater than

R1/a which is

p If > _-) =e -R12/2 e2 (3.105)

The rate of change of this distribution function as a func-
tion of R1 is the Ra)tlelgh probabTlity density and is given
by

P(R1) = __R1 e-R12/2 c,2
a2

(3.106)

which can be normalized, as for the Gaussian probability

density, to the form

2
R1 e-R12/2 a (3.107)

a p(R1) = p(R 1/a) = "-_

100
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Peak Values of Narrow Band Random Gaussian Noise

This is the form shown in Figure 3.36. The log scale used
for the ordinate in this figure provides a clearer definition
of the peakdlstrlbution for application to design problems.

The main features of the Rayleigh distribution for peaks of
a narrow band of random noise are:

The envelope of the peaks of a narrow band of

random Gaussian noise exceeds :l:a about 61 per-
cent of the tlme; :k2a, 13.5 percent of the time;
and +3a, 1.1 percent of the time.

• Fifty percent of the time, the peaks will exceed
1.18a.
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Theaveragevalueoftheenvelopeofthepeaks
ofarandomnoise is _aor 1.25e (Reference

3.2). In other words, the_oftheinstan-
taneous peak values of a narrow band of random
Gausslan noise is 1.25 times the rms value of the
random noise.

As an example, if a single degree-of-freedom system under
random excitation has a mean square displacement response

of 0.25 inch 2, the rms displacement will be _ = 0.5

inch. The average peak response will be (1.25) (0.5)=

0.625inch but about 1 percent of the time, peak responses
greater than 3 x 0.5 -- 1.5 inches would occur.

One additional feature of the variation in peaks in a nar-
row band of noise can be defined. As shown in the insert

in Figure 3.36, within a single peak of the time varying
envelope R(t)_ several individual peaks of the ranclom noise
itself x(t) can occur. This grouping or "clumping" of indi-
vidual peaks of the noise within any one envelope peak
has been analyzed in detail in Reference3.27. It is shown
that for a linear single degree of freedom system with a
resonant ampliflcatl on fac tor Q and an rms random response

e, the average number _ of individual peak responses

within a single envelope peak or "clump" which exceed a
level R1 is given by the simple relationship

: (3108 

Thus, for o Q of 28, there will be, on the average, just
one peak of x(t) within a peak of the envelope R(t) which
exceeds 3 times the rms value a of x(t). A Q of 28 is
representative for typical structure and equipment with
relatively low damping. Thus, a typical 3e peak of the
response envelope of a lightly damped resonant system can
be expected to show only 1 instantaneous peak of the ran-
dom response for each envelope peak.

The average rate of occurrence fR for which envelope

peaks exceed a level R1/a is also shown in Reference 3.27
to be

,-_- R1 e-R12/2 a2 (3.109)

where

fo = resonant frequency of single degree of free-
dom system.

Note the similarity to Equation 3.107 for the normalized
Rayleigh probability density. Thus, the average rate of
occurrence of the envelope peaks relative to the resonance

frequency (fR/fo) is equal to _/'_/Q times the numerical
value of the normalized probability density plotted in
Figure 3.36.

The average number of individual peaks per second fp

which exceed R1/e is simply the product of Equations 3.108
and 3.109 which is

f = f e_Rl/2a22/ (3.110)
p o

As expected, this is the same as thecumulatlve probability
of the envelope (Equation 3.105) multiplied by the aver-

age frequency fo of the narrow band of noise.

Peak Distribution of Wide Band Random Nolo?

For wide band random noise, the simple relationships out-
lined above are no longer valid. The time history of a
typical wide band random noiset shown earlier in Figure
3.29, page 3-26 is much more complex than the fluctuating
sinusoldal time history of a narrow band Of noise. Speci-
fically, wide band noise can have several positive peaks
and troughs between two successive times when the random
signal is zero. This contrasts with the cylic nature of nar-
row band noise where each zero crossing is followed by
either a positive or negative peak.

Although no closed solution is available for describing the
peak distribution for a general wide band noise, two ap-
proximations are often used. The first approximation as-
sumes that the peaks of the wide band noise have a Gaus-
sian distribution with the same cumulative probability and
probability density as shown in Figure 3.34. This is in-
creasingly true as the bandwidth of the noise increases and
the number of peaks between consecutive zero crossings
increases (References 3.2 and 3.18).

The other approximation provides o closed solution for the
distribution of peaks of a white noise passed through an
ideal low-pass filter with a high cutoff frequency (Refer-
ence 3.18). This is an idealization of a wide band noise

spectrum that contains a wide range of frequencies. For
this case, the cumulative distribution of positive peaks
greater than a level x 1 normalized by the rms value a is

shown in Figure 3.37° The curve is based on the theory in
Reference 3.18. For comparison, the Gausslan distribu-
tion for positive peaks is also shown. Finally, the cumu-
lative Rayleigh distribution from Equation 3.105 is given

in Figure 3.37. This demonstrates that for xl/a greater

than one, the Rayleigh distribution is also a very good
approximation forthe distribution of peaks of this idealized
model of wide band random noise. The following will
verify that the Rayleigh distribution does, in fact, pro-
vide a suitable analytical model for peak distribution of
both narrow band and wide band Gausslan random noise.

Experimental Data on Peak Distribution of Random Noise

Experimental measurements of the peak distribution of ran-
dom noise data are frequently carried out to provide useful
design data for statistical evaluation of structural leads.
Some typical examples of such data are shown in Figure
3.38. These represent the peak distributions of narrow
band and wide band samples of random acoustic noise
generated bya highspeed air jetand a large rocket booster
(Reference 3.28). For presentation and evaluation of such

data, it is convenient to construct the scales in such away
that the theoretical Rayleigh distribution can be shown as

a straight line. This is accomplished by taking the loga-
rithm, to the base 10, of both sides of Equation 3.105.
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The resulting expression, shown in Figure 3.38, is linear if

the cumulative probability is plotted on a log scale and

the peak to rms ratio is plotted on a squared scale. As

shown in the figure, the experimental data for wide band

rocket noise and narrow band air jet noise agree very well

with the Rayleigh distribution while the narrow band sample

of the same rocket noise data shows a greater deviation
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FIGURE 3.38 Experimental Data on Cumulative Probability of
Peak Distribution of Random Acoustic Noise
(From Ref. 3.27)

from theory. This represents an example of the phenomena

discussed earlier of the lack of sensitivity of wide band

noise peak distribution data to non-Gaussian random pro-

cesses. In the case of the rocket noise data plotted in

Figure 3.38, non-Gaussian characteristics were observed

only when the data was first passed through a filter.

Peak Distribution of Combined Random and Sinusoldal

Variables

Although sinusoidal excitation sources are not of primary

concern for this manual, vibration of ground equipment

located near rotating machinery or other cyclic vibration

sources can result in significant combined sinusoidal and
random vibration excitation. The statistical distribution

for this type of excitation will be significantly different

than for random excitation. In fact, identification of this

difference is often utilized to verify the presence of a

sinusoidal component in a random signal.

When a slnusoldal component is added to a narrow band of

random noise centered about the frequency of the sine

component, the cumulative distribution of the envelope of

the instantaneous peaks takes the form shown in Figure

3.39 (Reference 3.18). In this case, the abscissa axis is

the exceedance level R1 for the envelope divided by the

rms value of the combined random and sine components.

The distribution is shown for several values of the ratio of

the peak ampl itude A of the slnusoid to the rms value en of

the narrow band of noise. For random noise only, A/an=0,

and the peak distribution is the Rayleigh distribution. Faro

sinusold only, Ale n = co and the distribution is a vertical

llne at R1/ao=l .414 which is simply the peak to rms ratio

of a sinusoid. Significant deviation from the Rayleigh dis-

tribution does not occur for the combined signal until the

peak amplitude of the sinusoid exceeds the rrns value of

the noise (A/a n > ] ).
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aoiS a_n2 + A2/2.
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Moments of Random Noise

The terminology and definitions employed so far to describe

a random noise have covered the more commonly used
terms. Useful characteristics of random noise can also be

described in terms of its moments. These are defined by
the general equation

fl-Co

nthMoment= S x np(x) dx

-GO

(3.111)

where p(x)is the probability density of the random variable
x. The mean value of a random variable, _, is given by
the first moment where n = 1. For stationary random noise
and n -- 1, it can be shown that Equation 3.111 is equiva-
lent to the usual expression for the mean value

+T

_ = lira _ ;x(t) dt (3.112)
t,co

-T

The mean square value x 2 is given by the second moment
so that, for stationary random noise,

+co +T

-/ f1
x 2 = x 2 p(x) dx = lira _ x2(t) dt

T-*co
-co -T

(3.113)

3.2.3.8 Occurrence Rate for ZeroCrossings andMaxima

The fatigue damage of a structure subjected to a varying
load depends on the number of times the random load re-
verses direction (crosses zero)and the number of maxima of
the load in a given period of time. For narrow band ran-
dom noise, these are approximately equal to the average
frequency of the band. For wide band noise, or the sum-
mation of resonant responses due to random excitation over
a wide range of frequencies, an average frequency is no
longer apparent. However, for a random Gaussian noise,

it has been shown in Reference 3.18 that the _num-
ber of zero crossings per second with a positive slope, N+,
is related to the power spectral density W(f) by

1/2

Io;2WINo = • (3.117)

where x 2 is the mean square value of x(t) given by Equa-
tion 3.113.

It is also shown that the average number of maxima ex-
pected per second M in a wide band random noise is given
by

co _ 1/2 co -_1/2

M = [0_ f4W(f) dfl • I/f2W(f) df] (3.118)

When this moment is computed about the mean value'_, the
result is called the variance which is the square of the rms
value given by

+co

e2 = S (x _.._)2 p(x) dx =-'_- (_.)2
-co

(3.114)

The next two hlgher order moments are frequently computed
when making a digital analysis of random data. When

taken about the mean value1 and normalized by a, these
are: (Reference 3.22)

+co

(n:3) Skewness= 1./ (x ___)3 p(x)dx
-co

(3.115)

For random noise with a C-ausslan or normal distribution,
the skewness is equal to zero.

+co

(n = 4) Kurtosis : "_4 / (x - _')4 p(x) dx

-go

(3.116)

The kurtosis is equal to 3 for random noise with a Gaussian
distribution.

For a constant spectral density over a bandwidth fb - fa '
these two expressions reduce to

No: rb-ra]

M = fb5 - fa

(3.119)

(3.120)

If these expressions are divided by the average frequency
of the band (fa + fb)/2, a nondimenslonal value for fre-
quency of occurrence is obtained as shown in Figure 3.40.

The figure shows that the average zero crossing frequency
(for a positive slope)is approximately equal to the average
frequency of the band. This is simply an extension of the
same result noted for a narrow band of noise. However,
the average frequency of occurrence for the maxima M

varies from 0 to 55 percent higher than the average fre-
quency of the band, indicating more than 1 maxima for
each positive-going zero crossing which is characteristic
of wide band noise. The average number of maxima be-

tween each successive zero crossing is given by the ratio
M/No + which approaches a value of 1.34 for very wide

band noise (i .e. -- fb/fa >> I).
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As an example, for a band of white noise from 500hertz to

5000 hertz, the average frequency is (5000 + 500)/2 =

2750 hertz. According to Figure 3.40, for fb/fa = 5000/

500 = 10, the average rate of occurrence of zero crossings

with a positive slope would be (1.1) (2750) = 3025 per sec

and the average rate of occurrence of maxima would be

(1.4) (2750) = 3850 per sac.

3.2.3.9 Probabilltyof Simultaneous Occurrence of Peak

Responses for Two Different Systems

If two vibration-isolated equipment packages are located

close together, it is possible for the packages to impact

each other due to the simultaneous occurrence of peak re-

sponses of each package. To avoid this situation, ade-

quate clearance or "rattle space" must be provided. If

the excitation to the vibration isolated packages is random,

and the packages vibrate completely independently of each

other, the probability of impact can be readily determi ned.

This determination is made by considering the joint proba-

bility of two random events. For example, consider the

situation illustrated in Figure 3.41. The distance d repre-

sentsa nominal separation distance of two equipment pack-

ages whose motions are defined by x(t) and y(t), respec-

tively, and x 1 represents an arbitrary impact point which

lies somewhere between 0 and d. Providlnq x(t) and y(t)

are completely independent of each other, then the cumu-

lative joint probability that the instantaneous sum x(t)+

y(t) will exceed d can be given by the product of the

probabilities that x(t) will exceed x I and y(t) will exceed

Yl = d - x 1 . The resulting expression can be put into non-

dimensional form by normalizing each term by the rms

values ex and ay of x(t) and y(t), respectively, to give

(3.121)

y(t)_

FIGURE 3.4! Illustration of Problem in Joint Probability - The

Impact of Two Randomly Vibrating Equipment

Packages at o Point x 1 when the Nominal

Separation Distance is d.

i)

the Raylelgh distribution given by Equation 3.105 and

plotted in Figure 3.36. Thus, the cumulative joint proba-

bility is

P [(x + y) > d] = e-x12/2 aE • e-yl 2/2 e2 (3.122)

However, the sum of x 1 + Yl must be equal to the separa-

tion distance d. Utilizing this fact to eliminate Yl from

this equation and then by finding the value of x 1 which

gives the highest probability of impact for a given value

of d, ax and ay, the cumulative probability of impact can

be reduced to the equation

P [(x +y)> d] = e -d/2 (e#+o 2 ) (3.123)

This simple result could have been written down directly

by recognizing that there is in reality only one random

variable in question which is the sum of the displacements,

x(t) + y(t) which must equal d for impact to occur. The

mean square value of this random variable will simply be

a# + a2 since it was assumed that x(t) and y(t)were

totally independent of each other. When this is no longer

true, x(t) and y(t) are related to each other, and it is

necessary to evaluate their covariance defined as the long

time average of their product ix(t) • y(t)] . Methods for

solving this more complex problem are given in Chapter 2

of Reference 3.3.

3.2.3.10 Derivation of Response of Single Degree-of-

Freedom System to Random Excitation-A Brief

Summar_

To complete this discussion of random excitation, a brief

review is presented of the key steps which lead to the

equations given earlier (Equations 3.94, 3.95 and 3.96)

for the response of linear systems to random excltation. A

single degree-of-freedom system is used as an example.

Methods for handling the multiple degree-of-freedom sys-

tem will be covered subsequently. The derivation is out-

lined in abbreviated form with a minimum of intermediate

steps and is provided for reference purposes only. The

literature cited at the beginning of Section 3.2.3 provides

a more complete discussion. Reference 3.3 is particularly

useful in this regard.

Following this derivation, the last section on random re-

sponse outlines some of the more commonly used engi-

neering methods for analyzing random loads.

Throughout this derivation, complex quantities are used for

convenience in notation and for consistency with common

practice. The quantity j is equal to _ and the quantity
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e jcot or exp (jcot) represents the complex form of a sinus-

oidal function and is equivalent to a vector of unit length
rotating counterclockwise with an angular velocity co. It
has real and imaginary components which are given by the
transformation

e jcot = cos cot+ j sin cot

I eJcotl =

=

Its complex conjugate is equivalent to a vector rotating in
the opposite direction expressed by

-JCOt

e = cos cot - j sin cot

Note also that the absolute value of this rotating vector,
in other words, its magnitude without regard to phase, is
given by the square root of the product of the vector and
its complex conjugate or

e jcot . e-J ut

V(cos cot + j sin cot) (cos cot - j sin cot)

_/cos 2 ut + sln2 cot

Relationship Between Power Spectral Density and Fourier
Spectrum of Random Noise

Any time history x(t) of finite length can be described in
terms of a Fourier spectrum. These two variables are re-

lated by the Fourier Transform pair which are, in complex
form, equal to

Fourier Inteqral
(Inverse Transform)

-kcO

/x(t) : _ F(jco)e jcot dco

-(30

(3.124)

Fourier Transform

(Fourier Spectrum)

-FGO

F(jco) : / x(t) e-jcot dt
-CO

(3.125)

where co: angular frequency - rad,/sec. The second inte-
gral is finite only _ x(t) is zero at :l:Go so for application

to random noise, it is necessary to consider a finite sample
of noise of length Tand then allow Tto become very large.
With this change, and converting to frequency in Hertz,
f : co/2=, these equations become

+CO

x(t) : / F(jf) ej2_ ft

-00

df (3.126)

.+T/2/

F(jf) = lim / x(t) e-j2_ftdt

T_co JT/- 2

(3.127)

Note that F(j f) is equal to F(jco) since Equations 3.125 and
3.127 are identical.

Mean Square Value

The mean square value of x(t) is given by

1 f+T/2x 2 = lira _- x(t) • x(t) • dt
T --_ go

-T/2

(3.128)

(The limiting process of T_ oo will be understood in

the remaining equations.)

By substituting Equation 3.126 for one of the x(t)'s, this is

-- 1 iT/ ej 2_ftd (3.129)x2 :T_ x(t) F(jf) dt

Since F(jf) and x(t) are continuous in their respective inter-
vals, the order of integration can be changed. Also by
recognizing that the complex conjugate (complex quantity
with opposite sign for imaginary term) of F(jf) is

.+T,/2t

F*(jf)= / x(t) ej2'_ft dt (3.130)

"T/- 2

Equation 3. 129 becomes

1/+=x 2 :-f- F(jf) - F*(jf) df

-(30

(3.131a)

Since F(jf) • F*(jf) is the square of the absolute value of F(jf)
and is symmetrical about f = 0, this reduces to

GO

-- 2 _0 f) 12 df
x2 : T I F(j (3.131b)

The power spectral density W(f) of x(t) is defined so that

the mean square value x 2 is

OO

/ox 2 = W(f) df (3.131c)

Therefore, by equating these two expressions, the desired
relationship sought between the power spectral density and
the Fourier spectrum is

wit):+lF(Jf)l2 (3.132)
Autocorrelation Function

A quantitycalled the autocorrelation function R('r) will be
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useful for evaluating response to random noise. This func-
tion is defined as the time average product of x(t) and the
same variable delayed by a time "r, or x(t +T), SOthat
R(_)is

/.+T/2

1 ] x(t) x(t + T) dt (3.133)R(_) =-f
-T/2

For stationary random noise, this time average product of
x(t) and its delayed value x(t +-r) is independent of the
absolute time t. Hence, R('r) depends only on the time
delay "r and is a measure of the similarity or coherence
between x(t) and its delayed value. In other words, it
depends on how rapidly x(t) changes over a given interval
"r suggesting that there is a relationship, which indeed
there is, between this time correlation function R('r)and
the frequencycontent or spectral densityW(f)of the noise.

Comparing Equations 3.133 and 3.128, since T_0o is
implied in both cases, it is apparent that the autocorrela-

tlon function of x(t) for "r = 0 is also the mean square
value, or

2
x = R(O) (3.134)

Relationship Between Power Spectral Density and
Autocorrelation Function

Since R('r) is a function of the time delay variable "r, it
has a Fourier Transform given by

+T/2P

FR(Jf ) = / R('r) e-]
2_ f_

l/

-T/2

dr (3.13.5)

Substituting Equation 3.]33 in 3.135 and then employing
Equations 3.127 and 3.130_ it can be shown that this
Fourier Transform of the autocorrelation function is related

to the Fourier Spectrum of the finite sample of x(t) by

/.+T/2 1
J R(T)e-j2"f" dr =_- IF(jf)l2
-T/2

(3.136)

From Equations 3.136 and 3.132, it is clear that when T is

allowed to approach 0o, the power spectral densityand the
autocorrelation function can be related by

4-0O

w(f) = 2 / R(_)e-J 2,, f_
-_0

d'r (3.137)

From Equation 3.126, this has the inverse transform

4-0O

/R(_)=3- W(f)eJ 2,, f_
-0O

df (3.138)

These are called the Weiner-Khinchin relations, and have

been widely used in carrying out spectrum analysis of ran-
dom data with digital computers. They can be further slm-
piifled, since both R(T)andW(f)are symmetrical about zero
[i .e. -- even functions for which R('r) = R(-'r) and W(f) =
W(-f)} so that they become

Weiner-Khinchin

Relationships

(3O

W(f) = 4 / R(T) cos 2_ f'r d'r

0

(3.139a)

CO

R('r) = /W(f) cos 2_f'r df

0

(3.139b)

Sinusoidal Response and Impulse Response of Single Degree-
of-Freedom System

Consider a flxed-base single degree-of-freedom system (see

Figure 3.3, page 3-3) with a resonance frequency to'
damping constant $ and spring constant k. If the mass m is
driven by a sinusoldal force (expressed in complex form)_
P exp (j 27 f t), and the displacement of the mass is given
by x(t), othen the steady state displacement response is the
real part of

P
x(t) =--_- H(f) ej 2_ ft (3o140)

where H(f) is defined as the Frequency Response Function.

Frequency Response Function

H(f) = 1/ll - (f/to)2 + j 2 6 f/to} (3.141)

The absolute value of this has been identified earlier as the

Dynamic Magnification Factor

IH(f)l = ]//J(1- (f/fo)2)2 + (28f/fo)2J 1/2

(3.142)

For any force input P(t), the forced response of the system
at time t con be given by the Duhamel or convolution inte-
gral which is

Duhamel Intefral

t

x(t) = / h(t-'r) P('r) d'r
-(30

(3.143)

where h(t) is the unit impulse response given by

h(t) - 1 _ e-2_Sfot sin 2_ fo _ t
2_ m fo _ - 82 (3. 144)
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and "r is a dummy time variable equal to or less than t.
Letting "r' = t - -r, Equation 3.143 can be written as

CO

x(t) =_0 h('r') P(t-'r') d'r'
(3.145)

Again, if P(t) is a slnusoldal force Po exp (j 27 ft), then
by using Equation 3.145, the forced displacement response
is

GO

x(t) = Po e'J2_ftf h('r') e-J2_f'r' d'r' (3o146)
"0

By comparing this to Equation 3.140, a relationship be-
tween the Frequency Response Function H(f)and the impulse
response h(-r') is obtained. Since "r' is an arbitrary time
variable, it can be replaced by t so that the relationship is

Fourier Transform of

Impulse Response

CO

H(f)/k =/ h(t) e-J2_ft

0

dt (3.147)

Thus, the Frequency Response Function H(f), divided by
the spring constant k, is the Fourier Transform of the unit
impulse response h(t). For other input and response vari-
ables, corresponding relationships can be obtained.

Autocorrelation and Power Spectral Density of Response

The above relationships can now all becomblned to obtain
the spectral density of the response. This is obtained by

first writing the autocorrelation of the response Rx(-r) from
Equation 3.133 using the modified Duhamel integral in
Equation 3.145. The result is

1 f+T/2
Rx('r) =_" J x(t) • x(t+'r) dt

-T/2

1 Co
='T f h('r')P (t--r') d-r'

_ 0

I f h('r") P (t +'r -'r") d'r"] dt

(3.148)

where "r' and -r" are the respective dummy time variables
for the Duhamel integrals while -r is the fixed delay time
associated with the autocorrelation. The time average of
the P(t) terms with respect to time t can be simplified with

Equation 3.133. If the arbitrary time scale in these terms
is shifted by +-r'_ then Equation 3.148 reduces to

CO O0

Rx(T) =_0 h('rl)f'0 h(T")Rp('r+'r'-T")d-r' d'T" (3o149)

where Rp ('r +'r' - "r") is the autocorrelation of the driving

force for a delay time ('r+'r' - "r"). Now this result can
be converted to the power spectral density of the response

Wx(f) by using Equation 3.137. Thus, withablt of alge-
bra, the spectral density of the response can be written as

CO CO

Wx(f) = 2 Of h(_,)ej 2_f'r' d'r' "/0 h(T")e-J2_f'r" d'r"

+CO

Rp(.r +.r i_.r,,) e_J2_f. (.r +.r i_.r.) d(.r +.r i_.r. )

-CO

(3.150)

The first two integrals can be recognized as the Fourier
Transform and its complex conjugate of the unit impulse
response h(t). However, these are equivalent to the fre-
quency response function H(f) and its complex conjugate
H*(f) according to Equation 3.147. The third integral is
the Fourier Transform of the autocorrelation function of the

excitation which was shown in Equation 3.137 to be equal
to the power spectral density of the excitation.

Applying Equation 3.147to the first two integrals in Equa-
tion 3.150 and Equation 3.137 to the third, the result is

H°(f) H(f) Wp(f)
Wx(f) = 2_ ._ • 2

or

Wx(f) = Wp(f). IH(f)12/k2 (3.151)

For the general case of response of a single degree-of-free-
dom system, the particular slnusoidal transfer function
JH(f)/k in Equation 3.151 is replaced by the general
term la(f) • This general transfer function has been speci-

fied in Figure 3.8, page 3-8 for various input-output re-
lationships for sinusoldal excitation of a single degree-of-
freedom system. Thus, the same result given earlier in
Equation 3.94 is formally derived.

The mean square response x 2 is obtained by integrating the
response power spectral density according to Equation
3.131c. This provides the same result given earlier in
Equation 3.95t or

(3O

-_ = fWp(f) • Io(f)l2 df (3.152)

0
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Finally,thisintegrationcanbecarriedoutforwhitenoise
excitation[Wp(f)--constant]andparticularformsofthe
slnusoidaltransferfunctionla(f)l fora singledegree-of-
freedomsystem(Reference3.29).Theresultingclosed
solutionsspecifythemeansquareresponsefortheformsof
la(f)l indicatedinthefollowingchart.

Transfer Function

to(ell

'_ 'ill +('JfoOl2J'j2
I Q

QB -_._

-_Q_-L_ B±fa"IHcf)I

BI' +(f/foQ)2]1/2IH(f)l

or
I

Jogf/fo BIT(r)I

Normalized Mean

Square Response

co

x--2",/bVp(f) = f la(f)l 2 df

0

---_-B2 fo Q (3.153)

-_ +

(3.154)

The first form of Ja(f) l does not exhibit the usual resonant
response associated with a single degree-of-freedom system.
It does represent, ho_,ever, the frequency variation of the
relative displacement of the spring and damper of a moving
base mass-spring system for a constant driving force applied
to the base (see Figure 3.6, page 3-7). In this case, the
constant B is equal to 1/k. This relative displacement is

constant up to a cutoff frequency equal to Q fo where fo
is the resonance frequency of the mass-spring system.

The second form of la(f)l corresponds to the example con-
sidered earlier; namely, the frequency variation of the
mass displacement for a flxed-base mass-spring system with
a constant driving force. IH(f) l is the dynamic magnifica-
tion factor given by Equation 3.142 and B is equal to 1/k.
The third form of la(f) l corresponds to the frequency varia-
tion of velocity of }he mass for this case and the constant
B is equal to 1/2_ fom = I/Q c where m is the mass and c
is the damping term.

For the last form of la(f)l, the term IT(f)I is the trans-
missibility of a mass-spring system discussed in Section
3.2.1.5. The transmissibility is the ratio of amplitudes of
a sinusoidal driving force to reaction force for afixed base
system. It is also the ratio of input to response motion for
a moving base system. For this case, B = 1 since the exci-
tation and response variables are the same. Note that the
closed solution for this case, given by Equation 3.154, is
essentially the same as the general form in Equation 3.153.

The additional term (1 + 1/Q 2) in the former is usually
negligible for typical values of Q.

The integration requi red for Equati on 3.152 to obtal n these
closed solutions must be carried out by a special method
called contour integration which involves residue theory
(References 3°29 and 3.12). The form shown here for the
solution is considered the most meaningful for physical
interpretation; however, a variety of other equivalent
forms commonly appear in the literature.

For most other common forms of la(f)l, involvinq an ampli-
fied response at resonance for a single degree-of-freedom
system (see Figure 3.9, page 3-9), the integral in Equa-

tion 3.152 does not converge when Wp(f) is constant.

However, as indicated earlier in Section 3.2.3.6, if the
integration limits are restricted to frequencies near the
resonance frequency only, then, the mean square response
within the effective resonant bandwidth of any linear single
degree-of-freedom system, for white noise excitation, is
approximately equal to the expression given by Equation
3.153o

Thus, the basic practical equations for response of a single
degree of freedom system to random excitation have been
formally derived. While a simpler approach can be used
which treats a finite sample of random noise as a Fourier
Series (Reference 3.2), the formal approach used here pro-
vides a more complete background on response to random
loads. This is illustrated by the key relationships between
power spectral density, the autocorrelation function, the
Duhamel integral and the sinusoidal frequency response
function of a single degree-of-freedom system. These re-
lationships are obtained through application of the Fourier
Transform. They will be employed with increasing fre-
quency in the future as design problems related to random
excitation and response become more prominent.

General Response Equation for Single Degree-of-Freedom
System Under Random Excitation

To summarize, for any form of random excitation, with an

input spectral density Wp(f) to a single degree-of-freedom

system, the expression for the approximate rms response a r
will have the form

[__ Q] 1/2ar-'= B Wp(f) fo (3.155)

where B is the appropriate constant, relating the response

units to the excitation. Except for any necessary conver-
sion to g units when specifying an acceleration response,
this constant is given by the constant part of the general
sinusoidal transfer functions la(f)l in Figure 3.9, page 3-9.
However, it is only for those transfer functions which have
a finite area that Equation 3.155 is an exact solution for a
constant input spectrum.

3o2.3.11 Engineering Methods for Analyzing Random
Re_onse

The application of some of the principles discussed in Sec-
tion 3°2.3 can be illustrated by the following examples.
Simple graphical and computational aids are also provided
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toassistin thesolutionofproblemsdealingwiththere-
sponseofsingledegree-of-freedomsystemstorandomexci-
tatlon.

Power Spectral Density

The power spectral density W(f) of a random variable is

determined by first measuring the mean square value Ax 2

of the random quantity within a fixed narrow frequency
band of width Af a. The power spectral density (or simply
spectral density) is then given by

When the quantity measured is a motion variable such as
acceleration, velocity, etc., the spectral density is usually
identified as follows:

Variable Power Spectral Density Units

Acceleration APSD g2/Hz

Velocity VPSD (in/sec)2/Hz

Displacement DPSD in2/Hz

Throughout the rest of this section, the terms APSD, VPSD,
etc., will be used to identify the corresponding power
spectral density. Subscripts will be added to identify the
spectral density with the absolute motion of the mass (x),
the base (u), or the relative motion of the spring (e), for a
single degree-of-freedom system. The rms value of any
random variable will be identified by the basic symbol
with a corresponding subscript, such as x to indicate the
rms value of the acceleration of the mass. The numerical

value of acceleration is always given in terms of "g" units
where g is the acceleration of gravity = 386 in/sec 2.

At any given frequency f, if the original spectral density
was measured with a sufficiently narrow filter (one with a
bandwidth _fa much less than its center frequency f)these
three quantities can be related by the following expres-
sions for the units specified above.

APSD - g2/Hz = 0.000265 f2 (VPSD)= 0.0105 f4 (DPSD)

VPSD - (in/sec)2/Hz = 3775 (APSD)/f 2 = 39.5 f2 (DPSD)

DPSD - in2/Hz = 95.6 (APSD)/f 4 = 0.0253 (VPSD)/f 2

density. At resonance_ the curve has a peak value approxi-
mately equal to Q2 while above resonance, the accelera-
tion spectral density approaches a constant value equal to

the force spectral density divided by the square of the
mass. Note that the same curve, plotted in terms of dis-
placement spectral density DPSD would vary over a range

of 105 while the APSD curve varies only over a range of

102o While actual measured random vibration spectra on
real structural systems win usually exhibit a much more
complex pattern, the simplified graph in Figure 3.42 serves
to illustrate basic trends in such data. Below the first

structural resonance, the vibration tends to exhibit a con-
stant displacement spectrum (stiffness controlled) while
above resonance, a mean line through the data will Fre-
quently approximate a constant acceleration spectrum (mass
controlled). Hence, it is usually more convenient to dis-
play random vibration in terms of its acceleration spectral
density.

)

)
u

i

-_Velocity Spectral Density- (in/sec)2/Hz

/ m./--Displ ...... t Spectral Density- in2/Hz

10

I0 100 I000

Frequency - Hz

FIGURE 3.42 Conversion from Acceleration Power Spectral

Density to Velocity and Displacement Power

Spectral Densities Superimposed on Theoretical

APSD x for Single Degree-of-Freedom System with

fo = 100 Hz and Q = 3 (See Figure 3.43)

Vibration is normally measured using accelerometer trans-

ducers to convert acceleration into an electrical voltage
for data acquisltion. Conversion from measured accelera-
tion spectral density APSD to VPSD and DPSD can be
made with the above expressions or by a conversion chart
such as shown in Figure 3.42. A theoretical plot of the
APSD for a single degree-of-system is also shown in this
figure. This represents the acceleration that would be

measured on a mass of a fixed-base mass-spring system
driven by a random force with a constant force spectral

Response of Fixed-Base System for Random Force
Excitation of Mass

The methods for computing the response of a single degree
of freedom system for random excitation have been out-
lined in Sections 3.2.3.6 and 3.2.3.10. To illustrate

their application, consider the following example. As-
sume that the acceleration spectral density curve in Figure
3.42 is based on the following parameters.
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Constant Force Spectral Density Wp(f) = 9560 Ib2/Hz

Spring Constant

Weight

Mass

Natural Frequency

(Undamped)

Resonant Amplification Factor

k = 105 Ib/in

W = 97.8 Ib

W/g = m = 0.253 Ib sec2/in

1
fo =_ _rk/m

= 3.13 _/W

= 100 Hz

Q=3

The following additional information for this case, illus-

trated in Figure 3.43a, can then be determined on the

basis of the equations for the displacement and accelera-

tion spectral densities which are

Wp(f)
IH(f)l 2 -in2/Hz (3.156)

DPSDx - k2

APSDx= Wp(f) IH(f)I2 (f/fo)4- g2/Hz
W 2

(3.157)

where IH(f)J is the dynamic magnification factor given by

Equation 3.142. The general shape of these spectral den-

sities are compared in Figure 3.43b.

P(t)

I/I// H

a) Single Degree of Freedom System

Driven by a Random Force P(t) with

a Constant Force Spectral Density

x

'_Vf 4
I "_ f , _ f
fo fo

b) Displacement and Acceleration Spectral

Densities for Example Shown in a)

FIGURE 3.43 Example of Random Force Excitation of

Single Degree of Freedom System

Displacement Spectral Density

Below Resonance (f << fo)

DPSDx--' __WP(f) = 9.56 x 10 -7 in2/Hz

k 2

At Resonance (f = fo )

Wp(f) Q2=8.61x 10 -61n2/Hz

DPSDx(fo) - k2

Acceleration Spectral Density

At Resonance (f = fo)

APSDx(fo)= Wp(f____._)Q2 = (42f2/g) 2 . DPSD x
W 2

= 9.0 g2/Hz

Above Resonance (f >> fo)

w (f)
APSDx_ P " = 1.0 g2/Hz

W 2

rms Displacement

-- "n Wp(f) f Q=4.51x10-4in 2
x 2 (Mean Square) 2 k2 o

a - (rms) = _ = 0.0212 in
X

rms Acceleration (Effective Value)

The effective rms acceleration of the mass can be calcu-

lated on the basis of the rms deflection or byan equivalent

computation based on the acceleration spectral density

plot. However, both methods must assume that the actual

spectral density of the applied force decreases at fre-

quencies above resonance. For a constant force spectral

density at all frequencies, the mean square acceleration,

represented by the area under the acceleration spectral

density curve, would be infinite.

The computation based on the rms deflection assumes that

practically all the energy in the random response is con-

centrated in the narrow bandwidth centered about the re-

sonancefrequencYfo. It will be recalled from the earlier

discussions that a narrow band of random noise or vibration

is very similar to sinusoidal motion with a randomly varying

amplitude. Thus, the rms acceleration should be closely

approximated by applying the relationships between ac-

celerationS(t) and deflection x(t) for slnusoidal vibration.

If a sinusoidal motion has a peak displacement X at a

frequency f, the peak acceleration A, in g's, is
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A - (2_f,2/ X = 0.1023f2 X - g(peak)
g

Applying this equation, the rms acceleration for the ran-

dom vibration would be approximately

_"x = 0.1023 f# ex = 21.7 g (rms) (3.158)

All of the above computations are based on prior knowledge

of the parameters of the single degree of freedom system

and its excitation. More commonly, however, only mea-

sured acceleration spectral density response data are avail-

able. To determine the rms acceleration for only one re-

sonant mode from such a spectral density measurement,

which usually exhibits many resonant peaks, the following

procedure can be employed°

As shown by the linear plot in Figure 3.44, the accelera-

tion spectral density curve, in the vicinity of resonance of

a single resonant mode, can be replaced by an equivalent

narrow band with an effective bandwidth equal to

fo

Afeff- 2 Q (3.159)

and a constant acceleration spectral density equal to the

maximum value at resonance, APSDx(fo). The mean square

acceleration within this equivalent band is then

fo g2 (3.160)_2/g2 = APSD x (fo) ' 2 Q

Since APSD x (fo) = Wp(f) Q2/W2, the rms acceleration

e_ is

a_/ = _ _ Wp(f) fo Q. _ g's (3.161)
W2

i
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Frequency- Hz

FIGURE 3.44 Example of Acceleration Spectral Density

Curve for Response of Single Degree of

Freedom System Replaced by an Equivalent

Narrow Band with Constant Spectral Density

For the example above, the maximum acceleration response

spectral density at f = fo is APSD x (fo) _ Wp( f)2 Q2/W2 =

9.0 g2/Hz. (The true maximum, in this case, is actually

higher by the factor [4 Q2/(4 Q2_ 1)] and occurs at a

frequency equal to fo 11/1/(I - 1/2 Q2), however, these

differences are negligible for the usual values ofQ.) Thus,

using Equation 3.161, the effective rms acceleration is

approximately equal to

1e_ = • 9 • 100/3 = 21.7 g (rms) (3.162)

which is the same result given by Equation 3.158.

If the actual acceleration spectral density curve in Figure

3.44 is integrated graphically, it is found that this rms

acceleration corresponds approximately to the area under

the curve up to a frequency of approximately 2 fo" Thus,

the effective rms acceleration given by Equation 3.161

will be in error if there are any additional resonant peaks

at frequencies less than 2fo. This upper frequency limit

will decrease for higher values of Q.

Three Sigma Peak Displacement and Acceleration Response

Based on the Rayleigh distribution curve, three times the

rms displacement or rms acceleration of this resonant re-

sponse would not be exceeded, on the average, more than

1.1 percent of the time. This probable value is commonly

used for defining a peak value of the response. For this

example, this corresponds to a 3 sigma peak deflection of

3 x 0.0212 = 0.0636 in. and a 3 sigma acceleration of

65.1 g's.

Acceleration Response of Base-Excited System for Random
Acceleration of Base

For random excitation of the base of a mass-spring system

(see Figure 3.6, page 3-7), the response acceleration

spectral density APSD x of the mass is given by

APSDx = APSDu " IT(f)12 (3.163)

where APSD u is the acceleration spectral density of the

input excitation and IT(f)l is the sinusoidal transmissibility

for such a system (see Figure 3.7, page 3-8). The area

under the transmlssibility curve is finite so that for a con-

stant input acceleration spectrum, the rms response of the

mass can be given in closed form (see Equation 3.154).

For the usual values of Q, this is very nearly equal to

a.. _ APSDu fo Q (3.164)
X

Unlike the previous case for force excitation, this rms

acceleration response includes the effect of response at all

frequencies above and below resonance. For example, for

a constant input accel erati on spectral density of 0.1 g2/Hz,

a resonant frequency of 100 Hz, and a Q of 5, the mass

would respond with an rms acceleration a.. of 8.86 g's
x

(rms). A 3 sigma peak response of 26.6 g would be ex-

ceeded about 1.1 percent of the time.
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Absolute Displacement Response of Base-Exclted Systems

The absolute displacement of the mass is a critical parame-

ter for evaluation of clearance problems of base-exclted

mass-spring systems. The absolute rrns deflection of the

mass could be estimated by applying the same concept of

equivalent slnusoldal motion used earlier for the force-

excited fixed-base system. The effective rms deflection of

the mass, in this case, would be

g 1
a =-- • e.. - a.. =0.00871no (3.165)

x 42f 2 x 0.102 f2 x

However, this displacement is based on the assumption that

the actual input acceleration spectral density falls off

sharply below the resonant frequency. As shown by the

linear plot in Figure 3.45, the displacement spectral den-

sity of the mass would actually approach infinity at zero

frequency for a constant acceleration spectral density in-

put. The rmsdlsplacement of 0.0087 inch given by Equa-

tion 3.165 corresponds only to the area under this curve

for frequencies above approximately 0.8 to" Clearly,
then, the true rms deflection of the mass, for a base ex-

cited system, will be hi_lhly dependent on the input ac-

celeration spectrum below the resonant frequency. For
example, if the input acceleration spectrum were constant

from infinity down to 1/4 of the resonant frequency and

zero below this frequency, the true rms deflection for the

case considered here would be approximately double the

value predicted by Equation 3.165.

×(t)
6

_: P:[

i

O I ThisArea Not _"_-"f_ APSDu = (

o25i

0 50 150

2APSDu • foQ 1

APSD u = 0.1 g2/Hz

100 Hz

100

Frequency - Hz

2OO

FIGURE 3.45 Linear Plot of Displacement Spectral Density

of Mass for Random Excitation of Base of

Mass-Spring System with a Constant Input

Acceleration Spectral Density (APSDu)

When it is necessary to determine this deflection accu-

rately, the acceleration signal from the accelerometer

transducer should be integrated twice, before a spectrum

analysis and rmsvalue is obtained. This double integration

is equivalent to dividing the acceleration signal by f2 thus

converting it to a signal proportional to displacement o The

rmsvalue of this modified signal will then be directly pro-

portional to the true rms deflection of the mass. This can

be converted to a probable peak to peak deflection with a

1 o1 percent probability of exceedance by multiplying the

rms value by 6.

Relative Displacement Response of Base-Excited Systems

Fora base-excited mass-spring system, the relative deflec-

tion e(t) of the spring defines the stress in this supporting

member. If the input acceleration spectral density of the

base excitation is APSDu, the spectral density of the rela-

tive displacement of the spring is given by

2

DPSD e = APSD u • [_] IH(f)l 2 (3.166)

where

fo = resonance frequency - Hz

IH(f)l = dynamic magnification factor given by

Equation 3.142.

Except for the type of excitation and the constant term

Ig/4_ZfoZl, thls equation has the same form as the expres-
L J

slon for the displacement response spectrum DPSD x for a

fixed-based system. (See Equation 3.156 and Figure 3.43 .)

Aclosed expression is therefore available for the rms rela-

tive deflection tara constant input acceleration spectrum

APSD u. This is

= - g APSDu " fo (3.167)
ae 472 f 2

O

Comparing this solution wlth Equations 3.164 and 3.165,

it is clear that the rms relative spring deflection is numeri-

cally equal to the approximate rms deflection of the mass

for a random acceleration input to a moving base mass-

spring system. However, the true deflection of the mass

depends on the input spectrum below resonance while the

relative spring deflection is practically independent of the

spectrum outside the resonant bandwidth.

Graphical Aid for Predicting Peak Response of a Base-

Excited System to Constant Input Acceleration Spectrum

If the random input to a moving base system has a constant

acceleration spectral density, the acceleration response of

the mass and relative deflection of the sprlng can be shown

on a single graph of input spectral density APSD u versus

resonant frequency fo for a given value of Q. Such a

graph is shown in Figure 3.46 for a typical Q of 10. For

convenient application to design problems, the accelera-

tion response is specified by lines of constant 3 sigma peak

acceleration. The relative deflection response is also

given by lines of constant 3 sigma peak deflection. For

example, if the resonant frequency fo is 70 hertz and the

input acceleration spectral density is 1.0 g2/Hz, the inter-

section of these two coordinates shows that the 3 sigma

peak acceleration of the mass is 100 g and the 3 sigma

peak relative deflection of the spring is 0.2 inch. This is

also the approximate 3 sigma peak deflection of the mass

due to vibration energy within the resonant bandwidth of

the system. If a measured or predicted input acceleration

spectral density plot is overlaid on Figure 3°46, the 3

sigma response can be read directly for any resonant fre-

quency to"
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For other values of Q, the response values scale directly

as _/--_-10. The graph was constructed by using Equations

3.164 and 3.167 to predict the rms response.

Graphical Method for Evaluation of rms Value of a Wide
Band Random Excitation

A common procedure for specifying a random vibration

environment consists of constructing an envelope of the

expected maximum acceleration spectrum. This envelope

can be used for the definition of vibration tests or design

of structure subjected to the random environment. It is

frequentlydrawn, as shown in Figure 3.47, with connected

straight line segments on a log-log plot of acceleration

spectral density versus frequency. The rms acceleration for

this acceleration spectrum envelope is useful for both test

planning and random load design analysis. This rms value

can be determined by first calculating the mean square

Given W] =APSDat fl

Wcc fn W 2 = APSD at f2

Q2
If2 W2- fl Wll/(n + 1) n/-

then 1
Wl

°re2 2"3w1 fl I°g]0(f2/fl) n=-I
fl f2

wh ..... Ilog W2,/Wll / I log f2/fll

0.0!

0.001

I
I
I
I
I

I

+o7+o/
= 6.8 g (rms) 0.025"

27.6 g2

1 Io lOO Iooo

F- Frequency - Hz

FIGURE 3.47 Example of Calculation of rms Acceleration

for Vibration Test Envelope Plotted with

Straight Line Segments on Log-Log Scale

value or area of the spectrum under each part of the vari-

ous straight line segments as illustrated in the insert in

Figure 3.47. For each of these segments, the mean square

value is given by the simple equations shown in the figure.

The spectral density for each segment can be expressed in

the form

APSD = W(f) = Wl. (-_1) n
(3.168)

where W 1 is the initial spectral density at frequency fl

and n is the exponent of f which defines the slope of the

spectrum on the log-log plot. Thus, over the frequency

limits fl to f2' the mean square value For any segment is

the integral

2 f2a2= W(f) "df=Wl f (_) n

fl fl

df (3o169)

Forn_l, this is

e = I\fi/ "f2- Wlr
+1)

or

e2 : [W2 f2 - Wl fll / (n + 1) (3.170)

and for n = -1, it reduces to

e2 = 2.3 W 1 fl I°g10 (f2/fl) (3.171)

The overall rms value of the envelope is simply the square

root of the sum of the mean square values for each segment.

For the typical case, illustrated in Figure 3.47, the rms

acceleration for the spectrum envelope is 6.8 g (rms). The

largest portion of this is represented by the third segment of

the spectrum envelope with a slope of-1 extending from
200 to 800Hertz.
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3.3 VIBRATION RESPONSE OF COMPLEX

STRUCTURE

The treatment of structural vibration in terms of the response

of a single degree of freedom system must now be expanded

to include the more complex behavlorof real structure. As

an illustration of such behavior, Figure3.48shows a hypo-

thetical example of vibration response that might be mea-

sured at some polnt on a complex structure suchas a rocket

engine test stand. This represents the displacement response

amplitude due to excitation by a single sinusoidal point

force whose frequency slowly increases from 0 to o very

high frequency. The pattern of vibration response observed

may be broken down into three general regions.

At the lowest frequencies, (Region I) the observed

response has a characteristic behavior veryslmilar

to that of a single degree-of-freedom system.

Below the first resonance frequency, fo, the motl on

of the entire structure is controlled by the static

stiffness of its load carrylngmembers and its foun-

dation. At the first resonance frequency, all or

part of the mass of the structure acts as a rigid

mass resting on this "static" spring thus exhibiting

the general response of the simple mass-sprlng sys-

tem discussed earlier in this chapter.

At higher frequencies, the influence of several

clearly identifiable resonant modes is observed

(Region II). These individual resonant modes may

consist ofvibratlon of the basic mass-sprlng struc-

ture in several of its possible 6 modes (three trans-

lational directions and three rotational directions)

or it may conslst of the combined resonant response

of the structure in only one direction but involving

coupled vibration of various portions of the struc-

ture, each acting llke a mass-spring system. In

either case, the equivalent mass-spring elements

involved can be identified by a dynamic and static

analysis of the structure.

At still higher frequencies, individual resonant

modes are no longer discernible and the structural

response becomes very complex and impractical to

analyze exactly. In this frequency range, the

modal density, or numberof resonant modes within

a given frequency interval, is more significant

than the resonant frequency of any one resonant
mode.

The analysis methods to be considered in the following will

be primarily concerned with the first two regions illustrated

inFigure3.48. It is usually in this frequency range where

the most significant loads on groundstructure will occur as

a result of sonic excitation. Further consideration of re-

sponse in the higher frequency region III will be covered in

Chapters 8 and 9.

In each of these frequency ranges, the response can be

theoretically determined from the summation of the response

of independent free vibration modes, called normal modes.

Each mode can then be treated as a single degree-ofdfree-

dora system so that by summing the response of each mode,

o

"E

a
Region I

Po sin wt

I _ x(t)

o F requenc y .-----D.

FIGURE 3.48 Illustration of Typical Vibration Response

Characteristics of Complex Structure to

Excitation by Sinusoidal Excitation whh o

Slowly Changing Frequency

the overall response can be determined. While it is often

possible to define the most critical dynamic load on a

structure in terms of the response of only the fundamental

or lowest frequency mode, it is generally desirable or

necessary to analyze the net response of several of these

lowest modes. This is particularly important when con-

ducting vibration tests or detailed dynamic analyses of

large complex structural assemblies which are encountered

in the design of rocket test facilities.

3.3.1 METHODS OF VIBRATION ANALYSIS FOR

COMPLEX STRUCTURE

There are two general approaches to the complex dynamic

behavior of structural systems. The approach used most

frequently assumes that the structure can be represented by

a series of lumped or rigid masses connected to each other

or to a fixed base by springs and dampers. Logically, this

is identified as the lumped parameter approach. It is par-

ticularly useful for analyzing the vibration response of o

structure which can be considered physically as just such

an array of lumped elements. Such a discrete system has

a finite number of normal modes determined bythe number

of mass elements employed and the number of directions

each mass can move. The minimum number of coordinates

required to uniquely define the motion of such a system is
equal to the number of degrees of freedom.

For the second method, the structure is represented by one

or more idealized distributed elements such as beams or

plates which have a continuous distribution of mass and

stiffness properties and an infinite number of vibration

modes. However, it is possible to approximate the lower

frequency modes of these distributed elements by lumped
parameters. In this case, the continuous structural element

is simulated by an array of lumped elements which exhibit

the same general vibration characteristics as the continuous

element. This lumped parameter approximation is not valid,

however, forvlbratlon modes with an order greater than the

number of lumped elements used for the approximation. For

example, a series of three masses, connected byappropriate

springs, can represent, at best, only the first three vibra-

tion modes of a continuous beam. In fact, to obtain ac-

ceptable accuracy for the nth mode of a beam it is ordi-

narily necessary to employ at least n + 1 lumped elements
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toapproximatethedynamicresponsecharacteristicsofthe
nthmode(References3.30- 3.32).Oneexceptionin-
volvestheuseofasinglemass-springelementtosimulate
onlythefundamentalvibrationmodeofadistributedele-
mentsuchasa beam.Inthiscase,themassandspring
elementanditsinputforceexcitationcanbeadjusted,
byconservationof energyprinciples,tobeequivalentto
theactualbeamwhenthemaximumdeflectionofthetwo
systemsareequal.Aspecificexampleofthisapproachis
usedin Chapter8 fortheanalysisofbuildingresponseto
blastloads.
Theprincipalmethods,utilizedin thismanual,forana-
lyzingthevibrationresponseofeithera lumpedordis-
tributedparametersystemmaybecatagorizedasfollows:

• ClassicalNormalModeMethod

• MechanicalMobilityMethod

• NumericalIntegrationMethod

• EmpiricalorExperimentalMethod

Examplesof eachofthesemethodsappearinsucceeding
chaptersofthismanual;however,fundamentalsofthefirst
twoonlywill bereviewedhere(References3.1- 3.5,
3.33- 3.35).Twoexamplesof numericalintegration
methodsareexplainedandutilizedinSection2ofChapter
8foranalysisofblastloadsonbuildings.Anextensive
reviewof othernumerical integration methods is given in

Chapter 28 of Reference 3.1. The empirical or experi-

mental method is self-explanatory and examples of its

application will appear in Chapters 8, 9, 11 and the

Appendix. This includes examples of full scale and model

scale experimental techniques. The latter are particularly

useful for detailed dynamic analysis of large structural

systems.

Other methods exist for solving structural dynamics prob-

lems and the reader is referred to the literature for addi-

tional details. Notable among these other methods are:

Passive and active electrical analog techniques,

which can be usefully applied to analyze vibra-

tion of structure in the lower frequency range

(Region I and I1 in Figure 3.48) (Reference 3.1 -

Chapter 29).

The transfer matrix method, which is particularly

useful for modal analysis of linear chain configu-

rations such as piping systems (Reference 3.36).

3.3.1.1

Statistical energy method for analysis of vibration

response at high frequencies where modal density

is high (Region III) (References 3.37- 3.39). Al-

though this method is not yet fully developed as a

practical design toolt it is a valuable addition to

the field of structural vibration analysis.

Application of Digital Computer Techniques

There is an ever increasing trend towards the use of digital

computers with their tremendous computational speed and

potential for solvingcomplex structural dynamics problems.

This provides the structural designer with a sophisticated

analytical tool for carrylngoutdetailed structural vibration

analyses which were impractical a few years ago. Compu-

tations involving 20 to 30 degrees of freedom are handled

as a matter of course, with the growing number of general

and specialized computer programs designed specifically

for structural vibration analysis. Computer programs, de-

signed to handle over 200 degrees of freedom, are in cur-

rent use by many structural dynamlcists. Yet with all this

overwhelming computerized analytical capability, it is

still necessary to be able to solve less complex problems

for simplifledanalyses and engineering studies of structural

vibration. The material presented in the following is di-

rected prlmarilyat this level with the additional objective

of providing a basic background for the more complex

computerized methods.

3.3.1.2 Objectives of Dynamic Analysis

The methods selected for analysis of the vibration charac-

teristics of a complex structure will be influenced by the

end objectives. These objectives may require determina-
tion of:

• Peak dynamic deflections

• Maximum dynamic stresses

Dynamic stability of structural system under cyclic

loads (i.e. -- undesirable feedback of resonant

structural vibration on a rocket engine test stand)

• Fatigue life under repeated loads

• Maximum acceleration loads on secondary struc-

ture and equipment

• Transmission of vibro-acoustic energy through
structure.

The degree of sophistication and accuracy required to meet

these objectlveswill vary over a wide range and an analysis

method should be selected which is no more complex than

necessary for the accuracy required for the problem. It is

also desirable to select an analysis method which is con-

sistent with any inherent inaccuracies in definition of the

input excitation. A detailed structural analysis which pre-

dicts resonance frequencies within one percent is hardly

practical for evaluating blast loads when the blast input

itself may not be known better than :t:50 percent. On the

other hand, a dynamic structural stability problem involving

feedback between vibration of a test stand or fuel piping

system and a rocket engine combustion chamber may require

a very sophisticated analysis.

Therefore, a vibration analysis of the structure may range

froma simple calculation of the dynamic deflection fora

given load and estimated fundamental resonance frequency

to carrying out a detailed analysis of the forced response

of the structure to a complex dynamic load. The normal

mode approach and the mechanical mobility approach,

outlined in the following, provide two of the more useful

vibration analysis techniques which have the flexibility to

cover a wide range of such problems.



3-50 FundamentalsofVibration

3.3.2 CLASSICALNORMALMODEANALYSISFOR
LUMPEDPARAMETERSYSTEMS

It will beconvenienttodefinemostofthebasicconcepts
foranalysisofmultipledegree-of-freedomsystemsbyillus-
tratlngtheirapplicationtolumpedparametersystems.It
will beshownlaterthatthesameconceptsalsoapplyto
distributedsystemssuchasplatesorbeams.Theapplica-
tionofnormal mode analysis methods to lumped parameter

systems can be illustrated by first analyzing a two degree

of freedom system (Reference 3.2). An example of such a

system is shown in Figure 3.49a. The system is defined by

two masses, m 1 and m2, driven by forces Pl(t) and P2(t),

which are coupled together by a parallel combination of a

spring k and damper c and also connected to a fixed base

by springs k 1 and k2, respectively. Motion of the system

is restricted to the plane of the paper, and its position

at any instant of time is defined by the mass coordinates

x 1 and x 2.

The two steps -- definition of the mechanical model and

selection of the coordinate system, correspond to the key

initial phase in any vibration analysis of a complex struc-

ture. The type of mechanical model chosen will generally

establish the minimum possible error of the results while

the type of analysis carried out on this model will usually

establish the maximum error. The choice of a coordinate

system is theoretically arbitrary. However, froma prac-

tical standpoint, an optimum choice can often be made

which simplifies the mathemaHcs. Without prior knowl-

edge of the system, it is best to choose coordinates, as in

Figure 3.49a, which correspond to absolute displacements

and/or rotations at the center of mass of any element as

measured from its equilibrium position. For motion excita-

tion of simple spring-mass systems, the relative deflection

of the springs may be amore convenient set of coordinates.

P2(t)

I_ k_ Pl(t)r] c

k2_ irJl ]l--"l_xl

1/J/IHHH k1111/!1111111 -

P2(t)

m2_m2_ 2

tk2x

c (x2- Xl) I Ik (x2- Xl )

mlL_ml/_l

tklX

o) Connected System b) Free-Body Diagram

FIGURE 3.49 Two Degree-of-Freedom System

For some mass-sprlng systems, a detailed analysis may be

unnecessary if only qualitative results are desired. A me-

chanical mobility model can be constructed, at this point,

and the general vibration characteristics determined by

inspection or by simple graphical analysis.

3.3.2.1 Equations of Motion forTwo Degree-of-Freedom

System

Returning now to the system shown in Figure 3.49, the

equation of motion for each mass can be written down by

applying D'Alembert's principle for the equilibrium of

dynamic forces acting on the center of mass. This is illus-

trated by the free body diagram in Figure 3.49b. (Note

that this principle is equivalent to expressing Newton's

second law of motion in the form of an equilibrium condl-

ditlon, Z (Forces acting on center of mass)- m_= 0.] A

consistent set of rules must be followed for such diagrams

to insure proper values and signs for the forces and dis-

placements.

If displacements are taken from the position of

static equilibrium, gravitational forces (weights)

and corresponding static restraint forces cancel

out and may be ignored.

All externallyapplied forces and dynamic restraint

forces acting on each mass must be added vec-

torlcally at its center of gravity.

The net summation of these forces produces an ac-

celeration k" of the center of mass in the same

direction as the net force which is opposed bythe

inertial force, - m_, acting in the opposite direc-
tion.

The positive direction for force and displacement

must be the same for each mass for a consistent

sign convention.

For rotational motion, a force is replaced by the

moment about the center of gravity, mass is re-

placed by the mass moment of inertia about the

same point, and displacements and accelerations

become angles and angular accelerations about

this point.

Following these rules, and choosing downward forces as

positive, the equations of motion can be written for m 1 as

Pl(t)+c (x 2- >kl)+ k (x 2- Xl)- m 1 Xl - kl xl =0

or

ml _1 +c (x 1 - _k2) + (k 1 +k) x 1 - k x2 = Pl(t )

(3.172)

Similarly, for m2,

m2_2- c (R1 - k2)- kx 1 +(k 2+k) x 2=P2(t)

(3.173)

Equations 3.172 and 3.173 represent a set of linear dif-

ferential equations of second order. The variables x 1 and

x 2 appear in both equations so that they are coupled

through the damping parameter c and spring constant k and
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mustbesolvedsimultaneously.It willbeshownthatthe
basicadvantageofthenormal mode method is that a com-

plete simultaneous solution of this set of equations (one for

each degree of freedom) can be avoided and a new set of

independent equations of motion developed which can be

readily solved individually.

3°3.2.2 Normal Mode Solution for Two Deqree-of-

Freedom System

The normal mode solution is based on the fact that the

vibration response of the system in Figure 3.49 can be de-

scribed in terms of its natural modes of vibration as a freely

vibrating undamped system. In this case, when damping

is eliminated (c = 0) and the excitation removed, (Pl(t) =

P2(t)=0), the equations of motion for free undamped vibra-

tion become

m 1 K 1 + (k 1 +k) x 1 - kx 2=0 t

m2x2- kx 1 + (k 2+k) x 2 =0

(3,174)

Just as for the single degree-of-freedom system, the free

vibration of each mass will be defined by the transient

solution to these equations of motion and will have the
form

xl(t) = X 1 sin (ut +e) t

x2(t ) = X 2 sin (ut+ O)

(3.175)

Since there are two degrees of freedom, two values for the

frequency of free vibration u can be expected. These are

found by substi tu ring the assumed solutions (Equation 3.1 75)

into Equation 3.174. The time varyln 9 terms drop out

leaving only the pair of algebraic expressions involvln 9

the system parameters and amplitudes of vibration.

(k I +k-u 2ml)X 1 - kX 2=0 (3.176a)

-k X 1 + (k 2 + k _u2 m2 ) X2 = 0 (3.176b)

Unless X 1 and X 2 are zero (the trivial solution), this set

of linear simultaneous equations is satisfied only when the
determinant of the coefficients is zero or

k 1 + k- w 2 m 1 - k
= 0 (3.177)

-k k 2 + k - 2 m2

This is the characteristic equation of the system and when

it is expanded into a polynomial in u, the frequency equa-
tion is obtained.

_k 1 k 2+k_ k 1 k 2+(k 1 +k2) ku4_ i k + ____u2+ = 0

k ml m2 / ml m2

(3.178)

This equation has two real positive roots u I and u 2 which

are the natural frequencies (or eigen values)for the normal

modes of the system. For the two degree-of-freedom system

in Figure 3.49, the roots are given by

(3.179)

where

I k + k k 2 + k]R= ml + ---m2J

and

k I k 2+ (k 1 + k2) k]s:

If each of these two natural frequencies are substituted

back into Equation 3.176a Or3o176b, then two expressions

are obtained for the ratios of the amplitudes X I and X 2.

These are identified as follows For each natural frequency.

For g I

X2 UlXI = (k 1 + k - u12 ml)/k

andu 2 (3.180)

X2 u2Xl = (k 1 + k - u22 ml)/k

These ratios represent the free vibration amplitude of mass

m 2 relative to the amplitude of m I for each of the natural

frequencies Ul and u2 of the system. The absolute values

of these modal amplitudes are not defined at this point and

it will be the convention in this manual to set themaximum

relative amplitude for each mode equal to 1 . These nor-

malized values for the relative amplitudes of the mass ele-

ments are defined as the normal modes which define the

(characteristic) mode shapes of the system. Other names

such as natural modes or eigenvectors are also used. They

will be identified by the term _n(Xi) or simply (Pin where

subscript i refers to the ith mass element and n designates

the nth natural frequency. In all cases, _in will have a

value between 1.0 and -1.0. A value of -1.0 for any

mode would signify that the mass element involved was

vibrating with a magnitude equal to but in the opposite
direction from that of the reference mass which has the
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maximumamplitudeforthatmode.Thisnormalizingpro-
cesswill takeonmoresignificancewhentreatingsystems
withmanymoremodesordegreesoffreedom.It isabasic
partofthenormalmodeconcept.

It isnow clearthat the free sinusoidal motion of eachmass,

vibrating in one of its normal modes, can be expressed as

the product of a nondimensional normal mode shape ¢in

and a time varying amplitude which will be called the

normal or principal coordinate qn(t) for this mode. Thus,

for mass m 1 , the motion in the first mode will be described
by

x1(wl,t) = ¢11 ql (t) = ¢11 ql

where

sin (gl t + 01)

(3.181)

¢11 = the relative mode shape for mass m 1 at the

first natural frequency w 1

ql = the peak amplitude of this mode.

Similarly, for the second mass m2, the motion at this same

natural frequency will be given by

x2(_ 1,t) = ¢21 ql (t) = ¢21 q] sin (,,i t + 81)

(3.182)

The time varying parts of these two equations will always

be identical for a given mode so that, with no damping,

both masses will vibrate exactlyin phase (or exactly out of
phase) with each other in each normal mode.

The choice of the name normal coordinate for the time

varying quantity qn(t) now seems appropriate, for qn(t)

represents a reference amplitude of the entire system in the

nth mode. Each of these normal coordinates maybe treated

as the time varying amplitude of a single degree-of-freedom

system, representing one normal mode, which is essentially

independent of all the other modes of a multidegree of

freedom system. Proof of this will be given in the fol-
lowing sections.

The general solution to the equations of motion for free

vibration of the twodegree-of-freedom system, given earlier

by Equation 3.175, can now be expressed as the sum of the
normal mode solutions in the form

x l(t) = ¢11 qI sin (wit + 81) + ¢12 q2 sin (_2 t + 02)

(3.183)

x2(t) = ¢21 ql sin (gl t + 81) +¢22_ 2 sin (g2 t + 02)

Clearly, the general expression for the motion of the ith

mass of a system with N degrees of freedom is the summation

N

xi(t) = _ <Pin qn sin (_n t + 8n) (3.184)

n=]

For free vibration, the constants "qn and 8n will be deter-

mined by the initial conditions. There would be Nsuch

equations to describe the motion of the entire system con-

taining N mass elements, each equation having N terms

for the N natural frequencies. This array of N terms in N

equations points to the application of matrix algebra as an

obvious way to solve more complex systems. However,

before considering the application of matrices to the

general case, it will be convenient to develop most of the

basic concepts of the normal mode method by treating

specific examples of simple two degree-of-freedom systems.

3°3.2.3 Free Vibration Response of Symmetrical Two

Degree-of-Freedom System

For one example, consider an undamped two degree of

freedom system as shown in Figure3.50a. This can also be

represented in the form shown in Figure 3.50b which is an

example of the form used for simulating the normal modes

of a uniform beam where longitudinal motion of the springs

is equivalent to lateral motion of the beam.

m21

o)

x 1 x 2

b)

FIGURE 3.50 Undamped Two Degree-of-Freedom System

a) Vertical Form, and b) Chain Form to

Simulate lumped Mass Model of a Beam

where k l=k2=ko, k=a koandm l=m2=m

Forthiscase, letk 1 =k 2=ko, m 1 =m 2=mandk=a k o.

From Equation 3.178, the natural frequencies of this sys-

tem will be the roots of the polynomial

_4_ 2 [(l+a) ko/m ] _2+k 2(l+2a)/m 2=0

The two positive roots or natural frequencies are

_1 : _-o/m /
(3.185)

g2 = _/ko (l+2a)/m

The mode shapes are found by substitutingthese frequencies

into Equation 3.180, after substituting the values for k 1,

k 2, k and m 1 given above. The resulting expressions are
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and

so that for the first normal modet the two masses have the

same peak amplitude and are exactly in phase.

(_11 = ¢21 = l)

For the second normal mode, the two masses have the same

magnitude but opposite phases and

(e12 = l = -_22 )

These mode shapes are illustrated in Figure 3.51a. Note

that the first mode is a symmetric mode and there is no

relative motion between the two masses, so that the cou-

pling spring k can be replaced by a massless rigid link.

The system then reduces to essential ly one mass m 1 + m2 = 2m

resting on one spring with a spring constant equal to k 1 +

k2=2k o and, as indicated by Equation 3.185, the natural

frequency for this mode is simply _o/m.

The second mode is an antlsymmetrlc mode for which the

mid-polnt of the coupling spring is staHonary. For the

analogous lumped mass model of a beam, this would cor-

respond to a point of zero lateral motion but with rotation

about a pivot point. Such points of zero motion (in the

direction which is characteristic for the mode) are called

node points (or node lines in a two-dimensional vibrating

system). The points (or lines) of maximum response are
called antinodes.

The natural frequency of the second mode was given in

Equation 3.185. When it is normalized by the first mode

frequency g I = _o/m, it can be defined in terms of the

single parameter a which is the stiffness of the coupling

spring o k o relative to the stiffness k o of the other two

springs. This normalized second mode frequency is shown

in Figure 3.51b.

The time history of free vibration of each mass of the two

degree of freedom system can now be determined from the

initial displacement xi(t = 0) and velocities _i(t = O) of

each mass. The latter can be used with Equation 3.183 to

find the unknown values of the normal coordinates qn(t).

In this case, a set of four simultaneous equations (two for

each mass) would have to be solved. However, a more

direct method can be used based on the orthogonality of

the normal modes which will be described in the following
sections.

For the particular case of the symmetrical two degree-of-

freedom system illustrated inFigure3.50b, it can be shown

that the amplitude q'n and phase angle 8 n of the normal

coordinates are given by

First Mode

c_
3

20

l0

I Symmetric

1 _' 2 f_ HM.otion.About I

Second Made

a) Normal Mode Shape

1
0.1

I

1.0 I0 I00

Stiffness of Coupling Spring
a - Stiffness of Support Springs

b) Frequency _2 of Second Normal Mode Relative

to Frequency gl of First Mode

FIGURE 3.51 Mode Shapes and Natural Frequencies of

Symmetrical Two Degree.of-Freedom System

,
1 I

01 =tan- I-1 [Xl(0)+x2(0)]/[_l(0)+._2(0_ I

1¢[ x 2 . . 2 2

wherexi(0)and xi(0) is the initial displacement and velocity

of the ith mass. As an example, for the special case in

Figure 3.51, consider only an initial velocity (e.g. - due

to an impulse load) which is the same for each mass so that

Xl(0 ) = x2(O ) = 0 and _l(0) = _2(0) = _o" Then, from

Equation 3.186,

_I =×(0)/_I' el= °°

and

q2=0

Thus, for a symmetrical initial condition for this symmet-

rical system, only the first normal mode is excited. If the

initial velocity had been of equal magnitude but opposite

phase for each mass_ only the second normal mode would
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be excited. Both modes would be excited equally if an

initial velocity is imparted to only one of the masses. In

this case, if the modal amplitudes are ql = q2 = qo, the

time history of the free vibration of the undamped system

in Figure 3.51 would then be

xl(t)= So[Sin _lt+sln u2 t]

x2(t) = q-o [sin ult-sin u2 t]

which can also be expressed as

M2-"2 \xl(t) : 2 qo sin t cos _k_ t )

(3.187)

x2(t) = 2_-osin _u--_ t +2] cosr''2 - _1

Thus, while each mode represents a perfectly in or out of
phase motion of each mass, the combined motion of both

modes is such that the envelope of the vibration of one

mass is out of phase by 90 degrees with the other mass.

This envelope has a repetition rate governed by the dif-

ference frequency (_2 - Ul) which appears in the cosine

term in Equation 3.187. This results in the well known

pattern of vibration for such a system where the energy
appears to shift back and forth from one mass to the other.

This is illustrated in Figure 3°52 for the same system con-

sidered above where the coupling spring factor a is 0.4o

This phenomena of beats is frequently observed for vibra-

tion of large structural systems with two closely adjacent

modes. As shown in Figure 3.52, the peak displacement

of each mass is the result of the combined peak responses

in each of the two normal modes° When these are in-phase

for one mass, they are out-of-phase for the other, resulting
in a minimum response for the latter.

q2

FIGURE 3.52 Vibration Time History of Two Degree-of-Freedom

System Illustrating Oscillation of Energyfrom One
Mass to the Other Due to Changing Phase Relation-

ship Between the Two Modal Displacementsql
and q2

Thus_ the total kinetic and potential energy of the system

is momentarily concentrated in the motion of only one of

the masses. The energy will then shift back and forth be-

tween the two masses as indicated in Figure 3.52. If there

are no losses in the system, the total energy will remain
constant at all times.

3.3.2.4 Energy, Generalized Mass and Stiffness of

Two Degree-of-Freedom System

This consideration of the energy of the system can be ex-

tended to introduce the fundamental concept of

nality of normal modes. This is the most important property

of a normal mode for it is the key to separating the equa-

tions of motion for the system into a set of independent

single degree-of-freedom equations.

First, consider the maximum energy of the vibratlngsystem.

If damping is neglected, the instantaneous total energy

will be the sum of the kinetic energy T of motion of the

mass elements and the potential energy V stored in the dis-

placement of the spring elements° For the two degree-oE

freedom system in Figure 3.50a, the kinetic and potential
energy for the system will be

1 Xl 2 1 x22T =_-m I +-_m 2

l 1 +'_-k - Xl)2V =_k I x12 +_-k2 x22 (x 2
(3.188)

However, the displacements x I and x 2 and their corre-

sponding velocities can also be defined in terms of the
normal mode solution.

Consider, therefore, the total energy for only one of the

t'wo normal modes for this system. Using Equations 3.181

and 3o182 in Equation 3.188, the kinetic and potential

energy in the first normal mode at any instant will be

1 12T(Ul) =2-[ml ¢_I +m2 9212] [_l(t)] 2

V(Ul )= f[(kl+k)_112 + (k2+k)_212-2k _11 ¢P21] [ql (t)] 2

A similar expression can be developed for the instantaneous

kinetic and potential energy in the second normal mode.

It is logical, therefore, that a modal mass and stiffness

would be defined so that, for the nth mode, the modal

energies could be given by

T(%) = 7 Mn

1 [qn(t)]2V(_n) = _ Kn

(3.189)
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where

Mn

K n

= [mlCPl#+m2_2#] ,and

= /(kl+k)¢P|# + (k2+k)cP2#-2k_|n _2nl

are the effective modal mass and stiffness, respectively,
for the nth mode of the particular two degree of freedom
system shown in Figure 3.50a. These modal parameters are
called the GENERALIZED MASS, M n and the GENERAL-
IZED STIFFNESS K n. They represent a summation of the
actual mass and stiffness of the system, weighted by the

mode shape ¢Pln in such a way that they can be used to de-

fine the modal energy for each mode in terms of its normal
coordinates.

3.3.2.5 Generalized Mass and Stiffness for N Degree-

of-Freedom System

Consider, now, the general case of N mass elements, each

identified by the symbol mi, which are connected together
or to a fixed base by an array of springs as illustrated in

Figure 3.53a. Since only one coordinate x i is used to de-
fine the position of each mass, the kinetic energy of the
entire system of N masses can be written down immediately
as

N
1

T = _" _ mi _,2
i

where xl is the velocity of the ith mass.

k2

(
k1

xj

x i

k2_
• [kii

#1_" h

h_

kll = k 1 + k 2

k2i

=+1

k i •

kij = _ k 2

=+1

a) General N-Degree

of Freedom System

b) Stiffness Coefficients

for ith Mass

FIGURE 3.53 General Mode for N-Degree of Freedom System

and Illustration of Procedure Used to Determine

Stiffness Coefficients

For the more general system, the spring forces acting on
each massand the potential energy of the system are con-
veniently defined in terms of its stiffness coefficients.

Referring to Figure 3.53b the stiffness coefficient kij for

the ith mass is conveniently defined as the restraint force

that must be imposed on this mass if all except the jth mass
are held fixed and the latter is slowly displaced in the
positivedlrectlon by a unit distance. This concept is illus-

trated in Figure 3.53b for the two cases where i -- j and
i ?_j. It can be recognized from the figure that the "self"

stiffness coefficient kii will simply be the summation of all

the spring constants for the stiffness elements connected
directly to the ith mass. Providing the system is con-
strained to a fixed base and therefore has no free rigid

body modes at zero frequency, there will be N kil terms

for the N masses. These terms will always be positive if
the sign convention is chosen that the direction of positive
forces coincides with the direction of positive displace-
ments.

Each "cross" stiffness or stiffness coupling coefficient kij

(i _ j) will be numerically equal to the spring constant for
the one stiffness element which connects the ith and jth
mass elements. Providing all displacements are absolute
displacements, or are all relative to a common base, then
the stiffness coefficients are reciprocal so that the ith and

jth masses may be interchanged and klj - kji. Therefore,

for N masses, there can be as many as (N 2 - N)/2 inde-

pendent cross-stiffness or stiffness coupling coefficients

klj" (i _ j). If the system consists of lumped masses and
spr, ngs, then the number of independent cross-stiffness
terms will be equal to the number of springs which connect
the moving masses. However, if the stiffness elements
consist of weightless continuous beams, then the number of
independent cross-stlffness terms will tend to approach the

maximum (N 2 - N)/2, depending on the configuration.

Now, if all masses are allowed to move, then the total

spring force acting on the ith mass will be the summation

of each of the spring force components kij xj due to the
displacement of the jth mass or

N

T(Spring Forces on ith Mass) = - _ kij xj
J

Thus, the equation of motion for free vibration of the ith
mass becomes

N

mi xi + _..klj xj = 0
J

The potential energy for the N degree-of-freedom system
can be expressed in a form similar to that for a single de-
gree-of-freedom system where

V=__l kx 2 =2-1 (Spring Force) -x

For the more complex system, the potential energy is the
double summation

V= i_- _" kij xj x i ='_- _-_':. kij xi xji j
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Now the same process carried out earlier for the two de-

gree-of-freedom system is repeated. The general coordi-

nate x i in the energy expressions for the N degree of

freedom system is expanded into its normal coordinates

_in qn and the kinetic and potential energies for the nth

mode defined in the form given by Equation 3.189.

It is clear that the generalized mass and stiffness for the

nth mode can now be expressed in a general form by

N

Generalized
Mass Mn = _ ml _i# (3.190)

i=1

N N

Generalized _1 F1Stiffness Kn = kij _in _jn (3.191)

where

N = number of degrees of freedom

m i

k..

U

¢in,¢jn

= the ith mass element

= the stiffness coefficient relatlngspring forces

between the ith and jth mass

= mode shape for the ithand jth masses in the
nth mode.

It will be shown in a later section how these last two

equations can be expressed more conveniently, with matrix

notation, in a form which is suitable foranalyzing complex

systems, particularly with digital computers.

3.3.2.6 Dynamically and Statically Coupled Systems

The single summation for the generalized mass in Equation

3.190 must be replaced by a double summation for systems

where more than one coordinate is required to uniquely
describe the motion of each mass element. This more

general situation corresponds to systems which are called

dynamically (or mass) coupled systems. These are en-

countered, for example, in the analysis of rigid body

motion of constrained systems (Reference 3.2).

For instance, consider the combined translation and rota-

tion of the unsymmetrical rigid beam mounted on springs

which is illustrated in Figure 3.54a. For small displace-

merits, its motion can be defined in terms of the vertical

displacement x and rotation angle e about one end of the

beam. The equation of motion in the x coordinate will be

the sum of the translational forces acting on the mass or

m]4+m L 1 8+(k 1 +k2) x +k2LS=0

where L 1 is the distance from the origin of x to the center

of gravity of the beam and L is the total length of the

beam. Similarly, the equation of motion in the e coordi-

nate will be the summation of the rotational moments

acting about the origin at the end of the beam, or

m L1 k'+(mL12+lo) 8+(k 2x+k 2LS) L=O

where I o is the mass moment of inertia of the beam about

its center of gravity and (mL12 + Io) is the mass moment of
inertia about the end.

L :I

IF-r - 1

77,

r_
e

k 1

2

L 1 v

a) Dynamically and Statically Coupled System

I 7I

k I

x c

f
2

b) Statically Coupled Only (Dynamic
Coupling Eliminated by Shlftlng
Coordinates to Center of Mass)

FIGURE 3.54 Constrained Rigid Body System Which

Exhibit Dynamic (Inertia) Coupling and

Static (Stiffness) Coupling

The kinetic energy of the system can be given by the

kinetic energy of translation of the center of mass and the

kinetic energy of rotation about the center of mass. Using

the coordinate system given in Figure 3.54a, this is

1 I 82
T =--_-m (_ + L I E))2 + -_- I o

or

1 _2 + 1 (m + Io) 82T=2 -m + m L1 "¢"8 2 L12

Whenever cross product terms appear in the kinetic energy

equation, as is the case here, the system is said to be

dynamically coupled. The inertia coupling also appears

as a common factor m L 1 in both equations of motion.

The effect of this coupling is that inertial forces due to

acceleration in the x coordinate also induce moments in

the 8 coordinate and visa versa. This coupling effect is

more readily visualized when the equations of motion are

expressed in a matrix form.
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.ip.

[ m]/i/lkk /mL 1 mL12+lo + k2 L k2L2 j

Inertia Matrix Stiffness Matrix

=0

The inertia coupling term m L 1 appears as an off-diagonal

term mij = mji = m ['1 in the first square matrix which is

called the inertia matrix [mli ] .

The coupling effect of the off-diagonal "cross-stlffness"

terms kij = kji = k2L is also apparent in the second square

matrix called the stiffness matrix [k i j]. This characterizes

all the type of multi-degree of freedom systems considered

earlier which are called statically coupled systems. As

has been shown, these systems have stiffness coupling

terms in their equations of motion and always exhibit

cross-product terms in the expressions for potentlal energy.

Returning now to the example, there will be two normal

modes for the system corresponding to the two degrees of

freedom - translation and rotation. Thus, the coordinates

x and e may be expressed in terms of the normal coordi-

nates qn by

2

x -- _ q_xn qn

n

2
1

8 =_ _ ¢8n qn
n

The expression for the kinetic energy of the system in the
nth normal mode can then be written as

T(w n) = -_ m Cxn + 2 m L I ¢xn-_--+ (m L12 + Io) L2 ]

The generalized mass for this mode is given by the term in

brackets in this equation. Thus_ for dynamically coupled

systems, the generalized mass for the nth mode is expressed

in the general form by the double summation

N N

Mn = _"_"_ mij _Pin _jn (3.192)

i j

where the inertia elements roll represent the actual masses

or moments of inertia of the system and the elements mlj
(i _ j) represent the inertia coupling terms.

However, this complication can be avoided by choosing a

coordinate system such that the displacement of each mass

is specified by the motion of its center of gravity relative

to its equilibrium position. For problems involving rotation

of rigid bodies, the same result is achieved if the coordi-

nate system is selected to coincide with the principal axes

of rotation. For systems which are not constrained to a

fixed base, the equilibrium position is equivalent to the

line (or surface) through the node points (or lines) of the

rigid body (zero frequency) modes of vibration.

If this approach is used for the case of the rigid beam con-

sidered here, the origin for the coordinates x and e is

shifted to the center of gravity as shown in Figure 3.54b.

Summing the forces and moments about this point, the

equations of motion for free vibration in the new coordi-

nates x c and B become, in matrix form

I o Lk2k2-klkl klkl2+k2k#

where L2 is the difference between L and L 1 .

The off-dlagonal terms on the inertia matrix have now been

eliminated, so that the inertia matrix is diaqonalized.

Thus, the dynamic coupling is el imlnated simply by choosing

the coordinate system to coincide with the center of mass.

Static coupling, due to the inherent geometry of the sys-

tem, still remains as indicated by the off-diagonal terms in

the stiffness matrix.

However, this two degree of freedom system can be stati-

cally decoupled if the supporting springs k 1 and k 2 are

chosen such that

k 2 L 1

k 1 L 2

The off-diagonal static coupling terms will then drop out

leaving two independent or uncoupled equations of motion

in the coordinates x c and e. Thus, if a vertical force is

applied to the beam of the center of gravity, under this

condition, the beam will undergo a pure translation motion

without rotation. Similarly, ira moment is applied to the

beam about its center of mass, only rotary motion without

translation is induced. This illustrates the essential design

objective for vibration isolation systems; namely, that the

supporting springs be so located and sized as to eliminate

both dynamic and static coupling of the vibration modes

of the isolated rigid body. In this way, vibration of the

bodyin one coordinate or mode does not excite any vibra-

tion in the other mode.

However, for flexible vibrating systems, generally only

dynamic coupling can be eliminated by coordinate selec-

tion. Static or stiffness coupling remains as an inherent

part of the geometry of the system. Thus, a method of co-

ordinate decoupllng is sought so that the actual motion of

the structure may be described in terms of a set of mathe-

matically decoupled equations of motion. This is the es-

sential objective of the normal mode approach and is based

on the concept of orthogonality of the normal modes.
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3.3.2.7 Orthogonality of Normal Modes

To demonstrate the principle of orthogonality of normal

modes, consider the total instantaneous energy of the sys-
tem in Figure 3.50a as defined by the motion of both nor-
mal modes. The expressions for the latter (Equation 3.183)
are inserted into the equations for the total kinetic and
potential energy given by Equation 3.188. The resulting
expression consists of terms involving squares of the mode

shapes (i .e. -- _112) and terms involving cross-products of

mode shapes for two different modes (i .e. -- _11 " ¢P12)"
That part of the total instantaneous energy involving the
squared terms can be expressed in terms of the generalized
mass and stiffness parameters as

1 2 )] _i 2T+VJsquare d =_[M lu 1 cos2(ult+el)+K 1 sln2(_lt+e 1

terms

+ 1F2e# cos2 (u2t+81) + K2 sin2 (u2t +82)]_2

That part of the total instantaneous energy involving the
cross product terms can be expressed in the general form
for the two modes as

terms i=1

+ i= 1 "= kljCPilCj2 sin(ult+el)sln(u2t+82 )

Now the total energy of the freely vibrating undamped
system must actually be constant at all times since no ex-
ternal forces act on it and there are no losses. This can
only be true under the following conditions. (1)For the
first energy equation, the sum of the squared cosine and
sine terms will reduce to 1 for

M I _i 2 = K I

and

M 2 g# = K 2

(2) The bracketed terms in the second energy equation must
be zero since there is no other way for it to be constant

for all time. Extending these results to any two modes, n
and m, of an N degree-of-freedom system, the basic
orthogonality principle is obtained which can be stated as

N l0 n7 m_-'_" mi tin _im =

i=1 M n n=m

(3.193)

and

N N t0 n_'m

i=_1 j_l kij ¢in_Pjm =
= / K n n=m

(3.194)

In addition, it is also evident that for any normal mode,
the natural frequency u n is related to the generalized mass
M n and generalized stiffness K n by

u n = _//Kn/M n (3.195)

so that K n can be more conveniently defined in terms of

g n and M n o

The kinetic and potential energies of the system are de-
fined by the sum of the energies in each mode or

N N
1 1

T =T _E_ Mn u# q#(t)=--_- _ M n _#(t) (3,196)
n=1 n=l

N N

1 1 n_ I u# M n q#(t) (3.197)V= 7 _ Knq#(t)=_"
n='l =

The fact that the cross product terms in the normal mode
energy equation are zero may be interpreted physically as
evidence that no work is done by one normal mode on
another mode. This is not necessarily true when damping
forces are considered. However, it will be shown later

how practical results are obtained in vibration analysis by
choosing a particularform ofdamplng which eliminates this
coupling effect.

As an example of the orthogonallty principle, for the sym-
metrical two degree of freedom shown in Figure 3.51,

where m1 = m2 = m, it was found that _11 = ¢12 = _21 = 1,

and ¢22 =-1. Inserting these values in Equation 3.193,
gives

Forn=m=l,

For n = m = 2,

Forn=l, m=2,

M 1 =m • 1 • 1 +m • 1 • 1 = 2m

M 2 =m o 1 • 1 +m • (-1)(-I) = 2m

M12=m • 1 • 1 +m • 1 • (-1) = 0

The natural frequencies Un, mode shapes ¢Pin' and general-
ized mass M n for each mode of a multi-degree of freedom

system have been defined. All that remains to complete
the normal mode solution is to solve for the time variation

in the normal coordinate qn(t).

3.3.2.8 Application of Lagrange's Equation

The orthogonality property of the normal modes can now
be used to separate the coupled equations of motion for an

N degree-of-freedom system. However, the uncoupled
equations of motion of the normal modes can be con-
veniently derived formally with the use of Lagrange's
equation. This basic expression relates the energy of
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a vibrating system to the dynamic forces acting in the

system. For an undamped system without any externally
applied forces, kagrange's equation has the form

di [aa___n]- 8r + a__.v = 0dt aqn aqn
(3.198)

where

T = total instantaneous kinetic energy of thesystem

V = total instantaneous potential energy of thesystem

qn = normal coordinate for the nth normal mode.

This expression provides a simple and powerful method for
developing the equations of motion of complex dynamic
systems. Another method, called the Galerkin method,
can also be used to achieve the same result (Reference
3.1, Chapter 48). One simplification can be made im-
mediately. For most structural vibration problems, the
kinetic energy is not a function of displacement sothat the

second term 8T/aqn is usually zero.

Inserting the expressions for the kinetic and potential
energy, given by Equations 3.196 and 3.197, in Lagrange's
equation, the result is

_- 8_n l_Mn_l_(t a (1_i_ K q#(t = 0
n aqnt2 n/.,_ n

or

M n ;:l'n(t) + Kn qn(t) = 0 (3.199a)

where Mn, Kn =generalized mass andstiffness of nth mode.

Thus, a single independent equation of motion is obtained

for the normal coordinate qn(t) of each mode which corre-
sponds to an expression for the free vibration of a single
degree of freedom system. It is more conveniently ex-
pressed as

_'n(t) + ,.,2 qn(t) = 0 (3.199b)

where _n Kn/Mn

3.3.2.9 Free Vibration Response of N Degree-of-
Freedom System

The free vibration of the ith mass of an undamped lumped
parameter system can now be defined in terms of its normal
modes by

N

xi(t ) : _ tin qn (t)
n

(3,2oo)

where each qn(t) is a solution to Equation 3o19% for each

normal mode frequency Un and will have the general form

qno

qn (t)=qnoc°sunt+-sinu t (3.201)
(gn n

The constants qno and _lno represent the initial conditions
for each mode just as for the single degree-of-freedom sys-
tem (see Equation 3.8, page 3.3). They will be determined

bythe initial displacement xi(0)and velocity ki(0)for each
mass of the system which can also be expressed in terms of
the normal modes by

N N

xi(O) :_'-_in qn(t:O) :_tln qno
n n

(3.202)

N N

7<i(0) = _":_tin _In(t:O) :_-_@in _lno
n n

(3 °203)

If both sides of these expressions are multiplied by mi tim

and summed over all the mi masses, the orthogonality

property can be invoked to solve for qno and _lno. The
result, for Equation 3.202, is

N N N

_-'_xi(O) mI tim = _-'_qno_-"_mi timtln
i n i

= 1 qn° Mn ' m=n
0 , m_n

where all the terms on the right side are zero except the
one for n=m. A similar operation is carried out for Equa-
tion 3.203 so that the desired constants can be given by

N tqno = M--n'-_- xi(0) ml tin
i

and (3.204)

,N tClno = M n _E_ xl (0) ml tin

i

Combining the above relationships, the free vibration re-
sponse of the N degree-of-freedom system, due to an initial

displacement xi(O ) and velocity ki(O) for each mass mi,
can be expressed in the form

where

and

N

xi(t) : _ tin _n sln (rant + en)
n

i= Hno/ n

0n:tan-'[ no I

(3.205)

(3.206)
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Normal Mode Shapes (Equation 3.180)

__- 1 = [3k+k-(0.665)2(-_-)°(Sm)]/k =
I .79

[ }/= 3k + k - (1.165) 2 • (5m) k = -2.79

Therefore, setting x2(g 1) = x2(_ 2) = 1, the mode shapes are

¢11 = 0.559 ¢12 = -0.358

¢21 = 1.0 ¢22 = 1.0

(Note that the choice of sign for ¢22 is arbitrary since the

true value will depend on the initial conditions.)

Generallzed Mass (Equation 3.190)

M I = (5m) (0.559) 2 + (m) (I) = 2.56 m

M 2 = (5m) (-0.358) 2 + (m) (I) = 1.64 m

Initial Conditions

If positive deflections of the system in Figure 3.55a are
upward, then by a static analyslsr

x 1(0) = Ps/kl = Ps/3k

x2(O) = x I(0) + Ps/I¢ = 4 Ps/3k

and, from Equation 3.204, the constants qno are

l( 1qlo 2.56m _-)(5m)(0.559)+ (m)(1)-E-

P
S

= 0.885 k

= 1 (5m) (-0.358) + (m) (1) _-"q20 I .64 m

Ps

=0.45 k

Normal Coordinates (Equation 3.206)

Since

and

ki(0) = 0, qno = 0r

_'I = ql0' _2 = q20

81 = e2 = tan -I ao = _/2

Modal Damping

Assume

81 = 82 = 0.1

Therefore,

_/_- _ 1,0,8 2
n

ed "" fan -1 8 = 5.7 ° • (negligible)

Displacement Response (Equation 3.208)

If the response is normalized by the factor Ps/k for each

mass, then, from Equation 3.208, with sin (_dn t + en)

-_ sin (_n t + _/2) = cos Wnt, the result for xl(t ) is

xl(t) (0.559) (0.885) e-0°1 {alt
ps_ = cas _ 1t

+ (-0.358) (0.45) e-0"1 _2t cos{o2t

Expressed in matrix form, xl(t ) and x2(t ) may be given by

X (t)/_-

X2 (t)/_--Ls

0.495

0.885

e-0.1 gl t cos_lt

-0"161 e-0"l(_2tcos_2t (3.209)
0.45 ]

Acceleration Response

Differentiating the displacement response twice, and in-

serting the values for g 1 and _2' the acceleration response,

normalized by the factor Ps/m, is

e-0.1 _1 t
cosglt

-0"22 I

0.61 ]

e "0"l{a2tcos_2t (3.210)
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Note that for any homogeneous system of mass elements

(m i = constant), if the iniHal conditions are uniform over

all mass elements (i .e., xi(0)= constant), then the system

will only vibrate in the symmetric normal modes since for

antisymmetrlc modes, where the mode shape (pin is equally

positive and negative, the summation _E_xi(0) m i (Pin will

be zero.

Addition of Damping Effects

Damping may be included, to a first approximation, by

adding a viscous damping term to the equation of motion

for each mode. Thus, Equation 3.199b becomes

_1"n+28 n_ncln (t) + 2qn(t ) = 0

that a static upward force Ps is applied up to the time

t=0 and is then suddenly removed. The resulting response

will correspond to the transient motion for an initial dis-

placement of each mass. For example, such a model could

approximate the motion of a launch pad upon release of

the hold down arms assuming initial transients due to thrust

buildup had died out. Based on the parameters shown in

the figure, the following results are obtained by using the

equations derived earlier for the general two degree of

freedom model in Figure 3.49.

where

Mass and Spring Parameters

m 1 = 5m k 1 = 3k

(3.207) m 2 = m k 2 = 0

8 n = critical damping ratio for the nth mode

= 1/Q n where Qn = amplification factor for the
nth mode.

The general solution for free vibration of the nth normal

mode coordinate qn(t) then becomes (compare with Equa-

tion 3.6, page 3-3)

e-Sn_nt [ ' +qno_n }qn (t) - /T-ZE' qno cos ({Odnt- 8d) sin gdn t

where

_dn = _)n _ = damped normal mode frequency

8d = tan-1 8n/_/__ 8n2

The equations forthe constants qno and _ln ° are not changed

by damping. Since the phase shift ed due to damping can

generally be neglected, the damped transient displacement

response of the ith mass of the multl-degree of freedom

system can be expressed to a close approximation by

(3.208)
n_ e-Sn gnt q'n sin en)

x|(t) = ¢in _ (_dn t +

where En and e n are given by Equations 3.206 and 3.204,

and 8n is estimated for each natural mode. This result can

be differentiated in the usual manner to obtain the velocity

and acceleration response.

Example of Damped Transient Response of Two Deqree-of-

Freedom System

To illustrate the concepts developed to this point, consider

the transient response of the simple two degree-of-freedom

system shown in the insert in Figure 3.55a. It is assumed

k =k

Undamped Natural Frequencies (Equation 3.179)

or

9 k :kl 2 12 2
_n = i'Em -3-

gl = 0.665 _ radlans/sec

g2 = 1.165 _ radians/sec

1.5

1.0

_5 0.5

-a

g 0
z
i

-°.s.
-1.0

_ps__ 0,t > 0 _ r

_ -ix2 Dampin_ Ratios
k =k iVl = 8 2 = 0.I

_ L2qjx_ /

/

"-.Cx}(t)

a) Displacement Response _2 = 1 165 _ I
"z .... • ..j

} 2 3 4 5 6 7

_)lt - First Natural Frequency x Time

1.0 , , , , ,

:_2(t)"_ 0.5

? .
a
E

Z -0.
I

_- _ -1.0 VI/ , bll AccelerotlonResp, I .... I ,

0 ] 2 3 4 5 6

(alt - First Natural Frequency x Time

FIGURE 3.55 Example of Transient Response of Damped Two Degree-

of-Freedom System with Initial Displacement Due to

Static Force Ps Which is Suddenly Released at Time 0
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These expressions for the displacement and acceleration

response are plotted in Figure 3.55a and 3.55b, respec-

tively, on a time scale normalized by the frequency u 1 of

the first normal mode. The plots illustrate one feature

which is characteHstlc of the response of multi-degree-of-

freedom systems: the displacement response is dominated

by the response in the lowest natural mode frequency while

the acceleration response is influenced equally or more

strongly by the higher mode. However, for a transient re-

sponse_ the latter will usually decay more rapidly due to

damplng. If the phase shift due to damping had been in-

cluded in these expressions, the arguments for each of the

cosine terms would have been replaced by (Udn t - ed) for

the displacement response and (gdn t + ed)for the accelera-

tan -1tion
response where e d = 8/¢1 - 82 . This minor

correction can usually be neglected.

This example illustrates how the normal mode approach can

be usedto determine the freevlbration response of a multi-

degree-of-freedom system by adding up the single degree

of freedom response for each normal mode. The same

principle will apply to the forced response of complex

systems.

3.3.3 FORCED VIBRATION RESPONSE OF

LUMPED PARAMETER SYSTEMS

Equations of motions for the forced response of lumped

parameter muhi-degree-of-freedom systems can be readily

developed in terms of the normal coordinates by applying

a more general form of Lagrange'sequationo This can be
expressed as

d aT " aT + 8._V_V+ Fn
_-[8-_n]--_qn aq n _n = (3.211)

where

T, V = total instantaneous kinetic and potential en-

ergy, respectively

_dn = Generalized Damping Force for nth mode

Fn = Generalized External Force for nth mode.

The two new terms C-_n , Fn define the effective value of

the damplng'forces and externally applied driving forces

acting on the nth normal mode. They represent the non-

conservative forces which add or subtract energy from the

system. They can be determined by the amount of work

done on the system by the external forces acting on a

single normal mode and the amount of work clone by the

damping forces acting on a single mode.

3o3.3.1 Generalized Force and Generalized Dampin_l

If the total external force PI acting on the ith mass element

of a multl-degree-of-freedom system acts over an arbltrari ly

small displacement A xi in the direction of this force, the

total work clone is equal to

AWl : Pi Axi

Now Axl can alsobe expressed in terms of its normal modes

by the summation over all modes as

N

Axi = _ _in Aqn
n

where (pin is the relative deformation at this point in the

nth mode and Aqn is a small change in the normal coordi-

nate of the nth mode. Then the total work done on the ith

mass can also be expressed as

N

AWl = _ Pi (Pin Aqn
n

The rate of change of this work with the change Aqn in
the nth normal coordinate is therefore the effective force

on this point for the nth mode and is simply

AW i

--= Pi (pin
Aq n

(3.212)

If this same process is repeated for each of the mass ele-

ments acted on by an external force, the total effective

external force or generalized force Fn for the nth mode

will be the summation

N

Fn = _E_ Pi (Pin

i

(3.213)

For dynamic loads, the actual loading Pi can vary with

position over the structure as well as with time. The cor-

responding generalized force will also vary with time in

the same fashion but with a different amplitude for each

mode. For static loads, the actual loading can only vary

with position and the corresponding generalized force

varies only with mode number.

General ized Damping

A slightly different approach is used to define the general-

ized damping force _dn(References 3.1, 3.34 and 3.36).

If the damping force acting on the ith mass element is fdi'

then, by analogy with Equation 3.213, the generalized

damping force, which is a source of energy loss, will be

N

_n = -_ fdi (pin

i

(3.214)

If the viscous damping coefficient relating the damping

force on the ith mass to the velocity of the jth mass is

identified by the symbol clj, then the total viscous damp-

ing force fdi acting on this mass will be the summation

N

fdi = - Cil _1 - ci2 _2 - "'" - c_ _j = - _"_clj _j

J

In this case, xj is the velocityof thejth mass and clj is the

force on the ith mass due to a unit velocity of the jth mass

only', with all other masses held fixed.
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Inorderto maintainthefeatureoforthogonalltyof the
normalmodessothattheequationsofmotioncanbede-
coupled,it isnecessarytorestrictthevalueofthedamp-
ingcoefficientc.. to one,oralinearsummation,ofthe
followingthreeforJms:

UNIFORMVISCOUSDAMPING c..=2Gk..ij rj
_g

UNIFORMSTRUCTURALDAMPINGcij -_ kij
UNIFORMMASSDAMPING c_-.=Bm]

ij

(3.215)

where G_ g, and B are damping parameters which are

constant for the entire system. In other words, the damp-

ing coefficient clj is restricted to being directly propor-

tional to the corresponding stiffness coefficient klj or

proportional to the mass m i to which it is connected. Thus,

for Uniform Viscous Damping, the damping force on the

ith mass would be

N

fdl = -2 G _--_k_j _j

J

Now the velocity Aj may be expressed as the sum of the

velocities *jm dlm in all the normal modes, including the

nth mode, by

N

xj = _*jm Clm
m

Combining these two expressions with Equation 3.214, the

generalized damping force, for uniform viscous damping
in the nth mode, becomes

_ddn = 2G m_ ._ klj*in*jm qm
J

However, by orthogonallty (see Equation 3.194), the term

in brackets is equal to zero except for n = m when it is

equal to the generalized stiffness K n for the nth mode.

Thus, only the nth term is left in the summation over m so

that the generalized damping force is given by

_dn = 2 G K n Cln = 2 _2 G M n Cln (3.216)

Similar expressions can be developed for the other two

forms of uniform damping in terms of K n or M n. However,

there is yet another and more flexlble choice fora general-

ized damping force for each normal mode. It may simply

be specified as the product

_dn = Cn Cln (3.217)

where C n is a generalized damping constant for the nth

mode. This may also be given in the form

_n Mn

C n = 2 8n,.,n Mn - Qn (3.218)

where 8 n or Qn may be estimated for each mode. This

method of specifying damping is especially practical for

analyzing the sonic response of large structural systems.

In this case, damping is related, in a complex manner, to

material properties and configuration details. Accurate

calculation of the damping parameters for each mode be-

comes extremely difficult so that reliance is often placed

on engineering data and experience to estimate an average

Qn for each of the damped modes.

For lumped parameter systems w_th discrete damping ele-

ments c.. which are known and must be accounted for, an
JJ

approximate generalized damping constant Cn for the nth

mode may be computed (References 3.34 and 3.36). The

damping energy lost by the system is defined by the

Rayleigh diss_patlon function D which is I/2 the rate of

energy dissipation of the system. It is given by

N N
1

i j
(3.219)

where clj is the damping coefficient and xl, xj are the

velocities of the ith and jth masses.

The generalized damping force for the nth mode can then

be defined in terms of this dissipation function as

8D

_'_dn - a din (3.220)

Now, the coordinates _i and ,kj are expanded in terms of

normal coordinates which are computed assuming no damp-

ing. This assumes that damping does not materlallychange

the normal mode shapes and natural frequencies. When

these are inserted in Equation 3.219 and the result used in

Equation 3o220, the resulting expression for the general-

ized damping force for the nth mode is

_dn = y _. c]] *in *jm qm
J

Since each of the normal coordinates Clm is involved in the

first summation over m, each equation of motion for the

nth normal mode would be coupled to the equations for all

other modes and the advantage of the normal mode ap-

proach would be lost. The common recourse, then, is to

assume that the cross-mode coupling terms are negligible

so that only the nth term in the summation over m is sig-

nificant. This is equivalent to assuming that orthogonallty

also holds for the damping coefficients so that the damping

force for the nth mode is given approxlmatelyby the equa-
tions

_"dn = Cn qn

Generalized N N

Damping Constant Cn = _ _ c_j,_n,jn (3.221)

j

Although accurate methods are available for computing

the true normal modes, natural frequencies, and general-

ized parameters for damped multl-degree-of-freedom sys-

tems, they are very laborious and do not ord_narly provide
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Case(3) PropagatingDynamicLoading
Pj(t)=Pj• f(t-'rl)

Thisisthemoregeneralformof Case2wherethetime
variationof loadat theithmassisdelayedbyatime"ri .
Thiswill coverthecaseofnonuniform structural loading

by blast waves or random acoustic noise from a rocket

engine° For the former, the quantltyf(t-'ri)will be the

deterministic time function which defines the pressure time

history for the ith mass element. For propagating random

acoustic noise, f(t- "rl) will be a random variable. In

either case, the delaytlme -r i will be equal to a separation

distance of the ith element, from a reference position,

divided by an effective propagation velocity of the pres-

sure wave. This type of loading is normally applied to

distributed systems such as beams or plates.

Generalized Force and Joint Acceptance

The generalized force for the nth normal mode for any

deterministic external loading of a lumped parameter sys-

tem can be conveniently expressed as the product of three
terms.

Fn(t) = Po " Jn " f(t) (3.223)

where

Po

N

= _ Pj - the maximum amplitude of the load on all
j the elements of the systems.

N

PI _in
i

Jn- p JOINT ACCEPTANCE (also called
o mode participation factor) - the dl-

minesionless ratio of the amplitude of

the generalizedforce forthe nth mode

to the maximum amplitude of the total
load

(3.224)

_in = mode shape at ith element for nth mode

f(t) = dimensionless or relative time variation of load.

The term joint acceptance is adopted here in lleu of the

term mode participation factor in order to maintain a con-

sistent concept for this very useful parameter for any type

of loading. The term was originallyapplled in the analysis

of structural response to random acoustic loads (Reference

3.40). For random loads, itwill be shown that joint ac-

ceptance squared is the ratio of the power spectral density

of the generalized force to the power spectral density of
the total load.

For each of the first two types of loading defined earlier

(Case I and 2), the peak amplitude of the generalized

force Fn = Po Jn is independent of time and the joint

acceptance Jn is only a function of mode number. With a

propagating random load (Case 3), such as an acoustic

wave of random noise, joint acceptance becomes very

useful for relating the space-tlme variation of loads on the

system. In this case, the joint acceptance will be shown

to be a function of mode number and frequency of the

acoustic wave for a given effective wave velocity. For

propagating deterministic loads, such as blast waves, whose

time history can be defined exactly, joint acceptance is

not a useful parameter and the generalized force is simply

specified as a tlme-vary generalized load. These concepts

will be illustrated later by examples.

Equivalent Loads for Foundation Motion

The normal mode approach can be usefully applied to the

analysis of multiple degree of freedom systems which are

attached to a moving foundation. The basic approach is

to define the motion of the flexible system, relative to the

motion of its foundation, in terms of the normal modes of

the Fixed base system and add the motion of the base to

define the total absolute motion. Then the acceleration

of the foundation becomes, in effect, an inertial load on

each mass of the moving system. This may be illustrated

byaslmpleexample. Referring to Figure 3.56, the equa-

tions of motion of the three masses consisting of the foun-

dation mo and two lumped masses m I and m 2 may be

determined from the free-body diagram in terms of the

relative deflections el and _2 and the base acceleration

b'. The same procedure given in Section 3.3.2.6 is used

to define the stiffness coefficients except that each mass

is fixed relative to the foundation when computing the

spring forces. The resulting equations are:

- kl el =- m o'u+PT(t) )

ml _1 +(kl +k2) el - k2 e2 =- ml U I (3.225)
m2 _2- k2 Cl +k2 e2 =- m2b

The first equation relates the driving force P(t) on the

foundation to its acceleration U and the net spring force

- k 1 e 1, acting on the foundation, due to relative defor-

mation of the system. This equation is not required to

define the relative motion of the system since an arbitrary

foundation acceleration u or displacement u will be as-

sumed. This in turn will define the relative motion el,

which can then be used in the first equation to define the

dependent driving force PT(t).

k2

_2

k

I u

PT(t)

m2C)

t m2(U + E2)

I k2(c2_ el )

ml0
ml (b+c 1)

I k! e1

_ol-_---I

moU

PT(t)

FIGURE 3.56 Dynamic Model and Free Body Diagram for
Two Degree-of-Freedom System Attached to

Moving Foundation with Finite Mass mo.
The deflections eI and e2 correspond to the
relative dynamic displacements of the masses
mI and m2 with respect to the moving
foundation.
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significant improvements in accuracy (Reference 3.1,

Chapter 28; References 3.34 and 3.36).

The four forms for the generalized damping force outlined

above are summarized in Table 3.3. The principal differ-

ence in these various models for the damping force is the

variation in Qn with frequency. Experience indicates that

Qn is roughly independent of frequency so that uniform

structural damping is often selected as a suitable model.

However, the same result is achieved by using the general-

ized model and specifying damping in terms of a constant

Qn instead of the generalized damping factor C n. The

latter approach will ordinarily be used in this manual. The

method of calculating a generalized damping constant C n

will also be illustrated later in an example.

It is important to recognize that the various mathematical

forms for damping outlined in Table 3.3 have been devel-

oped as convenient models for engineering analysis of

damped complex structure. The analytical description of

the various types of damping which actually occur in

nature is more complex.

TABLE 3.3

SUMMARY OF VARIOUS FORMS OF UNIFORM

DAMPING FOR MULTI-DEGREE-OF-FREEDOM

SYSTEMS WHICH RETAIN THE ORTHOGONALITY

PROPERTY FOR NORMAL MODES

Type of

Uniform

Damping

Generalized

! Viscous

Structural

Moss

Damping

Coefficient

Generalized Values

Damping Damping

Constant (2) Force - c_ n

Cn qn

2 G Kn qn

g
w- Kn qn

B M n qn

clj Cn

2 Gkij 2 G K n

--gk --gK,
{a I]

B m i B M n

Qn = 1/2 8 r

w n Mn, C n

]/2 Gu n

gu n

gn B

(T) G, g, B - Uniform damp;ngconstants faro given system.

(2) Mn, Kn, C n - Generalized mass, stiffnessonddamplng

constant for the nth no, real mode.

Structural damping is also frequently identified as hyster-

etlc damping and the damping and stiffness terms are com-

bined into the complex quantity kij + j g kij. The

generalized damping andstlffness forces in the equation of

motion for each mode are then given by

K n [l+j g] qn(t)

This method of specifying damping and stiffness is strictly

applicable only when qn(t) can be defined in terms of

sinusoidal motion (Reference 3.36).

3.3.3.2 General Form of Solutions for Various Types of
Excitation

The basic tools fordefining the forced response of a damped

multi-degree of freedom system in terms of its normal modes

are now available. Starting with the equation for free

vibration of the undamped system (Equation 3.199a), and

adding the terms for the generalized damping force C n 6in(t),

and the generalized drlvlng force Fn(t), the forced response

of the damped system in its nth normal coordinate qn(t) is

Mn _n(t) + C n qn(t) + K n qn(t) = Fn(t )

or, dividing through by Mn,

h'n(t) + 2 8n gn Cln(t) +'"# qn (t) =

where

Fn(t) w# Fn(t)

M n K n

(3.222)

8 n = critical damping ratio for nth normal mode =

1/2 Qn

= undamped natural frequency of nth normal

mode

M n = generalized mass given by Equation 3.193

Fn(t) = generalized force given by Equation 3.213

This is identical, in form, to the equation of motion for

forced excitation of a single degree of freedom given at

the beginning of this chapter(see Equation 3.6, page 3-3).

The subscripts i and j have been used freely throughout the

preceding sections with reference to any two mass elements

of the lumped parameter system. It will be convenient

from now on in dealing with forced response of the system

to adopt the following convention on subscripts to identify

response and excitation locations:

i - refers to general location of any mass ele-

ment of system, and specifically identifies a

response point.

j or k - refers to general location ofoneor moremass

elements at which excitation is applied.

Definition of Loading for Multi- Degree-of-Freedom
System

The forces Pi(t) applied tothe ith mass (or inertia)elements

of an N degree of freedom lumped parameter system may
have several forms.

Case (1) Static Loading Pj(t)= Psi

The static load response can be determined by the normal

mode approach to provide a convenient reference for the

dynamic response magnification. For uniform static load-

ing, Psj is a constant at all points.

Case (2) In-Phase Dynamic Loading Pj (t) = Pj • f(t)

This is the most common type of loading considered where

all loads vary in phase with the same time function f(t).

The amplitude of the load at each point Pi may be varied

arbitrarily. For uniform dynamic loading, the amplitude

Pi is a constant at all points.
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Thus, considering only the last two equations, the effec-

tive excitation on each mass, -m i U, is first set equal to

zero. The system is then fixed with relative deflections

_i(t) becoming absolute deflections. The free vibration of

the masses m 1 and m 2 can then be defined by their normal
modes, or

N

_i (t) = _" q_in qn (t)

n

where the mode shapes Pin' natural frequencies Un, and

generalized masses M n for each mode will correspond to

these values obtained for the fixed base system.

Now if the foundatlon is allowed to move, the generalized

force for each mode will consist of the inertial force due

to a uniform foundation acceleration U(t) in the same

direction as the relative motions _l(t) and _2(t). This may

be expressed as for any other uniform dynamic load by

Fn(t) = - U(t) _ mj Pin

J

or, in the convenient form given earlier,

Fn(t) = - Po Jn f(t)

where

(3.226)

Po

J
= LJmax _-'_mi - themaxlmum force necessary to ac-

celerate the total massof the flexi-

ble system without its base to the

peak acceleration Uma x

(3.227)

._mj Pin
J

Jn = _ ml

J

the joint acceptance for the nth

mode forunlform foundation motion

(3.228)

f(t) = the dimensionless time variation of the foundation

acceleration.

Thus_ the relative motion of the system can be determined

by applying this generalized force to the equations of

motion in normal coordinates qn(t) for the fixed base sys-

tem. In the example illustrated in Figure 3.56, the first

spring k 1, and mass m 1 may be considered as representing

those spring and mass elements of a general system which

are connected directly to the moving foundation mass mo,

Concentrated Load and Superposltlon of Responses

When only one concentrated load Pj • f(t) drives a multiple

degree-of-freedom system at only one mass elemenb say

the jth mass, then the generalized force for the nth mode

is simply

Fn(t) = Pj ej n " f(t) (3.229)

If several such concentrated loads are applied indepen-

dently, the net response of the system is found by summing

the response to each applied load independently. Since

the dynamic system and its equations of motion are assumed

to be linear, the principle of superpositlon applles in all

cases. That is, the total response of the ith mass xi(t) may"

be determined by analyzing the response of this mass to the

load on the jth mass element and then summing the re-

sponses xli(t ) for each such load over all the masses. This

procedure is seldom necessary, however, since it will

normally be possible to define one generalized force for

each mode which accounts for all applied loads in the

mode.

Summation of Responses in All Normal Modes

The response of the nth normal mode coordinate qn(t) will

be the solution to its equation of motion (Equatlon 3.222).

For deterministic loads, the time history of the response of
the ith mass will then be the summation over all modes

given by

N

xi(t ) = _ £bln qn (t)

n

(3.230)

For random loads, the response at any point is specified by

the summation of the power spectral density of the normal

coordinate qn(t) foreach mode instead of the instantaneous

values as specified by the preceding equation. Thus, the

power spectral density W x (;,f) of the response at x i is the
summation

N

Wx(i'f') = _¢i# "W(qn'f)
n

(3.231)

These last two equations define the basic method for sum-

ming up the normal mode responses at a given point in a

lumped parameter system due to any type of loading. They

are utilized frequently in the remal nder of this chapter and

in Chapters 8 and 9. The final step in solving for the re-

sponse of the lumped parameter system is to obtain the

solution for the normal coordinate qn(t) or its power spec-

tral density W(qn, f). The basic methods are summarized
in the following sections.

3.3o3.3 Response of Lumped Parameter Systems to
Transient Loads

The forced response of qn(t) for any deterministic load P(t)

is given by the Duhamel integral.

t

qn(t ) _ 1 / e-6n Un(t- l")sln 1") d1"Udn Mn Fn(1") Udn(t-

t=0

(3.232)
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where

_)dn= dampednaturalfrequencyofnth normal mode

(an = undamped natural frequency of nth normal mode

M n = generalized mass for nth mode

Fn('r) = generalized force for nth mode at time t = "r

8n = critical damping ratio for nth mode

= 1/2 Qn"

For loads which vary unlformiy in time at all points, this

equation can be expressed in the following form which is

more easily compared to the solutions for transient response

of a single degree-M-freedom system.

t

qn (t) _1__n2 / e-Sn {an(t- "r)qns = f('r) sin Udn(t-'r) d'r

(3.233)

where

qns

Po Jn

2 Mn

static response of nth normal mode

coordinate to peak ampl itude PoJn

of generalized force for nth mode

Po = peak amplitude of total applied force

Jn = joint acceptance fornth mode given by Equa-

tion 3.224

u 2 M n = K n = generalized stiffness of nth mode

f(_) = relative value of total applied force at time

t=l • .

The left side of this equation is identical in form to the

solutions given in Section 3.2 for the transient displace-

ment response of a fixed base single degree-of-freedom

system relative to its maximum static response. Thus, the

analytical and graphical solutions given in Section 3.2

may be used directly to solve for the response of the nth

normal mode coordinate of a multi-degree-of-freedom sys-

tem after making the obvious substitutions, including the

fallowing:

Excitation

Response

Natural Frequency

Mass

Single Degree-

of-Freedom Normal Coordinate

Solution Soluti on

P(t) -" Fn(t )

x(t) --.- qn(t)

fo = Uo/2"_ "" fn =_n/2'_

m _ M n

Stiffness k "" K n = u 2 M n

Damping Ratio 8 --_ 8 n

Peak Excitation P -" Po Jn

Static Response x s = P/k -,- qns = PoJn/,, 2 M n

Maximum

Displacement Xmax _ qn max

To illustrate the method outlined above for finding the

transient response of a multiple degree-of-freedom system,

consider the following example°

3.3.3.4 Response of Two Degree-of-Freedom System

to Triangular Shock Load

Consider the response of the same fixed-base two degree

of freedom system treated earlier to atriangular shock load

as shown in Figure 3.57. The following parameters, re-

quired for the forced response solution, are obtained from

the previous results for the free vibration response of this

system (see Section 3.3.2.9).

Given

Natural Frequencies

Generallzed Mass

Mode Shapes

Ul = 0.665 _ radians/sec

u 2 = 1.165 _ radlans/sec

M 1 = 2.56 m

M 2 = 1.64 m

911 = 0.559 912 =-0.358

921 = 1 922 = 1

Assume Triangular Shock

Loads on Each Mass

Let Duration

Pl(t) = 2P [I - t/T]

P2(t) = P [1 - t/T]

T = "_/u I

L_I_ P2(t)

- t

m2]L k o

-t

1(t) 0

tl

FIGURE 3.57 Triangular Shock Load on Two

Degree-of-Freedom System
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The transient response is found as follows, utilizing the

analytical results presented earlier in Section 3.2 for a

single degree-of-freedom system.

Total Load

N

Po = _ Pj = 3P
J

Joint Acceptance

J1 = _N pjpo_il_ 3p1[(.559) 2P+ P] = 0.706
J

J2

N pj _i2

= _" Po
J

1
[I-.358/2P + P] : o.o95

3P

Static Response of nth Normal Coordinate

Po Jn

qns 2 Mn

(3P) (.706) = 1.875--_
qls (.665) 2 (k/m) (2.56 m)

_ (3) (.095) : 0.127-_-_
q2s (1.165) 2 (k/m) (1.64) m

Exact Solution for Peak Response to Triangular Pulse Load

An exactsolution for the response may now be obtained by

using these parameters in Equation 3.229 to solve for the

response in each normal mode. The peak response is then

found from an analysis of the summation of the instanta-

neous modal responses. If the lowest natural frequency of

the system is greater than about 1/(3 times the duration of

the triangular pulse load), the peak response of all modes

will occur during the forced response period (i.e. -

tnmax < T). Thus, using the known solution for the forced

response of a single degree-of-freedom system to a triangu-

lar pulse load, (see Equation 3.34, page 3-10), the net

response of the ith mass for all the modes of the lumped

system will be given by

N _in Jn

xi(t) : Po 2n _1n M n

X
[1-T +_//_ +/_nT) 2 sin (Un t- tan-lunT ]

(3.234)

where

Po : Peak Value of Triangular Pulse Load : _ Pj
J

@in = Mode Shape of ith Mass for nth mode

Jn = .Joint Acceptance for nth mode (see Equation
3.224)

_a
n

M n

_ Natural Frequency for nth mode

: Generalized Mass for nth mode

T : Duration of Triangular Pulse.

This solution assumes that the pulse occurs s_multaneously

on all loaded elements of the system.

This exact approach can only be effectively handled with

a computer for a system with more than 3 or 4 normal

modes. As an alternate procedure, an estimate of the

peak response x i max of any element may be made by one

of the following approximate methods.

Approximate Solution Using Shock Spectrum

The peak response in each normal mode is found by using

the graphical solutlans for the shock spectrum foro single

degree of freedom system. This specifies the peak response

relative to the static response for each normal mode. The

following values are obtained for this example.

Maximum Response of Normal Coordinates to Triangular

Shock

(Use Figure 3.10, page 3-11.)

ql max

First mode, T = _/gl' and fl T = 0.5, then - 1.20
qls

_2 q2 max

Second mode, f2 T =--_-1 fl T = 0.877, then --= 1.49q2s

Maximum Displacement of Each Mass in Each Mode

LOWER MASS

First Mode

x11 max=_ll ql max =('559)(1 .2)(1.875) P = 1.26 k

Second Mode

Xl 2 max = _12 q2 max :-(°358 )(1 °49)(. 127)_ :-0.07_"
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UPPERMASS

FirstMode

= 2.25Px21max _"

SecondMode
P

x22max= 0.19_-
Thenetpeakresponseforeachmassisthenfoundbysum-
mingup thepeakresponsesin eachmode,cplnqnmax'
accordingtooneofthefollowingrules(Reference3.41).

Linear Summation Rule (An Absolute Upper Bound)

N

Xi max --< _ [mini Iqnmoxl
n

(3.235a)

Square Root Rule

xi max -_ (fin qn max ) (3.235b)

The error in these approximations is not definable, in

general, but is not expected to exceed _'20 percent for the

linear rule and :k20 percent for the square root rule.

Approximate Graphical Solution Using Shock Spectrum
and Time of Occurrence of Maximum in Each Mode

An improved estimate of the peak response can be obtained

by utilizing the known time of occurrence tnmax for the

peak response of each mode, along with the peak response

qn max' the static response qns and the natural frequency

fn =Un/2"n in each mode.

Time of Occurrence of Maximum Displacement Peaks in
Each Normal Mode

(Use Figure 3.11, page 3-12.)

First Mode, fl T =0.5, fltmax=0.4, tlmax =0"8T

Second Mode, f2 T = 0.877, f2tmax = 0.45, t 2 max = 0.51 T

Given these parameters, an appro-dmate graphical solu-

tion can be carried out using hand-drawn faired curves, as

outlined in Figure 3.58a. This indicates the method for

roughly estimating the time history for each normal mode

coordinate qn(t) given the maximum response and its time

of occurrence. Such a procedure was usedfor this example

to plot the net time hlstoryfor the transient response of the

upper mass to the triangular load pulse. The resulting plot

is illustrated in Figure 3.58b. The hand-drawn faired

curves are a close approximation to the true values. The

predominant influence of the first mode on the displace-

ment response is quite evldent.

Comparison of Estimates of Peak Response to

Triangular Pulse

The various methods for defining the peak response can be

conveniently compared in terms of the peak dynamic re-

sponse x. of each mass relative to its static response
I max

x. to the peak load. The latter is determined from the
is

static response qns and mode shapes fin for each mode.

I'_ tn max 2 fn

qn (t)
I

I I

/ .,,""_E "_'_q .... II

b.:L / i ,,
I _ i "qn Xl_ "" Falred Sine

IJ \ C.... i
,.-" .'_, \ n ,

',

a) Graphical Construction of Time History of

Normal Coordinate qn(t)

t _ X2max - Both Modes

,.oI- ,,,,- %.
/," 't,,<

/;'

I J"" .... \  coodM.e : O.8",
o....... "-T---V,-..... : T, o

'X,

b) Net Transient Response x2(t ) of Upper Mass Relative to

Peak Static Response, X2s

FIGURE 3.58 Transient Response of Fixed Base Two Degree.o£

Freedom System in Figure 3.57 to Triangular

Shock Load (See Text for Details of Analysis

Method)

Total Static Response of Each Mass to Peak Load

2 [(.559) (1.875)P - (.358) (.127) _]= PXls = ,_ CPln qns =

n



3-70 Fundamentals of Vibration

Analysis Method x 1 max/Xls X2max/X2s

Exact (Equation 3.234) I .24 I. 16

Linear Sum (Equation 3.235a) I .33 1.22

Square Root Rule (Equation 1.26 1.13

3.235b)

Graphical Estimate 1.25 1 . 15

(Figure 3.58b)

For this particular example, all three approximate methods

provide reasonable results compared to the exact value.

Approximate Response Using Only First Few Normal
Modes

As a general rule, for relatively uniform multiple degree

of freedom systems driven by an approximately uniform

transient load, the peak displacement response is closely

approximated by the peak response in only the first 2 or 3

normal modes. This becomes readily apparent by examina-

tion of the frequency variation of the parameter Jn/tJE

which appears in the general expression (Equation 3.233)

for forced response to transient loads. The joint accep-

N

tance Jn is proportional to the sum _ Pj qbjn ' Above the

i
first mode, the alternating signs of the mode shapes cpln

tend to cancel each other so that the summation tends to

approach zero for a uniform load. Since 1/tj E also de-

creases with increasing mode number, the trend is a rapidly

decreasinq displacement response with mode number for

uniform loading.

This approximation becomes less accurate for the accelera-

tion responses of lumped parameter systems where higher

order modes become more important. It will be shown later

that bending and shear stresses in distributed structure,

such as beams, are also more sensitive to higher order nor-
mal modes.

3.3.3.5 Response of Lumped Parameter Systems to
Sinusoldal Loads

For a single degree-of-freedom system under rcndom exci-

tation, it was shown earlier in Section 3.2.3 that the

power spectral density of the response was related to the

power spectral density of the excitation by the square of

the absolute value of the steady state slnusoldal transfer

function Ja(f)J. This defines the amplitude of a general

sinusoidal response variable (such as velocity of the mass)

in terms of the amplitude of a general slnusoldal excita-

tion P (such as force on the sprlng-supported mass).

For the multiple degree of freedom system under random

excitation, a similar concept will still apply. However,

the net response of the structure at any one point will now

be the summation of the responses in each mode summed

over all the inputs applied to the structure. In this case,

the absolute value of a(f) is no longer adequate, there-

fore both amplitude and phase of this slnusoldal transfer

function are required. Furthermore, it will now be used

to define the slnusoldal response of each normal mode qn(t)

of a multl-modal system to a generalized sinusoldal force

Fn cos t_t for this mode. Consider then, the form that a(f)

will take in this case.

For a simple sprlng-mass system attached to a fixed base,

the steady-state displacement response x(t) of the mass for

a slnusoidal driving force with amplitude P and frequency

t_ = 2_f was found to be (see page 3-6)

P
x(t) = _ IH(f)J cos(2_ft- 0)

where

the dynamic magnification factor

and

e = tan -1
28 f/fo

phase angle between

- (f/to)2 response and exclta-1

tlon.

The slnusoidal excitation could also be expressed as the

Real r/_] part of the complex expression

[p +
Similarly, the slnusoidal response can be given as the real

part of the complex form

P ej 2_ ftx(t) = T H(f)

where

1
H(f) = complex steady

1 - (f/to)2 + j 28f/f ° state frequency

response function.

The real form for x(t) is obtained by first transforming the

complex frequency response function H(f) in the following
manner.

1
Let H(f) -

a+jb

where a = 1 - (f/to)2, b = (28f/to)

Multiply a + jb by its absolute value _a2+ b2 and divide

by the same quantity to give

a+jb= +j
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Sincea andjb representvectorsat rightanglestoeach
other,of lengtha andb respectively,theresultantor
absolutemagnitudeofthesevectorshasanangle8 tothe
realpart(a)glvenby

8= tan-1b
a

Thus

a b
case - , sine -

_'2+b 2 _'2+b 2

and a + jb may be written as

jb = la + jb I [cose + i sine] = la+ jb I ei eg+

When inverted, this becomes

' a-@b= e-J@

so that H(f) can be given by

H(O= In(f/l e-ie

It will often be convenient to use the latter form forex-

pressing the steady state sinusoldal transfer function a (f).

In this case, it would be

xit) L_0L e-Je lair)l e-J @a (f) = P(t) = k =

Thus, in this complex form, a(f) or Ja(f)l e-i@ defines

both the amplitude IH(f)I/k of the slnusoidal transfer func-

tlon between displacement response and force input, and

the corresponding phase angle. For any sinusoldal excita-

tion, the single degree-of-freedom response may then be

given in terms of a (f) in the general form

[_esponse as t] IFExcltation l }unction of Time =4 (LAmplltudej la (f)J e-J@" eJ2_ft

(3.236)

For the previous example, this would take the form

x(t):_ [Pla(f)J e-j@e j2_ft]

Expanding the complex vectors into sine and cosine terms

and taking the real part, this becomes

xIt) = P la(OI [cos e cos 2_ft + sin @ sin 2_rft]

Applying the transformation

A cos Z+ B sin Z = _ + B2 cos [Z- tan -1 B/A]

the real part of x(t) becomes

x(t) = P Ja(f)] cos(2_ ft- @)

thus returning to the original form where la (r)I= IH(f)l/k.

When applied to the sinusoldal response of multiple degree

of freedom systems, the operation indicated in Equation

3.236 for the single degree-of-freedom system will define

the sinusoldal response of the normal mode coordinate qn(t)

for each nth mode. The excitation will be the generalized

force Fn cos (2Trft) =4 tFn exp (j2_ft)} for the same

mode. Thus, the results given in Section 3.2.1 for the

sinusoldal response of the single degree-of-freedom system

can be applied directly to define the sinusoldal transfer

function lan(f)l for the nth normal mode of the multiple

degree of freedom system. Applying this technique, the

following general solutions are obtained for the sinusoldal

response of a lumped parameter system for simultaneous or

in-phase slnusoidal excitation. These solutions have the

following general form, in terms of real variables.

N

xi(t) = _ ¢inqn (t)
n

where

qn(t) = Fn lan(f)J cos (2_ ft- @n)- normal mode

response

and

Fn = Po Jn =amplltude of generalized force for nth
mode.

IN-PHASE SINUSOIDAL FORCE ON EACH MASS

Pj(t) = Pj cos (2_ft)

• Displacement of ith Mass

xi(t) = Po [ n_-_Jn_in'an(f)jc°s(2_ft-@n)]i

(3:237)

where

P
0

N

: _ Pi - amplitude of total

m

slnusoldal force

i
J

Jn = [_ PJq_Jn]/P°- j°intacceptancef°rnthmode

= mode shape at i for nth mode

]H(r)I -- sinusoldal transfer function for

lan(f)l= Mn nth mode

tin

JH(f)l = 1/[(1-(f/fn)2)2+ (28 n f/fn)2] 1/2 -

dynamic magnification factor for nth mode
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fn = naturalfrequencyofnthmode

f = forcingfrequency

Mn = Generalizedmassfornthmode

28nf/fn
en = tan-I

1- (f/fn)2

• Acceleration of ith Mass

'xi(t) = (same as Equation 3.237 except)

Io(f)l = Mn

and en is replaced with e n -_ .

• Reaction Force on Sth Fixed Support Point

If the Sth support point is connected directly to the ith

mass by a spring element with a spring constant ksl , the

reaction force at this point is ksl xi(t) where xi(t) is given

by Equation 3.237.

ACCELERATION INPUT TO FOUNDATION

b'(t) = (J cos (2-_ f t)

• Relative Displacement of ith Mass

i:'i(t ) = _i(t) - "u'(t) = (some as Equation 3.237 except:)

N

Po = - U '_ mj

i

Jn = mj ,j _ mj

• Relative Acceleration of ith Mass

i_'i(t ) = _i(t) - Ci(t) = (same as Equation 3.237 except:)

Po' Jn = as given above for the relative displacement

#la(f)l : IH(f)l
M n

en replaced with e n - .IT .

• Driving Force for Rigid Foundation with Mass mo

S

Pl(t) = mo iJ(t) - _ ksl _i(t) (3.238)

s

where

ksi = spring constant for each of S spring elements

dlrectly connected between sth point on moving

foundation and ith mass

_i = corresponding relatlvedeflectlon for this spring
element.

In all cases, the phase angle e n for each mode is the same

as defined for Equation 3.237.

Phase Angle of Response in Each Mode

This phase angle Gn varies with the ratio of excitation fre-

quency f to normal mode frequency fnandwith damping

ratio 8n in the same manner as for a single degree-of-free-

dom system (see Figure 3.5b, page 3-6).

As an example, for the normal mode response described by

Equation 3.237, for excitation frequencies well below the

natural frequency of the mode, the modal displacement

response will be nearly in-phase with the excitation. This

characterizes the so-called stiffness controlled region for

the mode. For excitation at the natural frequency(f=fn),

the displacement response lags the excitation force by 90 °

but the velocity response leads the displacement by the

same amount and is in-phase with the driving force. Thus,

the driving force supplies power proportional to the product

of force times response velocity which just balances the

power dissipated by damping forces.

For excitation well above the natural frequency, the mode
is mass- or inertla-controlled and the acceleration is

nearly in-phase with the force. The displacement response

lags the force excitation by 180 ° in this frequency range.

This changing phase relationship can be vlsuallzedas shown

in Figure 3.59 by considering the modal response as a

vector which rotates at the circular frequency 2_rf and

which lags behind the corresponding vector for the excita-

tion by the phase anglee n. The figure shows the locus of
the response vector relative to the excitation force vector

for a slnusoldal transfer function proportional to the fre-

quency response function H(f) fora single degree-of-free-

dom system. Note the rapid change in phase angle, as

the frequency f passes through the natural frequency fn"

This rate of change of Bn increases for lower values of

damping.

3.3.3.6 Summation of Multiple Sinusoidal Responses

The preceding expressions for the response to in-phase
sinusoldal excitation involve the summation of N sinusoidal

terms to determine the total response over all modes ata

given point on the system. A thorough understanding of

this baslc step is deshable forconsideratlon of the response

of complex structure to more complex slnusoldal and ran-

dom excitation. The process is considered in some detail,

therefore, in this section.

Although expressions can be developed for the overall in-

stantaneous value of the summation of N sinusoldal com-

ponents, a more useful parameter for design purposes is the

mean square value of this summation, or its square root,

the rms amplitude.
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P
_ P(t) 8n - t'-_W -tJ x(O x

a) Time History of Response

cos 2', f t

cos (2-nf t - 8n)

_lt Acceleration ,, _ ..

_y_or veloclry

Mass Control led _ /Excitation

Displ ...... t Resp .... _,,/ F .... Vector

- i 5w, o,.D_- \ I_ "_1,0"0_.. 5 Stiffness Controlled

,- _ !n "_0 6 Displacement Response

I .3/" \J_ "'_0.7

/

1.2 i 1-

1.15t lH(f)l

t .1_ 2-

%%

1.05 _',.

5 = 1/6

Displacement _t

Response

Vector _0.8

,,_0.85

Oi9"-Z..-f/fn

....... "_. 95
.0

b) Diagram of Locus of Response Vector

FIGURE 3.59 a) Time History and b) Vector Diagram for

Displacement Response of Single Degree-of-

Freedom System Corresponding to One Mode

of a Multi-Model System with Critical Damping

Ratio = ]/6. For part b, radius of response

vectorg,veoI.(oI: +
(2 & n f/fn )211/2 and angle 8 n by

tan -| [2 8n f/fn]/ [1 - (f/fn)2]. Position of

vector shown for ratio of frequency of excitation

to natural frequency of O.9 Instantaneous value

of response shown in part o is projection of response

vector, rotating at angular frequency 2_ f, on

horizontal axis.

The general equation for the mean square value of the sum

of two time varying quantities is given by

+T/2

" 1 / x2(t)]2x2(t) = lim T [xi(t)+ dt
T_co

-T/2

Expanding the squared expression inside the integral and

integrating each term, the mean square value becomes

x2(t) = x12(t) + x2(t) + 2 x l(t) x2(t)

x 2 2or, letting (t) = x ,

x 2 = x12(t ) +_+ 2xl(t) x2(t)

where the bar designates the long time average or mean

square value. This expression may be generalized to cover

N components. Thus, if

N

x(t) : x l(t) + x2(t)+ ... xN(t) = _Xn(t)

n

the mean square value of x(t) is

x = x (t) + x (t) + ... x (t)

+ 2 x1(t) x2(t) + ... 2 Xn(t) Xm(t)

The self-squared and cross product terms may be given by

a single and double summation, respectively, or

N N N

x 2  212 Xn<t xm t 
n n/m (3.239)

Therefore, the mean square value of the sum of N time

varying components has two parts: 1) the sum of the mean

square value of each component, and 2) the sum of the

time average value of all the cross products. Three special

cases are of interest for sinusoidal components.

]) Xn(t ) = X n cos (2_ ft - )'n)

In this case, each component has the same frequency f but

a different amplitude X n and phase Yn" The mean square

value of each component is known to be

xn2(t) = _-

The time average value of the cross products maybe deter-

mined as follows. If the nthandmth components are

Xn(t ) = X n cos (2_ ft - yn)

Xm(t) = X m cos (2_ f t - ym)

Then, by using the trigonometric identity that

1 1

cos A cos B =--_cos (A + B) + _--cos (A - B)

the cross product may be expressed as

1

Xn(t) Xm(t ) =_-X n X m [cos (4_Tft - 7m- },n) + cos (Ym- 7n)]

Since the long time average of the first cosine term is

zero, the long time average value of one cross product

term is

1

Xn(t) Xm(t) = _ X n X m cos (7m - yn ) (3.240)
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Thus,themeansquarevalueofthesum of two slnusoldal

components, with amplitudes X 1 and X 2 respectively, is

2 1 2 1
x =_--X 1 +TX2+X1X2cos(72-Tl)

where 72 - Yl is the relative phase difference between the

two components. According to Equation 3.239, the mean

square value of the sum of N such terms may be given by

N N N

x =_- _ x 2 + ]7CC xoXmcos -
n n_m

(3.241)

2) Xn(t) = X n cos (2_ fn t - 7n )

In this case, each component has a different frequency fn"

The time average of the product of two sinusoids with dif-

ferent frequencies is always zero so that the cross product

terms drop out and the mean square value of the sum of the

individual components of different frequency is given by

the first term in Equation 3.241 .

3) Xn(t ) = Xn e-j 7n ej 2_ft = x n(f) ej 2_ft

This is identical to case 1) except that each component is

given in complex form with a real amplitude X n and phase

angle Yn or the equivalent complex amplitude Xn(f ). For

just one such component, the mean square value is 1/2 the

product of Xn(t ) and its complex conjugate Xn(t ). This

product cancels out the complex exponential terms as

shown by the following.

x2(t) ] . ] [Xne-Jy n e J2_ft] e-J 2_ft]=T xn(f) Xn(t)=g [Xn eJ Yn

=1X2 e-J(_'n- Yn)ej(2_ft - 2_ft)2

IX2=1 2:_- Tlxn(r)l (3.242)

The sameprlnciple applies to a sum of complex terms. The

mean square value of the sum is 1,/2 the product of the sum

and its complex conjugate. Thus, if the amplitude of the

nth component is the complex quantity Xn(f )=lxn(f)l e -j 1'n,

then the mean square value of the sum of just two such
terms is

.f , x iO+x (f/x2(f)]= 1[x1 (f)xl()+x2(f)x2(f) +x] (f) *

Each of the first two terms is equal to the mean square

value of each component, as shown by Equation 3.242.

The sum of the complex conjugate cross-product terms is

equal to

1 I
_-x](f) x2(f)+lx_(f ) x2(f ) :_- xl(f ) x2(f ) eJ(72-'f] )

+½ xI(f)Ix2(f) e-j (r2-q)

By expanding the complex exponentials into cosine and

sine functions, it can be shown that the imaginary terms in

the left side of this expression cancel out leaving the real

quantity Ixl(f)Jlx2(f)lcos (72- 71)" Thus, from Equation

3.240, an equivalent form for the timeavera_e value of

bot._h cross products of two sinusoidal components of the

same frequency, but different phase, is

2 x 1(t) x2(t ) : -_ x 1(f) -_ x2(f )

where x 1 (f), x2(f ) are the complex amplitudes of xl(t ) and

x2(t), respectively.

Therefore, 1/2 times the sum of complex conjugate cross-

product pairs is equivalent to two times the time average

value of their product. This, in turn, is equal to two times

the product of their absolute values times the cosine of

their relative phase angle.

Extending these results to the general case, the mean

square value of the sum of N sinusoidal terms witha com-

plex amplitude Xn(f ) is

N N N
1x2:-T Ixn(f)l2+'

n njm
(3.243)

The double summation of the complex conjugate terms in-

cludes both pairs for n and m (mT'n). The imaginary parts

therefore cancel out as shown for the case of two compo-

nents. This expression is therefore equivalent to the result

given in real form by Equation 3o241. The absolute mag-

nitude [Xn(f)l of the complex form Xn(f ) is the same as the

real amplitude X n.

The two equivalent expressions (Equations 3.241 and 3.243)

for the mean square value of the sum of N sinusoidal terms

provide the basic foundation for defining the response of

multl-modal systems to excitation byone or moreslnusoidal

or random forces. With these expressions for the mean

square value of N arbitrary slnusoldal components, it is

possible to define the following specific cases for the re-

sponse of multi-modal systems.

• Mean square value of response at one point over
all normal modes

• Mean square generalized force in one modedue to

multiple slnusoidal forces

• Mean square response in all N modes due to N
sinusoldal forces.
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Mean Square Response in All Modes

Consider, first, the case for only two modes. Assume that

a two degree-of-freedom system is driven by a sinusoidal

force and that the generalized force Fn(t) for each normal

mode is given by

Fn(t ) = Fn cos (2_ f t - 13n)

where

Fn = amplitude of generalized force at frequency f

_n = phase angle between generalized force and an

arbitrary time reference.

The sinusoidal response of the ith mass in the nth mode is

given by

Xln (t) : Fn lan(f)l q_in cos (2_ft- Bn- On)

where

Ion<OI= absolute value of sinusoidal transfer func-
tion for nth mode with phase angle 0 n

_in = mode shape at ith mass for nth mode.

This expression for the response inthe nth mode is identical

to the form given in case 1) in the preceding discussion.

In this case, the amplitude x n and phase angle I' n of the

nth slnusoidal component is

Xn = Fn lan(f)l - amplitude of response

Yn = !3n + 0n - phase angle

Therefore, using Equation 3.241, the mean square value

of the total response in two modes can be written clown

directly as

1 [F 12 2x, la, f)_2+ F2 a2(f)l 2 _,22

+2F_,F2Io,/f)lo2 f)I co, mo]
(3.244)

where

Amn = Pm - _n + 8m - e n = difference in phase between
the mth and nth modal re-

sponses.

_m, _n = relative phases of generalized forces formth and

nth modes, respectively

emt e n = phase angles of mth and nth sinusoldal transfer

functlons.

The mean square value of the net response in both modes is

equal to the sum of two types of terms-- 1/2 times the

amplitude Fn Io n/f/Ifor each mode and a cross-product

term equal to the product of the response amplitude

Fn lain(f)l in each mode times the cosine of the net dif-

ference in phase (J3m - 13n + 0m - en) between the two

modal responses.

For this equation and in the rest of this section, the re-

sponse variable xi(t) can be any desired quantity such as

displacement or acceleration. Similarly, the generalized

excitation "force" can also include foundation motion.

The corresponding form for the sinusoidal transfer Ion(r/I
is given by the definitions following Equation 3.237. It

will also be understood that all input and response vari-

ables are slnusoids and the use of an argument (f) to denote

a sinusoidal variable at e frequency f is reserved for com-

plex amplitudes or to denote complex sinusoidal transfer

functions [i.e.- H(f) or a(f)] .

The amplitude X i of the net response is simply the square

root of the term in brackets in Equation 3.244. It is help-

ful to illustrate this summation of modal responses by treat-

ing each component as a vector. The summation process

may then be visualized as shown by the diagram in Figure

3.60. Part (a)shows the two generalized force vectors with

amplitudes F1 and F2 and phase angles !31 and 132 relative

to an arbitrary reference llne.

The response vectors X 1 and X 2 for each mode have the

magnitudes F1 lal(f) I _il and F2 la2(f) I _12 and phase

angles 81 and 82, relative to their excitation. The net

phase angle between these response vectors is then 132 -

131 + e 2 - 01 . Part (b)shows how the total amplitude of the

response vector is simply the vector summation of X 1 and

X 2. Thus, the amplitude of xi(t) could be determined by

simple trigonometric formulae for vector summation.

Extending this result to a system with N degrees of free-

dom, the mean square response for all modes will consist of

the sum of all direct and cross-modal coupling terms. Thus

the mean square sinusoldal response at the ith mass for N

modes, each with a generalized sinusoidal force of ampli-

tude Fn, slnusoidal transfer function IOn(f) l e-jSn, and

mode shape CPin will be

N 2
-_- 1 2
x, 2:-_" _F2 la n(f)l eln

n

N N

+ _'_'-_--']_-_ FnF m an(f) Om(f)J_in_blmC°SAmn

n/m

(3 °245)
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(Notethatthefactor2 inthecrossterminEquation3.244
is inherentlyaccountedforbythedoublesummationin
Equation3°245).

F1 e-J _I

_1_2 _ Rotating

i_ Time Reference

132 Vector - e j 2_ ft

e-J 132

X2 =F21o2(r) I _2 _ z . ," "X_-X1 =Fl!a1(f)l ¢il

Amplitude of S

Response Vectors

a) Vector Representation of Excitation and Response

j/ ,/ i

/ I

x_ xi iiiiii x 1 sin A12

/J A12 ,'/,z I X_ /

2 t"X 1 cos

I IXl sinA12)2+ (X2* X 1 cos AI2 )2]I/2, or

b) Vector Summation of Modal Responses

FIGURE 3.60 Vector Representation of Combined Modal

Response of Two Degree of Freedom System

to Sinusoidol Excitation

If the generalized force Fn(t ) for the nth mode were given

in complex form as

Fn(t ) = Fn e-J _n e Jut = Fn(f ) e jut

where

Fn, LBn = amplitude and phase of generalized force
for nth mode

Fn(f) = corresponding complex amplitude,

then the mean square response at the ith mass for all modes

may also be expressed in complex notation, using Equation

3°243, as

N
-- 1 2 2
xi2 :_ Fn(f) an(f) *in2

n

N N

+--12_"_ _ Fn(f)FL(f)a n(f)a_n(f)¢in _im

njm (3.246)

Fortunately, it is usually possible to simplify either Equa-

tion 3.245 or Equation 3.246which express the total re-

sponse in all modes. The double summation, which defines

the coupled response between each pair of different modes,

is ordinarily neglected. It will be demonstrated later bya

numerical example that this approximation is very good

providing:

the normal modes are well separated in natural

frequency, and

the primary concern is the determination of only

the peak responses of a multi-modal system at ex-

citation frequencies corresponding to its natural

frequencies.

The potential error in this approximation may be further

illustrated by examining the expression far the mean square

response in N modes, given by Equation 3.245. Consider

the error involved for the following three frequency regions:

• Excitation Frequency Below the Lowest Natural

Frequency

In this frequency range, the relative phase shift

between the transfer functions (0 m - Bn) will tend

to be zero so that for in-phase excitation, where

13m = !3n, the modal cross-coupling terms will tend

to be a maximum. However, at the most, they

cannot exceed the sum of the mean square responses

in each mode and will, in fact, always be less.

Thus, omitting themodal coupling termscan under-

estimate thetotal mean square response byno more

than a factor of two in this frequency range. A

similar result is obtained for excitation above the

highest natural frequency For o finite number of

modes o

Excitation Frequency Equal to the Natural

Frequency for the nth Mode

In this case, the relative phase difference e m - ( n

between the transfer function an(f ) for the nth

mode and any other well separated mode will tend

to approach {90 ° (see Figure 3.59). The term

cos Amn will then tend to approach

cos (#m - !3n + 1T/2) : sin (!3m - _n )

For in-phase loads, where 13m : #n' the cross mode

term will approach zero. In Fact, the maximum

mean square response is closely approximated by

the response in just the one resonant mode.
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ExcitationFrequencyBetweenTwoNormalMode
Frequencies
Inthiscase,therelativephasedifferenceem- en
betweentheslnusoldaltransferfunctionswill tend
toapproach:1:180° andthetermcosAmn will ap-

proach - cos (13m - 13n)" Thus, in this range, the

omission of cross-mode terms will tend to over-

estimate the response. Again, however, the error

is notordlnarilysignlficant from a practical stand-

point. Theoretically, if the generalized forces

Fn, Fm, transfer functions Jan(f)J,lam(f)l and

mode shapes ¢in' elm were the same for any two

modes at this frequency, the cross mode term could

completely cancel the sum of the mean square re-

sponses for each mode, thus reducing the total

response to zero. This rarely happens in real sys-

tems due to inherent nonunlformity of structureand

loading.

Thus, for most practical cases, the maximum mean square

response over all modes is approximately equal to the sum

of the mean square responses in each mode. In this case,

it is only necessary to define the mean square value of the

generalized force for each mode.

Mean Square Generalized Force in One Mode for

Multiple Sinusoldal Forces

Consider now the case illustrated in Figure 3.61 where

multiple sinusoidal forces drive a multiple degree of free-

dom system. The instantaneous value of the generalized

force Fn(t ) in the nth mode has been defined as the sum-
mation

N

Fn(t ) = ]_ Pj(t) ¢in

J

where

Pj (t) = instantaneous force at jth mass

_jn = mode shape at jth mass in the nth mode.

Pj (t) Pi(t) PN(t)

_-*i(t)

FIGURE 3.61 N Degree of Freedom Lumped Parameter System

Acted on by N Independent Sinusoidal Farces.

When Pj(t) is a sinusoidal force with an amplitude Pj and

phase 13j given by

Pj(t) = Pj cos (2_ft - 13j)

then the mean square value of this generalized force,

which is the weighted summation of N slnusoidal forces

can be written down directly, using Equation 3.241, as

N N N

Fn2(t) = 1 2 1 2 +1__ _ _pj q_kn_F n :_-'_ el2 _jn 2 Pk q_jn

j j/k

x cos(13k - 13j)

The summation of the mean square values of (1/2)p j2 of

each force and long time average values of their cross

products

1

T Pj Pk cos ([3k - 13j) ,

weighted by the corresponding mode shapes, is now taken

over each of the jth points when a load is applied. The

double summation requires that two general points, the jth

and kth, be used in order that all possible cross-products

are obtained. This expression can be further simplified by

noting that the double summation also includes the summa-

tion of mean square forces (1/2) pj2_2 n- when j=k. Thus,

the mean square generalized force in the nth mode for N

external sinusoidal forces is

N N

1F2:_--]_]_]Pj Pk n c°s(13k 13j)2" n _j _kn -

j k

(3.247)

It will be convenient later, when considering response to

random excitation, to express the mean square generalized

force for slnusoldal excitation in an equivalent form as

N N

1--F2=2 _ Pj(t)Pk(t) Cjn q_kn

j k

where

(3.248)

Pj(t) Pk(t) = long time average value of the product

of the sinusoidal forces Pj cos (2"_ f t - 13j )

and Pk cos (2", ft-13k), or from Equation

3.240,

1

Pj(t) Pk(t) =_PJ Pk cos (13k- 13j )

This long time average of the instantaneous value of two

sinusoidal forces applied at locations j and k will be

identified in general as the Narrow Band Space Correlation

Function Rp (j k, f, "r =0) or simply Rp(j,k,f), The terms

f and "r = 0 in the argument for this function imply that the

product of the two forces Pj(t) and Pk(t) is computed for

one sinusoidal frequency f (or an equivalent narrow band

of random noise) and at the same instant of time without

any time delay between the two quantities. The ('r = 0)

term is dropped out for simplicity in notation.

Mean Square Response in N Modes for N Sinusoidal

Forces

The expressions for the mean square response in all modes

(Equation 3.245) and the mean square generalized fo.ce
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(Equation3.247)maynowbecombined.Theresulting
expressionforthemeansquare response of the ith mass in

N modes and for N sinusoldal driving Froces may be con-

veniently given in the following form. This assumes that

the cross coupling of modal responses, as given by the

second term in Equation 3.245, can be neglected. The
result is

N

'[-- 1 2x,2:7P3 J#lan(r)l2 *in
n

(3.249)

where

Po

N

= _ Pj = amplitude of total force at fre-

j quency f, neglecting any phase
differences between forces

1#_" P = mean square value of this reference force

J#

lan(f)l

joint acceptance squared for nth mode -

ratio of mean squared generalized force

Ifor nth mode to mean square reference
= Force

N N
1

p-__-_-_-'_-PjPk_jn mknC°S(13k-13j)j k

(3.250)

= absolute value of sinusoldal transfer Func-

tion in nth mode

_in,@jn,_kn = mode shape in nth mode at ith response

point and jth and kth load points, respec-
tively.

Note that the factor of 1/2 in Equation 3.249 cancels out

when P], Pk and Po are specified in terms of rms values.

Although the choice of the reference force amplitudeP ° is

arbitrary, the definition used here is preferred since it

defines the amplitude of the total dynamic force on the

system assuming an in-phase load.

The basic expression for the joint acceptance squared, for

multiple sinusoiclal loads, given by Equation 3.250, will

be applied later to the case of a propagating acoustic

pressure load on structure where the phase shift between

load points (!Bk - 13j) will be replaced by a propagation

delay. The following special cases for the response to

multiple sinusoidal loads may be defined by the value of

the joint acceptance in each case.

N - In-Phase Sinusoidal Forces

In this case, Bk = 13j and the joint acceptance squared
reduces to

Pj _Pjn (3.251)

J# = p# , 13k =!3j

Uniform Dynamic Loading

For this case, 13k = 13j, and Pj = Pk so that the loading

is not only in phase but uniform at all points. The

joint acceptance squared is then

J# : ¢'j n (3.252)

' 13k =!3j ' Pj = Pk

N- Uncorrelated Sinusoidal Forces

For N slnusoidal forces which are randomly phased,

the time average value of the cross-products of forces

Pj(t) Pk(t) is zero so that the cross-coupllng terms in

Equations 3.247, 3.248, and 3.250 are zero. The

jointacceptance squared isthe sum of the meansquare

value of each generalized force (1/2)pj2 _j# nor-

malized by the mean square reference force, or

N
I

o j
(3.253)

This is a suitable approximation to use for external

acoustic loading of structure in certain cases where

the sound pressure field maybe considered as in-phase

only over relatively small areas and randomly phased
outside this area.

Since only one frequency of excitation has been considered,

the amplitude X i of the sinusoidal response defined by

Equation 3.249 may also be determined from the mean

square value xi(t)2. This is given by

F --ZT_.,2 11/2
Xi : ll_Lxi (t) J (3.254)

Significant conclusions to be drawn from these last five

expressions may be summarized as follows:

The net mean square response at any point of a

multi-modal system is closely approximated by the

sum of the mean square responses in each mode.

For the same total amplitude of load and modal

transfer function, the relative mean square modal

response is defined in terms of the joint acceptance

squared - a relative measure of the mean square
generalized force for each mode.

The joint acceptance for any mode will tend to be

a maximum for in-phase sinusoidal loads when the

relative variation in force amplitude Pj with loca-

tion j coincides with the variation in mode shape

@in at the same location.

The jointacceptance and hence the modal response

will be zero for uniform loading of even modes
N

where Pj is constant and _.@jn = 0 .
J
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Therelativemeansquareresponseinthenthmode
for in-phaseuniformloadsto randomlyphased
equalloadsisgivenbytheratioofthesquareof
thesumofthemodeshapeatall pointstothesum

of the squares of the mode shapes at all points, or

*j
M.S. modal response - uniform loads _

M.S. modal response - equal but N

random loads _ (qbjn)2

J

Total Response for Multiple Forces, Including Cross-Mode

Coupling Terms

The more general expression for the response in all modes,

including modal cross-coupling terms, may be given in the

following form. It is cited here for reference purposes

only since it is seldom used for the modal analysis of com-

plex structure. The general expression for this case was

given by Equation 3.246. It can be given ina more con-

venient form by utilizing a new quantity called cross-

joint acceptance Jm 2. The resulting equation for the

total mean square response at the ith mass over all modes,

including modal coupling terms is

no
+ _ Jm2 a n(f) am (f) CPin _im

nT'm

The first summation is identical to Equation 3.249. There-

fore, consider only the terms in the second summation.

an(f), am(f ) = complex sinusoidal transfer for nth mode

and complex conjugate for mth mode

(3.255)

= corresponding mode shapes at ith mass

= cross joint acceptance between nth and

ruth mode.

Comparing this equation with Equation 3.246, it is appar-

ent that the new term, cross-joint acceptance, is a com-

plex quantity equal to

Jmn2 _ p21 Fn(f ) Fm(f )

where

Fn(f) = complex magnitude of generalized force in
nth mode

Fro(f) = complex conjugate of generalized force in
mth mode.

(Note that 1/2_ [Fn(f) Fro(f) ] is the mean square value of

the generalized cross-mode coupllng Force .)

The complex magnitude of the generalized force in the nth

mode is given by

N

Fn(f) = ]_ Pj _jn e-j_Bj

J

Similarly, the complex conjugate of the generalized force

in the ruth mode may be given by

N

Fro(f) = _ Pk _km ei LBk

k

In this case, the summation is over k to allow for all pos-

sible cross-product terms between the forces Pj and Pk"

Combining these expressions, the complex value for the

cross- joint acceptance is given by

N N

Jmn2 _ 12 _ _ PJ Pk _jn gkn ej (!3k- !3j)

P j k
o

(3.256)

where

Pj' Pk = real amplitudes of forces at jth and kth

mass with phase angles [Bj and [Bk, respec-
tively

cpj, _km = mode shapes at corresponding points in nth
and ruth modes, respectively.

When this complex term is used in Equation 3.255, the

complex conjugate cross products add up to a real quantity.

For in-phase loads, where _Bk - !3j = 0, o complex form is

unnecessary for Jm 2 which, in this case, is simply the

product Jm Jn of the joint acceptances in each mode. It

should be pointed out that real expressions could always be

developed in all of these preceding expressions. Complex

notation, however, offers many advantages and short cuts

in analysis in certain cases and has been introduced to

illustrate its applicatlon.

Note that the expressions for joint acceptance (Equation

3.250)and cross joint acceptance (Equation 3.256)contaln

the quantity Pj Pk cos (!3k- _3j) or PjPkexp j(_k-13j )"

The former has been shown to be equal to two times the

long time average of the productof the instantaneous pres-

sures, Pj (t) Pk(t). This is also equal to the real part of the

complex form. This relationship will appear in a similar

form when considering random loads. First, however, con-

sider response to other forms of slnusoldal-like excitation.
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3.3.3.7 Response to Steady State and Transient
Periodic Excitation

Steady State Complex Excitation

The methods developed in these last two sections may be

used foranalyzing the response of multi-degree of freedom

in systems to steady state periodic excltaHon such as gener-

ated by reciprocating machinery or nonlinear hydraulic or

pneumatic oscillating power sources. One extreme example

of this type of excitation is illustrated in Figure 3.62a.

Such o periodic nonsinusoidal force may be described by a
Fourier series of sine and cosine functions as outlined in

Section 3.2.2.5, page 3-15. For example, for the square

wave illustrated in F_gure 3.62a, the series would be

I-.,_|/f -_----I

a) Periodic Force with Repetition Frequency f

Ikt

T
°_

E

Q.

Mode Response

First

Second

Third

Frequency
First Second

Harmonic Harmonic

Selective Response for First Two Harmonics of Periodic

Excitation by First and Third Normal Modes of Multi-

Mode System

FIGURE 3.62 Response of Multi-Mode System to Periodic Excitation

P(t) Ps + 4Z_P Ic + 1 + 1= _ os2_ft _'cos6Trft _cos lO_ft

where

cos r (2_ ft) t
**. ..

r
1r = ,J,D, ...co

Ps = average or static value of force

Z_P = peak amplitude of force in excess of Ps

f = repetition frequency

r = odd integer.

In this case, the total force consists of a static component

Ps plus an infinite series of sinusoldal components with dif-

ferent harmonic frequencies f, 3f, 5f, etc. The response

of a multi-modal system to such an excitation is found by

treating each harmonic force component separately. The

methods outlined earlier for single or multiple slnusoidal

forces, with one frequency, are applied to determine the

instantaneous response over all modes for the rth harmonic

component. The total instantaneous response is then found

by superpositlon of the sum of these harmonic responses.

Thus, at the ith mass, the total response xi(t ) would be

co N

xi(t) = XX Xin (rf, t) (3.257)
r n

where Xin (rf,

mass in the nth

excitation.

t) is the instantaneous response of the ith

mode to the rth harmonic component of the

Since there is no coupling between the response components

for two frequencies, then neglecting modal coupling, the

total mean square response x} 2 is a double summation of the

mean square modal response xi2 (rf, t) for each rth har-

monic component and nth mode. The problem can often be

simpl;fied by considering only resonant responses of the nth

normal modes of the structure which coincideapproximately

with the rth harmonic frequency components of the excita-

tion. This situation is illustrated in Figure 3.62bwhere

onlythe first and third normal modes of a system contribute

significantly to the response from two harmonic components
of a periodic excitation.

Transient Sinusoidal Excitation

Response of a multl-modal system to a sinusoidal load

which changes amplitude and/or frequency with time is of

interest in the dynamic response and testing of multi-modal

structural systems.

The interest stems, in one case, from the need to minimize

transient resonant responses when a changing slnusoidal

excitation passes through the natural frequency of a crH;-

cal normal mode. On the other hand, for vibration testing

of structure, it is often necessary to maximize the resonant

response from a sinusoidal input whose frequency is slowly

changed. This type of transient sinusoidal s;gnal is called

a phase-coherent excitation (Reference 3.1, Chapter 22).

It is described by the general expression

P(t) = P'(t) cos [2_ f(t) t + 13]

which indicates both the amplitude P(t) and frequency f(t)

changing with time. A general solution for this type of

excitation to a multi-modal system could be made wlththe

Duhamel integral according to the methods outlined by

Section 3.3.3.3. The solutions are complex, however,

and have been carried out only for a few special cases; the

most common one being a sinusoldal input with a constant

amplitude but linearly increasing frequency applied to a

single degree of freedom system (References 3.34, 3.42,

and 3.43).
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Theexcitationhastheform

P(t)=Psin(_f t2+J3)

where

P= InputForceamplitude

= LinearRateofChangeofFrequency- Hz/sec

= initial phase angle.

The envelope of the peak response of a single degree of

freedom system to this type of excitation is shown, in

Reference 3.42, to be a function of the dimensionless po-

Q2/f2 where Qn is the steady staterameter dynamic
n

magnification factor and fn is the steady state resonance

or natural frequency of the simple system. An effective

dynamic magnification factor Qeff may be defined as the

raft o of peak response ampll tude for the transient sl nusoidal

input to the static response (the deflection undera static

load equal to the amplitude of the sine input). This is

shown in Figure 3.63as a function of the rate of change of

frequency f divided by the square of the steady state reso-

nance frequencyfn. In this form, it is possible to include

the case for no damping for which the steady state Qn

would be infinite (Reference 3.43). As indicated by the

dashed'llne, the maximum relative response or effective Q

is within 90% of the steady state value for f Q2/_2< 1.

For the case of zero damping, For which the steady state

Q would be infinite, the effective Q is approximately

equal to

Qeff "=-3.7 fn/(f) 1/2 , (Qn : ao) (3.258)

As shown by the insert in Figure 3.63, the actual resonant

response, for an increasing frequency of excitation, occurs

at a frequencyabove the steadystate natural frequency fn"

This shift in apparent resonance frequency is less than 50

percent of the steady state resonant bandwidth fn/Q n For

f Q2/fn2-- less than 1. For very high sweep rates, the re-

sponse also exhibits secondary peaks at even higher fre-

quencies.

These results for the single degree-of-freedom system can

be applied directly to a multl-modal system by again con-

sidering each normal mode as an independent single degree

of freedom system. For example, if a resonant response of

a particular normal mode of a structure should be limited

to less than 4 times its response to a static load (Qeff=4),

then from Equation 3.250, the required sweep rate of a

transient sinusoidal excitation may be conservatively esti-
mated to be

{3.7 fnt2For Qeff<4 f> _ -'= .86 f2 Hz/sec .

1000

u_

.-ua 1O0

B

E

&

u.s

1

0.001

1 1 i

-_ /_f(Qn/Fn) 2< l

Forcing Frequency

40

- 5 _'_ ,_'_2 _.

L SteadyStatrQ _i_
- 0.9< Qeff/Qn< 1 for f(On/fn) 2< )'_--_.

0.01 0.1 1 .0

_/f2_ Rote of Change of Frequency

(Resonance Frequency) 2

FIGURE 3.63 Effective Dynamic Magnification Factor for

Single Degree of Freedom System Forced by

Sinusoidal Excitation with a Frequency

Increasing ata Linear Ratei. Insert indicates

decrease in maximum response and increase in

apparent resonance frequency and bandwidth

as p ..... tar F QnZ/fn 2 b ......... h greater

than I. (Adopted from References 3.42and

3.43.)

With the usual amount of damping, the allowable sweep

rate would decrease slightly. On the other hand, fora

slnusoldal vibration test of such a structure, a resonant

response amplitude within 90 percent of the steady state

value would require a slnusoidal sweep rate less than

For Qeff -_ .9 Qn f < \Qn/

In this case, the allowable sweep rate is critically depen-

dent on damping°

3.3.3.8 Example of Response of Two Degree-of -

Freedom System to Sinusoldal Excitation

The preceding discussion on slnusoidal response of multi-

modal systems has been developed, in part, as background

for defining the response of multiple degree-of-freedom

systems to random excitation. A simple example will assist

further in clarifying some of the concepts developed thus

far. Matrix notation will also be used frequently in this

example for the sake of further illustration of this useful

technique. The formal methods for carrying out analysis

of multl-modal system with matrix notation will be briefly

reviewed in a later section. It should be emphasized that

the forced response of the relatively simple system con-

sidered in this example can also be efficiently determined

by other methods. However, the normal mode approach is

used here for the sake of illustration of concepts applicable

to more complex systems.
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Forthesame two degree-of-freedom system described in

Section3.3.3.4, assume that a sinusoidal force P cos 27 ft

acts on the upper mass (see Figure 3.64). The normal mode

parameters of the undamped system were determined in the

previous example and can be given in the form of square

matrices as:

Undamped System Parameters

n=l 2

Natural [.665 Ik_"m- (k_/r_m ]Frequencles [Un] =
0 1.165

n = ] 2

Mass 0 I .64 m

n._

i [0.159 -0.358-Mode Shapes [*in] = 1

Note that the symbol [ ] indlcates a diagonal matrix

where off-dlagonal terms are zero. The following addi-

tional parameters are required to define the forced sinus-

oidal response of the damped system shown in Figure 3.64a.

Generalized Force

The column matrix specifying the generalized force

for each mode. In this case,

{Fn(t)} = P° {Jn}C°S (2_ft): l;l cos (2_ft)

Joint Acceptance (Equation 3.237)

The column matrix, equal to the generalized force for

each mode normalized by Po" In this case,

N

_" Pj *j n

Jn - Po second mode

Cross-Joint Acceptance (Equation 3.256)

The column matrix, in general complex, equal to the

time average value of the generalized external force

coupling two modes, normalized by the mean square

value of the total load. In this case, a complex form

is unnecessary since only one load is applied. Then,

the joint acceptance is the product

Ill'r t odesecond mode

P cos 2'_f t

mlk_7,T(t )

c_.k 1 = 3k

a) Damped System

c2 :l

"I =+!
c1|

cll =c 1 +c 2

_2 = + !

c2¢

c12

c12 = -c 2

b) Damping Coefficients

for Mossm|

FIGURE 3.64 Damped Two Degree-of-Freedom System
Driven by a Sinusoidal Force on Upper
Mass Illustratlng Method of Determining
Damping Coefficients for Discrete
Damping Elements

Amplitude of Total Load (Equation 3.237)

The scalar constant P equal to the amplitude of the
o

total load. In this case, for a single applied" force,

N

: --_ Pj = pPo

J

Generalized Modal Damping

To illustrate the general approach for defininga general-

ized damping constant, assume the fixed damping elements

as shown in Figure 3.644:. The damping coefficlentsclj

are determined in the same way as the stiffness coefficients

of the system are obtained (see Figure 3.64b). The result-

ing values may be given in the form of a damping coeffi-
cient matrix as

j----_

The generalized damping constants C n for each mode are

determined from the expression

(_"_(demping coupling terms)

N N =_ n_m

Cn = _-_ cij *in*jm /_"_(uncoupleddamplngterms)

i j \ n=m

(3.259)

The damping coupling terms in this summation for n/m

must be set equal to zero if the equations ofmotion for the

normal modes are to be uncoupled. This can be illustrated

be showing the results of this summation in the form of a

square matrix having N 2 terms.
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m_

.312 c 1+ .194c2.['Cn ] = •

L -.2cI + .602

-.2 c 1 + .6 c 2 7

/
1128c 1+ 1.844c2J

Thislsthegeneralizeddampingmatrix [Cn]corresp°ndingr:_ _ -1

to the generalized mass /Mnl and stiffness /Knl matrices

for this system. This generalized damping matrix can be

dlagonalized, or the off-diagonal modal coupling terms

eliminated, when -.2c 1+ .6c 2=0 orc 1 =3c 2. Note

that this would be equivalent to Uniform Viscous Damping

where each damping coefficient cij is equal to a constant

(2 G) times the corresponding stiffness coefficient klj . If

this condition were met, then the damping and stiffness

coefficient matrices, for this example, would be propor-

tlonal, or

c 2

[cij ] = 2G [kij ] ='-_- [kij'l

and the damping coefficient and stiffness coefficient ma-

trices would be related as shown by the following:

j..__,- j-.---.

L-c2 c2 - , 2G = c2/k

Making the usual assumption that a uniform damping model

can be used, the generalized damping constants would be

the diagonal terms in the generalized damping matrix. In

this case, for c 1 = 3 c2, these would be

C 1= .312c 1+ .194c 2= 1.13c 2

C 2= .128c 1 + 1.844c 2 =2.23c 2

The same result could be obtained directly by using Table

3.3, page 3-64 and the generalized system parameters to

g i ve

C n = 2GK n = 2G,.,2M n

or

c2: I, 2 223c2
Thus, the diagonalized general ized damping matrix becomes

1.13 c 2 0 c 1[Cn]= 0 2.23 2

If c 2 is chosen to be numerically equal to 0.1 Ii/"_', then

the resonant amplification factors Qn for each mode are

given by

_n Mn 1

Qn - Cn = 2 Gg-_--n-"-
- where 2 G = c2/k , or

k,
Q1 - c 2 u n .1

Therefore,

81 = 1/2 Q1 = 0.033

82 = 1/2 Q2 = 0.058

The decrease in Qn as the natural frequency increases is

apparent. This is characteristic of Uniform Viscous Damp-

ing. Alternately, Qn could have been assumed constant

for each mode by using Uniform Structural Damping. Uni-

form viscous damping will be assumed for this example.

Forced Response for One Sinusoidal Force

The uncoupled equations of motion of the normal coordi-

nates qn(t) may now be expressed in matrix form, using the

generalized mass, damping and stiffness matrices, as

[M1 02] l_l'l(t)/ + [C 1 C02] tCll(t)(q'2(t) } (612(t) }

_# M 2 (q2 (t)) (F2(t)

or

[Mn] {Cl'n(t)} + [Cn] {Cln(t) }

+ [1_# Mn] {qn(t)} : {Fn(t)}

This summation of matrix products is equivalent to a sum-

mation of independent single degree-of-freedom equations,

since there are no off-diagonal terms to couple the forces

acting on each normal coordinate. For sinusoldal excita-

tion, where Fn(t ) = Po Jn cos (2"_ ft), the solution for the

nth normal coordinate has the form given earlier,

qn (t) = Po Jn lan(f)l cos (2_ ft - Bn)
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where

..lan(f)l=absolutevalueofslnusoidaltransferfunction
fornthmode

en = phase angle of response in nth mode.

The total response at the ith mass is then the summation of

the modal responses q_in qn (t)" As discussed in the previous

section, the amplitude of this total response may be ex-

pressed in a form which contains phase-coupling terms be-
tween the response in each mode. These are not to be

confused with the absence of internal coupling forces be-

tween the equations of motion of the normal modes.

Displacement Response (Equations 3.237, 3.254 and 3.255)

The displacement amplitude response of the system is given

in a general form, including cross-mode phase coupling
terms, by using Equation 3.255 to give

[_ j2_12 iHn(f)12x,:Po :°-;M 2

N N jm 2 (Pin (:Plm Hn(f) Hm(f)

+_n/=, m_ u2u2 Mn M m

]/2

(3.260)

Since only one force is applied, the cross joint acceptance

Jm 2 is real and the complex term Hn(f ) Hm(f ) may be re-

placed by its corresponding real value

IHn(f) I lHm(f)l cos (e m On) .

Substituting the parameters defined in the preceding para-

graphs, the displacement response for the upper mass (i = 2)

of this two degree-of-freedom system may be given in nor-

malized form by

x--L2= [o.784IH,(f)12+0.20,1,2(f)l2P/k

+ 0.792 IH,(r)I IH2(r)Icos(e2-e,)] '/2

where

i.°(f)12 / [(,_ (f/fn)2)2+ (2 6n f//fn )2]

f] = _,/2_ = (.665/2_)

f2 = (]. ]65/2-0

0 n
= tan-]

26 f/fn

] - (f/fn)2

61, 62

P/k

= 0.033, 0.058, respectively

= arbitrary reference deflection equal to

static deflection of upper mass, wlth lower

mass fixed, for static load equal to ampli-

tude P of applied sinusoldal force.

The first two terms in this expression constitute the direct

modal response for each mode and the last term is the

modal cross-coupllng term. The resultlngvalues are plotted

in Figure 3.65 on a frequency scale normalized by the

natural frequency of the first mode. This shows the total

response and the response contributed by each mode. The

plotted data points represent the total response amplitude

without including modal cross-coupling terms. As ex-

pected, these values are very nearly equal to the envelope

of the individual modal responses. Most important, how-

ever, is that the true total response at the two response

peaks is essentially defined by the response of each mode.

Thus, as indicated earlier, the modal cross-coupling terms

are not significant near these points of maximum response.
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f/fl - Natural Frequency of First Mode
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e Modal Coupling
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...... Second Mode
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FIGURE 3.65 Displacement Amplitude Response of Upper

Mass of Two Degree-of-Freedom System

Shown in Figure 3.64 (Computed by Normal

Mode Method)
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Note that the apparent dynamic magnification factor or Q

of the first resonance peak, defined as the ratio of peak

dynamic deflection at resonance (X 2 = 13.3 P/k) to the

static response (X 2 = 1.33 P/k) is only 10. This is less

than the Q for the first normal mode (Q1 = 15) due to the

contribution of the second mode to the static deflection.

On the other hand, the Q based on the half-power band-

width Af n of the resonant peak, where Q = fn/Z_fn, is

substantially the same for the total response as for the first

mode only.

Acceleration Response

The amplitude of the acceleration response of the upper

mass is given by

X2 = -(2_ 02 X 2

This may be expressed in a normalized form, using Equa-
tion 3.61, as

or

10

%=

i,o

i

P/m

Total Response

e Modal Coupling

Omltted

@

0.1 I
O.l 1.0

i i I I

@

I I I I

Forcing Frequency

f/f) " Natural Frequency of First Mode

FIGURE 3.66 Acceleration Amplitude Responseof Upper
Mass of SystemShown in Figure 3.64
(Computed by Normal Mode Method)

I0

where

P/m = aribtrary reference acceleration equal to "static"

acceleration of upper mass for static force equal

to amplitude P of applied slnusoldal force.

This expression is plotted in Figure 3.66. The computed

response without the modal coupling term is also shown by

the circled points. Again these are significantly different

from the total response only at frequencies well removed
From resonance.

The trend in the relative acceleration amplitude of the

upper mass approaches unity at high frequencies. This is

expected since this mass will tend to act likea free body

at high frequencies with an acceleration, equal to the

excitation force P divided by the mass m or X2---_ P/m For
f -_m,- eo .

Forced Response - Two Sinusoldal Forces

To illustrate a more general case of slnusoidal excitation,

consider the response of the upper mass of the same system

shown in Figure 3.64 for twoslnusoldal forces. Thus, let

the driving force P2(t) on the upper mass remain as

P2(t) = P cos 27 f t

Now apply a sinusoidal force to the lower mass at the same

frequency but with a different phase and amplitude given

by

Pl(t) = 2P cos (2_ ft- ![31)

The following parameters must be redefined for this case.

Detailed calculations are omitted in order to emphasize

the general form of the results.

Amplitude of Total Load

N

= _ Pi = 2P+P = 3PPo
J

J

Joint Acceptance

Due to the phase difference between the applied

forces, the more general expression given by Equation
3.250 is used. This is

N N

Jn2 _ 12 _ Pj Pk _jn _kn cos (]3k- ]3j)

Po ] k

Given the two loads specified and the mode shapes

cpin defined earlier, the following values for J# are

obtained with this expression.

J12 = 0.250 + 0.248 cos ]31

J# = 0.168- 0.159 cos ]31
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Cross-Jolnt Acceptance

The complex form for the cross-joint acceptance is

required to conveniently include the effect of phase

of the two forces. This is given by Equation 3.256as

N N
2=1

Jmn p2 E_ Pj Pk_jnC_km eJ(!3k Bj)

o j k

where

Pj e-J13J = complex magnitude of force at j

Pk e]13k = complex conjugate of magnitude of force

at k.

Setting Pj e-J13J = P , and

Pk e-j13k = 2Pe-J131 = 2P (cos 131- J sin 131) ,

the complex value of Jmn2, in this case, can be shown
to be

Jm 2 = 0.022 + 0.0446 cos 131 - j 0.2038 sin 131

When these new values for the parameters Po' j2, and

Jm 2 are substituted in the general expression for the dis-

placement response (Equation 3.260), along with the com-

plex form for the frequency response functions Hn(f ) for

each mode, the total displacement or acceleration response

to the two forces is readily determined. Except for the

effect of phase between the forces, the results will be

similartothose shown in Figures 3.63 and 3.64 for just one

driving force. The effect of phase may be illustrated by

considering the maximum amplitude of the acceleration

response of the upper massX 2 at the two natural frequencies

fl and f2 of the system. In this case, the maximum ac-

celeration response can be given in the same normalized

form used previously by

P_m f=fl = 8.80 1 + 0.990 cos 131 - 0.081 sin (31

= = 6.51 - 0°904 cos 131 - 0.261 sin 131

These two expressions define the total resonant response

amplitude including the direct response of both modes and

the cross-mode response. (It is interesting to note that the

primary contribution of the cross-mode response is con-

tained in the sine terms in these expressions. The sine

terms are, in turn, proportional to the imaginary part of

the cross-joint acceptance Jm2.) The total acceleration

response defined by these expressions is shown in Figure

3.67 by the solid and dashed lines. The response ampli-

tude in each resonant normal mode is also plotted by data

points. Again, this shows that the single mode approxi-

mation is generally very good at the natural frequencies of

the system, particularly when the two sinusoldal forces are

phased so as to maximize the particular natural mode con-
sidered.

As expected, the first mode response is maximized when

the relative phase of the two applied forces is zero, cor-

responding to the in-phase motion of the two masses in this

mode. Conversely, the second mode response isa maxi-

mum when the two forces are 180degrees out of phase with

each other, corresponding to the antisymmetrlc mode shape

of this mode. This result is immediately apparent by ex-

amination of the joint acceptances J12 and j2,_ for each
mode,

2C
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.... Total Response }
o Second Mode Only f = f2

F I f2--f
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FIGURE 3.67 Change in Maximum Acceleration Response of

Mass m2 in Two Degree-of-Freedom System Shown

in Figure 3.64 Due to Relative Phase Between Two

Sinusoidal Farces Driving Both Masses.

P1(t) = 2P cos (2_ft - !B1) , P2(t) = p cos (2_ f t).

Data points represent computed response in only

ane mode at each excitation frequency, fn "

3.3.3.9 Response of Lumped Parameter Systems to
Random Excitation

The transition from slnusoldal to random excitation of

lumped parameter systems may now be made in the follow-

ing manner based on previously derived relationships.

The mean square (M.S.) displacement response at

the ith mass in the nth mode of a system, for a

sinusoidal free excitation, was found to be (see

Equation 3.249)

2 IPo2 lan/f/I2 2Xin = "2 (Pin (3.261)
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where

2

J#

Jan(f)l

jHn(f)l

= Mean Square Value of total slnusoldal

force applied to system at frequency f

= Joint Acceptance Squared or Relative

Generalized Force at this frequency

Absolute Value of Sinusoldal Transfer

= {Function which, in this case, is

(IHn(r)l/42f2 M n

--Dynamic Magnification Factor for nth

mode

M n = Generalized Mass for nth mode

ti n = Mode shape at i for nth mode.

Each normal mode can be treated as a single de-

gree-of-freedom system with an effective transfer

lanIf)l tin at the ith mass point.

For random excitation of a single degree of free-

dom, it was shown in Section 3.2.3.10 that the

power spectral density of the response was defined

by the product of the power spectral density of the

input excitation and the square of the absolute

value of the sinusoldal transfer function. There-

fore, for random excltatlon_ the power spectral

density of the displacement response W x (in, f) at
the ith mass in the nth mode is

W x (in,f) : Wo(f ) J#(f) lan(f)l2 2 (3.262)

when

Wo(f ) = Power Spectral Density (PSD) of reference

force Po at frequency f

J#(f) = iolntacceptance in nth mode atfrequency

f - the ratio of the PSDof the generalized

force in nthmode to Wo(f ). (The conven-

tion is adopted of adding the argument (f)

to the joint acceptance term to denote the

ratio of PSD's.)

Neglecting cross-mode coupling terms, the PSD

of the total displacement response at the ith mass

W x (i, f) is the summation of the modal responses

over all N modes. Substituting the value for

I (f)l defined in Equation 3.261, this gives the

general expression for the displacement response

in all modes due to random excltation.

N j#(f)IHn(f)l 2 _n

W x (i, f) = Wo(f ) _E_n ( 4"_2 f# Mn) 2
(3.263)

Without further approximation, the total M.S. re-

sponse over the entire frequency spectrum of the

excitation will be the integral of this response PSD

over frequency, or

x,2=_ o(f) (42f# Mn)2 d

(3.264)

Note that the order of the summation and integra-

tion can be interchanged since the response in

each mode is treated independently when cross-

mode coupling terms are neglected.

These last two expressions illustrate the general form for

the response of structure to random excitation. The PSD

and M.S. value of the acceleration response (in g2/Hz or

g2) is obtained bymultiplying eachterm in the above sum-

mations by (42f2)2/g 2 where g is the acceleration of

gravity in units compatible with the units for the mass M n.

For multi-modal systems with a discrete number of well

separated normal modes, the M.S. response over all modes

can also be obtained, without requiring the integration

above, by using the closed forms for the integral of la(f)l2
over frequency given earlier in Section 3.2.3.10, page

3-39. For example, the M.S. acceleration in g'sat the

ith mass over N discrete modes is approximately equal to

(see Equation 3. 161, page 3-42)

N Wo(fn) J#(fn)fn Qn _i#

xi2/g2 _]_n 2 g2 M#
g2

(3.265)

where

Wo(fn), Jn(fn) = PSD of reference force and joint ac-

ceptance squared evaluated at the

natural frequency fn for each mode

Qn = ResonantAmplification Factor for nth
mode.

The above expressions for response to random excitation

differ from those for sinusoidal excitation in only two im-

portant aspects. 1) The response and excitation is speci-

fied interms ofa PSD centered about a frequency f instead

of a M.S. value of a single frequency, and 2) the joint

acceptance squaredis now a ratio of the PSD's of general-
ized and reference forces.

The characteristics of the power spectral density of single

random variables have been covered in detail in Section

3.2.3 and need not be considered further here. Referring

to Equation 3.263, only t_vo such variables need be con-

sidered for response of multi-modal systems to random ex-

citation - the power spectral density Wo(f ) of the reference
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ortotalforce o(t)--_, P] (t applied to the system, and
J

the power spectral density W x (i, f) of the displacement

response.

3.3.3.10 Joint Acceptance for Random Loads

The basic advantage of the joint acceptance parameter for

defining the relative generalized force on structure under

acoustic loading has not always been utilized due to a

confusing number of definitions for this parameter. It is

desirable, therefore, to briefly review these to establish a

clear concept of joint acceptance in practical terms. To

compute the response to random acoustic loads from rock-_"

noise, the joint acceptance squared J#(f) for random ex-

citation can always be defined bX the equivalent value

J# forsinusoldal excitation. This stems from the fact that

the ratio of the spectral densities of two random variables

(i.e. - the generalized force and the reference force)

evaluated about any given frequency is identical to the

ratio of mean square values of twocorresponding slnusoldal

variables with the same frequency.

As shown earlier in Equations 3.247, 3.248 and 3.250,

the joint acceptance squared J# for sinusoldal excitation

can be expressed in any of the following equivalent forms

N N

J# p# _ Pj Pk cos (13k - J3j) Cjn _kn
k

N N
1

J# - 1 p# _"_ Pj(t)Pk(t) _jn %n
2" j k

or

N N

j2 __JL.
n = l_p# _ _" Rp(j,k,f) _jn_kn

2 j k

where

(3.266a)

(3.266b)

(3.266c)

Rp(j,k,f):Pj(t) Pk(t), the narrow band space corre-

lation function equal to the long time

average of the instantaneous products of

the sinusoidal forces Pj cos (27 ft- J3j)

and Pk cos (21t ft - Ilk)

1 2

Po = Mean Square Value of Reference Force Po

_jn' _Pkn = mode shapes at jth and kth load points in
nth mode.

In most practical cases of acoustic loading on structure, it

is possible to assume that the amplitudes of the slnusoldal

forces at all points are constant (i.e. - Pj - Pk -- P)"

Thus, the reference force becomes simply

N

Po : ]_'-_ P = NP

J

Dividing each term in Equation 3.266c by the mean

I p2
square value _. of the constant sinusoldal force at each

load point, a simpler form for the ioint acceptance for

slnusoidal excitation of lumped parameter systems is ob-
tained.

N N
1

J#- N 2 _ Fpp(j,k,f)_jn £bkn

j k

where

(3.267)

Pj (t) Pk(t)

Rp(j,k,f) - 1 p2
2

the narrow band space cor-
relation coefficient - a nor-

malized value of the space

correlation function which

cannot exceed unity.

The space correlation coefficient is also commonly used to

define the relative correlation between any two spatially

separated variables, not necessarily with equal amplitudes.

In this case, the normalizing factor is the product of the

rms amplitude of each variable. In the terminology of
Equation 3.267, this would be

R-p(j, k, f) : Pj (t) Pk (t) (3.268)

Strictly speaking, this value of the space correlation coef-

ficient cannot be used in Equation 3.267 to define joint

acceptance unless the loading is uniform (Pj = Pk) at all
points. However, the error will tend to be small in most

practical cases•

Joint Acceptance for Propagating Sinusoidal Acoustic
Loads

For o structure under excitation by a propagating acoustic

wave (see Chapter 4), the phase shift between the slnusol-

dal forces at any two locations on the structure (considered

for now as lumped elements at say the jth and kth point) is
given by

where

Ajk = the separation distance between the jth and
kth points and

= the propagation velocity of the acoustic load

along the separation llne Ajk in thedlrection
j--.- k.
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Fortheusualcasewheretheamplitudeof theacoustic
waveat eachpointisconstantrthen,asshown in Figure

3.68, the slnusoidal force at the kth point Pk(t) is simply

a delayed replica of the force at the jth point or

Pk(t) = Pj (t - Ajk/_')

Y 0 _ Pk(t) =Pj(t- Ajk/E )

c

IIIIiII

FIGURE 3.68 Sinusoidol Forces on Lumped Parameter System

Due to Propagating Acoustic Wave Travelling

With Velocity -C" from j to k

The space correlation coefficient for these sinusoidal forces

may then be expressed as

Pj(t) Pj(t - Ajk/_)

Rp(j,k,f) 1 p 2 : cos (2_ f Ajk/_)
2 J

(3.269)

Thus, for this case of a single slnusoldal acoustic wave,

the space correlation coefficient is simply a cosine func-

tion which has a maximum value of I whenever f Ajk/_'=n
where n is an integer.

This simple form for the space correlation function for a

single sinusoldal acoustic wave can be used for most of the

computations of structural response for acoustic loads on

ground structure. One important exception occurs when it

is necessary to account for the loading effect of more than

one acoustic wave passing over the structure. As shown

later in Chapters 4 and 8, the space correlation coefficient
will be

sin 27 f Ajk/E

Rp(j ,k,f) = (3.270)

2_ f Ajk/E

for the limiting case of an infinite number of sinusoidal

acoustic waves, passing over the structure, which arrive

from all possible directions.

Joint Acceptance for Propagating Random Loads

The joint acceptance foracoustlc loads may also be obtained
from a measurementof the random acoustic levels on struc-

ture. In this case, a more general definition is required

for joint acceptance. Since the true environment is, in

fact, a random phenomena which contains energy at all

frequencies, the measured random forces (or pressures) must

be analyzed in a special manner to define their spectral

content. This isnecessary in order to compute the general-

ized forces acting on the structure as a function of fre-

quency. The required analysis will defineaspacecorre-

lation function for a narrow band of random noise which

corresponds to the space correlation for sinusoidal loads.

It was shown in Section 3.2.3.10 that the power spectral

densltyW(f) of a single random variable x(t) is equal to
two times the Fourier Transform of the autocorrelatlon

function R('r) of x(t) (see Equations 3.133 and 139a, pages

3-37 and 3-38). Similarly, the power spectral densHy

WFn(f ) of a generalized random force for the nth mode

Fn(t ) is given by

OO

WFn(f) : Wo(f ) j2(f) : 2 / RFn(T) e-j 2_ f'r

-OO

dT

(3.271)

where

Wo(f ) : Power Spect_l Density of the
force P

o

j2(f)

reference

= Joint Acceptance Squared for the nth mode

at frequency f

and

RFn('r ) = Fn(t) Fn(t + "t) (3.272)

The autocorrelatlon function RFn('r) is the long time aver-

age of the product of the instantaneous value of Fn(t ) and

its value Fn(t +'r) at a later time "r. This time averaged

product is a function of the rapidity with which Fn(t )

changes during the time "r and hence contains information

about the frequency content of Fn(t ). (Note that without

any delay time, the time average of Fn(t ) • Fn(t ) is simply

the mean square value of Fn(t) which contains no informa-

tion about frequency content.) The frequency spectrum of

Fn(t ) is obtained, therefore, by taking the Fourier Trans-

form of its autocorrelatlon function RFn(T ) as indicated by

Equation 3.271.

If it is assumed that the random load is statistically "sta-

tionary" in time, then the autocorrelation function is in-

dependent of the absolute time t and only depends on the

relative (positive or negative) time delay "r so that

RFn('r ) : Fn(t ) Fn(t +'r) = RFn(-'r ) = Fn(t - T) Fn(t)
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Thus,asillustratedinFigure3.69,RFn(T) isanevenfunc-
tionwhichis symmetricalabout"r=0. ThenEquation
3.271canbesimplifiedtogivetherealvalueForthePSD
ofthegeneralizedforceas

CO

WFn(f) = 4 S RFn('r) cos 2". f'r dT

0

(3.273)

R(_)

FIGURE 3.69 Typical Autocorrelafion Function

Illustratlng the Symmetry of This

Function About "r = 0

Since the instantaneous value of the generalized force

Fn(t), in general, is

N N

Fn(t) : _ Pj(t)_Pjn : _E] Pk (t)_kn

j k

then the outocorrelation function of Fn(t) from Equation

3.272 is the double summation of the time averaged value

of all cross products, or

N N

RFn('r) = _'_, Pj(t) Pk(t +'r) (Pjn (Pkn (3.274)

j k

3.3.3.11 Cross-Correlation Functions and Cross-

Power Spectral Density

Two new terms can now be defined:

Space-Time Cross-Correlation Function

Rp(j ,k,'r) = Pj (t) Pk(t + "r) (3.275)

Cross-Power Spectral Density

+CO

_,_p(j,k,f) = 2 f Rp(j,k,'r) e -J 27 f'r d'r

-OO

(3.276)

The space-tlme cross-correlation function (or simply cross

correlation function) is the long time average of the ran-

dom force Pj(t) at the jth point times the delayed value of

the random force Pk(t +-r) at the kth point. The cross-

power spectral density (or cross PSD) is equal to two times

the Fourier spectrum of this cross-correlatlon function.

Thus, the cross PSD is the long time average of a narrow

band of frequency components, centered about a frequency

F, in the cross-product Pj(t) Pk(t+T). The cross correla-

tion function and cross PSD can be obtained by suitable

processing of measured random data by methods which will
be described later. Consider now the form that these two

quantities will have for a propagating wave of random
noise.

Cross-Correlatlon Function

As shown in Figure 3.70a, the time hlstory of the random

force Pk(t) at the kth point is delayed by the propagation

time -rjk so that the cross-correlatlon Function is

Rp(j,k,'r) = Pj(t) Pk(t + "r) = Pj(t) Pj(t - "Tjk + T)

k/I v k/"--'
I I _"_ i k"'i ,

I ,JlxPk (t + '')

Pk_ _ _ / j_

K IV
0 t t+'r

a) Cross Correlation of Random Noise at Two

Points Separated by a Propagation Time of

"rjk

(3.277)

Rp_,f. --

b) Cross Correlation Function Illustrating

Symmetry About Propagation Time -rjk

c) Mirror Symmetry of Cross-Correlatlon Pairs for

"Stationary" Random Noise. The sum of these

two functions is _ymmetrical about -r = O.

FIGURE 3.70 a) Time History of Propagating Random Noise at

Two Points and b), c) Cross Correlation Functions

Illustrating Unsymmetrical Form of Each Pair and

Symmetrical Form of Sum

Thus, the cross-correlatlon functi on R(j, k,'r) at two points,

for a propagating wave of random noise r is equal to the

autocorrelation function R('r') of the random noise at one
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point for a time delay T' = "r - "rj k where "rj k is the propa-

gation time between the points. Again, if the propagating

random noise is assumed to be statistically "stationary",

then, as shown in Figure 3.70b, the cross-correlation func-

tion Rp(j,k,'r) will be symmetrical about the propagation

delay time "r = "rjk, instead of T = 0 as for the autocorre-

lation function.

A corresponding cross-correlation function Rp(k,j ,-'r) for

the secondcross product for each pair of forces can be de-

fined as the time average of the forceat k at time t multi-

plied by the force at j at an earlier time t-'r. Thus, for

"stationary" random noise, the cross-correlation function

will have the important mirror image property, illustrated

in Figure 3.70c, that

Pj(t) Pk(t + "r) = P] (t - "r) Pk(t)

or

Rp(j,k,T) = Rp(k,j,-T)

Therefore, for any two points, there will be two terms in

the summation indicated by Equation 3.274 for the auto-

correlation of the generalized force. For the jthand kth

points, these would be

Pj (t) Pk(t + "r) _j n _kn + Pj (t - "r) Pk(t) _j n _kn

or

[Rp(j ,k,'r) + Rp(k,j ,-'r)] _jn _kn

As shown in Figure 3.70c, the sum of the pair of cross-

correlation functlons, which are mirror imagesabout "r = 0,

is an even function with exact symmetry about "r = 0. This

consideration of the symmetry properties of the cross-

correlation function will help in understanding correspond-

ing complex symmetry properties of the cross PSD.

Cross-Power Spectral Density

Due to the unsymmetrical nature of the cross correlation

function Rp(j ,k,'r) about "r -- 0, the cross PSD _(/p(j,k,f)

of this uneven function is complex. That is, it has both a

real and imaginary term. However, by substituting each

of the cross-correlation terms, Rp(j ,k,T)and Rp(k,j ,-'r),

in Equation 3.276, it can be readily shown (Reference 3.3)

that for "stationary" random noise, the corresponding cross

PSD's will be complex conjugates of each other, or

_,,_p(j, k, f) = _Y_(k, j ,f)

Thus, the sum of this pair of cross-PSD or complex Fourier

spectrum terms will be a real quantity; the imaginary terms

cancel out. This is the expected result based on the pre-

vious observation that the sum of the pair of cross-
correlation function terms is an even function and the

Fourier spectrum of an even function is real.

Now with these new quantities, the PSD of the generalized

force is obtained by first substituting Equation 3.274into

3.271 to give

WFn(f ) = Wo(f ) Jn2(f)

C°N N

= 2 / ]_'-_ Pj (t) Pk(t +'r) _jn Ckn e-j 2Trft

-ao J k

d'T

Carrying out the integration for each term in the double

summation, using Equations 3.275 and 3.276, and solving

for the joint acceptance JnZ(f), the later is given in terms

of the cross PSD by

j2(f) =

N N

)-Z._ _.'Yp{j,k,f) _jo _kn
j k

Wo(f)

Further simplification is possible. Since, for each pair of

terms in this double summation, the imaginary part of the

cross PSD (called the cluad spectrum) cancels out, only the

real part of the cross-PSD, called the _ is re-

quired. If this is identified as/_'[_'p(j,k,f)J or simply

Wp(j ,k,f), then the joint acceptance becomes

N N
1

j2(f)= _ _ Wp(j,k,f) q_jn _Pkn (3.278a)

j k

where

oo

,k,f) = 2 / Rp(j,k,-r) cos 2_f'r d'r (3.278b)Wp(j
i,/

-GO

the cospectrurn equal to the real part of the

cross PSD

and

Rp(j ,k,'r) = cross-correlation functlon between jth and kth
points.

Finally, for the special case where the PSD of the force at

each point Wp(j,f) is a constant, then the PSD of the

reference force is

Wo(f ) = N Wp(j,f)

and the preceding expressions reduce to

N N
1 Wp(j ,k,f)

j2(f) = _ :_"_ _P_P(J-'-_" _jn _kn (3.279)
j k

Comparing this expression for the joint acceptance for

random forces, with the corresponding equation for slnusol-

dal forces (Equation 3.267, page 3-88), itis clearthat the

ratio of the real part, Wp(j,k,f), of the cross-PSD to
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the PSD of the uniform propagating random force Wp(j,t)

is identical to the space-correlation coefficient Rp(j ,k,f)

for uniform propagating sinusoidal forces. The latter

quantity is more suitable for analysis while the former may
be obtained from measurements of random loads.

Measurement of Cross-Correlation Function and Cross-PSD

The more common methods for measuring the cross-

correlation function and cross PSD are summarized in

Figure 3.71 . Part (a) illustrates the formal method for mea-

suring the cross PSD with unfiltered random data. This

process may be carried out on special analog correlation

analyzers (Reference 3.44), or with the use of high speed

digital computers specially programmed to carry out the

same steps (Reference 3.45). (See also References 3.17,

3.22 and 3.45 .)

R(×I,×2,_) _(_i,×2,f)

×l(t)° I I

x2(t) _

a) Formal Method for Computing Complex
Cross-Power Spectrum

Co-Spectrum

/ kI \ PhaseSh ft)

] kt-----I' I--" Ouad-Spectruo
I''1 II (90° Phase Shift)

90° Phase
Shifter

b) Direct Method for Computing Co-Spectrum (Real
Part of Cross Power Spectrum) and Quad-Spectrum
(Imaginary Part)

FIGURE 3.71 Methods for Measuring Cross-Power Spectral
Density of Random Signals

Part(b) illustrates a simpler method for obtaining the real

part of the cross PSDdirectly. This analysis procedure is

eqOqvalent to combining the operations indicated by Equa-

tions 3.275 and 3.276.and reversing the order of integra-

tion to determine the frequency spectrum first before carry-

ing out the time averaging of the product. The real part
of the cross PSD would then be

lira --f Pk(t+'r)cos2_Prd dt
Wp(j,k,f) = _-..- T J Pj(t)

/ ao -T/2 L-CO

Notethat the term within the brackets is equivalent to the

frequency spectrum of Pk(t). The analog form of this

mathematical operation is shown in Part b of Figure 3.71.

Iteliminates theneed for a time delaydevice and a Fourier

spectrum computer but requires a set of matched narrow

band filters witha variable band-center frequency. Pro-

viding the filter bands are sufficiently narrow, the time

average product of the filtered signals for 0 ° relative phase

between channels, is approximately equal to the real part

of the cross PSD and hence is equivalent to the narrow band

spacecorrelationfunction Rp(j,k,f). In either system, the

final result may be normalized by the product of the rms

values of each narrow band signal to obtain a narrow band

space correlation coefflcientR'p(j,k,f). This may then be

used directly in Equation 3.267 to compute the joint ac-

ceptance.

Cross-Correlation for Frozen and Decaying

Propagating Random Loads

For the types of "frozen" propagating waves considered so

far in this discussion, there is no change in the instanta-

neous amplitude of the propagating random force as measured

in a time frame which moves with the same propagation
velocity. In thiscase, themaximum of the cross-correlation

function at the delayed time of symmetry ('r = -rjk), is

theoretically the same as the maximum value of the auto-

correlation function of T = 0 which is equal to the mean

square value pj2(t) of the random force. Practical mea-

surements of the cross correlation for this type of "frozen"

propagating wave mayexhibita substantial decrease in the

maximum value of the cross correlation at increasing sepa-

ration distances due to the finite size of measuring systems

and small perturbations in the propagating wave. This is

illustrated in Figure 3.72a.

Rp(j,k,-r)

F Ideal Envelope

/ Measured Envelope 7

/\ /\ /\
a) "Frozen" Propagating Wove

Rp(j,k,-r)k _.....,__" Damped Envelope _e-Aj k/_

b) Convected Aerodynamic Pressure F;etd

FIGURE 3.72 Cross Correlation Functions for a) Ideal "Frozen"

Wove, and b) Convected Aerodynamic Flow with
Decaying Coherence. Measured Envelope shown
in part a)represents decay due to finite transducer
size and small deviations in the "frozen" character
of the propagating wave.
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Anothertypeofrandomloadingisencounteredforstructure
subjectedtoa convectedflowof turbulentgasessuchas
existsin arocketengineexhaust.Thistypeofloadingis
calledaerodynamicorhydrodynamicnoise. The idealized

model of a "frozen" pattern of propagating random forces

must now be replaced by a changing pattern of random

forces which no longer remain coherent as measured in a

moving time frame. The net effect of this changing co-

herence of the convected fluctuating pressure field is that

the maximum value of the cross-correlation function de-

creases as the separation distance between measurement

points increases. This decrease in coherence is frequently

defined by expressing the cross-correlatlon function

Rp(j,k,f) in the form of an exponentially damped auto-

correlation function by

Rp(j,k,-r) = e-Aj k/_ Rp(j,x- Ajk/E )

where

Aj k = separatlondlstance between j and k

= characteristic length for the turbu-
lent flow

convection velocity of flow

autocorrelation function of force at

j for an effective delay time ('r-

Ajk/Z)where "r is the actual delay

time for the cross-correlatlon func-

tion.

Such a damped correlation function has the typical appear-

ance shown in Figure 3.72b. Each curve represents the

variation in the cross-correlation function as a function of

"r for a given separation distance Ajk. The envelope of

these curves, which peak at a value of'r = Ajk/E , cor-

responds to the damping term in the preceding expression.

The damping constant or characteristic length J_ is usually

proportional to the ratio of a characteristic (convection)

velocity _ to frequency f. In this case, it is necessary to

filter the correlated signals representing P. (t) and Pk(t) toJ
obtain a narrow-band cross-correlatlon function. When

normalized by the product of the rms values of Pj(t) and

Pk(t), this will be the narrow band cross-correlatlon co-

efficient given by

_p(j ,k,'r,f) = e -a AJ kf/E cos 2_ f ['r - Ajk/2" ]

where o = empirical constant.

The exponential damplngterm is then determinedby setting

the time delay -r = Ajk/_. Once this damping term is

evaluated, the narrow band space correlation coefficient

R'p(j ,k,f) is obtained by setting "r = 0 in theabove expres-
sion.

3.3.3.12 Summary of Terminology for Random Loads

The terminology utilized in this section is summarized

below.

• Narrow Band Space Correlation Function (Required to

Compute Joint Acceptance)

Rp(j,k,f) = Pj (t) Pk,(t) where the-- denotes the long

time average of Pj(t) times Pk,(t). These are sinusolds

or equivalent narrow band random variables with fre-

quency f.

• Autocorrelatlon Function

Rp(j ,'r) : Pj(t) Pj(t + "r) - no restrictions on frequency

content.

• Cross-Correlatlon Function

Rp(j, k,'r) = Pj (t) Pk(t + "r) - no restrictions on frequency

content.

• Narrow-Band Cross-Correlation Function

Rp(j ,k,f,'r) = Pj (t) Pk(t + "r) and Pj (t), Pk(t) are sinus-

olds or equivalent narrow band random variables with

frequency f.

When normalized by the product of the rms values of the

product terms, these "functions" become "coefficients"

with a maximum possible value of +1 and a minimum pos-

sible value of -1. They may be used to determine the fol-

lowing spectral density functions.

• Power Spectral Density (PSD)

Wp(j,f) = 2 times Fourier Transform of autocorrelation

function.

• Cross-Power Spectral Density (Cross-PSD)

_/_p(j ,k,f) = 2 times Fourier Transform of cross correla-

tion function

• Co-Spectrum (Equation 3.278a)

Wp(j,k,f) = Real Part of cross-PSD. (When normalized

by Wp(j,f) for uniform loading, this is the same as the

narrow band space correlation coefficient .)

• Quad- Spectrum

Qp(j ,k,f) = imaginary part of Cross-PSD

Typical values for some of these quantities are summarized

by the following expressions and in Figure 3.73.



3-94 FundamentalsofVibration

Plane Sinusoidal Acoustic Wave with Frequency f

• Narrow Band Space Correlation Coefficient

Between j and k

Rp(j,k,f) = cos (27 f Z_]k/E), where Ajk = propaga-

tion distance between j and k, and'_ = propagation

velocity between j and k.

Plane Acoustic Wave of Low Pass Band of White Noise

rWp(f) = Constant] with Upper Frequency Limit of fb

• Autocorrelafion Coefficient at Point j

sin(2_ fb -r)

-R'p(j ,'r) 2"_ fb "r (See Figure 3.73a)

eCross-Correlatlon Coefficient Between j and k

sln[2_T fb ('r - Ajk/'_)]
Rp(j,k,-r) =

27fb (_- Aik/-_)

eCross-PSD Between j and k

_'p(j ,k,f) = Wp(f) [cos(2_ f Ajk/_')- j sin(2_ f Ajk/_")]

* Co-Spectrum

Wp(j,k,f) = Wp(f) cos(2_ f Ajk/-_ )

• Quad-Spectrum

Qp(j,k,f) = -Wp(f) sin(2_ f Ajk/_" )

Band of "White" Random Noise with Frequency Limit_

fa_fb (Wp(f) = Constant Between fa and fb)

• Autocorrelation Coefficient

Rp(j,'r) = 2_(fb- fa)'r cos _

(See Figure 3.73b)

Random Noise with Constant PSD from 0 to Frequency fb

and Sloping Off at Rate c( 1/f 2 Above fb

eAutocorrelafion Coefficient

Rp(j,-r) =_- _ + cos v - _- v + v Si(v)

(See Figure 3.73c)

where

v = 27 fb T

V

Si(v ) = f sln_._y_vvdv- the Si function (tabulated in
Reference 3.48).
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General Expression for Response of Lumped Parameter

Systems to Random Excitation

Although seldom required for practical analysis, the most

general expression for thePSD, Wx(i,f ) of the random re-

sponse at the ith point of o lumped parameter system to

random excitation may be expressed in the following com-

pact form. This includes the response in all modes, in-

cluding cross coupling terms, and is not restricted to

uniform loading.

N N
2

Wx(i'f) = Wo(f)_-_ _"_ q_in _im an(f) am(f) Jmn

n m

where

N

Wo(f) = _ Wp(j,f) - PSD of total load

J

_in' _im = mode shapes at i in nth and mth mode

an(f ) = complex slnusoldal transfer function for
nth mode

am(f ) = complex conjugate of transfer function for
mth mode

Jm 2 = complex cross joint acceptance

N N _p(j q_km,k,f) q_jn

: E:E:
j k

_p(j ,k,f) = cross PSD between random load at j and k

_jn,_k m = mode shapes at j and k in nth and mth
modes, respectively.

As pointed out earlier, the complex conjugcte pairs

f Jmnz, Jnm z will combine to cancel out allan(f) am( ) and

imaginaryterms in the final summation over modes n and m.

3.3.4 MATRIX METHODS FOR NORMAL MODE

ANALYSIS OF LUMPED PARAMETER

SYSTEMS

The potential application ofmatrlx methods has been illus-

trated in preceding sections of this chapter forthe analysis

of the normal mode response of lumped parameter systems.

This section briefly reviews some of the basic matrix opera-

tions utilized for this analysis. The intent is to provide

only a minimum background to familiarize the reader with

key steps which are employed in the matrix analysis of

dynamic response of lumped parameter systems. For a more

thorough discussion of matrix methods, the reader is re-

ferred to standard texts on mathematical analysis methods,

such as Reference 3.49 or to References 3.36 and 3.1,

Chapter 28, for a detailed discussion of the application of

matrices to vibration analysis. For all except the simplest

systems, the matrix computations described are normally

carried out with digital computers. However, matrix

notation itself is frequently used for convenience to ex-

press dynamic equations of motion of complex systems in a

very compact form.

3.3.4.1 Matrix Definitions

A matrix is a rectangular array of elements arranged in n

columns each containing m terms making up an m row by n

column array of the ordermx n. As an example, the fol-

lowing is a matrix of stiffness coefficients (see Section

3.3.2.5 for definition of stiffness coefficients).

Square Matrix

j .--,,-,..,e- n

i kl 2 k131
[kij]= Fill1 k22 k23/

mkk31 k32 k33J

This illustrates a 3 x 3 SQUARE MATRIX where n = m = 3

and the term kij is the matrix element in the ith row and

jth column. For a COLUMN MATRIX, n = 1 and fora

ROW MATRIX, m = 1, such as illustrated by the following
modal matrices.

Ill °tr x :
n

RowMatrix = L . mJ

Other special matrices are:

Diagonal Matrix - A square matrix with zero elements

everywhere except on the main diagonal. This is usually

indicated by tick marks in the upper left and lower right-

hand corner of the matrix bracket. For example,

i o°
e 1

[all]= a2 0

0 a 3

Unity (or Identity) Matrix - A diagonal matrix, indicated

by the symbol [1], whose nonzero elements are equal to

unity. This is equivalent to the algebraic number 1. For

example, for n = m = 3,

D] : 1
0
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Zero (or Null) Matrix - A matrix with all elements equal

to zero.

Transpose of a Matrix - A matrix for which the rows and

columns are interchanged. Thus, the ith row is replaced

by the jth column and visa versa. The transpose of the

preceding stiffness matrix is identified by the superscript T

and is

k21 k31

[kij]T = [kjl] = Illli k22 k32

kk13 k23 k33

The transpose of a column matrix is a row matrix or

Symmetric Matrix - A square matrix whose off-diagonal

elements are symmetrical about the main diagonal. The

preceding stiffness matrix is symmetric when kij = kjl. By

the above definitions, a symmetric matrix and its transpose

are equal.

Equality of Matrices - Two matrices of the same order,

FA] = [eli ] and [B] = [bij] are equal ifevery element

of ['A] is equal to the corresponding element of [B] or

alj = blj.

Determinant of a Square Matrix

A square matrix can represent the n x n coefficients

_-.j/aijl in aset of n linear equations of nvarlables. The

determinant ..JalJ I of this nx n coefficient matrix is a

scalar quantity where the elements alj in the determi-

nant are identical to the corresponding elements in the

square matrix. Some of the more useful rules for evalua-

tion of determinants are listed for reference purposes.

tf a 3 x 3 square matrix is given by

aij] =

all a12 a131

a21 a22 a23 /

a31 a32 a33J

its determinant can be written as

lalj I = all (a22 a33 - a32 a23)

- a12 (a21 a33 - a23 a31)

The determinant of a matrix [A] is

• Equal to zero if one row (or column) is a linear com-
bination of one or more other rows or columns. For

example, if a2j =constantxa3j or if a2j =a3j + a4j,

then laijl =0.

• Unchanged if the rows and columns are interchanged.

• Unchanged if all elements in one row (or column) are

multiplied by a constant and added to corresponding

elements in another row (or column).

• Changed in slgn if two rows (or columns)are inter-

changed.

• Multiplied by a constant c ifeachelement in one row

(or column) is multiplied by c.

Singular Matrix - A matrix whose determinant is zero.

3.3.4.2 Matrix Operations

Matrix Addition and Subtraction - Two matrices of the

same order (i.e., same number of rows and columns for

both matrices) can be added or subtracted by adding or

subtracting the corresponding elements in each matrix to

form a new matrix of the same order.

[aij] + [bij] : [(aij +bij)]

Multiplication or Division of a Matrix by aConstant- The

product of a matrix Faul and a constant c is equivalent

to multiplying every element in the matrix by a constant.

Thus,

c [aij] = [(caij)]

The inverse operation may be used, for example, to divide

each element in a modal matrix by a normalizing constant.

Matrix Multiplication - The matrix analysis of the equa-

tions of motion of structural systems involves various forms

of matrix multiplication. The governing rules for this

operation are summarized as follows:

Conformable Matrices - A product of two matrices is

possible only when they are conformable; that is,

when the number of columns (n)in L_j[aij1 is equal to

thenumberofrows(m) in [bjk ].

Order of Multiplication - The order of multiplication

of the matrices cannot, in general, be reversed with-

out changing its value. That is, representing each

matrix by the symbols A and B.

+ a13 (a21 a32 - a22 a31) A x B 7' B x A
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r 7

The product of a matrix L|alj/J of order m,n times a matrix

[bjk ] of order n,p is a new matrix [clj]of order mp.

That is,

n_ p_ p_

T[alj] x i[bjk] = T[Cik]

Each element Cik in the product matrix is equal the sum of

[a ] timesr _products of the jth element in theith row of ij

the corresponding jth element in the kth column of Lj|bJk/
or

n

Cik = _ aij bjk
j=l

This operation can be represented by the diagram

J k

J jk

k

i .... _..j aij bjk J

As on example,

Matrix Inversion

A basic step in matrix analysis involves inversion of square

matrices. If it exists, the inverse (A -1) of a square matrix

(A) has the property

A -1 x A = A x A -1 = I (unity matrix)

The inverse can be found only for square matrices which

have a nonzero determinant. For example, the inverse of

a stiffness matrix ,,|kij / faro structure is called the flexl-

billty matrix 6 i klj . It defines the deflection

of the structure at one point for a unit load at another

point. This flexibility matrix does not exist if the struc-

ture is unrestrained so that rigid body motions can occur

for any applied force. In this case, the stiffness matrix

usually contains a zero term along its main diagonal and

its determinant is zero. Sucha matrix is singular and has
no inverse.

Special computer methods are available for finding the

inverse of large matrices (e.g., Reference 3.1, Chapter

28). For relatively simple systems, the formal method for

finding the inverse of a matrixAcan be employed for hand

calculations (Reference 3.49). This general method is

illustrated by the following example

21 °22J Lb21 b22

• Given A =
I011 a12]

a21 a22

[(all b11+a12b21 )
/

k(a21 bll + a22 b21)

(all b12 + a12 b22) ]
/

(a21 b12 + a22 b22) J

• Form the Minor Mij of each aij elemental the deter-

minant of A by deleting the ith row and the jth

column. Multiply the remaining determinant by the

sign (-1) i+j to form the cofactor ofalj. That is,

The general rules for matrix multiplication

square matrix x square matrix =

column matrix x row matrix =

square matrix x column matrix

row matrix x square matrix =

row matrix x column matrix =

symmetrical matrix x symmetrical matrix

matrix x transpose of matrix =

transpose of (A x B) =

unit matrix I x A

Associative law (A x B) x C =

Premultlplication of A by B =

Postmultlplication of A by B =

are:

square matrix

square matrix

column matrix

row matrix

scalar constant

symmetrical
matrix

symmetrical

matrix

BT x A T

AxI=A

A x (B x C)

BxA

AxB

1+1
Cofactor of all =(-1) M11

=+1 • _il --al-2- =

a21 a22

+ a22

Cofactor of a12 = (-I) 1+2 M12

I

-1 x "_ j-1--'aj_= =- a21 ' etc.

a_21 a22

• Form the transpose of the matrix of cofactors of A.

This is called the adjolnt matrix of A and is equal to

AdiointMatrlxofA=[(_l)i+JMij]T= I a22 -a21] T

L-a12 all J
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• TheinverseorAlstheadjointmatrixdividedbythe
determinantofAor

T -a' l
A_I [<-1/+jMu]_ L-a21al,_J

{AI all x a22 - o12 x a21

• This can be checked to show thatA -1 A=I. Other

techniques for matrix inversion, such as the elimina-

tion method (Reference 3.1, Chapter 28) are more

efficient for hand calculation of larger order matrices.

3.3.4.3 Matrix Solution of Equations of Motion

The general form for the equation of motion of the ith mass

of an N degree of freedom lumped parameter system with-

out dynamic coupling can be given by (see Sections3.3.2.6

and 3.3.3.1)

N N

m i "xi(t) + _-_clj Xj(t) + _ klj xj(t) = Pi(t)

J j

The two summation terms define the total damping and

springforces acting on the ithmass in terms of the damping

and stiffness coefficient clj and kij. The sum of N such

equation required todescrlbe the motion of all N masses is

N N N N N N

_'-]mi _i(t)+ ]_-'_cij _kj (t)+_-_ _'-_kij xj(t) = _ Pi(t)

i i j i j i
(3.280>

Applying the rules of matrix multiplication, this set of N

equations can be expressed in matrix form as

[i°°ltll[cc12cNm2. 0 _2 + c21 c22 C2N

• • • • . •

°""mhJ N LC 4iCN2""C4N

k 2

k,1k,2k,Nl{x,k :l k22...k2. { x2
kN1 kN2" " " kNN J x L

P1
=

I_N

or simply

[mi3{xl}+ [clj] {kl}+ [kij] {xl} : {Pi}

(3.281)

where

I mi 1 = diagonal mass matrix

[clj] =square damping matrix

[kij ] =square stiffness matrix

x i} =columndeflec-
tion matrix

{PI} =columnforce
matrix

Generalized Coordinates and Matrix Symmetry

Providing the position of the center of gravity of each

lumped mass m i is uniquely described by only one inde-

pendent variable xi, the mass matrlx Emil will always be

diagonal and the damping and stiffness matrices [c ij] and

[kij ] will always besymmetrlc about the diagonal. These

independent variables are called GENERALIZED COOR-

DINATES and, for structural systems fixed to a rigid foun-

dation, define the absolute deflections x i of the center of

gravity of each mass. As shown earlier in Sectlon3.3.3.2,

for systems attached toa moving foundation, the general-

ized coordinates are the displacements relative to this

moving foundation, or more precisely, relative to a line

through the nodes of the free body nodes.

Frequency Equation and Normal Modes

The normal mode solution of the equations of motion (3.281)

is obtainedby first setting the damp;ng and external forces

to zero. This will then define an equation of motion for

free undamped vibration which can have a harmonic solu-

tion of the form

x;(t) = X i e jut

Substituting this solution into Equation 3.281 with [clj ]

and {Pi} = O, gives

Imll {-u2Xi} + [kij] {Xl} = 0 (3.282)

where X i = displacement amplitude of the ith mass.

Applying the ,ules of matrix addition, this can be expressed
as

IX,}:0

This represents a set of N homogeneous equations for the

vibration of the N masses in their normal modes. The non-

trivial solution to this set of equations (one for which
#

I xl / z_ 0)is obtained by setting the determinant of the

first matrix equal to zero or
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(kij -u 2m i) = 0 (3.283)

This is the characteristic equation for the system and its
roots are the values of g which cause the determinant to

go to zero. These are the natural frequencies of the nor-
mal modes. For N masses, there will be N real roots or
natural frequencies which satisfy this equation.

• For flxed-base systems which donor exhibit rigid body
motiont the roots are always positive. (Such a system
is called posltlve-definite .)

• For unconstrained systems, one or more of the roots or

"natural frequencies" will be zero, Corresponding to
the rigid body modes of the structure. For this case,

w_,l be singular, and willthe stiffness matrix

contain one or more zeroes along its main diagonal.

Several methods may be used to flnd the roots or natural
frequencies from Equation 3.282 or 3.283. Some of the
more common methods may be summarized as follows.

Trial and Error Solution of Frequency Equatlon

The determinant or frequency equation given by Equation
3.283 is expanded into its polynomial by the usual methods
for determinant expansion. Beyond a three degree-of-free-
dom system t however_ a closed solution becomes very dif-
ficult. A trial and error solution can be carried out on

computers to evaluate the polynomial expansion of the
frequency equation as _ is increased in fixed increments
from zero. The natural frequencies are those values of
which cause the polynomial to approach zero. Successive

trials for values of g can reduce the error to any desired
practical value. A principal advantage of the method is
that one or more natural frequencies can be quickly deter-
mined over any preselected frequency range of interest.
However_ errors can occur when resolving two modes which
have nearly the same natural frequency.

The method is also relatively inefficient when all modes
of a complex system must be computed. It is also limited

to finding only the natural frequencies gn" The normal

mode shapes _Pin are determined separately bysubstltuting

the natural frequencies back into Equation 3.282. The
deflectlonamplltudes Xi are determined by solving N-I of

the resulting simultaneous equations with any one of the
amplitudes arbitrarily set to unity. The resulting values of

Xin (one for each mass and modal frequency gn) are then

normalized to unit value for the maximum deflection in

each mode to obtain the mode shapes _in"

The following two methods are alternate forms of the

Stodola method. They have the advantage of providing
the simultaneous solution for both the natural frequency _n

and normal mode shapes _in in one basic iteration process.

They represent one form of the methods more commonly em-
ployed in computer analysis of multl-degree of freedom
systems (References 3.33, and 3.1, Chapter 28).

Matrix Iteration Using the Stiffness Matrix

This method is most useful when it is desired to compute
the highest natural frequency first since this is the first

mode determined in the iteration process. Equation 3.282
is premultl plied through by the inverse of the inertia matrix

[]'mi and by 1/_ 2 to give

1 1

{Xl}: J [ml]- [ki] ] {X,}

[]-1Note that since mi is diagonal and never singular_

itslnverse can be shown to be thematrlx of the reciprocals
of each element or

:[¢]
Let the matrlx product Im, 1-1 [kij] bedeslgnated asthe

squarematrlx [B] .

The basic frequency equatlon to be evaluated then becomes

The iteration process, carried out with this expression,
converges on the HIGHEST or Nth natural frequency of the
system in the following steps:

• A trial value of thecolumn matrlx of amplltudes {Xl}

is assumed. If this trial value is arbitrarily chosen so
that its largest element is unity_ it may be considered
to be a first order approximation for the mode shape

{_iN}r=l fortheNthnormalmode.

/ is inserted in the side• The assumed value _iN,r right

of Equation 3.284 and the product |B|/_iN/r_., is

evaluated. Let the element with the largest absolute
value in this product be identified as the quantity

I}r+ ! . If this normalizing factor is now divided out of

theproduct [B] {_iN}r, thentheflrstiteratlonstep

{ } for the modeprovides a 2nd approximation _iN r+l

shape given by

13_-1

{_iN}r+l= ---_--[B] {¢iN}r=l
(3.285)

where the bar signifies a normalized value for the

product matrix using the normalizing factor I}r+ 1 .
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• : the a  uracy
then

Nth Natural Frequency

u N = 1_r+1 -the highest or Nth natural

frequency

Nth Mode Shape

{ } = { } - the column vector expresslng
_PiN _iN r+l the mode shape of thehighest

or Nth mode.

If the desired accuracy is not achieved in the first

iteration, the new estimated mode shape column matrix

{ }q_iN r+l is inserted back into Equation 3.285 and

the iteration process continued (i .e., r = 1,2, etc.)

until Equation 3.285 is satlsfled to the desired accu-

racy.

• The process tends to be self-correcting; however,

errors in the operation extend the number of iterations

required to achieve the desired accuracy (Reference
3.33)•

For most problems, only a few iterations are required

to achieve very good accuracy unless ,., N is very c lose

to the next lower natural frequencYuN_ 1 .

Iteration for Lower Modes

For the next lower natural frequency gN-l' additional

steps are required. The next lower mode is modified,

based on the concept of orthogonallty of the normal modes_

to remove all influence of the previouslycomputed modes.

This is carried out in the followlng manner (Reference 3.2).

The displacement x i of each mass can be given by the sum-
mation of its normal modes as

N

xi(t) = _"_qn (t) _in

n

Multiplying both sides by _im mi' summing over all the

masses, and applying the orthogonality principle, a non-

zero result is obtained only when n = m, which gives

N N

_-'_'xi(t) ¢Pin mi = qn (t) _ ml _i2n

To eliminate the influence of the highest mode on the dis-

placements xi(t), qN is set equal to zero in the previous

expression. Dividing out the time varying part for x(t) and

qn(t)_ an algebraic equation is obtained involving all the

displacement amplitudes X i. For any value of n, it has
the form

X1 ¢lnml + X2 £b2n m2 + X3 ¢3n m3 + "" XNCNnmn =0

(3.286)

If the Nth mode is to be "swept out" of the iteration pro-

cess_ n is set equal to N. It is convenient to solve this

equation for the variable with the largest amplitude in

terms of the remaining variables. Assuming this iSXN,

the displacements can then be given by

X I = X I

X 2 = X 2

XN_ I = XN_ I

X N = -a 1 X 1 - a 2X 2 -..-aN_ 1 XN_ 1

where
¢I N m2 ¢2N m3

a 1 = --, a2 - ....
CNN mN CNN mN

This can be ex

xl/x2 o
=

XN_ 1 0

X N a 1

oressed in matrix form as

0 0 ...... 0"

1 0 ...... 0

0 "I 0

-a 2 -aN_ 1 0j

X I

Ix2

XN_ll

/XNj

(3.287)

The square matrix on the right side is called the Sweeping

Matrlx [SN] for the Nth mode. It has the form of an

identity matrix with the Nth row replaced by the coef-

ficients for X N in terms of the remaining variables• The

result is that the Nth column has only zeroes. This sweep-

ing matrix is then used to define a new frequency equation
for the next lower (N-l) mode as

{Xi}N-1- _2 [B] [SN] {Xi}N_ ]

The same iteration process carried out for the Nth mode is

now repeated except that the iteration equation (3.285) is

modified by the sweeping matrix to become

¢i, N-1}r+l -

#r+ ]

{*,,N,L
(3.288)

In this case, the normalizing factor J3r+1 is the quantity

necessary to normalize to unity the largest element in the

product [B] [SN] {_Pi,N_l}r. Agaln, the bar deslgnates

a normalized value for this product.
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For the next lower mode (gN_2) , two equations of the form

given by Equation 3.286 can be written, one for n = N and

one for n = N-1 using the mode shapes _PiN and ¢iN-1

already determlned. These two equations can now be solved

for X N and XN_ 1 in terms of the remaining variables

X1--XN_ 2. Asecondsweepingmatrix [S2]canthenbe

determined which wi II contain two rows of coefficients and

two columns of zeroes thus reducing the order of the matrix
equation by one more step. The same iteration process de-

fined by Equation 3.287 is then repeated using ISN_I|

place of [SN] to find the value of,.,N_2 and {_Pi,N_2 }.

Care must be taken to insure that round-off errors are not

accumulated in the sweeping matrices to maintain accuracy
as the number of iteration cycles increases.

This iteration process, which is based on systems defined
by stiffness coefficients, has the advantage of relative
simplicity for determination of the highest modes of a sys-
tem. A simple example will serve to illustrate application
of the basic iteration process. First, however, consider
the last approach which has the advantage of converging
first on the lowest or fundamental mode of a system.

Matrix Iteration for Systems Described by Flexlbillty
Coefficients

The static analysis of structure is normallycarried out most

conveniently with the use of flexibility or influence coef-
ficients. Consider the uniform-section cantilevered beam

shown in Figure 3.74a. An estimate of the first three
bending vibrating modes of this beam may be obtained by
treating the beam as shown in Figure 3.74b as three lumped
masses, each corresponding to one-third the beam mass. The
deflection of the ith mass can be expressed in terms of

flexibillty coefficients, identified here by 6ij , by the
equation

Xi = 6il P1 + &i2 P2 + 612 P3

where P1 ' P2' P3 represent the forcesapplled tothe masses,

and 81j is a flexibility influence coefficient equal to
the positive displacement of the ith mass for a unit force
applied to the ith mass, in the positive direction; all other
forces being zero. In general, there is no simple relation-

ship between flexibility coefficients 6ij and stiffness coef-
ficients k... For the former, the structure is loaded by a

ij
unit force at only one point and otherwise free. For the
latter, all points except the point of unit deflection (see
Figure 3.53) are constrained by a pinned support.

An extensive tabulation of formulae for influence coeffi-

cients for simple uniform beam and plate structures is given
in Reference 3.51. For special cases, well-known methods
such as the application of the moment-area theorem and
matrix-force methods may be applied to determine the
structural deflection to unit loads (References 3.36 and

3.51).

L I

L/3 L/3 L/3

a) Uniform Beam

P1 P2 P3

X 1 X 2 X 3

b) Lumped Mass Model

N

X i = _ 6ij Pj

J

FIGURE 3.74 Lumped Mass Model of a Uniform Cantilevered

Beam of Area A, Density p, Bending Stiffness E I.

The influence coefficient 6ij represents the

deflection at i for o unit force at j with all other
forces equal to zero.

The preceding equation can be conveniently given in matrix
form as

/Xi} = [61j] { PI}

[ ] ; flexibility matrix - matrix of
where Sij coefficients gi]

flexibility

IPil = matrix of the applied loads.column

For the case illustrated in Figure 3.74, the flexibility
matrix is

[ ] - L3 [!4 27 547]
6ij 648 E I

54 125

where E I = Bending Stiffness of Beam.

For example, a unit downward force at the middle of the

beam (] = 2), will produce a downward deflection of

4L3/648 E I at the first mass (i = I). As with the stiffness

matrix, the flexibility matrix is symmetric or

For vibratory motlonof the lumped mass model of the beam

in Figure 3.74b, the "applied forces" Pi become the inertia

forces -m i _i(t) which oppose the motion. For free har-

monic vibration of the beam at a frequency g, where

- mi _i (t) =,.,2 mi xi(t), the equation of motion of the ith mass
is

xi(t ) = 2 [6il mlx1(t )+8i 2m2x2(t )+6i 3m3x3(t)]

The equations of motion for all three lumped masses are
given in matrix form by

{xi(t)}: 2 [61j ] [m ilIxi(t)}
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Theproductoftheflexibilitymatrix[81j ] and the inertia

matrix Imll is called the dynamlc matrlx [D]. Thus,

dividing out the time varying part of xi(t), the basic fre-

quency equation to be evaluated by iteration is the matrix

equation in terms of amplitudes X i

Note that matrix inversion is not required in this case. In
some cases_ however, it is desirable to compute the normal
modes with this expression but starting with the stiffness
matrix. The latter is then inverted to give the dynamic
matrix as

[0]: ; [m;]

sinceIkij]-1=[Sij]
Comparing Equation 3.288 with the equivalent expression
(Equation 3.284) based on equations of motion in terms of
stiffness coefficients, it is clear that one is the inverse of
the other but that the same iteration process can be used.
The result of this iteration, however, converges on the

value of the first or fundamental normal mode el" The

basic iteration process for Equation 3.288 may be expressed
as

{¢il}r+l = 2 !3r+1 [D]{¢11} r (3.289)

When iteration has satisfied Equation 3.289- i.e.,

l¢ilIr+ 1_ I¢ilIr

then the fundamental frequency gl is

where

J3r+1 = magnitude of largest element in the product

LD] /¢i/rwhlch__ is designated in normalized

form by the bar.

The same steps, outlined previously, are carried out but

starting with an initial trial value --I¢il/r for the mode

shape of the first mode. This initial value is conveniently
taken as unity for the polnt of estimated maxlmum delfec-
tion and zero elsewhere. The remaining steps in the pro-
cedure are essentially the same as discussed for the previous
method and are best illustrated by working out the example
shown in Figure 3.74.

3.3.4.4 Example of Matrix Iteration Methods

Based on the flexibility matrix for the beam illustrated in
Figure 3.74 and the even distribution of the lumped mass
elements, the dynamic matrix is given by

F,]: 2759 ,
54 12 0

where the mass of each "lump" pAL/3 has been divided
out of the inertia matrix.

FIRST MODE

Assume, for the first trial, that the mode shape of the first
mode is

First Trial

Combining these two quantities in Equation 3.289, carrying
out the required matrix multiplication, and dividing out

the magnitude J3H.1 of the largest element gives the first

{ } asiterated value of ¢11 r+l
Second Trial

u2 pAL 4 [i 4 il [i O i]{ } = 2754 1¢il 2 1944EI 54 12 0

or

(7/125) (oo )
{¢11}2=u21944pAL4EI(125)t54/1125t=2 132t .431i

Using the new estimate for _¢i} each time/ two more
iterations give

Third Trial
I0{¢i1} 3=_2 pAL4 (148 "7)1944E--_T 7:C4_5;1

Fourth Trial {¢i1}4 =g2 1944PAL--'_-4(149"2) l!:0_IEI

Clearly t only three trials would be adequate for good

accuracy. From the last trial, the fundamental frequency
and mode shape are

_1 = J" 1944E! _ 3.61 _/ El
_/(149.2)pAL 4 L2

SECOND MODE

The contribution of the first mode is set to zero (ql = 0).
From Equation 3.286, for N = 3 and n = l r the equation
relating the displacement amplitudes of all the masses in
the first mode is

Xl ¢11 ml +X2¢21m2+X3¢31 m3 = 0

Solving this for X 3 (the term with unit modal amplitude) in

terms of X 1 and X2, the sweeping matrix/s1/ forthe first

mode can be developed in the same manner as in Equation
i_ j
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3.287. The result in this case, where cP31= 1 and m 1 =

m2 = m3_ is

o!]-.059 -.444

The modified iteration equation for the second mocle then
becomes

t(_i21r+l = w2 13r+1 [D] [$1] t¢i2tr

For a first trial, select

First Trial (Pi2 1

Using the sweeping matrix in the above expression, the
second trial value for the second mode becomes

Second Trial t(Pi212 - 1944E1(°2pAL4 (3.05) t-'L t(.295)

After two more iterations, the result is

0.3 0 ll /4 _2pAL4 (3.316) 13Fourth Trial (Pi2 = 1944 E I - .462)

Thus, the second mode is defined by

_/ 1944 E I _ 24.2 E_p___.
_2 : V(3.3-_pAL 4 L2

l° 3 3°t

Third Mode

Proceeding in the same manner as before, the first and
second modal contributions are set equal to zero giving the
two algebraic expressions (see Equation 3.286)

n=l, 0.059X i + 0.44X 2 + X 3=0

n=2, 0.33 X 1 + X 2 - 0.462X 3=0

Solving these simultaneously for X2 and X 3 in terms of X 1,
the second sweeping matrix becomes

10!]•0.296 0
0.710 0

Using this new sweeping matrix, the third mode would be

I / r (_2pAL4 [ 4 4 71I- 1 0 i]{ / r= 27 54 0.296 0 _i3
_i3 +1 1944EI 54 125JLO.71o o

No iteration is required for this last mode since the second

sweeplng matrix has reduced the product of [D] and [$2]

to a column matrix. Carrying out this product and nor-
malizing, the third mode is obtained directly as

_Pi3/ =

and

(_3 =

o2 AL41111944 El (0.314) -0.525
(-0.414]

/i 1944 El _ 78.6 E/El0.314) pAL 4 L2

The natural frequencies computed by this iteration process
for the lumped mass model of the beam are compared in the
following with the exact values based on the theory for
vibrations of beams.

Comparison of Nondimensional Values of First Three
Natural Frequencies of a Uniform Cantilevered Beam

a=, n L2/_I A

Exact Lumped Model Error

First Mode 3.52 3.61 +2.6%
Second Mode 22.4 24.2 +8.0%
Third Mode 61.7 78.6 +27.4%

Clearly, the lumped mass model with three masses has poor
accuracy beyond the n = 2 mode.

The same iteration process could also be carried out with

the frequency equation expressed in terms of the stiffness
matrix. The latter is ordinarily computed directly rather
than invert the flexibility matrix since this process is
subject to anaccumulationof round-off errors. This stems

from the "nearly singular" nature of the typical flexlbillty
matrix where one element on the main diagonal is small
relative to the largest element as _s the case in this

example. Although this approach would converge initially
on the third mode of the lumped mass model, the same error

in the natural frequency is present due to the inaccuracy
of the lumped mass model at the higher modes.

This simple example has served to illustrate several aspects
of matrix iteration for the analysis of lumped parameter
systems. Two points need to be emphasized.

• The iteration process is relatively simple for systems
which can be analyzed by hand calculation. It de-
fines both the modal frequencies and mode shapes in
one basic process.

• Lumped models of continuous structure are conveniently
analyzed by expressing the equations of motion of the
structure in terms of the flexibility matrix.
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There are a number of other commonly used forms of the

basic frequency equation in matrix format which are cited

in the literature. For example, one form is

[,]{x,}+[°]Ix,l: 0
where [I]is the identity matrixand [D] isthedynamic

matrix. The symbol }, (or X 2) is often used in place of

1/4.' 2. The above form emphasizes more clearly the formal

matrix operation carried out in the iteration process - the

matching of each element in the column matrix/Xit on

each side of the equation by an appropriate choice for_a

and {Xi}. The final results are equivalent, however, to

that illustrated by the preceding example. For computer

analysis, the frequency equation is conveniently expressed

as the determinant (Reference 3.53)

I'j[,]+ ['] :0

where [k]_ [L! = the inertla matrix [mi_! _ [ For
[mij] = [ i] a diagonal inertia matrix, e kl isa

diagonal matrix whose elements are equal to the square

roots of the corresponding mass elements. The advantage

of this form is that both/,/ and the matrix product on the
L .I

right side are symmetric, considerably simplifying machine

computation of the roots _an2 of the determinant (Reference
3.1, Chapter 28).

It must be emphasized that the methods employed for digltal

computer analysis of normal mode frequencies and mode

shapes are frequently much more sophisticated, than the

simple method outlined above, in order to maintain high

accuracy for very complex systems. Calculation with
matrices of the order of 100 x 100 elements is not uncommon

in thecurrent state of the art. Some of these special com-

puter techniques are discussed in detail in Chapter 28 of
Reference 3.1 .

3.3.4.5 Upper and Lower Bounds for Natural

Frequencies

The natural frequencies for an N degree-of-freedom system

must satisfy certain mathematical conditions. These con-

straints provide a simple method for estimating the upper

and lower bound of the lowest and highest natural fre-

quencies without carrying out detailed calculations. They

also provide a means of checking the final results (Refer-

ences 3.36 and 3.1, Chapter 28).

BOUNDS ON LOWEST NATURAL FREQUENCY

When the equations of motion are expressed in terms of the

flexibility matrix, the frequencyequation can be expressed
OS

Ix,l: I×,l
Then it can be shown that the first natural frequencYgl,
which satisfies this equation must lle within the limits

2 2 2
Ul min < _al < N _1 min (3.290a)

where

N

2

_1 rain

= Number of Degrees of Freedom represented

(i .e., number of mass elements considered).

= 1/,_ r [D] ,and (3.290b)

tr [D] = TraceoftheDynamicMatrix

[D] = [kij] -1 [mi I

The trace of a matrix is the sum of the main diagonal ale-

ments. Thus, if

[ ] m Ii 8 i]D =V 2
4

then

E] m mt r D = (4+2+1)-_-= 7-_-

and the first natural frequency for this three degree-of-

freedom system would lie between

I k _a12 3 kYm < <T%-

For the example worked out in the previous section, this
criteria would become

1944EI - 12.7 El< Ul 2 < 38.1 El
153 pAL 4 pAL 4 pAL 4

_a12 computed was 13 E I/pAL 4 - closeThe actual value of

to the lower bound.

BOUNDS ON HIGHEST NATURAL FREQUENCY

When the equations of motion are expressed in terms of the

stiffness matrix, the frequency equation can be expressed
as

{x,} b]
W

The highest natural frequency =N computed with this ex-

pression (the first frequency determined by the iteration

process in this case) is limited to

I 2 2 2

N" UNmax < '"N < UNmax (3.291a)
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where
2
Nmax

and [B1

Forexample,

: tr[B ]

= [mll -I [klj ]

if

=-- 2

m 4

m

and _L would lie between

(3.291b)

14 k 2 k

-_- -_--< ,.,N < 14--m

CHECK CONDITIONS FOR THE NATURAL

FREQUENCIES

The above criteria are primarily based on the following

equalities For the sum of the natural Frequencies:

n'_ 1=tg2 r [D] = tr ([k,j] -I [m,l)

n

(3.292a)

and

N

_'_mn2 = tr [B] = t r ([m[] -I [k[j]) (3.292b)
n

An additional useful check on calculations is provided by

the criteria for the product 1--[ of all the natural frequencies

signified by the expressions

N 1

]-l_ = IDI = Determinant of dynamic matrix
n w

n (3.292a)

and

N

n
n

= IBI-- Determinant of [B] matrix (3.292b)

3.3.4.6 Normal Mode Response in Matrix Form

Once the mode shapes *in and natural frequencies _n of

the normal modes of a dynamic system have been defined,

the following basic matrices can be used to transform the

coupled set of equations of motion for all the masses to an

uncoupled set of equations of morion for the normal co-

ordinates qn(t).

n-_

;F*ll

NL*N 1

N

'12"'" *IN

*22

*Ix]2" " • *NN

(3.293)

Thisis thesquare N x N matrixconsistlng of all the column

mode shape matrices l,[n I for each nth mode.

I 0]w12 0 0

SPECTRAL MATRIX-In2; : 0 g2o

0 0 _N

This is a diagonal matrix containing the square of the N

natural frequencies.

GENERALIZEDMASSMATRIX- IMnl

The general definition for the Generalized Mass M n of a

lumped parameter system was given in Section 3.3.2.5by

the summation (assuming dynamically uncoupled systems)

N ( 0 , njm

2; - !

mi *in *jm - I (3.294)i Mn, n=m

The zero value for this summation stems from the orthogo-

nallty of the normal modes as shown in Section 3.3.2.7.

This same relationship may be expressed in compact matrix

form in the following manner.

[@iT [mi] [@] = [Mn] (3.295)

where

IMnl : diagonal matrix containing the general,zed

masses for the N modes, and

[m_] = diagonalinertiamatrix.

This basic operation is widely used in matrix analysis; it

can be illustrated for the simple case of a two degree-of-

freedom system. Thus, if

[: 01I]:
ml m2

L*2 '22J

the operation indicated by Equation 3.295 is
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, [: 0]
_12 _22J m2 L_21 _22J M2

which can be expanded to

[m m1_21 +m2_;1 ml_llq_12+m2_21_2212 2 =[_1 0 1
1_11¢12+m2_21_22 m 1_12+m2_22 J M2

According to Equation 3.295, the off-dlagonal elements

in the left-hand matrix are zero and the diagonal terms are

equal to the generalized masses M 1 and M2, respectively,

thus demonstrating the validity of Equation 3.295. For

just one mode, say the nth, this equation can be reduced
to

Applying the same principle of orthoganal[ty and the type

of operation indicated by Equation 3.296, the diagonalized

generalized stiffness matrix is given by

[,IT [klj ] [,] : [Kn] (3.297)

and for the nth mode, the generalized stiffness K n is

l,in} T [kij ] t¢in} = Kn = _n2 M n (3.298)

where

klj = stiffness matrix

GENERALIZEDDAMPINGMATRIX- [Cn]

If one of the forms of generalized damping, discussed in

Section 3.3.3.1, is assumed, or if off-dlagonal damping

terms in the generalized damping matrix ere neglected,

then the latter is also diagonal. For just one mode, the

generalized damping constant C n is given by

_n Mn

l_in}T [cij] l_ir_l = Cn = Qn (3.299)

where

Qn = Resonant Amplification Factor for nth mode,
and

[clj] = damping matrix.

GENERALIZED FORCE MATRIX- {Fn(t) }

The generalized force for the nth mode has been defined
as the summation

N

Fn(t) = _ Pj (t) q_j n

J

According to the rules of matrix mul tipl ication, this quantity

can be expressed as the matrix product of a row matrix of

the mode shape times a column matrix of the applied forces

Pj(t). Thus,

Fn(t) = t_jn} T {Pj(t)} (3.300)

The column matrix specifying the generalized forces ,tFn(t)l,

in all modes is then formed by including all the othertrans-

posed mode shape matrices to give

If both sides of this expression were divided by the total

force Po applied to the system, the result would be a defi-

nition of the column matrix of Joint Acceptances (or mode

participation factors) equal to the relative generalized

forces for all modes (see Section 3.3.3.1).

DEFLECTION MATRIX IN NORMAL MODES

The displacement xi(t ) of each mass element in the lumped

parameter system can be expressed as the sum of its normal

mode responses, in the usual form

N

xi(t) = _ tin qn(t) (3.302)
n

or, in matrix form, by the product of the row matrix [,inJ
of the mode shapes at i in all N modes times a column

matrix {qn(t)} of the normal coordinates, or

xi(t) = [elnJ {qn (t)} (3.303a)

Thus, a column matrix of the deflections {xi(t)} for all
masses is given by the product

Ixi(t)} = [q_i] /qn(t)} (3.303b)

w ereB] : mo o'mot 'x  quat,oo
In expanded form, this matrix formulation would be

n--_

q_22 ....

xN(t)] L'N1*N2.... *NN

lql t))

q2(t) 1

The product of the ith row of the modal matrix and the

/qn(t)/ is equivalent to the summation incolumn matrix

Equation 3.302 for the ith displacement.
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UNCOUPLED EQUATIONS OF MOTION IN NORMAL

MODES

Let the coupled equations of motion for the forced response

of the lumped parameter system be given in matrix form as

+[c4lx /t l+ : I ,/t/l
Two steps will suffice to show the decoupled form for these

equations in normal modes.

eSubstltute [p]Iqn(t)l for Ixi(t)}

• Premultlply both sides of the equation by the transpose

ofthemodalmatrix [p]T

Considering each term obtained by this procedure,

[piT [mi] [p] ikl.n(t)} = IMn] ikl.n(t) }

[piT [clj] [p] {61n(t)} = [Cn] tEtn(t)}

[PIT [kij] [p] lqn(t)} = [Kn] tqn(t) 1

k]T t :IFn   l

(see Equation

3.29s)

(assuming damping

decoupllng)

(see Equation

3.297)

(see Equation

3.301)

The expressions on the right

uncoupled terms which make

of motion in normal modes.

nth mode is

side now constitute o set of

up the uncoupled equations

A typical equation for the

M n "Cin(t) + C n qn (t) + K n qn (t) = Fn(t )

or, in the more convenient form

Un 2 Fn(f)

;:t"n(t) + -_n 61n(t) + un qn(t) = Mn (3.304)

Thus, the familiar single degree of freedom equation is

again obtained, this time through the use of matrix analysis.

The matrix approach provides, therefore, a powerful method

for transforming the basic equations of motion to uncoupled

equations for each normal mode. The methods for deter-

mining the forced responseof each normal coordinate qn(t)

have been discussed earlier in Sections 3.3.2 and 3.3.3.

It is generally convenient at this point, having applied

matrix analysis to define the equation of motion for each

normal coordinate, to return to the general expressions

given in Sections 3.3.3.3-9 for the response of lumped

parameter systems to various types of loads. Two key pa-

rameters used for these latter expressions can be specified
in matrix form.

Generalized Mass Mn : tPint z [mi] {Pin}
for nth Mode

Joint Acceptance
for nth Mode

where Pj = Amplitude of load at the jth point

N

= _ Pi - total applied loadPo
J

J

{Pln} T, {PjntT = row matrix or transpose of column

matrix expressing the mode shape in

all N modes at the i th and j fh points,

respectively.

Although thedlscussion up to this point hasbeen limited to

lumped parameter systems, the concepts developed, methods

of solution and terminology will still be applicable to the

analysis of distributed or continuous structure which is

considered in the next section.

3.3.5 RESPONSE OF STRUCTURE WITH

DISTRIBUTED MASS AND STIFFNESS

The types of structure uti I ized for ground fac i l i tles at rocket

launch and test sites and for adjacent residential areas

covers a broad spectrum ranging from relatively simple

metal or wood panel structure to complex reinforced steel

and concrete structure. Practical methods for predicting

the response of such structure to sonic loads are generally

restricted toan analysis of the response of individual beam

and wall (or equivalent plate) elements. However, this

limitation is not necessarily a serious one. The response of

these structural elements will determine to a large

extent, the critical sonic loads and sound transmission

characteristics of complex structure. This will become

more apparent in the development of design methods in

Chapters 5, 8 and 9. Therefore, this section on continu-

ous structure with distributed mass and stiffness is primarily

limited to the vibration response of individual beam and

plate elements. The normal mode approach is still appli-

cable for vibration analysis of this type of structure by

effectively modifying the expressions developed earlier for

lumped parameter systems in the following manner:

Replace discrete lumped masses by differentially small

length or area segments for beams and plates, respec-

tively.

Replace summations of forces, deflections, etc., over

lumped mass elements by single or double integrals

over the differential length or area segments for beams

and plates.

Replace finite stiffness elements with differential stiff-

ness functions which define local stiffness character-

istlcs of distributed structure.
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Thistransitionis illustratedconceptuallyinFigure3.75.

E
Pi(t)

--_txi(t) x(y,t) I T-

,_j._ ml

Pi (t) pAdy -_
k i _= k(y)-

xi(t) _y, )

0

a) Lumped System b) Continuous Structure

(;th Point) (Position y)

FIGURE 3.75 Transition from Lumped Parameter System to Continuous

Structure Represented by Longitudinal Vibration of a

Bar with Density p and Cross Section A

Notation for Continuous Structure

To maintain consistency in notation for this chapter, X will

be retained as the variable for linear displacement. How-

ever, the following changes in terminology will be required:

Lumped

Variable System Continuous System

Moss
__., lY,Y'. - Positions on a Beami,j

Location
ly,z; y',z' - Positions on a Plate

Driving
Force

IP(y,t) - Longitudinal Load on Beam

Pj(t)---_-_bp(y,t) dy- Lateral Load on Beam
(p(y,z, t) dy dz - Lateral Load on Plate

Number

of Normal

Modes

N _ Ik/dy _ co - Beam

IA/(dy -dz) _ 002- Plate

As indicated, the lateral driving force for a beam(of width

b) or a plate is specified by the force per unit length

bp(y,t) or force per unit area p(y,z,t). Note that the last

item is equivalent to saying that there are an infinite

number of discrete mass elements along the beam and a

doubly infinite number in the two directions on a plate.

3.3.5.1 Free and Forced Undamped Vibration of

Continuous Structure

The equation of motion for a freely vibrating simple struc-

tural element may be given in a general form, comparable

to the equations for lumped systems, by

(M) X + (K)X = 0 (3.305)

where X represents a general displacement variable for o

one- or two-dimensional element. The inertia parameter

.'_ and differential stiffness operator K for various types of
linear elastic structural elements are summarized in Table

3.4. The expressions for bars are given in general form

where the inertia or stiffness properties can change asa

function of position along the element. The inertia pa-

rameter, M multiplied by the acceleration X, represents

the local inertia force on a differential element of mass

while the differential stiffness term, K operating on X,

defines the local internal elastic restoring force on this

element. For example, according to Table 3.4, the equa-

tion of motion for free longitudinal vibration of a uniform

beam has the following form, where X = 82 x(y,t)/at2and

X = x(y,t).

82
pA 82x(y't) EA x(y,t) _ 0 (3.306)

8 t 2 _ y2

In this case, x(y,t) represents the longitudinal deformation

of the beam at position y and time t such as illustrated in

Figure3.75b. (A positive value ofx corresponds too posl-

tivedilltation in the bar.) This expression can be derived

from physical principles by recognizing that the total longi-

tudinal compressive force Pyactingat any position along

the beam is equal to the compressive stress (E • Strain =

-E 8x/By)times the cross-sectional area A. The change in

this force across any differential section dy is

gP(Y-_) dy = - (EA82x/ay 2) dy
ay

This increment of internal force must then be balanced by

the inertial force (pA dy) 82 x/at 2actlng on this element.

Cancelling out the dy terms, the expression given by Equa-
tion 3.3061s obtained. Aslmilar method is used to obtain

the other mass and stiffness terms listed in Table 3.4 (see,

for example, References 3.2 and 3.5).

Elastic Wave Motion in Continuous Structure

Equation 3.306 represents
and will be encountered

waves. One solution to

of functions of the form

one form of the "wave equation"

again in Chapter 4for acoustic

this type of equation will consist

x(y,t)=X+sinIE_-k (Y-CLt)] +X-sln [_-_-(Y+CLt) ]

where (3.307)

X+sln L (y-cLt) ]

defines the instantaneous amplitude of an slnusoldal elastic

wave disturbance wltha frequency _ = 27 f which is travel-

ing in the direction of positive y with a velocity c k and

,]X- sin y + cLt

represents the same type of wave traveling in the negative

y direction with the same velocity. This is i llustrated con-

ceptually in Figure3.76. Clearly, the instantaneous am-

plitude of the first wave is constant for any constant value

of the quantity (y- cLt ). Thus, the same amplitude occurs

at increasing values ofyata time t=y/c L. If either term
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TABLE 3.4

INERTIA AND STIFFNESS TERMS AND ELASTIC WAVE VELOCITY

FOR VIBRATION OF SIMPLE ELASTIC STRUCTURAL ELEMENTS( 1)

String

Bar

Bar

Beam

Plate

Membrane

Inertia Stiffness
Element Motion Parameter - M Operator - t{ Wave Velocity (2)

Lateral

Longitudinal
(Compression)

pA(y)

pA(y)

Torsional

(Shear)
PJ(y)

t
Lateral

(Bending)

Lateral

pA(y)

ph(y,z)

ph(y,z)

a y2

D _74

_S_7 2

cT-- T_

eL=

Cs=V

ct_ = I_'- [_-'_-] 1/4

Symbols

p = Mass Density K r = Torsional Constant
(= J for Circular Sections)

A = Cross-Sectional Area (-_ A4/4_ 2 J for Solid Sections)

J = Polar Area Moment of Inertia G -- Modulus of Rigidity (Shear Modulus)

h = Thickness 1 = Area Moment of Inertia

T = Tension D : Eh3/12(1- v 2)

S : Tension per Unit Length v : Poisson's Ratio

E : Modulus of Elasticity
(Young's Modulus) u : Frequency - radians/sec

_74 84 84=--+2_

gy4 8y2 gz 2

_72 a 2 82= -- + -- ° Laplacian Operator
g y2 8 z2

(1) References 3.2, 3.5, 3.6 and 3.53.

(2) Wave velocity for uniform structural elements indicated by the symbol c with appropriate subscript.
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in Equation 3.307 is inserted in Equation 3.306, an equa-

tion is obtained for the wave velocltycL, in thiscase£
longitudinal compression wave, given by

c2 = E/p

x-(Y+CLt)_ x(y,t) r_/-- x+(Y-CL t)

N _ [lllllllllll [ I IlIllllllll I Ill (
0

FIGURE 3.76 Longitudinal Compression Waves Traveling

with a Velocity c L in an Infinite Bar

This compression wave velocity c L is also called the bar

velocity or longitudinal speed of sound. It is this elastic

wave motion which basically distinguishes the vibration

response of structure with distributed mass and stiffness from

the vibration response of lumped mass systems. The expres-

sions which define the velocity of various types of elastic

waves for simple structural elements are given in the last

column of Table 3.4. Note that for longitudinal compres-

sion waves in bars, the wave velocity is dependent only on

material properties while for torsional vibration, the shear

wave velocity depends on material properties and on the

geometry of the bar. One example of the practical sig-

nificance of this type of traveling elastic wave is the

critical influence of longitudinal elastic wave vetocitiesln

hydraulic pipes on the severity of dynamic loads due to

water-hammer effects. Values for the longitudinal velocity

c Land torsional or shear velocity c s tara numberofcommon

materialsare listed in Table3.39 at theendof this chapter.

For lateral bending waves in beams and plates, the wave

velocities indicated by the expressions in Table 3.4 are

dependent not only on material and section properties but

on the frequency g of vibration. Such waves are called

dispersive waves, in contrast to nominally nondlspersive

longitudinal and torsional waves in bars. In this case,

different frequency components of a complex elastic bend-

ing wave travel at different velocities through the struc-

ture - the waves witha lower frequency traveling wltha

lower velocity. As an example, traveling bending or

flexural waves in beams and plates constitute one of the

principal mechanisms for transmission of vibration in build-

ings and frame structure.

This brief discussion of traveling elastic waves in structure

has been limited to only a few of the principal features of

this complex phenomenon in order to provide a better

physical understanding of the vibration of continuous struc-

tural elements. The topic of wave motion will appear

again in this manual for, too large extent, it represents

a major distinguishing feature of sonic loading on buildings

as distinguished from the stationary nature of static loads.

The subject of acoustic waves will be covered in Chapters

4 and 9. Propagation of damped elastic waves in structure

is considered later in this chapter. Propagation of damped

acoustic and seismic waves is covered in Chapter 7.

Standing Waves and Normal Modes

Thecomplex features of travelingelastlc waves are simpli-

fied when structural elements of a finite length are con-

sidered. When a traveling compression wave in a bar

strikes a rigid boundary, a reflected wave is generated, as

shown in Figure 3.77a, which travels in the opposite direc-

tlonand has an amplitude and phase such that theconditlon

of zero deflection at the rigid boundary is satisfied by the

sum of the incident and reflected waves. This results ina

so-called Standing Wave of longitudinal vibration in the

bar as illustrated in Figure 3.77aby the heavy dashed llne.

The summation of the incident and reflected waves add up

to a time-varylng motion which does not propagate along

the bar. If the rigid boundary depicted in Figure 3.77a is

located at the position y=0, then, using Equation 3.307

to define the incident and reflected waves, it can beshown

that their amplitudes X +and X- are equal. The combined

deflection of the two waves may be expressed as separable

space and time functions by

x(y,t) 2X sin uy= -- COS Wt

c L

t=O

1

a) Reflected ( .... ) and Stondlng (----) Waves Generated by on

Incident (--) Longitudinal Compression Wave in a Bar

Striking a Rigid Boundary. Shown at four different times

separated by 1/4 of the period (I f) of the incident wave.

_l[IH[Hnlll][lllll I I I I flffllmlHlI I

I_, L -I

b) Fixed-Fixed Bar Vibrating Longitudinally in Its Third Normal

Mode. Standing wove vibration for f3 = 3 (CL/2L).

FIGURE 3.77 Standing Waves and Normal Mode for

Longitudinal Vibration of o Bar
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If another rigidboundary is placed on thebar at a distance

y=L from the first boundary, then standing longitudinal

compression waves can exist in such a bar only for those

frequencies for which boundary conditions of zero deflec-

tion are satisfied at both ends - that is, for wL/c L = n_ or

fn = n (CL/2L). Aconvenlent physical interpretation of

this simple expression for the natural frequency is obtained

by considering 2L/n as the wavelength X n = cL/f n for the

nth longitudinal mode of'vibration for the bar fixed at both

ends. That is, forn = 1, awave, starting at one end of

thebar which travels to the other end and upon reflection,

retums to the starting point, must travel one wavelength,

or 2L, for the proper conditions of zerodisplacement to be

met at eachend. Thus, it isconvenient todefineaquontlty

K called e wave number where K = 2_/_ = 2_ f/c L. For

the nth normal mode of the fixed bar, where fn = n CL/2L ,

the dimensionless quantity K n L = 2_(n CL/2L ) (L/cL) = n'_

can also be used to define the nth natural frequency. The

case for n=3 is illustrated in Figure 3.77b. Frequencies

which satisfy this criteria are the natural frequencies w n or

the normal modes of longitudinal vibration for a fixed-
fixed bar.

The same concept of standing waves applies to the lateral

bending vibration of beamsand plates in their normal modes.

For example, as shown in Figure 3.78, the normal modes

of a simply supported beam and plate have corresponding

natural frequencies, indicated in the figure, which can be

defined in terms of the ratio of the corresponding wave

velocity c B or c_ to a characteristic length. The wave

number parameter K for bending waves in beams is defined

by K=2_ _ =2_ f/c B where _ is now a bending wavelength

and c B is the bending wave velocity in the beam. How-

ever, a different form is normally used to express the natural

frequency for this type of vibration for, as noted earlier,

the wave velocity forbending vibration of beams and plates

is, itself, dependent on frequency. Nevertheless, the

relationship between normal modes and standing waves still

applies.

o) SimpLy Supported Beam Vibrating in Its Third
Normal Mode. Standing wove vibration for

f3 = 3 CB/2 L.

' a A r/ i /

o b

b) Simply Supported Plate Vibrotlng in Its 2,2
Normal Mode. Standing wove vibration for

f22= m)2+ (nb .C'B/20 and .... 2.

FIGURE 3.7B. Typical Normal Modes for Free Flexurol
Vibration of Structural Elements

In general, therefore, the vibration of a finite continuous

structural element can be defined in terms of its normal

modes by a summation of terms of the form _n(y ) qn(t) where

Sn(y ) represents the shape of the nthnormal mode and qn(t)

represents the time variation for this mode. For a two-

dimensional structure, the mnth mode shape _mn(Y,Z) is

usually specified by a product Sm(y )_n(z) of two one-

dimensional mode shapes in the mth and nth mode, respec-

tively. Assuming harmonic motion for the normal mode of

a one-dimensional structure, then x(y,t) can be given in

the form'q _(y) e jut. Substituting this into thebasic equa-

tion of motion (Equation 3.305), the time varying part

drops out leaving the Frequency Equation for the normal
modes which is

_ 2 ._I + K] _(y) = 0 (3.308)

where M and K are the inertia and stiffness terms identi-

fied in Table3.4. The mode shape functions q_(y) which

satisfy this equation must also be able tosatisfy the boundary

conditions imposed at the ends of the element. The boundary

conditions appl icabl e for ideal end condi ti ons and for partial

fixity and other nonideal end conditions for longitudinal,

torsional and lateral vibration of bars and beams are sum-

marized in Table 3.5, page 3-113.

General Form for Normal Mode Shapes

For lateral vibration of strings and longitudinal or torsional

vibration of bars, the general normal mode shape which

can satisfy Equation 3.308 and the appropriate boundary
conditions in Table 3.5 isa summation of circular or sine

and cosine functions given by

_(y) = Acos K y+Bsin K y (3.309)

For lateral bending of a beam, or for lateral bending along

one dimension of a plate, the general mode shape which

can satisfy Equation 3.308 and the boundary conditions in

Table 3.5 isa summation of circular and hyperbolic func-

tions and is conveniently expressed as

_(y)=A (cash K y+cos K y)+ B (cash K y- cos K y)

where

C (sinh Ky + sin Ky)+ D (slnh Ky - sin Ky)

(3.310)

K = _/(wave velocity) - see Table 3.4

w = Frequency in radians/sec

A,B,C,D = Coefficients tobedetermlned from bound-

ary conditions. (For ideal boundary con-

ditions, two of these coefficients will

always be zero.)

The unknown coefficients, the natural frequency for each

mode, and the mode shape for free vibration in the normal

modes are determined by the following steps:
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1)ApplytheknownboundaryconditionsfromTable
3.5to Equations3.309or3.310ortheirappro-
priatederivatives(twoconditionsarerequiredfor
Equation3.309andfourforEquation3.310).

2) Solvetheresultingsetof linearalgebraicequa-
tionsforall but one of the unknown coefficients

and for the roots or natural frequencies _0n, using
a standard variable elimination method ordeterml-

nant solution methods. (The natural frequencygn

isdetermlned in a nondlmenslonal form as wn L/c =

KnL where L is the length of the element and c is

the appropriate wave velocity .)

3) Determine the mode shapes by substituting gn L/c :

KnL back into the corresponding equation for the

mode shape.

4) Normalize the maximum value of the mode shape

to unity. (Alternate methods make this step un-

necessary but it is used here for consistency with

the convention adopted for lumped parameter sys-
tems .)

Solutions for the normal vibration modes of a wide variety

of idealized structural elements, using the procedures out-

lined above, are well known and are thoroughly docu-

mented in the literature. Representative cases of practical

interest will be illustrated in subsequent sections.

Resonance frequencies and, in some cases, mode shapes for

most of the known solutions to Equation 3.308 fora wide

variety of s_mple structural elements with ideal boundary
conditions are included in the charts and tables at the end

of this chapter. Additional aspectscover_ng longitudinal

and torsional vibration of bars and lateral vibration of

beams and plates are covered in the next sections.

Forced Response Without the Use of Normal Modes

For forced excitation of a distributed structural element at

its boundaries (i.e. - foundation force or displacement

input), it is often convenient to obtain a solution without

resorting to the normal mode approach. It is important to

distinguish this direct approach from the normal mode

method when applying boundary conditions for distributed

systems. When boundary conditions which specify an excl-

tatlon suchas a driving force or input motion are used, the

resulting equations of forced motion are nonhomogeneous.

That is, at least one of the set of equations obtained by

inserting the boundary conditions, has a nonzero forcing

term on the right side. In this case, the usual frequency
equation based on free vibration is not obtained. The

forced response is determined directly without computing

the normal modes by solving the set of nonhomoqeneous

equations for all of the unknown coefficients (A, B, etc.)

in Equation 3.309 or 3.310 without solving for natural

frequencies. Evidence of the predominant effect of the

normal mode response becomes apparent, however, since

the forced response becomes maximum at the natural fre-

quencies of the normal modes.

Variations of this method, such as the Transfer Matrix

method (References 3.34 and 3.36) are very useful for

computing the vibration response of complex distributed

structure suchas structural frames or piping arrays. For all

but relatively simplesystems, however, the methods require

extensive computations which generally involve the use of

computers. For single structural elements, the normal mode

approach offers considerable simplification as will be clear

from subsequent examples.

Generalized Mass for Distributed Structural Elements

Just as for lumped parameter systems, normal modes for

distributed structural elements are orthogonal with respect

to the distributed mass. This condition is defined by the

followlng equations for one- and two-dimensional structure

(References 3.2 and 3.5).

For Bars and Beams of Length L

tMn m:n
0 pA(y) _n(y) q_m(y) dy : l0 m/n

(3.311)

For Plates with Sides a, b

a b I_mn

/ph(y,z) Cmn(Y,Z ) _rs(Y,Z ) dy dz =

0 0 mT_r

njs

(3.312)

: Generalized Mass for nth mode of one-

dimensional structure and mnth mode of two-

dimensional structure, respectively

where

Mn, Mmn

pA(y)

ph(y,z)

m - f

m =s

= mass pet unit length = pA for uniform beam

= mass per unit area = ph for uniform plate.

Generalized Forces for Distributed Structural Elements

The generalized force Fn(t ) for the nth mode of a beam

loaded by a distributed dynamic force bp(y, t) per unit

length, where b is thebeamwidthand p(y,t) is the pressure

at y, is (see Section 3.3.3.1)

L

Fn(t) = b/p(y,t) q_n(y ) dy

0

(3.313a)

For e plate loaded bya distributed pressure p(y,z,t), the
generalized force for the mnth mode is

a b

Fmn(t) = ]]p(y,z,t)_mn(Y,Z )dydz (3.313b)

0 0
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TABLE 3.5

BOUNDARY CONDITIONS FOR LONGITUDINAL, TORSIONAL
AND LATERAL VIBRATION OF UNIFORM BARS AND BEAMS

LONGITUDINAL VIBRATION OF BARS

Boundary Condition

Free at y

Fixed at y

Compressive Load P at y

Inertial Load m at y

Stiffness Load k at y

I
y=

Deflection at y(1)

x(y,t)

0 L

Compressive Force at y
EA ax(y,t)/ay

y=0

-p

+ m a2x(°'t)

o a t 2

+ k° x(0, t)

y=L

-p

82 x(L, t)

- mL a t2

- k L x(L,t)

TORSIONAL VIBRATION OF BARS

Same as for Longitudinal Vibration of Bar Except:
• Replace Force P by Moment M
• Replace Mass m by Mass Moment of Inertia I

• Replace Stiffness k by Torsional Stiffness kr

LATERAL VIBRATION OF BEAMS

Boundary Condition

Y
ii

Fixed at y

Pinned at y

Guided at y _

Free at y

Inertial Loadm, lmaty _m _lm

Pure TranslaHonol Stiffness k at y _k -

Pure Torsional Stiffness k r at y __kr )

z=0 L
Moment

Slope
ax(y, t)/ay M = E I a2 x(y,t)/ay 2

tx(y't) v(L))M U

0

0

a 3 x(y, t)

Shear

V = - E I a3x(y, t)/ay 3

Deflection

x(y)

ay at2
- Im_

kr ax(y,t)
ay

- m--

0

0

a 2 x(y, t)

at 2

kx(y,t)

(1) Pos]tlve x implies dilltation ° i.e., expansion of bar.
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These expressions for the generalized force on distributed

structure can be used to define the forced response of such

structure to arbitrary loads using the methods developed

earlier for lumped parameter systems (see Sections 3.3.2.9

and 3.3.3.1-3.3.3.9). The generalized force may also

. be expressed in normalized form in terms of the Joint Ac-

ceptance (or mode participation factor). For example,
for a beam of length L subjected to a distributed slnusoldal

acoustic load, the mean square generalized force for the

nth mode can be written down from Equation 3.267 (page

3-88) using the rules cited at the beginning of this section

for transition from lumped to continuous systems. The
result is

1 p2 2F2(t) = _ o Jn (3.314)

where

L L

,(Y'Y"f)L _n(Y)_Pn(Y ) dy dy' -./
0 0

the joint acceptance squared for a dynamic

pressure witha constant amplitude but varying
phase slnusold

Rp(y, y',f) -

p2(t)

p(y,t) p(y',t) the (narrow band) space-

p2(t) correlation coefficient be-

tween the instantaneous

pressure p(y,t) at point y and the pressure

p(y',t) at another point y'

= mean square value of the constant amplitude

pressure at any point

1 p2
_ o = (bL) 2 p2(t)- mean square value of the

total force on beam of span

b and length L.

The above expression for joint acceptance squared for
slnusoidal acoustic loads on beams will be evaluated in

detail in Chapter 8 when analyzing the response of building
structure to acoustic loads.

3.3.5.2 .Longitudinal Vibration of Bars

The normal mode characteristics for longitudinal vibration

of uniform bars, obtained by applying the concepts out-

lined in the previous section, are summarized below. (See

Tables 3.26 and 3.39 at the end of this chapter.)

Equation of Motion for 2" Free Vibration "_(y,t) - c x"(y,t) = 0

(3.315)

where, for convenience in notation,

82
_(y,t) = 82 x(y,t) , and x"(y,t)= x(y,t___ )

a t 2 a y2

Longitudinal Wave Velocity cL =

MODAL CHARACTERISTICS

Boundary Condition Mode Shape (1) Natural Frequency (2)

Cn (y) fn

t--" x(y)

Ii Fixed-Free sin (2n-l)_f (2n-l) ck/4L

i..__y k n = 1,2,3

_ Fixed-Fixed sin n_-_ n CL/2L
n = 0, 1,2

J--y L

[ ] F .... Fre ..... -_ n c L/2L

_"y L n =0,1,2

0

1 1
(1) Generalized Mass M n =_pAk :-_-(Mass of Bar)

(2) n = 0 modes refer to rigid body translation modes.

Special Cases

• Unequal Mass Loading at End of Free-Free Bar

m b = pAL = mass of bar

Mode Shape (Not Normalized to Unity)

m o

_n(Y) =cosKnL(Y)-_bb KnLslnKnk(_ )

(3.316)

(an L

where K n L = -- = nondimensional natural frequency
c L

Frequency Equation

.jKnL +

tan K n L = -1 (3.317)

mL m° _ /

--_'-- (KnL) 2 1J
The natural frequencies or values of UnL/c L which satisfy

this transcendental equation can be determined by graphical

methods. A plot of the first three natural frequencies, ex-

cluding rigid body modes, is shown in nondlmenslonal form

in Figure 3.79 as a function of the mass ratios mo/m b and

mL/m b. Note that for mo/m b = ao, and mL/m b = 0, the

frequency corresponds to that for the clamped-free beam.

This special case and the one following are useful for

analyzing longitudinal vibration modes of critical elements

of piping systems or other structural systems subjected to
longitudinal vibration.
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FIGURE 3.79 First Three Natural Frequencies for Longitudinal

Vibration of Uniform Bar with Unequal Masses on

Each End (Rigid Body Modes Excluded)

• Unequal Spring Loading at Ends of Free-Free Bar

I-'-- y L

k o k b k L

EA
kb = -k-- = static stiffness of bar

Mode Shape (Not Normalized to Unity)

(3.3_a)

Frequenc X Equation

tan K n k =

1
o kk

where Knk = _nk/C L = nondlmensionai natural fre-

quency.

This transcendental equation has the identical form as

Equation 3.317 if kb/k L is substituted for mL/m b and

kb/k o substituted for mo/m b. The natural frequencies

may therefore be determined from Figure 3.79 by making

this transformation. For example, for ko/k b = oo and

kL/k b = 0, the corresponding values for mo/m b and

mL/m b are 0and oo, respectively. Both cases correspond

to a clamped-free bar and, as indicated in Figure 3.79,

the natural frequency for the first mode is gl L/CL = 1T/'2 or

fl = CL/4L which agrees with the frequency specified for

this case.

The boundary conditions for these special cases are defined

by treating the force acting on the bar as positive fora

compression load which corresponds to a negative strain

8x(y)/ay (Reference 3.6). The boundary conditions, cited
earlier in Table 3.5, are:

Mass Load Spring Load

At y=0, Force = EAx'(0,t) = +mo_(0,t ) or +kox(0,t )

At y=L, Force = EAx'(L,t) = -m L_(L,t) or -k L x(L,t)

Note that the internal force on the beam changes sign from

one end to the other. The mode shapes and frequency

equation are determined for each case by substituting the

general solution for the equation of motion

x(y,t) = ['C cos Ky + D sin Ky] e jgt (3.320)

into the above boundary condition expressions at y = 0 and

solving for the ratio of the coefficient Dto C. This result

is then used with the second boundary condition at y=L to

find the frequency equation (e.g., Equations3.316-3.319).

Forced Longltudinal Vibration Response

of Mass Loaded Bar

As indicated in the previous section, a direct solution for

forced response is frequently desirable without resorting to

the normal mode approach. Such a case is illustrated in

_L _-__ ×(L,t)

___._ x(y, t)

P(t)

FIGURE 3.80 Mass Loaded

Bar Driven

kongi tud;na II y

at End by

Force P(t)

Figure 3.80 for a mass-loaded

bar drivenby axial force P(t)=

P cos gt. Since the driving

force is applied onlyat the end,

the general solution (Equation

3.320) for free vibration can

still be used but with different

boundary conditions. These are

At y=0, Driving Force,

EA x'(0, t) = P(t)

At y = L, Inertial Force Due to

Mass Load,

EA x'(L,t) = -m L _(L,t)

Note that the externally ap-

plied force is assumed positive

in the direction of compression

and results in a negative strain.

Applying these boundary con-

ditions to Equation 3.320, a
solution isobtained for both of

the coefficients C and D in

terms of the applied force am-

plitude P.
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Applyingtheboundaryconditionat y = 0to Equation
3.320,thecoefficientDisdeterminedtobe

PD= --EAK
Applyingtheboundarycond_tionaty=LtoEquation3.320
andusing the above value for D, C becomes

[ ,m]p cos KL - EA"_-K- sin KL

C - EAK g2 mL

.E---A--_ cos K L + sin K L

where

K = _/c L = 2_f/c L

E = Modulus of Elasticity Bar

m L = End Mass

Express_2mL/EAKasK 2c 2mL/EAK=KLEmL/pEAL=

KL mL/m b where mb = pAL- the mass of the bar. Com-

bining the above to define the axial displacement and

taking the second derlvatlve with respect to time to deter-

mine acceleration and setting y=k, the axial acceleration

at the mass m, can be expressed as

x(L, t) cos gt (3.321)

'"k mb sinK L

°sKL+m L KL J

This equation defines the frequency response function re-

lating the acceleration of the mass to the driving force as

a function of frequency,. The frequency is contained in

the parameter KL = _ L/c L. Although a normal mode

solution is not utilized, the natural frequencies of the sys-

tem are the frequencies for which the denominator of the

term in brackets goes to zero, or

rn I

_nL/c L=K nL for tan K nL=-_K nL (3.322)
mb

This agrees with the result given by Equation 3.317 for the

more general case when the mass mo in the latter expres-
sion is set to zero.

Note that as frequency 6pproaches zero in Equation 3.321,

the right side becomes simply P/[rn L + mb]which isthe

"static" acceleration of the bar and mass load for a steady
applied force. However, for illustration of trends in the

response function, it is convenient to plot the quantity

IX(L)I,/_P/mL). This is the ratio of the absolute amplitude

of the acceleration at the mass m k to the static accelera-

tion P/m k which would exist if the force were applied

directly to this mass. This is the form plotted in Figure

3.81 as a function of the dimensionless frequency parameter

KL/2_ = fk/c L for two different values of the mass ratio

mb/m k. Without damping in the system, the response be-

comes infinite at the natural frequencies given by the

values of K k which satisfy Equation 3.322.

Maximum Response at Resonance

An estimate of the maximum acceleration response, in-

cluding material damping effects of the bar, can be made

in the following manner.

• Replace KL by KL [1 - j (rl/2)] - this provides an

approximation for the effect of material damping in

longitudinal vibration where qis the extensional loss

factor of the material. The quantity j q, (] =_/-1)

is the ratio of the imaginary (or loss)part of the elastic

modulus, to the real (or elastic) part. Thiswill be

explained more fully in Section 3.3.7.

Expand the sine and cosine terms with complex argu-

ments using the approximation that

q

cosKL-_ cos KL+ jKL_sin KL, and

q

sinKL_sin KL- jKL_cosKL .

(This is valid for the lower modes of a typical bar-

type structure with loss factors of the order of 0.05 or

less where K L q/2 < 0.5.)

°Assume, as usual, that the undamped and damped

natural frequencies are essentially the same so that

the relationship given by Equation 3.321 for K L at
resonance can be used.

Making these substitutions in Equation 3.321, a close

approximation for the absolute value of the maximum re-

sponse amplitude at resonance becomes

 2/ 1Kn' 1 1 /3323)m 2 sin Kn'---_

P/mL max (KnL)2+(m_._.b} +mb

" '_mLz "_L

where

K nL =_nL/CL- the value of K L at resonance. (These

may be determined, for the first two

natural frequencies, by the ordinate

values in Figure 3.79 for mo/m b = 0.

Since KnL = gn L/CL "_ (2n-l) "_/2 for m L > mb, which is

the usual case for practical situations of interest, then

sin KnL _ :t: 1. The absol ute value of the maximum response

at resonance is, then_ approximately equal to the term in

brackets. This expression indicates two aspects of the

forced Iongltudinal response ,when damping is caused by
losses in the bar material.

• The apparent damping will tend to increase at higher

mode numbers as KnL increases. This can be inter-

preted as a measure of the loss in vibration energy

transmitted from one end of the bar to the other.

• Damping decreases for low values of mb/m L. This is

logical since the bar is the only source of damping

included in the system.
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The maximum response amplitude predicted by Equation

3.323 is shown by data points in Figure 3.81 for the case

r I = 0.02 - a typical value for a material loss factor, cor-

respondlngtoa Q of 50. For practical situations, involving

longitudinal vibration of "bars," such as a pipe system

terminated in a large valve, joint damping and friction

damping would be present so that Equation 3.323maybe

considered as an upper bound for the maximum response.

100 i i , i
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FIGURE 3.81 Acceleration Response at End of Mass-Loaded Bar

Driven by Sinusoidal Axial Force P(t) Expressed as

Ratio of Acceleration Amplitude at End of Beam to

"Static" Acceleration p/m L for Two Values of Bar

to Load Mass Ratio. Data points indicate maximum

response at resonance for beam with material damping

defined by the loss factor q _ 1/Q.

Minimum Response at Anti-Resonance

Between the resonance frequencies, the acceleration re-

sponse function tends to reach a minimum near K L-_ n_

for n = 1,2, etc. The acceleration response functlonglven

by Equation 3.321 then reduces to

P/mLImin : 1
(3.324)

This is apparent in Figure 3.81 indicating that an approxi-

mate lower bound for the acceleration transmitted to the

mass load is simply the "static" acceleration for the load

driven directly by the applied force.

Although restricted to a relatively simple case, the two

expressions given by Equations 3.323 and 3.324 provide a

reasonable basis for estimating the upper and lower bounds

for responseof a mass-loaded bar driven by anaxial force.

Transmisslbility Response for a Mass-Loaded Bar

For a longitudinal acceleration input, it is only necessary

to change the input boundary condition to

x(0, t) = - _o(t)/g 2

where _o(t) is an input sinusoldal acceleration at y = 0.

The ratloof acceleration amplitude at themass-loaded end

x(L,t) to this input acceleration amplitude (i .e., the trans-

mlssibillty) can then be shown to be

X(L)_ 1
(3.325)

X o mL
cosKL--- KLsin KL

m b

where KL = 27 fL/c L.

In this case, the resonance frequencies occur when

cos K L = (mL/mb) K L sin K L so that maximum transmlssl-

bility for a motion input to a mass-loaded bar occurs for

_n L/CL = Kn L where

m L

cot KnL mb K n L

This has been evaluated in Figure 3.82 for the case of

mL/m b=2. The equivalent transmissibility obtained for a

lumped mass-sprlng system is also shown. The frequency

scale is normalized by the resonance frequency foal the

b

E

o

u

i

I.C

0.1
0.

mL
--=2

mb

I I

fo

, 1 t j _ i I

: /
II II

Bar -_--/I _t Massless Spring

m b = pAL _/_/

J lllll, r A, I
.0

Frequency

Resonance Frequency for "Massless Spring"

i i i I i _ 1

I

i0

FIGURE 3.82 Acceleration Transmisslbillty for Mass-Loaded Bar

DHven by Sinusoldol Axial Acceleration "_(0, t)

Compared to Transmissibillty for Massless Spring

with Same Stiffness
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mass load m L on a weightless spring which has the same

static stiffness k = EA/L as the bar. This figure illustrates

the effect of longitudinal wave motion inasprlngwhich

tends to limit the isolation provided by standard vibration

mounts (Reference 3.1, Chapter 30). Further practical

detailsof this effect are considered in Chapters 9 and 11 .

The approximate upper bound for the transmlssibility at the

longitudinal resonances can be determined in the same

manner as before by including material damping. The result
is

HI _ (2/q) mb/m k I (3.326)

I x° max fKnk) 2+ (mb/mk)2+ 1] cos Knk

where KnL is the value of u n L/c L at the longitudinal

resonance and q is the extensional loss factor of the bar
material.

The lower bound for the transmlssibility occurs at the anti-

resonance frequencies Wan and is approximately equal to

mb
X° mln mL unL for m L > m b (3.327)

where

Uan L ~ 2n- 1

c L 2
at the antl-resonance Frequencies for

m L > m b •

(It is worth noting that these minimum values of response

given by Equations 3.324 and 3.327 would be more dlfficul t

to determine had a normal mode analysis method been used.

It would have been necessary to include cross mode coupl ing

terms in the latter to obtain accurate results at these points
of minimum antl-resonant response .)

Summary of Response Characteristics for Sinusoidal

.Longitudinal Vibration of Mass and Stiffness Loaded Bars

The same methods applied to analyze the forced response

_and transmissibility for an axlally-driven mass-loaded bar

can also be applied to stiffness loaded bars. A unified

summary of these characteristics for both cases is given in

Table 3.6. The various response functions are given in

terms of a load parameter a =mb/m L or k L/k b . The general

trend in these response characteristics for force or motion

excitation has been illustrated in Figures 3.81 and 3.82.

Note that the response characteristics for force input to o

mass-loaded bar are identical to those for motion input to
spring-loaded bar.

Exampl_.____ee

Consider the case of a 3-inch dlameter_ 10-foot steel bar

driven by a 50-pound peak sinusoidal force at the free end

and loaded at the other end by a 500-pound weight. Find

the first two natural frequencies and peak acceleration of

the mass for excitation of the bar at these frequencles.

Assume the loss factor for the bar material is taken as 0.01:

Longitudinal Wave Velocity (From Table 3.39)

c L = 16,820 ft/sec _ 2 x 105 in/sec

Bar Weight

mb g = Pw AL = (.3) (3.14) (3) 2 (120) =254 Ib
4

Mass Ratio

m L g/m b g = 500/259 _ 2

Resonance Frequency - From Figure 3.79 for m o = 0

and m L/m o = 2

Ul L/ck -- 1.82 .'. fl = (1.82) (2x 105)/(6.28) (120)

= 484 Hz

u2 L/CL = 4.8 " f2 = 1270 Hz

Maximum Acceleration at Resonance (From Equation
3.323)

I_I = (2/q) K1 L

max (K 1L)2 + (mb/mL)2 + (mb/mL) sin K 1 L

For

q = 0.01

K IL = uIL/CL = 1.82, sin K IL =0.969

mb/m L = 0.5 P = 50 Ib

m L g = 500 Ib

Atfl, XLL)I =9.2gpeak at 484Hz
max

Similarly, for f2' K2L =u2L/cL = 4.8

At f2' X(L.___) = 4.1 g peak at 1270 Hz
I g I max

Shock Response of Uniform Bars for Transient Axial Loack

Transient axial loads are commonly encountered in rocket

test facilities on such items as hold-down arms, hydraulic

systems, etc. Two common forms for such situations are

• Transient response due to the sudden release of a

static preload, and

• Transient response due to the sudden application of a
load.

For the First type of transient load, a normal mode approach

now becomes convenient (Reference 3.5). Methods for

analyzing the free transient vibration of a lumped-parameter

multl-degree of Freedom system with finite initial condi-

tions may be applied to continuous structure (see Section
3.3.2.9, page 3-59).
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Example

Asanexample,considerthecaseillustratedin Figure
3.83ofauniformbarwithstiffnesskb=EA/Lattachedto
a rigidfoundationbya lumpedspring k k. The transient

displacement of the free end of the undamped bar, upon

sudden release ofa preload Ps' can be determined by the

fol lowing procedure.

kb k L

o -_:b'-_L

k b k L

x° =Ps/ _bb +k'L ' XL = Ps/kL

k b = AE/'L

L

L

a) Initial Displacement of Bar Attached toa Rigid

Foundation by Lumped Spring and Under Static

Axial Load

_.-_- F i rst Mode

I %,..----s.... dMode

b) Typical Time History of Free-Free Vibration at End of

Bar After Release of Preload

FIGURE 3,83 Free Transient Vibration of Bar for

Initial Axial Displacement

• Use Equation 3.205, page 3-59 to define the tran-

sient vibration of_ a multl-modal system. For zero

initial velocity, the motion of the bar may be given

by the summation over the normal modes as

N

x(y,t) = _ q_n(y ) qn cos (Unt)
n

where _n(y) = mode shape for free vibration of bar

= cos KnL (y/L)

where KnL =unL/C L = nondimensional natural
frequency for free transient
vibration of bar with one

end free and other end at-

tached to lumped spring.

qn = amplitude of normal coordinate of nth
mode.

• Determlnet_nL/c L as roots of cot KnL=(kL/k b) K nk.

(These can be obtained from Figure 3.79 by replacing

KL/k b by mb/m L and reading the values of unL/c L

from the right hand side of the graph where mo/m b =a_.

As a first approximation, for kL/k b >> 1, use KnL =

unL/c L = (2n-l) 7/2, n = 1, 2, etc.

• Determine "qn from Equations 3.206 and 3.204, page

3-59, modified for continuous structure. For zero

initial velocity, this gives

L

qn = qno M n (y,0) cos KnL dy

0

where

pA =

M n =

x(y,O) =

mass per unit length of bar

generalized mass of bar

initial station deflectlonof bar asa func-

tion of y (see Figure 3.83a).

For the case of k L = ao (rigid support at end of bar,

this integral will give, for an initial static deflection

equal to x(y,O) = X o (1 - y/L),

pAL [ 2 -_-] 2_n : M n " 2n----'_- " Xo

The first term pAL/M n is the ratio of the bar mass to

the generalized mass and is equal to 2 for a rigid

foundation, so that

qn = _ Xo' 8 Xo ' 89"--"_ 2_2 X°

for n = 1, 2, 3, etc.

For the first natural mode, the displacement at the

free end (y = 0) will then be

8 ,_ CL

x(O,t) : _- X ocos _ _" t
"IT

where X a = initial deformation (for k L = ao)

c L : longitudinal wave velocity (-_ 2x 105
in,,'sec for most metals)

A typical time history of the displacement for the first

two modes is illustrated in Figure 3.83b.

• Add any significant rigid body motion for vibration of

a rigid bar with mass pAL on a finite foundation

spring.

This illustrates the typical situation for free vibration of a

multl-degree of freedom system due to an initial displace-

ment - the principal transient displacement is in the first

mode. However, the acceleration will increase as the

square of the mode number, so that at the end of the bar,

the amplitude of the acceleration in each mode would be,

for unL/c L : (2n - 1) 'n/2,
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i

2qn = Un qn = 2 X o- a constant indepen-
dent of mode number.

This illustrates the typical result observed for transient

longitudinal vibration _n bars; high accelerations are de-

veloped at high frequencies.

For transient applied forces, the longitudinal vibration re-

sponse of continuous structural elements can be carried out

by either of the following methods.

Apply Fourier or Laplace Transform techniques using

the slnusoldal frequency response functions defined in

Table 3.6. (See Sections3.2.2.4-3.2.2.7.)

• Use the normal mode and graphical analysis tech-

niques, dlsucssed in Section 3.3.3.3, foranalyzlng

the forced transient response of lumped parameter sys-

tems. As before, summations over lumped masses are

replaced by integrals over the element.

The normal mode shapes and relative generalized masses

which would be applicable for this latter approach are
summarized as follows:

Normal Mode Shapes for Axial Excitation of Bars Loaded

by a Mass or Stiffness at End Opposite to Input Excitation

Force Excitation or Free Vibration with Finite

Initial Conditions

Motion Excitation

*n(Y) = sinKnL (f)

Natural Frequencies - (See third row in Table 3.6)

General ized Mass L

Mn = mbf,2(y ) dy

0

1.5 , , , j
I

Force _

1.0 ]
Mode

Number

0.5
3

0 I
0

I I I I

0.5 .0 1.5 2.0 2.5

Load Moss

mL/mb- Bar Moss

FIGURE 3.84 Generalized Moss for Normoi Modes of Moss

Loaded Bar ExcHed by Axial Force

For mass-loaded bars, the generalized mass of the com-

bined system will be significantly different from I/2 the

bar mass for only the lower modes of vibration as indicated

in Figure 3.84. For motion excitation , the generalized

mass ratio for the first mode is somewhat greater than indi-

cated in Figure 3.84. In this case, the normal modes ex-

cited correspond to those of a clamped-free bar while for

force excitation and free vibration, the modes excited

correspond to free-free modes.

3.3.5.3 Torsional Vibration of Bars

As shown by Equation 3.305and Table3.4, pages 3-108

and 109, the equation of motion for free torsional vibration

of uniform bars can be written as

or as

where

8

pJ EJ(y,t) = K r G e"(y,t)

8(y,t) = c 2 8"(y,t) (3.328)

= angular displacement

p = mass density

J = polar moment of inertia of cross section

G = shear modulus

c s = shear wave velocity

= torsional constant (or torsion factor)Kr J for circular sections.

This equation is identical in form to the plane wave equa-

tion for longitudinal vibration in bars (Equation 3.315).

Thus, all of the concepts for flee and forced vibration

developed for the latter are fully applicable to torsional

vibration of bars if the following substitutions are made:

Longitudinal

Vibration Torsional Vibration

Displacement x(y, t) "_" 8(y, t)

Inertia/Length pA _ p J

Stiffness/Length EA _ K r G

Wave Velocity CL = _/_---_ Cs =_r G/J p (Shear)

= K rG/L- Any

Section

= J G/L - Circular

Bars or Pipes

Spring Constant k =AE/L ----_k r -_A4G/4_2JL- Any

Solid Section With-

out Reentrant

Angles

Axial Load P(t) _ M(t) Moment

Inertial Load m _ I - Mass Moment of
m

Inertia

Spring Load k --_ k r - Torsional Spring
Constant
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TABLE3.6

SUMMARYOFFORCEDRESPONSEANDTRANSMISSIBILITIESFORMASSANDSPRINGLOADED
UNIFORMBARSDRIVENLONGITUDINALLYBYSINUSOIDALFORCEORMOTIONEXCITATION

LoadParameter

a = mb/mL
mb=pAL

a = kL/kb
= kb=EA/L

Equationfor
ResonanceFrequency

KnL=unL/cL

cL= _

Forced Response

Mass Load

Spring Load

Frequency Response Equation

(Zero Damping)

Maximum Damped Response at

Resonance

(q = Loss Factor < < 1)

Minimum Response at

Anti-Resonance Frequencies

Wan

Typical Response Curve

P(t) _'t mb mk

_" _(L, t)

k b

--im.-

Xo(t)

KnL

tan KnL = -- a

6)nk I 221=-- _,a<< 1

CL 1-'=n'_, a>>l

P(t)/mL = F (KL, o)

x (L, t) 1

Xo(t)

1

FI(K L'o) = [c sinKL1as K L + a _j

(2/q) KnL 1

F1Jmax [(KnL)2+a2+a] slnKn L

FlJml n '_1, g>g 1

{n_, a<< 1, n = 1,2at uanL/CL-_ (2n-]) "_/2, a >> I

See Figure 3.81

mb m L

"_o(t) _- _(L, t)

k b

P(t) --,.-J

k -_ x(L,t)

KL
n

cot KnL = +--
a

unL t_n_, a<< 1

CL I 2n-1
a >>I

[ , ]F2(KL, o)= KL
cosKL--- sin KL

(2 "q ) a

F2Jmax= [(KnL) 2+ a2+ 1] cos KnL

F21ml n =a CL/WanL

_ (2n-1)'_/2, a << 1
at uanL/c L -'= t n'n", a >> I

L W

See Figure 3.82

"_o(t)

= F2(K L, a )
x(L,t)

P(t)/k b
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A tableoftorsionalspringconstantskr andpolarmoments
of inertiaJ is givenin Table3.24at theendof this
chapter.ValuesforthetorsionalconstantKr maybede-
terminedfromthistablebycomputingKr=kr L/G. The
torsionalconstantKr for moststandard structural cross

sections is also listed in standard handbooks. (It is fre-

quently identified by the symbol J and should not be con-

fused with the usage in this manual where J is polar moment

of inertia for any sectlon.) The polar moment of inertia J

is the sum of the two orthogonal moments of inertia Ix and

ly about axes in the plane of the section. These values

are also readily available in standard structural design

handbooks.

The natural frequencies for torsional vibration of circular

section bars will be equal to the ratio _ times the

corresponding longitudinal natural frequencies for a given

bar. For common metals, _ = ,,/1/2 (I + v) -_ 0.62.

For open section beams or angle section, the ratio of tor-

sional to longitudinal frequencies for the same boundary

conditions will generally be much less than this factor due
to the reduced torsional stiffness of such sections relative

to their axial stiffness.

3.3.5.4 Lateral Vibration of Beams

Based on Equation 3.305 and thedefinltlon of the mass and

stiffness terms for free lateral vibration of uniform beams,

given in Table 3.4, the equation of motion for such vibra-

tion is conveniently given in the f'ollowlng form, using

(') and (') to signify partial differentiation with respect to

y and t, respectively.

where

El x .... (y,t) + pA _(y,t) = 0

E I = Bending Stiffness per unit length

pA = Mass per unit length.

(3.329)

This equation is derived from the Bernoulli-Euler theory

for flexure of beams which assumes that plane sections of

the beam remain plane in bending and the radius of curva-

ture of the deflected beam is large compared to the beam

depth (References 3.5 and 3.34). This amounts to neglect-

ing effects of shear deformation rotary inertia forces. For

most engineering problems dealing with beam vibration,

these assumptions are acceptable. The general solution to

this equation defines the natural modes of vibration as the

infinite series of normal mode solutions, or

N

x(y,t) = _ qn(t) _n(y )
n

where

qn(t) = Normal coordinate defining time varying am-
plitude of nth mode, and

_n(y) = Mode shape for nth mode given in general form

by Equation 3.310_ page 3-111.

By carrying out the steps outlined in Sectlon 3.3.5.1, ex-

pressions for the mode shape _n(y), frequency equation1

natural frequencies _n and generalized mass can be deter-

mined for any boundary condition. Detailed derivations

are given in most texts on structural vibration and acoustics

(see, for example, References 3.2, 3.5, 3.6 and 3.34).

As an example, consider the case of a clamped-clamped
beam. Let the free harmonic vibration in the nth normal

mode be expressed as

Xn(Y't) =qn _n (y) ej_nt

where

_n(y ) = A [cosh Kny+Cos Kny ] + B [cosh KnY- cosKnY ]

+C [slnh KnY+Sin KnY ] + D [sinh KnY- sin KnY ]

"qn = modal amplitude

= natural frequency of nth normal mode
n

K n = _n/CB = wave number for nth mode.

Substituting Xn(Y,t ) into Equation 3.329 gives

[El _P'n'"(Y)-2n PA_n(y) ] _'n eJgt=0

where the quantity in brackets is an ordinary differential

equation in y only which is satisfied by the general expres-

sion for the mode shape _n(y ) given above.

Now apply the four boundary conditions for this case, as

defined in Table 3.5, page 3-113.

1) Displacement = 0 at y = 0 or _n(0) = 0

2) Slope = 0 at y = 0 or _'n(0) = 0

3) Displacement = 0 at y = L or ¢_n(L) = 0

4) Slope = 0 at y = L or _'n(L) = 0

Substituting Cn(y ) into these boundary conditions gives

1) A(1 +I) + B(1- 1) + C(0+0) + D(0- 0) = 0

or A=0

2) KnB [0+0]+ KnC[I+I] + KnD[I-1 ] = 0

or C=0

3) B [cosh KnL- cos KnL ] + D [slnh KnL- sin Knk ] = 0

4) KnB [slnhKnL+slnKnL] + K n D [cash KnL- cosKnL] =0

Solving these last two equations simultaneously, the ratio

D/B and the frequency equation for KnL are obtained as

D cosh KnL - cos KnL

= - slnh KnL - sin KnL , and
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Frequency Equation cos KnL cosh KnL = 1

The _nfinlte number of discrete values of KnL which satisfy

the last equation define the natural frequencies of the

clamped-clamped beam. From these values, the ratio D/B

can be determined for each mode and the un-normalized

mode shape determined. Divldingthroughbythe maximum

value A n for each mode, the normalized mode shape is

specified as

%(y) =A n [cosh Knk _- cos Knl.- _ - en (slnh Knk _ - sin KnL'Y]

where

7 = y,,'L - relative position on beam

e n = D/B A n - normalized ratio of D/B.

n=tl . 0_-L._._

21 "0_'_N_ mI n
= .5

n=31 .0_

a) Slmply- Supported

1;,0_5 •

c) Clamped-Clamped

; .o,,v_..558

n = 3:1 _.,,_92

e) Clamped-Pinned

1.0•

1.0• _ .717

g) Clamped-Sliding

.7a3_',,,,

.504 .868

b) Clamped-Free

1%.094f,,_644 /
_V_.3_ ",,.v_. 9o¢

d) Free-Free

.555.._.

_._E.,_. 384

f) Free-Pinned

• Location of Maximum

Bending Stress, a

g2 _)
a a( --

8 y2

FIGURE 3.85 Mode Shapes, Location of Node Points and

Locations of Maximum Stress for First Three

Modes for Lateral Vibration of Uniform Beams

The generalized Mass M n for the nth mode is then found

using this expression in Equation 3.311, page 3.112, with

the corresponding value of KnL.

Following the same procedure, the well known solutions

obtained for uniform beams with common ideal boundary

conditions are summarized below. Mode shapes are nor-

malized to a maximum value of unity in all cases by multi-

plying the mode shape expression, as necessary, by the

normalizing constant A n . Mode shapes for the cases con-

sidered are plotted in Figure 3.85 along with the location

of node points and location of the maximum bending stress.

The following parameters are defined for all cases.

• Mode Shape in terms of KnL

where KnL = unL/c B = 2_ L/XBn

= dimensionless frequency parameter

c B = Bending Wave Velocity at u n

= _ [E I/p A] 1/4

XBn = Bending Wavelength

-_ = y/L - relative position on beam.

• Frequency Equation in terms of KnL

• Natural Frequencies- roots of frequency equatlons in

terms of KnL , or

fn L2/ ?-p-'-_'/_E_ : (KnL)2/2_, or L/XBn = KnL/2._

• Generallzed Mass

L

/2Mn : mb (:Pn _ d_

0

where m b = pAL- mass of uniform beam.

SIMPLY-SUPPORTED (PI NNED)

BEAM

I---y
• Mode Shape (See Figure 3.85a)

%(y) = sin KnL'_

• Frequency Equation - sin KnL = 0

• Natural Frequencies

n KnL fn L_//¢ E I/pA L/XBn

Any n n_

• Generalized Mass

1

M n = _mb

_/2

n/2
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CLAMPED-FREE (CANTILEVERED) _ j

BEAM _ y L

• Mode Shape- Normalized to Unlt Maximum Value

(See Figure 3.85b)

1
_n(y) = _" [cosh KnL-_- cos KnL_- en (sinh KnL'_- sin KnL _

al= 0.734, e2=1.018, a3=0.999, an(n>3)=1

• Frequency Equation

cos KnL cosh KnL = -1

• Natural Frequencies

n KnL fn k2///)/-_ A L/XBn

1 1.875 0.560 0.299

2 4.694 3.507 0. 747

3 7.855 9.819 1.250

n>3 (n -J). (n - 1)2./2 (n - 1)/2

• Generalized Mass

1
M n =_ mb

CLAMPED-CLAMPED _...
(BUILT-IN) BEAM

y L

• Mode Shape (See Figure 3.85c)

_n(_ ) =A n [cosh Knk _'- cos KnL_'- an (slnh Knk_'- sin KnL_I

n A n an

1 0.630 0.982

2 0.663 1 .001

3 0.661 1.000-

n > 3 0.661 1.000

• Frequency Equation

cos KnL cosh KnL= 1

• Natural Frequencies

n KnL fn L2/'I/'_'7P A L/X Bn

0.753

1.250+

1.750

_ (n+l)/2

1 4.730 3.561

2 7.853 9.815

3 10.996 19.242

>3 _ (n + 1)_ _(n + z/12/n "W. '_/2

• Generalized Mass

M I = 0.396 m b

M 2 = 0.439 m b

M 3 = 0.437 m b

M n = 0.437mb, n>3

FREE-FREE BEAM I I

_,.-y L

• Mode Shape (See Figure 3.85d)

1 r 3

_n(_ ) = _--[cosh KnL _'+ cos KnL 7- a n (si nh KnL 7+ si n KnL_) J

• an I

• Frequency Equation Same as for Clamped-
Clamped Beam

• Natural Frequencies

• Generalized Mass

1

M n = _- mb

CLAMPED-PINNED BEAM _
_,.-- y

L

• Mode Shape (See Figure 3.85e)

_n(_) = An [cosh KnL _- cos Knk _- en (slnh KnL _- sin KnL _

n A n an

I 0.663 1.001

2 0.661 1.000 +

n > 2 0.661 _I .0

• Frequency Equation

tan KnL = - tanh KnL

• Natural Frequencies

n KnL fnL2/VF_Tp A L/XBn

1 3.927 2.454

2 7.069 7.952

n>2 (n +¼)T_ (n+ 1)2 _/2

• Generalized Mass

M 1 = 0.439 mb

M 2 = 0.437 mb

M n = 0.437mb, n>2

0.625

1.125
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FREE-PINNED BEAM [M-y
• Mode Shape (See Figure 3.85f) L

1 + KnL _'+ sin KnL "_)]Cn(_ ) = _- [cosh Knk 7 cos KnL 7- an (sinh

O0
n

• Frequency Equofion

• Natural Frequencies

• Generalized Mass

1

M n = -_. m b

Same as for Clamped-

Pinned Beam; plus a

rigid body mode at

zero frequency

• Frequency Equation

cos KnL = 0

• Natural Frequencies

n Knk fn L 2/_i/_ p A

I

L/XBn

1 7/2

Any n n-_ 7

• Generalized Mass

1

M n = _ mb

7/8 1/4

1 2

CLAMPED-GUIDED

BEAM _ I_

t--Y k

• Mode Shape (See Figure 3.85g)

£bn(_) :A n [cosh KnL _- cos KnL _'- an (sinh KnL _'- sin KnL _']

n A n en

1 0.630 0.982

2 0.661 1.000-

n>2 _0.661 ~1.000

• Frequency Equation

tan KnL = -tanh KnL

• Natural Frequencies

n KnL fnL2/_/'EI/pA L/XBn

1 2.365 0.890

2 5.498 4.809

n>2 _(n- 1)7 (n - 1)2 7/2

• Generalized Mass

M 1 = 0.396 mb

M 2 = 0.437 mb

M n = 0.437 rob, n > 2

0.376

0.875-

p-_ y L
• Mode Shape (Equivalent to 1/2 of Pinned-Pinned Beam

Vibrating in Odd Modes)

_n(_ ) = sin KnLY

A more detailed listing of natural frequencies for lateral

vibration of single and multiple uniform beams is given in

Tables 3.27 and 3.28 at the end of this chapter. The fre-

quency is specified in a simpler form using the following
transformation

f
n

(KnL) 2 EE/-_-- (Kn L)2 r
= --

27 L2 27 L 2 CL

where

r = _/I/A = radius gyration of cross section

c L = _/"_= longitudinal wave velocity (or speed

of sound in bar)

K n L = nth root of frequency equatlon.

By using a typical value for c L of 2.02 x 105 in/sec for
steel, this can be given as

r

fn = Cn -_ x 104x K m

where

Ca -

K -
m

Va I ues

3.39.

(KnL) 2

27 CLsteel x 10 -4 - a frequencyconstant for
steel beams

CL material

CLsteel
a material constant equal to ratio

of longitudinal wave velocities in

given material and steel.

of the material constant K m are listed in Table

Effect of Rotary Inertia and Shear Forces

For a beam whose length is small compared to its radius of

gyration, a refined theory is required to account for finite

rotary inertia effects of each plane section of the beam

about its centroldal bending axis. In addition, finite

shearing forces exist which tend to distort the cross section
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ofthebeaminbending.TheTimoshenkobeamtheoryac-
countsfortheseeffectsinamoreexactequationofmotion
forlateralvibrationofbeams(Reference3.5).Theresult-
ingequationis

EI x""(y,t)+pA_C(y,t)

- pl "(y,t)+_--_-_"(y,t)- _ "k'"(y,t = 0
(3.330)

Thethirdterminthisexpression,- p I 84 x(y,t)/Sy 2 8t 2,

represents the effect of rotatory inertia forces while the

last two terms define the effect of shear deformation. The

factor K is a constant dependent on the geometry of the

cross section and can be taken to be 5/6 and 9/10 forrec-

tangular and circular cross sections, respectively (Refer-

ences 3.5 and 3.1, Chapter 7). The solution to this

equation which satisfies the boundary conditions for a

simply supported beam, assuming harmonic motion, is an

infinite series of terms of the form

x(y,t) =qn sin (n_ y/L) cos (Cant)

Substituting this into Equation 3.330, a frequencyequation

is obtained which can be conveniently expressed in the
form

_nr/4 E (_o)4- [1+(1+ E

(3.331a)

where

¢0no = ('9_) 2 E--_pEAI--- the natural frequency for a slmply
supported beam without rotary

inertia and shear effects, and

r = _ - radius of gyration.

This expression has been used to determine the relative

decrease in natural frequency tOn/Uno for a simply sup-

ported beam when effects of rotary inertia and shear are

included. The results are shown in Figure 3.86 as a func-

tion of the ratio of the radius of gyration r to beam length

k for several values of the mode number n and for a typical

value of E/KG of 3.2 far metal beams. Theeffect of rotary

inertia only can be isolated by letting the shear modulus

G approach infinity in Equation 3.331a. The resulting

equation reduces to

o.,Ono: ,/[,+ (3.331b)

This correction for rotary inertia effects is also shown in

Figure 3.86 for the first mode only. For values of nr/L

less than 0.1, the decrease in natural frequency is pri-

marily due to theeffect of shear forces while rotary inertia

effects become predominant for nr/L > 0.3. In either

case, for typical beams where r/L is of the order of 0.02

or less, this correction will not be significant for the lower

modes of vibration. Figure 3.87 illustrates comparable

results reported in Reference 3.54 for a cantilevered beam.

1.0

0.8

.o

0.6

u_

' 0.4

# I_ °

0.2

0
0.01

FIGURE 3.86

1.0

0.8

.o

0.6

g

_-o.4
i

0.2

FIGURE 3.87

n

\

- \

K-_= 3.20

0.1 .0

r _ Radius of Gyration
L Beam Length

Relotlve Decrease in Natural Frequency of a Simply

Supported Beam when Rotary Inertia Effects (Dashed
Line) and Both Rotary Inertia and Shear Effects are

Accounted For. _no : Natural Frequency without

Rotary Inertia and Shear Effects (Reference 3.5)

i_n = 2

__-n:_

_n=6

E
: 3.20

I
0.2 0.4 0.6 0.8 1.0 1.2

r__ _ Radius of Gyration of Cross Section

L Length of Beam

Relative Decrease in Natural Frequency of o Uniform

Cantilevered Beam when Rotary Inertlo and Shear

Effects are Included. Uno = Natural Frequency Without

Rotary Inertlo and Shear (From C. M. Harris end C. F.

Crede, "Shock and Vibration Handbook, " Chapter 7,

Copyright 1961, McGraw-Hill Book Co. Inc.)

Effect of Axial Loads on Lateral Vibrations of Beams

An axial tensile load imposed on a beam tends to increase

its natural frequencies of lateral vibration. Conversely, a

compressive load decreases the natural frequencies. An

approximate expression for this change in frequency of a

pinned-plnned beam under an axial compressive load (-P)

or tensile load (+P) is given by (Reference 3.1, Chapter 7)

fn fno :E n2 J

(3.332)
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where
PI = critical buckling load = .2 E I/L 2 for simply sup-

ported beams

n = mode number

fno = natural frequency in nthmode without axial load.

For a first approximation, this expression may also be ap-

plied to a beam with arbitrary end conditions by choosing

the appropriate value for the buckling load PI" For end

conditions other than pinned-pinned, the critical buckling

load is

Clamped-Free

Clamped-Pinned

Clamped-Clamped

P] : .n2 EI/4L 2

PI : 2"2EI/L2

P_ = 4. 2 E I/L 2

For a more exact analysis, the following approach can be

used. The equation of motion for free vibration of a uni-

form beam-column loaded axially witha static force P is

(References 3.55 and 3.56)

E I x'"' (y, t) + P x"(y, t) + p A '_(y, t) : 0 (3. 333a)

The second term P x"(y,t) = P a2 x(y,t)/ay 2 represents the

rate of change with y of the effective shear force

P a x(y,t)/ay on the beam due to an axial load. The

general solution to this modified equation of motion (com-

pare with Equation 3.329) is given by an infinite series of

normal mode terms where the nth term can be conveniently

expressed as

= rA cash an_'+ B slnh anY + C cosXn(y,t) _n_

+ D sin J3n_-] e j_nt (3.333b)

and

an = [_(pL2/2EI)2 + (KnL) 4- pL2/2E,] 1/2

13n : [_/(pL2/2EI) 2+(KnL) 4+PL2/2E _1/2

El = bending stiffness per unit length

pA = mass per unit length

L = length of beam column

(KnL)2=_ nL2/_L = di mensi onl ess natural
_ _n

frequency.

For the case of a fixed-free beam column, the applicable

boundary conditions at the fixed end (y = 0) are specified

in Table3.5, page3-113. At thefreeend, where the static

load is applled (y = L), the boundary conditions are

Bending Moment = EI x"(L,t) = 0

Total Shear - EI x'"(L,t) - P x'(L,t) = 0

Applying these boundary condltions to the general solution,

and solving for three of the unknown coefficients (i .e., B,

C and D in terms of A), a frequency equation is obtained

which defines the natural frequencies gn as the roots of

1 + r2 (pL2/2 El)2 + 17 cash an cos !3n

L (KnL) 4 J
pL2/2 El

sinh an cos 13n = 0 (3.334)

(KnL) 2

The first three roots or values of KnL which satisfy this

equation have been reported in Reference 3.55 for several

values of the axial load parameterPL2/2 El. These are

tabulated below as a dimensionless natural frequency

fn L2/_/-_ I/PA '

TABLE 3.7

FIRST THREE NATURAL FREQUENCIES FOR

CLAMPED-FREE BEAM COLUMN UNDER AXIAL LOAD

Static Load - P--_[

j-.,-- L _

_pL 2 2

n'X. 2--_ 0 0.25 0.5 0.75 1 .0 1 .2 _-

1 0.560 0.503 0.438 0.359 0.252 0.096 0

2 3.506 3.447 3.887 3.326 3.263 3.212 -

3 9.820 9.769 9.720 9.669 9.618 9.576 -

For zero axial load, pL2/2 EI = 0 and the dimensionless

frequencies are identical to the values specified earlier for

a clamped-freebeam. For an axial load equal to the criti-

cal buckling load for a clamped-free beam (P =,2 E I/4 L2),

the parameter P L2/2 El is equal to 72/8 and the funda-

mental frequency goes tozero. As predicted by the slmpler

expression in Equation 3.332, the influence of an axial

load on the second and higher modes is reduced.

The variation in the fundamental natural frequency for

axially loaded beams with other boundary conditions has

been evaluated in Reference 3.56 using this exact method,

and the results are summarized in Table 3.29 at the end of

the chapter. For normal static loads, the effect of axial

loads can generally be ignored. However, for blast loads

on buildings, the dynamic response of the fundamental

modes of the building framework may be significantly in-

fluenced by the combined effect of axial and lateral loads.

A related effect on the natural bending frequency of a

beam constrained by immovable supports, occurs when the

amplitude of vibration is significantly greater than the

radius of gyration of _e beam. This represents the non-

linear effect of large displacement amplitudes. In this

case, tensile forces are developed in the beam when its
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supportpointsarenotpermittedto moveaxially.The
relativeincreasein thefundamentalnaturalfrequencyfl
ofa beamwithrigldly-heldpinnedsupportsisgivenin
Table3.8asafunctionofthepeakdisplacementamplitude
Xmaxdividedbytheradiusofgyration_ of thebeam
(Reference3.1,Chapter7). Thenaturalfrequencyfor
smalldisplacementsisfl0"

TABLE3.8

RELATIVECHANGEINFUNDAMENTALNATURAL
FREQUENCYOFAPINNED-PINNEDBEAMDUETO

TENSILEFORCESGENERATEDBYLARGE
DISPLACEMENTAMPLITUDES

Xmax/1_/_ 0 0.5 1.0 1.5 2.0 3.0 4.0

fl/fl0 1.0 1.026 1.089 1.190 1.316 1.626 1.976

Effect of Partial Fixity on Lateral Vibration of
Uniform Beams

True boundary conditions for o typical structural beam will

normally lle between simply-supported and clamped. The

variation in vibration characteristics of uniform beams with

other than ideal boundary conditions has been examined in

detail in References 3 .57 and 3.58. Numerical results re-

ported for thecase of a uniform beam with varying degrees

of rotational end fixity but infinitely stiff translational

fixity are briefly reviewed here . This representsa suitable

analytical model of practical mounting conditions in real

structure. The theoretical approach may be briefly sum-
marized as follows.

The equation of motion for a uniform beam (neglecting

rotary inertia and shear effects) is utilized in the form

given by Equation 3.329. The general solution to this

equation is the infinite series of normal mode solutions

where the mode shape is conveniently expressed in the form

_n(y) -- A cash KnL_'+B sinh KnL_'+C cosKnLT+ DsinKnLY

where

KnL = u n L/c B = the dimensional frequency parameter,
and

y = y/L.

The boundary conditions applicable for this case are illus-

trated in Figure 3.88a. Note that the sign convention

shown for positive internal and support moments at the ends

of the bar is dictated by the dynamic equilibrium of the

system. The required four boundary equations are (see

Table 3.5)

_n(0) = _n(L) : 0 (no translation at ends)

E1 ] kr '-)1
L2 _n ('_') = _- _n(Y

y:O y=O

-
y=L =

where

1, )la_(_) :a_(y)
[ (_n(y : _ a(y/L) 8 y

Substituting the mode shape into these equations, the

resulting frequency equation is

kro kr L L 2

(cos KnL cash KnL - 1)

(E I) 2 (KnL) 2

t kroL + krL L_
+ El ] _ 'J(c°sKnLsinhKnk-sinKnkc°shKnL)

- 2 KnL sin KnL slnh KnL : 0 (3.335)

The natural frequencies fn = Un/2_ are determined, from

the roots of this expression, for given values of the end

fixity parameters

L kro/EI and L krL/El, where fn is given

(KnL)2 _
f El

n 27 L 2

Results are shown in Figures 3.88b, c, and d in the form of

contours of constant values of the quantity fn L2/_/-_ I/pA

For the first three modes as a function of the end fixity

parameters at each end of a beam. The ordinate and

abscissa scales are nonlinear due to a transformation of the

krox'(O) . M(O) * M(L) krL x'(L)

y:O L

M(y) : EI x"(y)

o) Boundary Conditions for Beam with Partial

Rotational Fixity at Ends

ooc
]oo

".' 5c

"6 20

c

"= 10

_ 5

o

_ 2

'ul .0

0.1

KnL - Roots of Frequency Equation (3.335) for Symmetrical

End Fixity (kro : krL )

co 73.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

\ \ \ ,,,,q.o\

- / f 2

// .. \, . .\, \ x

_P Yl -%Supp°[ted, X ..... _, . "X_...j

0/0.1 1.0 2 5 10 20 50 I00 ,co
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KnL - Roots of Frequency Equation (3.335) for Symmetrical

End Fixity (kro = krL)

co 2"n6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8
100_01_-_ 1 _ _ I _ I _ I X x_ _ I

"o I-_ _ _. _. Clamped-Clamped 2:_-"_"

.F. 100 9.6/

o_ 50 / 9.2 L

-_ / 8.2

j

0/0.1 1.0 2 5 10 20 50 100

L kro

El

_CO

1000

--- Normalized Rotational Stiffness of Left End

c) Second Mode

KnL - Roots of Frequency Equation (3.335) for Symmetrical
End Fixity (kro = krL)
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d) Third Mode

FIGURE 3.88 Contours of Normalized Frequency fn L2/ E1_/'_7_A
for First Three Modes of Uniform Beam on Pinned

Support and Varying Rotational Restraint (From
References 3.57 and 3.58)

original results made for convenience in illustration. In

the lower left-hand corner in each graph, kro and krL are

equal to zero, and the frequency is equal to that for a

simply supported beam. In the opposite corner, kro and

krk approach infinity, which is equivalent to the end fixi ty

for a clamped-clamped beam. Therefore, all values for

the first three natural frequencies between these two ex-

tremes are represented. Significant deviations from the

two ideal conditions occur when either of the fixity pa-

rameters L kr/EI lie between about 1 and 100. For a

symmetrical end fixity, the natural frequency can be read

from values on a 45 ° line between the twoopposite corners.

The resulting values are alsoshown at the top of each graph

in terms of Knk where

The change in edge fixity will, of course, also change the

mode shape of thebeam. This is also covered in Reference

3.57 and the results are brleflysummarizedln Table3.9

TABLE 3.9

LOCATION OF ANTI-NODES (Y'a)' NODES (7o),
FOR FIRST THREE NORMAL MODES OF

UNIFORM BEAM WITH VARYING ROTATIONAL

EDGE FIXITY AND INFINITE TRANSLATIONAL FIXITY

Yal Yol Ya2 1.0

Symmetric, kro = krL

Anti- Nodes Nodes

0

Edge

Fixity Mode

Lkr/E I n

o(1) 1 0.5 ........
2 0.25 0.75 -- 0.50 --

3 0.167 0.50 0.833 0.333 0.667

2.5 1 0.5 ........

2 0.258 0.742 -- 0.50 --

3 0.173 0.50 0.827 0.328 0.658

I0 1 0.50 ........

2 0.270 0.730 -- 0.50 --

3 0.183 0.50 0.817 0.325 0.645

40 I 0.5 ........

2 0.282 0.718 ......

3 0,196 0.50 0.804 0.314 0.627

oo(2) 1 0.5 ........

2 0.290 0.710 -- 0.50 --

3 0.207 0.50 0.793 0.307 0.613

o(1) 1
2

3

2.5 1 0.499 --

2 0.245 0.735

3 0.164 0.493

10 1 0.476 --

2 0.237 0.713

3 0.162 0.482

40 1 0.447 --

2 0.228 0.692

3 0.157 0.471

0o(2) 1 0.428 --

2 0.222 0.678

3 0.153 0.462

(1) Simply-Supported

Anti-Symmetric, kro = 0

0.476 ........

0.25 I0.75 -- 0.50 --

0.167 0.50 0.833 0.333 0.667

-- 0.487 --

0.824 0.329 0.658

-- 0.468 --

0.810 0.322 0.643

-- 0.452 --

0.791 0.314 0.627

-- 0.441 --

0.776 0.3071 0.613

(2) Clamped-Clamped (kro=krL), Pinned-Clamped (kro =0)



3-130 FundamentalsofVibration

byllstingthelocationofthepointsofmaximumdeflection
(anti-nodes)andzerodeflection(nodes)asafunctionof
theedgefixityparametersLkr/EI forthefirstthreenor-
malmodesofa uniformbeam.Valuesarespecifiedfor
symmetricaledgefixitywherekro=krLandfortheextreme
unsymmetricalcasewherekro_-0andonlykrLchanges.

3.3.5.5 Effect of Mass and Stiffness Loads on

lateral Vibration of Beams

It is frequently necessary to determine the effect of

localized ordistrlbuted mass loads on the vibration response

of beams, particularly when analyzing the vibration en-

vironment of equipment. The various analytical methods

utilized for this problem can be grouped into three cate-

gories according to whether the mass load is 1) greater

than, 2) comparable to, or 3) less than the beam mass.

1) Mass Load Much Greater than Beam Mass

For this category, the influence of the distributed mass of

the beam is small relative to the load mass and the prlncl-

pal vibration characteristics of the system are defined by

the stiffness properties of the beam and the mass load. If

this load is itself uniformly distributed but does not add to

the stiffness of the configuration, only the effective mass

per unit length (pA) of the beam is increased and the

natural frequencies fn are decreased by the factor

fn (with uniform "limp" mass load)_ 4/ beam mass

fn (without mass load) Vbeam + load mass

For large concentrated mass loads, a lumped parameter

approach can be used. The lumped springs of the mass-

loaded system are defined by the stiffness or flexibility

influence coefficients of the beam. An example of this

method, using matrix iteration techniques, has been pre-
sented earlier in Section 3.3.4.4.

2) Mass Load Comparable to Beam Mass

A lumped parameter approach is still suitable for this cate-

gory providing enough "lumps" are used to adequately

define the mass characteristics of the beam itself (see

Section 3.3.4.4).

An alternate and more accurate approach for this case is

possible using transfer matrix techniques. This method

properly accounts for both the distributed mass and stiffness

of the beam elements and lumped-mass loads. Equations

of motion are developed which satisfy the boundary condi-

tions, such asdeflned in Table 3.5, for deflection, slope,
moment and shear at each end of the beam elements con-

necting the various masses. A suitable introduction to this

powerful technique is contained in Reference 3.2 while a

thorough treatment is presented in Reference 3.36. As

pointed out earlierr this method can be used to obtain the

forced response of a system directly without the application

of normal mode concepts.

In this sectionr a similar approach is used to determine

the natural frequencies for the special case of only one

lumped mass load in the center of a simplysupportedbeam.

Itls also possible to use the normal modes for the unloaded

bar to define the new frequencies witha load. However,

the method is generally awkward for all but the simplest

cases. It involves solving a new set of N simultaneous

equations to define the new natural frequencies and mode

shapes for the system defined by its N natural modes

(Reference 3.2).

3) Mass Load Much Less Than Beam Mass

For this case, it can be assumed that the mode shape for

lower modes of vibration are not significantly influenced

by an added mass load. The normal mode approach then

provides a particularly useful technique for analyzing the

influence of such loads on the fundamental natural fre-

quency of beams. It can beextended to include distrlbuted

or localized mass or stiffness loads, regardless of the rela-

tive beam toload mass or stiffness ratios if only the funda-

mental frequency is to be estimated. The accuracy obtain-

able with this method is general lyadequate forengineering

design purposes.

Natural Frequencies of Mass and Stiffness Loaded Beam

with Pinned Ends

Consider the case, illustrated in Figure 3.89a, of a simply

supported beam supporting a .point mass m at the center.

If rotary inertia of the mass load is neglected, only the

odd modes of vibration of the beam will be influenced by

this mass load since the center is a node point for even

modes. By symmetry, the odd modes of the pinned-pinned

beam of lengths L can be represented by the modes of a

plnned-gulded beam of length L/2 with 1/2 the mass load

at its guided end (see Figure3.89b). The boundary con-

ditions for this case are

At y = 0,

Aty=L,

x(0,t) =0 (zero displacement)

x"(0,t) = 0 (zero moment)

x'(L,t) =0- (zero slope)

...JL ) m (k)- EIx _,t =-_ ,t , (shear=inertla
force)

Applying these to the general expression for the mode shape

(Equation 3.310), all the unknown coefficients A, B, C, D

are eliminated leaving the frequency equation

mb KnL it KnL K_L ]
2 - an - tanh

m 2 T

where

m b = pAL - the mass of the beam

(3.336)

m -- load mass at center.
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,k
L I 08

a) Mass-Loaded Pinned-Pinned Beam

mJ2r _ F=-_-_IL , t)

t F( L, t)=-El y,.(L t)

b) Pinned-Guided Equ;volent Beam

FIGURE 3.89 Equivalent Model of Pinned-P;nned Beam Supporting
a Mass mat Center. Odd modes of plnned-plnned
beam, which are influenced by presence of center
mass, ore represented by mode of pinned-gulded
beam of 1/2 the length.

By solving for the roots Knk of this expression, the natural

frequencies (an = (KnL)2 EI__-_/L2 are determined. The

results for the flrst four odd modes are shown in Figure3.90

as the ratio (0n/(0no where _no = (n_)2 _/k2are the

natural frequencies for the unloaded simply supported beam.

The principal effect of the mass loading is to sharply reduce

the fundamental frequency as load increases. The reduc-

tion is less significant for the higher modes. No changes

are indicated, of course, for even order modes of this

idealized model. A similar approach can be used for mass

loading of a clamped-clamped beam. The equivalent model

is treated as a clamped-guided beam and the results are

shown in Figure 3.91.

0.05 0.1

FIGURE 3.90

1.0 10

m/m b - Mass Ratio

Relative Change in Natural Frequencies of Odd Modes

of Pinned-Pinned Beam of Mass mb Supporting a Point
Massmat the Center, gno =nthnatural frequency
wlthout mass.

0.1 } .0 10

m/m b - Mass Ratio

FIGURE 3.91 Relative Change in Natural Frequencies of Odd Modes

of Clamped-Clamped Beam of Mass m b Supporting a

Point Mass mat the Center. gno =nth natural frequency

without mass.

Single Mode Approximation for the Effect of Mass and

Spring Loads

The influence of mass and spring loads on the fundamental

natural frequency of a beam can be closely approximated

by treating the loads as generalized forces acting on the

fundamental mode. The equation of motion for free vibra-

tion in this mode is then modified to become

_il(t) + (020 ql(t) = _1 ) (3.337)

where

ql(t) = Normal Coordinate in Fundamental Mode

F 1(t) = Generalized Restraint Force Developed byadded
load

M 1 = Generalized Mass of the Unloaded Beam

= Natural Frequency of First Mode of Unloaded(010
Beam.

Consider the case, illustrated in Figure 3.92, of a pinned-

pinned beam restrained by a lumped spring k 1 located at

Yl and carrying a lumped mass m 2 at a point Y2" The

generalized force Fl(t ) is the product of the spring and

inertia "restraint" forces multiplied by the mode shapes

_)l(y ) at their corresponding locations. The forces are

negative since they tend to oppose the motion of the beam,

or

F l(t) = - k 1 x(Yl,t) _1(Yl ) - m2 _(Y2 't) (Pl(Y2)
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_ LT-

h'-----Y2_

7_ _77_1 mb

FIGURE 3.92 Pinned-Pinned Beam Restrained bya

Spring k 1 and Supporting a Moss m 2 at

Pointsyl and Y2' Respectively

Expressing x(y_t) in terms of its first modal component

ql(t) ¢pl(y), and assuming harmonic vibration, so that

ql (t) = q'l ejgt' Equation 3.337 becomes

[-g2+g_O]qleJ_t-1-_l"lk-kl[ _f(yl)+w2m2_2(y2)]_1 eJgt

This can be solved for the new natural frequency of the

loaded system to give

= r_l+ (kl/_ 2 M1)_ _2(yl)] 1/2

L,+ J
This is a general result applicable to a beam with any

boundary conditions where g 10 is the unloaded fundamental

natural frequency, M 1 is the generalized mass of the beam

and _l(y ) is its fundamental mode shape. For the more

general case of S lumped spring restraints, each with a

stiffness k i located at YI and R lumped masses mj located

at yj, the modified fundamental natural frequency of the

loaded beam becomes

[i +(_kl _f(YI))/12M1 1/2
= R

_10 +(j_ mj _(yj))/M 1 (3.339)

For the case of just a mass load m at the center of pinned-

pinned beam where M 1 =(1/2 the mass of the beam mb)and

91 (k/2) = 1, the fundamental frequency becomes

= 1 (3.340)
ulO ['i + _m/mb] I/2

The relative change in fundamental natural frequency

_/_no" predicted by this expression, is shown by data

points on Figure 3.90 for comparison wlth the exact solu-

tion given earlier for this case. The single mode approxi-

mation clearly agrees very well with the exact value for

any mass ratio m/m b.

The above general expression (Equation 3.339) for cor-

recting fundamental natural frequencies of beams, due to

loading, can be readily applied to o wlde varlety of equip-

ment or structural vibration problems using the tables at

the end of this chapter to determine the fundamental fre-

quency el0 of the unloaded beam.

The Raylelgh Energy Method

The fundamental natural frequency of any vibrating system

can also be estimated by the well-known Rayleigh energy

method. If the fundamental mode of vibration is treated

as an equivalent single degree_of-freedom system, then the

total energy of the system is equal to its maximum kinetic

energy Tma x as it passes through an equilibrium position,

or to its maximum potential (or strain) energy Vma x as it

reaches the point of maximum displacement. Assuming

harmonic motion for thedlsplacement x(y,t)= x(y) cos _i t.

then the fundamental frequency gl can be determined by

equating the maximum kinetic and potential energy to glve

1_ = 2 I1 _,lx2(y_)]=lKx2(y )

or

2 K x2(y)

gl Mx2(y)

where ._ and K represent general inertia and stiffness

properties of the system and the bar signifies summation

over all elements. The specific steps for thls simple method
are summarized as follows:

• A mode shape is estimated for the fundamental mode.

This may be based on the deflection for a uniform

static load or on a simple approximation for the dy-

namic mode shape. Typical expressions, normalized

to a maximum value of unity, are listed below.

Pinned-Pinned Beam

16 [(y/t_)4_ 2 (y/L)3 * y/L]Static Shape - x(y) =_-

Dynamic Shape - x(y) = s_n (_ y/L)

Clamped-Clamped Beam

Static Shape - x(y) = 16 [2 (y,/L) 3 - (y/L) 2 - (y,/L) 4]

Dynamic Shape - x(y) = 21--[1 - cos (2_ y/L)]

Clamped-Free Beam

Static Shape -x(y)=1[(y/1-)4- 4(y,/L)3+6(y,/L)2]

Dynamic Shape - x(y) = 1 - cos
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The approximate shape selected must satisfy minimum
conditions of zero deflection at a support point and
zero slopeat a built-inor clampedsupport. Increased
accuracy in the estimated fundamental frequency is
obtained for mode shapes which also satisfy boundary
conditions for moment and shear.

Given the assumed mode shape, the fundamental fre-
quency is estimated using one of the followlng expres-

sions. Terminology is the same as that used in Table
3.4, page 3.109.

Longitudinal Vibration of Arbitrary Bar

L

fEA 2 y
2 0

gl _ L (3.341)

fpA ix(y)] 2 dy

0

(The general case of a bar wlth varying stiffness EA
andmass pA perunlt length isconsldered byincludlng
these parameters within the integral .)

Torsional Vibration of Arbitrary Bar

2
_1 _

L

fK r G Fde(Y)]2dy
kdy J

0

L

fp J [e(y)]2 dy

0

(3.342)

Lateral Vibration of Beams

L r82x(y)]2
fE' LTy j

2 0

_1 "" L

fpA ix(Y)] 2 dy

0

dy

(3.343)

Lateral Vibration of Plates

a b l,- 2 -,2
FFD11a" x(y,z) l + r82 x(y,z)]2/

2 0"_' (k a y2 j L az2 j_
gl- a b

dy dz

ffph [x(y,z)] 2 dy dz

00

ab

ff°
00

4x<y,zl7+
L TJ Idydz

ab

fph [x(y,z)] 2 dy dz

00 (3.344)

Natural frequencies estimated with these expressions
will always be slightly higher than the true value
unless the exact mode shape is used. However, with
any reasonable estimate for a mode shape, funda-
mental frequencies can be estimated within a few
percent. Expressions for static deflection shapes of a
wide variety of beam and plate configurations are
available in Reference 3.50 for application to this
method.

Addition of Mass and Spring Loads

The influence of added mass or spring loads on fundamental

frequencies canalso be readilyevaluated with the Rayleigh
method. For example, to evaluate the effect of addlngS
lumped springs of stiffness k i at positlonsyi andRlumped

masses mj at positions yj to a uniform beam, Equation
3.343 is modified to become

L

[dx(y)12s
0 L dy j dy+_ k_x2(y_)

2
_I -_ (3.345)L R

PAl ix(y)] 2 dy + _ mj x 2 (yj)
0 J

If theassumed mode shape x(y) is normalized to amaximum
value of unity, then the numerator and denominator of this

equation are equivalent to the total generalized stiffness
and mass, respectively, of the loaded beam. The resulting
expression is essentially equivalent to that given earlier
(Equation 3.339) based on the single mode approximation.

Example of Application of Raylelgh Method

To i l lustrate an application of the Raylelgh energy method,
consider the change in fundamental frequency of a pinned-
pinned uniform beam caused by moving the support points
symmetrically toward the center of the beam. The result

can be used to estimate resonant frequencies for practical
configurations of slmply-supported beams or to predict any
desired increase in resonance frequency of a beam-llke
mounting structure for equipment.
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Assumethemodeshapeillustratedin Figure3.93ais
sinusoidalandgivenby

x(y)= X° sin(_--_)-sin(_f)

whereXo=arbitraryreferenceamplitude.

a) Assumed Fundamental Mode Shape for Beam

with Symmetrically Located Pinned Supports

u.

u.

-B
E

i

4.0

3.01

2.0

1.0

47
I

Q Exact Value for Free-Free Beam

with Nodes at d/L = 0.224

[] Exact Value for Cantilevered Beam

with Length = L/2

I I I I I

0.1 0.2 0.3 0.4

d/J. - Relative Position of Pinned Supports

b) Change in Fundamental Frequency

0.5

FIGURE 3.93 Effect of Change in Position of Pinned Supports on

Fundamental Frequency of Uniform Beam

This expression satisfies the condition for zero deflection

at y = d and thus meets the minimum criteria for an ap-
proximate mode shape. The condiHon of zero moment at
the ends (x"(y)= 0 at y = 0, L) is also satisfied thus im-
proving the accurocy expected from the estlmate. Inserting
this mode shape in Equation 3.343 and carrying out the
required integration, the resulting expression for the funda-
mental frequency is

w1 _ 1 -_--r

fl = 2"'_= 2"L--2_-p"A_L,_sin _d-- T + 2 sin2

1/2

(3.346)

For d = 0, this reduces to the fundamental frequency for a
plnned-pinned beam

f,0=

Two additional checks can be made.

• For d/l_ = 0.224, the value for fl should correspond

approximately to that of a free-free beam which has
nodes at these points in its fundamental mode (see
Figure 3.85e).

• For d/l_ = 1/2, the frequency of the beam supported
at the middle should correspond approximately to that
of a cantilevered beam of length L/2.

The following compares these approximate values to the
corresponding exact values.

Equation 3.346 ' Exact

3.608 ,,_ 3.561 EtF
Free-Free Beam fl = fl -
(d/L = 0.224) L 2 _' pA L2 tpA

_ 0.583 Ea,f_ _ 0.560 E.,E/ET"
CantlJevered Beam fl fl
(d/L = 0.5) (L/2)2 VpA (L/2)2

It is noteworthy that for d/1. < 0.15, the fundamental fre-
quency of the beam is approximately equal to the value

predicted for a plnned-plnned beam with a length L' -- L -2d
equal to the distance between the supports, or

2

fl _ 2 L2 _' pA , d/L < 0.15

These results are summarized .in Figure 3.93b.

3.3.5.6 Lateral Vibration of Plates

Based on Equation 3.305 and the definitions of inertia and
stiffness terms in Table 3.5, the equation of motion for free
undamped vibration of a uniform plate, with a surface
density ph and no in-plane membrane forces, is given by

D _74 x(y,z,t) + ph x(y,z,t) = 0 (3.348)

where

_74x(y,z,t/.. = 84 x(y,z,t) + 284x(y,z,t) + 84x(y,z,t)

8 y4 8 y2 8 z2 Bz 4

D = Eh3/12 (I - v 2) - Plate Stiffness

v = Polsson's ratio.

A general solution for this equation can be given in the
form of a doubly infinite series of normal modes as

(30 OO

x(y,z,t)= _-'_ qmn_mn (y'z) ej_mnt (3.349)
m n

where

q'mn = amplitude of normal coordinate in mnth mode

Cmn(Y,Z ) = mode shape for mnth mode.

emn = natural frequency of mnth mode.
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S;mply Supported (Pinned) Plate

For the simply supported panel, the boundary conditions
on all four edges are equivalent to those specified in Table
3.5 fora pinnedendedbeam. The natural frequenc;esand
generalized mass are determined by essentially the same
procedure as for beams.

• Boundary Conditions

a

_.__ _ h

DeflecHon _. = 0, Y = 0,a
Moment ,I z 0,b

• Mode Shape

_mn(Y,Z) = Cm(y) • _n(Z) =sin m_y sin n_za b

(3.350a)

m = number of half waves along side a
n = number of half waves along side b

• Natural Frequencies

Wmn=_2 _h [(_)2+(b)2 ] (3.350b)

=  --Tpor Wmn (Kmna) 2 ha 4

where Krona = _ _/m2+(na/b) 2 - dimensionless

frequency parameteranal ogous to KnL for beams

• Generalized Mass

1 1
Mmn = _. pabh =_ (Mass of Panel) (3.350c)

• Bending Wave Velocity for mnth Mode

' = = Kmn _ (3.350d)

Kmn = 2_/X'Bmn, where X'Bmn = Bending Wavelength

i

• Ratio of Side a to Bending Wavelength XBmn

fmna 1 2 + (na/b) (3.350e)
°/X mn-

For this case, the mode shape is separable into the product

of two functions _m(Y) and _n(Z) for the two directions on

the plate. These mode shapes are identical to those for
pinned-pinned beams parallel to sides a and b, respec-
tively. Hence, the generalized mas_ fraction of 1/4 for
the simply supported plate is the productof the generalized
mass fraction of 1/2 for two simply supported beams.

Convenient alternate forms for specifying the natural fre-
quency of simply supported plates are given by

1) 2_fmn=Wmn \b! _pA'J__v 2

where I' = h3/12 - the moment of inertia for a segment of

theplate equal to a beam of unit width
and thickness h parallel to a side, and

_/_7 _'T= radius of for this unit width beam withgyration
a cross-sectional area A' = I • h.

CL steel =

(3.351)2) fmn =Cn h x 104K m
a 2

where

(Kmn a)2
C n =

2_/_-v 2) CLsteelX 10-4 frequencyconstant for

steel plates

for steel = 2.02 x 105 in/sec

K
m

cL

CLsteel
- relative longitudinal wave velocities

in plate material and in steel

h, a -- thickness and side a in inches.

The first alternate form emphasizes that the mnth natural

frequency of a simply supported plate is approximately
equal to the sum of the mth and nth natural frequencies of
simply supported beams with a thickness h and lengths a
and b, respectively. The approximation would be exact

except for the factor l/_//_- v2 _ 0.954 for v = 0.3.

The second version illustrates the form used in the tables

at theend of this chapter where values for the natural fre-
quency of plates wffh a variety of boundary conditions and
shapes are specified by the appropriate values for the fre-

quency constant Cn. Values for this constant for several

modes of simply supported steel plates are plotted in Figure
3.94a for convenient reference at this point.
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b) Clamped Edges

FIGURE 3.94 Frequency Constant Cn for Natural Frequencies of
Simply-Supported and Clamped-Clamped Steel Plates.
Constant to be used in Equation 3.351

(c L = 2.02 x 105 in/sec, v = 0.3).

Clamped-Clamped Plates

• Boundary Conditions

a

I-,--m

Deflection

Slope }
: 0, y : 0,a

z = 0,b

• Mode Shape (Approximate)

_mn(Y, z) _m(Y) "_n (z)

_m(Y)' Cn (z) : Mode Shapes for Clamped-Clamped
Beams (see Section 3.3.5.4)

• Natural Frequencies (Approximate)

h x 104 - Hz
fmn = Cn a"_'-

h = thickness- in.

a = length of shortest side - in.

Cn = Ao [Am+An(_-)4 +2 ('_'-)2Bm Bn] 1/2

m,n A m, A n Bm, Bn

1 5.139 I .246

2 39.05 4.666

3 150.06 10.021

c L x 10 -4

A°- 2 _(1-v 2) 9.60 for steel

• Generalized Mass (Approximate)

Mmn/pabh

X_m--,. 1 2 3

0.157 0.174 0.173

0.174 0.193 0.192

0.173 0.192 0.191

In this case, the approximation used implies that all node

lines are parallel to the sides of the panel. As shown in

Table 3.31, this is not true for the fourth and fifth modes

of a square clamped-clamped plate (Reference 3.5). How-

ever, the error is very small in the computed frequencies

for other modes. The frequency constant C n for clamped-

clamped steel plates, computed by this approximation, is

plotted in Figure 3.94b.

Other Boundary Conditions

The Ritz method, whichis a refined verslon of the Rayleigh

energy approach, is frequently used for a more exact

analysis of the mode shapes and natural frequencies of the

clamped-clamped plate and formost other rectangularplate

configurations other than the simply-supported case (Refer-

ence 3.5). The mode shape is defined in a series form and

the amplitudes of each term in the series are adjusted by

an iterative process until the frequency determined from

the basic Rayleigh energy equation (i .e., Equation 3.344)
is a minimum.
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Most of the natural frequencies for rectangular plates with
the various boundary conditions and geometrical shapes
shown in Table 3.31 have been determined by this method.
These solutions are summarized from the literature in Refer-
ences 3.1, 3.53 and 3.59 - 3.62.

The following trends are observed in all cases of lateral
vibrations of plates.

• Natural frequency is dlrectly proportional to thickness
for uniform plates, and inversely proportional to the
square of the length of the sides for a constant thick-
ness.

• The minimum natural frequency for the fundamental
mode is controlled by the length of the shortest side.

• Natural frequency is directly proportional to the
speed of longitudinal waves ck . For most construction

materials, c L lies within a range of 0.5 to2x 105
in/sec, with most metals having a value near 2 x 105
in/sec (see Table 3.39).

Bending Wavelengths in Plates

The expressions given above for natural frequencies of
plates tend to obscure the basic standing wave aspect of
normal mode vibratlon. It is convenient to consider vibra-

tions of plates from this viewpoint since it provides a very
simple method for estimating lateral bending frequencies

(Reference 3.63). The bending wavelength 3_ for free

flexuralwaves in a plate with a stiffness D = Eh3/12(1-v 2)
and surface density ph can bedeflned in a general form by

I I

X B = cB/f

where

IcB-- [D/ph]1/4- bendingwavevelocity.
(3.352)

For uniform plates with a typical Poisson's ratio v = 0.3,
this reduces to

I

X B "=-_I .90 cL h/f

and

I

cB = _/1.90 cL hf (3.353)

where

cL = velocity of longitudinal waves in bars

f = frequency

h = plate thickness.

The expression for bending wavelength is plotted in Figure
-3.95a-d for typical thicknesses of common construction ma-

terlals. The figures may also be used for uniform beams
witha thickness h since the only change is a minordecrease
in the constant 1.90tol.81 for v =0.3. Application of

this figure may be illustrated as follows.

For a plate which is pinned on two opposite edges and free
on the others, the fundamental vibration mode occurs at

I

the frequency for which the bending wavelength ;_B is

equal to twice the span between the simple supports. This
is the lowest frequency for which a standing wave can
occur for this type of boundary condition. For simple sup-
ports on all four sides, the lowest natural frequency is
approximatelyequal to the sum of the "standing wave" fre-
quencies for each span. As an example, for an 8-inch
thick concrete wall 10 feet high by 40 feet long, con-
sidered as simply supported, the frequencies corresponding
to bending wavelengths of 2 x 10 feet and 2 x 40 feet are
found to be 37 Hertz and 2.3 Hertz, respectively, from

Figure3.95b. Thus, the estimated fundamental frequency
is 37 + 2.3 "" 39 Hertz.

i

The relationship between bending wavelength XB and span

length for other types of boundary conditions may be de-

termined from the values for L/XBn Specified in Section
3.3.5.4 for lateral vibrations of beams.

Upper Limit for Bending Wavelengths

The plot in Figure 3.95b shows a llne indicating an upper
limit of validity. This represents the approximate high

frequency bound for validity of Equation 3.35which occurs
when the bending wavelength X'B is equal to less than 6

times the plate thickness. For shorter wavelengths, the
i

bending wave velocity in the plate cB is no longer pre-

dicted accurately by Equation 3.352. The latter would
indicate that this wave velocity would increase without
limit as frequency increases. In fact, when the bending
wavelength becomes much less than 6 times the plate thick-

i

ness, c B approaches the velocity cr of Rayleigh waves in
the plate (Reference 3.64). This wave velocity cr is
related to the longitudinal cL and shear cs wave velocities
as indicated in Table 3.10.

TABLE 3.10

RATIO OF RAYLEIGH WAVE VELOCITY' c r

IN PLATES TO LONGITUDINAL BAR VELOCITY c L

AND SHEAR WAVE VELOCITY c s AS A
FUNCTION OF POISSON'S RATIO

Poisson's Ratio

0
0.1
0.2
0.3
0.4
0.5

Cr/C L
0.617
0.600
0.587
0.575
0.562
0.551

Cr/C s
0.874
0.891
0.910
0.927

0.942
0.955
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i

Figure 3.96 shows the variation in the velocity c B of free

flexural bending waves in a plate, as a function of the

plate thickness to bending wavelength ratio (Reference

3.64). The bending wave velocity is normalized by the

shear wave velocity c s and for short wavelengths, ap-

proaches the asymptotic value of about 0.93 Cs, corre-

sponding to the Raylelgh wave speed. For long wave-
i

lengths, CB/C s is proportional to h/X'B=fh/c' B or

i

slncec sandc Laredlrectlyproportional. This is the long

wavelength limit indicated by the dashed llne passing
through the origin.

1.5
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FIGURE 3.96 Change in Velocity of Lateral Bending Waves in
a Semi-lnfinlte Slab as a Function of the Thickness
to Wavelength Ratio (from Reference 3.64)

Raylelgh waves are a form of transverse shear waves which

travel on the surface of the plate. They represent only one
part of the more complex process of elastic wave motion

which occurs at high frequencies where the structural

dimensions become large relative to the flexural wave-

lengths. This more complex form of flexural vibration of

plates is the result of the finite effects of rotary inertia and

shear forces. As noted earlier for beams, these effects tend

to decrease the natural frequency below that predicted by

the simpler "long wavelength" theory (e.g., Bernoulli-

Euler beam theory). This is simply another way of showing

that the bending wave velocity begins to reach a limiting
value.

Further consideration of this process is not desirable here

since it introduces another order of magnitude in the com-

plexity of structural vibrations, comparable to or greater

than the difference between statics and conventional struc-

tural dynamics. The phenomenon is mentioned primarily to

illustrate the "high frequency" limitations in the usual

theory. Further treatment of the subject is available in

the literature, including a compact summary in Reference
3.64.

3.3.5.7 Natural Frequencies for Plates with Non-Ideal

Boundary Conditions

Edge conditions of real structures, such as the walls or roof

of a building, or of equipment mounting plates, will range

between free and fully clamped, depending on the type of

construction. The typical variation in the fundamental

natural frequency for such varying edge conditions is shown

in the following table, where the fundamental frequency

of a panel with simple supports on four sides is assigned a
value of 1.

TABLE 3.11

RELATIVE FUNDAMENTAL FREQUENCIES OF

PANELS WITH SIDES a AND b AND VARYING IDEAL

BOUNDARY CONDITIONS

(F = Free, P = Pinned, C = Clamped)

F

P

C

a/o= 1 a/o= 1/2

F P C F I P C

I

0.71 0.50 1.12 0.47 0.20 0.44

0.50 I 1.47 0.80 I 1.11

1.12 1.47 1.82 1.79 1.94 2.00

For panels whose supports on all four sides range from fully

pinned to fully clampedwlthaspect ratios varying from 1:1

to 2:1, a variation in fundamental frequency of 2:1 is in-

dicated inTable3.11. Engineering judgement would often

be sufficient to estimate the fundamental frequency between
these two extremes.

When improved accuracy is required, the effect of variable

edge fixity of a panel could be estimated using the results

for beams given in Figures 3.88b to 3.88d, page 3-128.

These figures specified the first three natural frequencies

of a uniform beam with rigid pinned supports having rota-

tional fixity varying from 0 (pinned edge) to co (clamped

edge). For application toa plate, the varlableedgefixity

parameterfor thebeam, krk/E I would become k_a/D where

k_ is a rotational stiffness per unit length along side (a),

and D = Eh3/12(1 - v 2) is the bending stiffness of the

plate. An interpolation method could then be used to

estimate the fundamental plate frequency. Essentially,

this would consist of determining the change in natural

frequency of an equivalent beam with partial fixity, rela-

tive to the total change between a pinned and clamped

condition. The average correction factors for each pair of

panel edges could then be used to estimate the relative

change in the natural frequency of the plate between

pinned and fully clamped conditions. Although only ap-
proximate, the method would provide refined estimates

suitable for engineering design.
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Natural Frequencies of Uniform Square Plates Bounded

by Flexible Beams

A common panel support configuration encountered in

practice consists of a uniform plate supported by beams,

such as illustrated in Figure 3.97a. Reference 3.65 ana-

alyzes the case of a square uniform plate resting on four

equal beams which are pinned at the ends. In order to

determine the fundamental frequency, the plate and beam

were divided into finite elements and a numerical compu-

tation was made of the modified equation of motion for the

system. Rotary inertia effects in the beam and plate were

neglected. The results are shown in Figure 3.97b in terms

of the frequency constant Cn as a function of the relative

beam-to-plate stiffness and mass ratios. The applicable

parameters are defined in Figure 3.97a. As indicated, the

supporting beams have no significant stiffening influence

on the plate until the stiffness ratio 2 Eb Ib/a D exceeds

0.2. As this parameter approaches co, the frequency of

the plate-beam combination approaches that of a pinned-

pinned plate. In the absence of supporting beams, the

problem reduces to a plate pinned at the four corners. The

natural frequencies for several variations of this case are

shown in Table 3.32 at the end of this chapter.

Plate --

- .ngth/_
"/_ Eb I b - Stiffness

a) Square Uniform Plate Supported by

Beams Pinned at Ends

o

U

u-

i

c
U

2O i I t I

Mass Ratio

- 2p b A b

pp h

lg /

5 _ I Ifn :1 Cnt h xi 10-4iHz

0.1 1.0 10

2 x Stiffness of Beam

2 E b Ib/oD- length of Side x Plate Stiffness

b) Frequency Constant Versus Beam/Plate Parameter

...... F i r

Simply-Supported Plote_

_ I10 0

FIGURE 3.97 Fundamental Natural Frequency of a Uniform Square Steel

Plate on Beam Supports of Varying Stiffness and Mass

(Adopted from Reference 3.65)

3.3.5.8 Natural Frequencies of Non-Homogeneous
Plates

Practical methods for defining plate vibration must include

techniques applicable to such configurations as:

• Corrugated or Rib-Stiffened Panels

• Honeycomb Panels

• Concrete Block Walls

Nonhomogeneous walls which havea different stiffness D

in each direction are generally classified as anisotropic

plates. Several of the more commonly encountered con-

figurations in the first category have been analyzed in

detail in Reference 3.66. The basic analytical approach

includes consideration of rotary inertia effects of the

stiffeners since any flexure of the stiffened panel will in-

volve significant rotary motion of the center of mass of the

stiffener cross section. When this effect is included with

the different stiffness in each direction of a simply sup-

ported stiffened panel, a general frequency equation is

1/2

1 IDa (_'_)4 +_2_H (_"_)2 !9"_)2 + Db (9"_)4 ]

(3.354)

where

Da, Db = plate stiffness in the direction of sideaand

b, respectively,

: a cross stiffness parameter involving stiffness

in each direction of the plate, and

la, Ib mass moments of inertia of a unit area of the

panel and stiffeners about the centroidal axes

in theaandb direction, respectively.

Table3.37 at the end of the chapter gives specific expres-

sions for these mass and stiffness parameters for rlb st iffened,

corrugated, and uniform but anisotropic plates.

Honeycomb Panels

The vibration characteristics of honeycomb panels, such as

illustrated in Figure 3.98, can be expressed in terms of the

properties for an equivalent solid panel with the same total

thickness modified by a correction factor toaccount for the

different mass and stiffness properties.

FIGURE 3.98 Typical Honeycomb Panel

The bending stiffness D of a honeycomb panel can be as-

sumed to be equal in each directionand equal to E I_/(1-v 2)
where I' is thearea moment of inertia about the centroidal

axis of a unit width strip of the panel. For a typical

honeycomb panel, the moment of inertia of the core ma-

terial is negligible so that I' becomes
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h/2 h/2

I' = 2/ r2dA=2/ r2(l'dr)
h/2 - t h/2 - t

(3.355)

where r is the distance of an elemental strip of thick-

ness dr from thecentroidal bending axis. For t<< h,

this is very nearly equal to

h2 t
I' -'= ---

2

so that the bending stiffness is

Eh2t le_t\

D-'= -- -_ Ds _:_) (3.356a)
2 (1 - v 2)

where

Ds = Eh3/12 (1- v 2) - the bending stiffness of a solid

panelwith the same total thick-

ness h.

Let the total mass per unit area, including the core, be

defined as mp, and let the mass per unit area of the skin

be ms=2 pt where p is the massdensityof theskin material.

The natural frequencies fmn and bending wavelength X' B

will then be given by

d Cm;Sfmn _ fmn s mp (3.356b)

where

fmn s, wave-X'Bs natural frequencies and bending

lengths of a solid panel with the same total
thickness h.

For typical metal honeycomb panels, ms/m p is about 2/3

so that the natural frequencies and bending wavelengths

are about "_Tand 21/4 greater, respectively, than a solid

panel of the same skin material and same total thickness h.

Concrete Block Walls

(3.356c)
SsL mpj

TABLE 3.12

DESIGN PARAMETERS FOR VIBRATION CHARACTERISTICS OF CONCRETE BLOCK WALLS

C'
n

Nominal Actual Surface D- Bending Stiffness Frequency

Thickness Thickness Welght( 1) (Equation 3.356) Exptl. Data (1) CL Constant

Type of Wall (in .) (in .) ib/ft 2 106 Ib-in. 106 Ib-ln. 105 in/sec 104 in2/sec

Solid Dense 4 3-5/8 37 6.5 6.05 1.1 15.5
Concrete Block

Solid Dense 6 5-5/8 57.5 30 -- 1 . 1 26.5

Concrete Block

Hollow Dense 6 5-5/8 35 24 28.3 1 . 1 30.5
Concrete Block

Hollow Dense 8 7-5/8 47.5 60 -- 1 . 1 41.5
Concrete Block

i Hollow Cinder 6 5-5/8 25 12 10.2 1.1 25.5

Block

Hollow Cinder 8 7-5,/8 34 30 -- 1.1 35

Block

(1) Computed from experimental data in Reference 3.9.

Concrete masonry walls are subject to considerable varia-

tion in their dynamic properties due to variations in

materials, construction methods and condition of the wall.

Whenever possible, experimental data should be used as a

check against theoretical calculations. The bending stiff-

ness D of a concrete block can be estimated by

D _ a Eh3/12 (3.357a)

where a is a constant equal to 0.8 for hollow block walls
and 1.0 for solid block walls. The true thickness h is

about 3/8" less than the nominal wall thickness (Reference

3.9). For preliminary calculations, an average value of
6

E of 2.0x10 psi is recommended fordenseconcrete blocks

and 1 x 106 for cinder or pumice type blocks. Theoretical

and experimental values for the bending stiffness are com-

pared in the following table of design data for concrete

block walls. The agreement between computed and meas-

ured values is generally very good.
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Thelastcolumnin Table3.12definesa modifiedfre-
i

quency constant C n to be used in a simplified equation for

the natural frequencies of the wall, assuming simply-'

supported edges.

(#]fmn = Cn + (3.357b)

where a,b = dimensions of wall- inches

mrn = respective mode numbers.

3.3.5.9 Normal Modes of Mass and Stiffness

Loaded Plates

The effect of added lumped masses or spring restraints on

the natural frequencies of a plate can be conveniently

estimated by applying the si ngle mode approximation method

or the equivalent Raylelgh energy method discussed in

Section 3.3.5.5. For example, a general expression for

the approximate fundamental natural frequency of a plate

loaded by R masses m i at points Yi zi on the panel would be

f1=fl0 [1 +( iR._micp2(Yl) CP_(zi))////M11 ] (3.358a)

where

fl0 =the fundamental frequency without mass loads

_l(Yi) = mode shape in the fundamental mode at Yi
(along the y direction)

Cpl(Zi) = mode shape in the fundamental mode at z i

Mll = generalized mass of the unloaded panel.

The summation term within the brackets can be recognized

as the generallzedmass of the added point masses. For the

case of a single mass m located at the center of a simply-

supported panel with a mass mp, Equation 3.358a reduces to

fl = fl0 ¢ 1 + 4m/mp (3.358b)

Thus, a center mass has four times the effective value of

the panel mass at this polnt. For other panel boundary

conditions, a comparable expression is obtained where the

factor 4 is replaced by 1/(Generallzed Mass Fraction of

Base Panel); for clamped plates, the factor would be6.37.

As shown earlier for slmply-supported and fully-clamped

beams, the effect of a center mass on the higher natural

frequencies is much less than the effect on the fundamental

frequency. However, there is one very important effect of

mass loading on panels which is not shown by the above

expressions. This is the change in mode shape at high fre-

quencies. As illustrated in Figure 3.99, a point mass load

at thecenter of a panel will tend to act llke a pinned sup-

port point for higher order modes of the panel. Thus, as

the frequency of vibration increases, the motion ofthe

mass is reduced, relative to the peak modal amplitude of

the panel. At very high frequencies, the mass tends to

remain essentially stationary. This attenuation in response

amplitude of the mass becomes significant for frequencies

above a limiting value defined by (Reference 3.44)

0.37 c L ph 2

f_ > (3.359)
-- m

where

m = point mass load

c L = longitudinal wave velocity (see Table 3.39)

p = panel mass density

h = panel thickness.

This attenuation effect can be usefully employed as a means

of vibration isolation for plate mounted equipment. How-

ever, for lightweight panels, vibration response measure-

ments are subject to errors caused by this mass loading
effect--which is due to the finite mass of theacceler-

ometers. Above the limiting frequency f_ defined by

Equation 3.359, the measured acceleration response will

decrease, inversely with the square of frequency, below the

response that would be measured with a massless acceler-

ometer.

..Jv

..Q

_,_._ _ T/f2

Mass Load_ _

fl

Frequency (Log Scale)

FIGURE 3.99 Change in Mode Shape and ResponseAmplitude

of a Panel Loaded by a Point Mass. f is limiting
frequency for change in response as defined by
Equation 3.359.
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3.3.6 FORCEDRESPONSEOFBEAMSAND
PLATESTOLATERALLOADS

Thebasicconceptsfordefiningtheforcedvibrationre-
sponseof beamsandplatesintermsoftheirnormalmodes
hasalreadybeendevelopedindetailforlumpedparameter
systemsinSection3.3.3. Byapplyingthetransformations
in terminologybetweenlumpedandcontinuoussystems
outlinedonpage3-108,theexpressionsforforcedresponse
of continuousstructurearereadilydeveloped.Several
specificcaseswill beconsideredwhicharepertinentfor
analysisofacousticandblastloadsonstructure.

3.3.6.1 Normal Mode Solution for a Uniform

Static Load

STATIC LOAD ON BEAMS
x(y)

I I

J--'-Y L

For a uniform load on a simply-supported beam, the de-

flection x(y, t) may be defined by the infinite series of normal

modes as

where

GO

x(y,t) = _qn(t) _pn(y )

n

Cn(y ) = sin n: _ for a slmply-supported beam

y = y/L

qn(t) = nth normal coordinate.

The equation of motion for qn(t) is the single degree-of-
freedom equation

where

_'n(t) + _n2 qn(t) : _n t)

gn = natural frequency of nth mode

L

Fn(t ) = b/p(y,t) Cn(Y)dy - the generalized force for

thenth modewlth a pres-0
sure p(y,t) at y which is

constant for all points on
the beam.

b = width of beam

M n = generalized mass for nth mode.

For a uniform static load, qn(t) = 0 and b p(y,t)= Ps, which

is the uniform static force per unit length. The generalized
force for the nth mode then becomes

L t 2 Ps L/n_, n = odd
Fn=Ps/slnn_Y dy =

100 n = even

In this case, the joint acceptance Jn, or ratio of general-

ized force to total load would be

Fn 2

Jn PsL - n_

The modal amplitude qn is

qn -

Fn 2 Ps L

2 MnW M n nlT (gn

For a simply supported beam with a stiffness EI and mass

pA per unit length, the generalized mass M n is 1/2 pAL

and the natural frequency is

Thus, the peak static deflection Xsmax at the center of

the beam,where _ = 1/2 and sin n_ _ = sin n_/2,1s obtained

by combining the above expressions to give

PsL4 £ 4 sin n_/2 (3.360)
Xsmax- El (_n) 5

n

The even terms in this series are zero, since sin ntt/2 = 0

for n =even, while the odd terms are alternately positive

and negative torn = 1,3,5,7, etc. The magnitude of each

of the first five terms in this series is shown in Table 3.13.

TABLE 3.13

CONTRIBUTION OF NORMAL MODES TO

PEAK DEFLECTION OF SIMPLY-SUPPORTED BEAM

UNDER A UNIFORM STATIC LOAD

Mode (n)

sin n'_/2

n5

sin n'_/2

n n5

Relative

Contribution

of Each Mode

I 3 5 7 9

I -0.00411 +0.00032 -0.00006 +0.00002

1 0.99589 0.99621 0.99615 0.99617

+100.3% -0.41% +0.032% -0.006% +0.002

Only the first term or fundamental mode contributes sig-

nificantly to the tptal deflection. The peak deflection,

including the first five terms, is given by

4 Ps L4 Ps L4

Xsmax = 0.9962 - 0.01302 -- (3.361)
_5 "_" El
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Thiscompareswiththeusualvalueforthepeakdeflection
at thecenterofasimply-supportedbeamunderauniform
staticloadgivenby(Reference3.50)

5 PsL4 PsL4
Xsmax=384 EI 0.01302E-_-

Thesignificanceofthisresultistoclearlydemonstratethat
thedeflection of a simply-supported beam vibrating in its

first vibration mode has essentially the same shape as the

deflection under a static load. Thus, when the beam can

be designed on the basis of a static load or static deflec-

tio.__.nn,a peak dynamic deflection in the fundamental mode

for a dynamic load can be related to an equivalent static

load which would produce the same peak deflection.

g

STATIC LOAD ON PLATES _/,_,.//x_(y, z )_

I_y

The same procedure may be applied to the static load on a

panel. For a simply-supported panel with sides (a) and (b)

the essential results may be briefly summarized as follows:

Mode Shape ¢Pmn(Y,Z ) = sin m_Tsin n_"
(in mnth mode)

130 CO

Total Deflection x(y,z) = _,_"_, q'mn sin m_'sin n_"
(in all modes) m n

where _, _ = y/a and z/b, respectively, and

q'mn = peak deflection in mnth mode.

Natural = _2 _h [(_-)2 + (b)2 ]Frequencies gmn

Applied Pressure p(y,z) = Ps - uniform static pressure

Generalized Force

/ abS/ps a sin m_sln n_'d_ d_"

Fmn = m,n- odd

0 m or n- even

Joint Acceptance Jmn : Finn/Ps a b
(for uniform static load)

Generalized Mass

Normal Coordinate

1

Mmn =_-pabh for a panel
thickness h.

Finn

q'mn - u2
mn Mmn

where Umn2 Mmnisthegenerallzedstlffnessforthemnth

mode.

Maximum Deflection

(at center of panel)

OO gO

Xs max = _ _ q-'mn' m,n = odd only

m n

Ps a4

or Xs max = a O

where

16 '_ _"_, t sin m_/2 sin n=/2 1

a=7_m n Lmn[m2+(--na_---_2]m,n_odd

(3.362)

The final result specifies the peak static deflection in terms

of a rapidly converging double summation of terms derived

from the normal mode expansion of the deflection. The

percent contribution of the first few terms in this series are

listed in Table 3.14for a square plate with slmply-supported

edges. For this case, the value of a, including all terms,

is 0.004448.

TABLE 3.14

PERCENT CONTRIBUTION OF FIRST FEW ODD ORDER

TERMS IN NORMAL MODE EXPANSION OF

DEFLECTION OF A SIMPLY-SUPPORTED SQUARE

PLATE FOR A UNIFORM STATIC LOAD

+100.4% -1.36% +0.121%

-I .36 +0.140 -0.0236

5 +0.121 -0.0236 +0.0065

7 -0.0234 +0.0058 -0.0021

Clearly, the first mode term (m = n = 1) is again the

principal component for the static deflection. This term

is simply

16 1

al 6 2 2 (3.363)

Values for a are listed in Table 3.15 for several aspect

ratios using Equation 3.362 for the exact value and Equa-

tion 3.363 for the first mode only.
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TABLE 3.15

O 4
VALUE OF 100 o = 100 Xsmax D/Ps FOR MAXIMUM

DEFLECTION X s max TO SIMPLY-SUPPORTED PLATE

WITH SHORT SIDE (a), AND BENDING STIFFNESS D

UNDER UNIFORM STATIC PRESSURE Ps

a/b--_ 1.0 0.5 0.2 0

First Mode 0.416 1.064 1.535 1.67

(Equation 3.363)

Exact Value 0.405 1.012 1.298 1.302

(Equation 3.362)

The exact values shown in the last row correspond with
values from Reference 3.66.

Apparently, the first mode approximation for the total de-

flection of a slmply-supported plate under a static load is

less accurate as the panel aspect ratio becomes less than 1 .

However, the deflecHon for the first mode is always on the

conservaHve side. Thus, a peak dynamic deflection of a

slmply-supported panel in its first mode can be related to

an equivalent static load which would give approximately

the same peak deflection.

Panel Stress Defined in Terms of Normal Modes

It is also desirable to examine the modal summation which

defines the stress in the panel for a uniform static load.

The bending stress e(y)in a panel in the y direction can be

given by (Reference 3.5)

6Drp2x(y, )+ (3.364 )a(y)

L 8y2 az2j

where v = Polsson's ratio.

For the z direction, the corresponding expression is

hz6 D [82x(y'z)+L8z 2 82 _z)] (3.364b)
ay j

Applying these expressions, it is found that the peak static

stress occurs at the center of the panel in a dlrecHon par-

allel to the shortest side. It is given by

esmax = Y Ps (h) 2

where (3.365)

96 co ao r!m2+v(na/b) 2) slnm(_/2)sin(n'_/2)1

Y ='-_" m_ n_ L" m'_ [m2"--+ ( na'/b)2]'-------_ Jm,n-

odd

The seHesstill converges but not as rapidly as for theserles

which defines the deflection. Thisisdue to the influence

of curvature (i.e., 82x(y,z)/Sy 2) of the higher order

modes. These become more significant in the modal expan-

sion for stress. For example, for a simply-supported square

plate, with v : 0.3, the percent contribution of the largest
five terms in this series relative to the total summation is

given by

re=n= 1 Yl,1/y = +111.7

m:3, n= I Y3,1/y : -I0.7

m = I, n = 3 1"1,3/7 : -4.2

m:5, n: 1 Y5,1/1, : +2.6

m=3, n=3 Y3,3/y : +1.4

The value of y For the first mode only, and the exact value

including all modes, is listed in Table 3.16 for several

aspect ratios of a simply-supported plate, for v = 0.3.

TABLE 3.16

1, = (as max/Ps) (h/a) 2 FOR MAXIMUMVALUE OF

STRESS asmax FROM A UNIFORM STATIC PRESSURE Ps

ON A SIMPLY-SUPPORTED PLATE WITH SHORT

SIDE (a) AND THICKNESS (h)

a/b-"-_ 1.0 0.5 0.2 0

First Mode Only 0.320 0.679 0.920 0.985

Exact Value
0.287 0.610 0.746 0.750

(Equation 3.365)

% Error in

First Mode +11.5% +11.3% +23.3% +31.3%

Approximation

The increased significance of the higher modes is clearly

evident. However, the single mode approximation is con-

servative by 11 to 31%. That is, for a given effective

dynamic pressure p(f) acting on the first mode (F 1, 1) of a

simply-supported panel, an equivalent static pressure Ps

which would produce the same peak stress would be 11 to

31% less than p(f).

To complete this modal analysis of static loads on plates,

it is convenient to express the maximum static stress

asmax in terms of the maximum static deflection Xsmax.

This is obtained by combining Equation 3.362 for the

deflection-to-load ratio with Equation 3.365 for the maxi-

mum stress-to-load ratio to give

esmax = l3 E

where (3.366)

J3 = I'/12a (1-v 2)

and y, a are given by Equations 3.365 and3.362, respec-

tively. This quantity is tabulated below for several aspect
ratios and for v = 0.3.
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TABLE 3.17

VALUE OF [3 = esmax a2/E h Xsmax FOR MAXIMUM

STRESS a IN SIMPLY-SUPPORTED PLATE WITH
S max

A UNIFORM STATIC LOAD AND MAXIMUM

CENTER DEFLECTION OF Xsmax

a/b _ 1.0 0.5 0.2 0

First Mode Only 7.05 5.83 5.49 5.40

Exact 6.49 5.51 5.26 5.26
(Equation 3.367)

% Error in
First Mode +8.7% +5.7% +4.1% +2.7%

Approximation

The first mode approximationfor the static stress, based on
peak deflection, is close to the exact value for all aspect
ratios. Thus, a peak dynamic deflection in the first mode
can be related to an equivalent static stress in a panel
having the same total static deflection.

The same analysis was carried out for a clamped-clamped
plate to show how the first mode approximation for the
parameters a, y and [3 compare with the exact values. For
the first mode approximation, the mode shape was taken to
be the product of the mode shapes for clamped-clamped
beams. The exact values were computed from values
specified in Reference 3.50for a static load on a clamped-
clamped plate. The results are summarized in Table 3.18.

TABLE 3.18

VALUES OF a, y, AND [3 FOR FIRST MODE AND ALL
MODES (EXACT) OF A CLAMPED-CLAMPED PLATE WITH

UNIFORM STATIC PRESSURE PsWHERE a=Xsmax D/Ps a4

y = asmax h2/ps a2, AND [3 = asmax a2/Eh Xsmax

FOR MAXIMUM DEFLECTION Xs max

AND MAXIMUM STRESS a
S max

a/b--..- 1.0 0.5 0.2

a

First Mode 0.00139 0.00298 0.00352

Exact 0.00138 0.00277

Y
First Mode 0.309 0.453 0.493

Exact 0.308 0.497

Fi_tMode 2.04 1.39 1.28

Exact 2.04 1.64

0.0

0.0036

0.00285

0.497

0.50

1.26

1.60

3.3.6.2 Response of Beams and Plates for
Sinusoldal Loads

The general expression for the response of a damped
lumped parameter system to sinusoldal excitation was given
in Section 3.3.3.5 (e.g., Equation 3.237, page 3-71).
When this is applied to sinusoldal loads on beams, the

general form for the instantaneous deflection x(y,t), at a
point y to a slnusoidal force with a frequency f, can be
summarized as follows:

l P(Yl' t)
Sinusoidal Point Force on Beam I I

y lx(y,t ) L

• Driving Force

P(Yl,t) = Pcos2_ft at Y=Yl

• Displacement

GO

x(y,t) = _ qn(t) q_n(y)
n

• Normal Coordinate

Po Jn lHn(f)l

qn(t) - (2_fn)2 Mn cos (2_ft - On)

(3.367)

(3.368a)

q_n(y) = mode shape at y in nth mode

Po = P' amplitude of total force

Jn = q_n(Yl) - joint acceptance or relative general-
ized force for point force at Yl

Hn(f) = l/[(l-(f/fn)2)2+(28nf/fn)2] 1/2 the

dynamic magnification factor for nth mode

8n = critical damping ratio for nth mode

2 6 n f/fn
Bn = tan-1 phase angle for response

1 - (f/fn)2 of nth mode

fn - nth natural frequency

M n - generalized mass for nth mode.

For the velocity response _(y,t) at any point y, replace

x(y,t) by _(y,t) and qn(t) by qn(t) in Equation 3.367 where
_tn(t) is given by

• Modal Velocity

Po (f/fn)Jn [Hn(f)lc°s/2_ft-On+2_/)Cln(y't) - 2a fn Mn

(3.368b)



ForcedResponseofBeamsandPlatestoLateralLoads 3-147

Fortheaccelerafionresponse_(y,t)atanypointy, replace
x(y,t)by_(y,t)andAn(t)inEquation3.367whereAn(t)is
givenby

x(L/2, t) -
O0

2Pu3 _ IH (f)l cos (2_ft- 0n)

_4EI n, odd n4
(3.369)

• Modal Acceleration

Po (f/fn)2 Jn IHn(f)[

_n(y,t ) = _ Mn cos (2"_ft- On)

(3.368c)

These three expressions are, in fact, completely general
covering any form of steady state slnusoldal loading on a
beam or a plate. It will only be necessary to define the

expressions for Po, Jn, ¢Pn(Y), Mn and fn' for the particular

type of load and configuration to be considered.

Damping has been ignored in the discussion of free vibra-
tion of beams and plates. This is consistent with the fact
that only the lower order modes and frequencies of vibra-
tion are significant. Theseare not significantly influenced
by the usual amounts of damping in structure. However,
damping must be introduced again in order to limit the
forced slnusoldal response amplitude at the resonant or

natural frequencies of the structural element. For the time
being, damping will be defined in terms of the critical
damping factor 8n for each normal mode which is treated

as an equivalent single degree of freedom system. Depend-
ing on the configuration, the value of 8n may range from

as high as 0.2 (Qn = 2.5) to as low as 0.001 (Qn = 500).

Typical values for built-up structural elements are of the
order of 0.02.

The total response at any arbitrary point y on a beam to a
sinusoldal point force is the summation of normal modes as
defined by Equation 3.367. The summation of modal re-
sponses for a sinusoidal excitation was covered in detail in
Section 3.3.3.6 and need not be repeated here. A few
specific examples will illustrate the unique character of
this modal response for a continuous structural element such
as a beam.

Response of Simply-Supported Beam to Point Sinusoidal
Force with Amplitude P Applied at Center

For this case, the following parameters apply (see Section
3.3.5.4)

Natural Frequency fn

Generalized Mass Mn

Joint Acceptance Jn

Mode Shape _pn(y) = sin n'_ y,/L

_ _/_ 2
-_\U/ E_

]
= -_--pAL

I_+.1,n = odd
= sin n_,/2=/ 0,n=even

• Displacement Responseat Center

At the center, the product of the joint acceptance Jn and

response mode shape _pn(y) will be Jn _n(Y ) = _ 2(L/2) =

(sin n_/2) 2= 1 for n = odd or 0 for n = even. Thus, apply-
ing Equation 3.368a the displacement response is

where El = bending stiffness of beam.

The amplitude of this displacement response, illustrated in
Figure 3.100, is closely approximated by the first mode

(n = 1) since the modal amplitude decreases as 1/f 2 . Since

the generalized force for even modes is zero, excitation at
frequencies corresponding ro the natural frequencies for
these modes does not result in a resonant response. How-

ever, a sharp null in the response will occur at a slightly
higher frequency where the modal responses tend to add up
to zero. At very low frequencies, the magnification factor

]Hn(f)l approaches unity, and the peak displacement will

be approximately equal to 2 pL3/_ 4 E I or 0.0206 pL3/E I.

This compares with the usual value of (1/48) pL3/E I based
on static considerations (Reference 3.50).
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FIGURE3.100 Normalized Displacement Response at Mid-Span

of Simply-Supported Beam Driven by Sinusoldal

Force at Same Point. Q for each mode -_ 9.

• Acceleration Response at Center

Applying Equation 3.368c, the acceleration response at
this point is given, in g's, by

(3O

£(L/2,t) _ -P
g Wb _, 2(f/fn )2 JHn(f) I cos (2_ft- en)

n, odd
(3.370)

where W b =pALg - the weight of the beam.
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Note that all terms of thls series are equally important - a

single mode approximation is only usable near the natural

frequency for any one normal mode.

• Acceleration Response at One-Quarter Span

For a response at y = L/4, with a point force excitation at

the center, the product of the joint acceptance and re-

sponse mode shape is

Jn _Pn(Y) = £bn(L/2) _n (L/4) = sin (n_/2) sin (n_/4) .

This represents a series which varies with n as + 1/I_2,

O, - 1/1/-2", O, - 1/I_, O, + 1/vr2 ", 0 + 1/_r2 ", etc. The

acceleration amplitude for this case will be given by the

same basic modal summation as in Equation 3.370 but with

the weighting factor, sin (n_/2) sin (n=/4), applied to

each term.

The acceleration responses for these last two cases are

shown in Figure 3.101. For a constant amplitude driving

force, the amplitude of each mode is constant as defined

by the ratio of force to mass. The primary difference be-

tween the response at the center and at the quarter span

point is the absence of any sharp nulls for the latter. This

is the net result of the more complex phase or sign of each
of the odd modes for this case.
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FIGURE 3.101 Normalized Acceleration Response at Mid-Span (X1)

and 1/4 Span (X2) of Simply-Supported Beam Driven

by Sinusoldal Force at Center. Q for each mode _ 9.

Graphical Construction of Multi-Mode Response
Function

The curves in Figures 3.100 and 3.101 can be constructe/d

by a graphical method employing a simple template for the

basic shape of the term IHn(f)I which is plotted on a log-

log scale. By accounting for the change in amplitude,

natural frequency fn and the change in phase below and

above the natural frequency of each term1 a simple alge-

braic summation can be made graphically and an approxi-

mate response function determined. The accuracy is limited

only the finite number of modes plotted.

This graphical method, illustrated in Figure 3. 102, may be

explained more readily by considering the form of Equation

3.370 for zero damping. In this case, On is zero and the

acceleration amplitude can be represented by the series

(f/f n) 2
X(L/2) 2 P ,_

- - _ (3.371)
g WB n 1 - .-(f/fn )2

I I ]

o_

-8
2

8
"_ 1.o
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FIGURE 3.102 Graphical Construction of Overall Response by

Algebraic Summation of Modal Responses. Case

illustrated is acceleration response at center of

beam due to point force at center (see Figure

3.101).

The phase of each term has only two values; + 1 or 0 de-

grees for f< fn, and-1 or 180 degrees for f>fn. Thus,

by algebraically adding up the response curves for each

mode, utilizing the change in sign for each curve above

and below resonance, a plot of the overall response can be

readily constructed. As shown in Figure3.102, this sum-

mation process also identifies the antl-resonance fre-

quencies for which the response approaches a minimum.

Note that this graphical procedure inherently includes the

cross-modal response discussed in Section 3.3.3.6.

Space-Average of Mean Square Response

It is convenient to specify a characteristic response over

the entire beam as the space-average of the mean square

value. Let the displacement response at any point on the

beam be given by the summation of normal modes as

(3O

x(y,t) = _ qn(t) _n(y ) (3.372)
n
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where

qn (t) =_n cos (2_ft - 8n) - the modal displacement

wl th amplitude qn and phase

angle On

q_n(y) = mode shape at y in nth mode.

Applying the concepts developed in Section 3.3.3.6 for

lumped parameter systems, the mean square value of this

response at one point on the beam can be given as

gO GO GO

x2(y) = 2Y_" qn q_n(y) z ,,-_ ,--_ qn qm _n (Y)q_m (y) cos (0m- Bn)

n ny'm

(3.373)

The first term defines the sum of the mean square responses

in each mode while the second double summation defines

the cross mode responses corresponding to all the cross

products obtained when Equation 3.372 is squared. The

space average of this mean square response will be denoted

by a double bar and is given by

L

--- 1

x 2 = -_- dy

0

Consider for now ,_Lhevalue of only the cross-mode coupling

terms in this integral. Since only the mode shapes q_n(y )

qbm(y ) vary with y, the integration can be expressed as

L

= /,x2 I
cross-terms = _ qn qm cos (8 m - en) n(Y ) q_m(Y) dy

0

If the integral itself is multiplied and divided by the mass

per unit length along the beam pA, then by invoking the

orthogonality property of the normal modes, (see Equation

3.311, page 3-112)

L

1/pAL pA _n(y) _m(y ) dy :

0

0 ntm

Mn

n:m

However, by definition, the cross-mode terms involve only

pairs of modal responses for whlch n / m. Thus, the space

average of the mean square response over the structure

cancels out the cross-mode coupling terms. The net result

is that the space average mean square response over the
beam reduces to

L

dy
0

(3.374a)

This is a general form for the space average mean square

response for any one-dimenslonal structure. For a two-

dimensional structure, such as a plate with sides (a) and

(b), the comparable expression is

a b

jFf-- 1 2 1

x2: Y_" _2--qmn " a'-b q_2n(y'z) dY dz

n m 0 0

(3.374b)

1_2
where _- qmn is the mean square amplitude of the mnth nor-

mal mode response equal to I/2 the square of the modal

amplitude qmn'

The integrals in these last two equations define, in effect,

a mean square mode shape _'Z.. or q_mz... The fol-

lowing values are obtained for common boundary con-
ditions.

• Simply-Supported Beam

L

2 1 f 1
qbmn = -_ .l sin 2 (n_y/L) dy =

0

• Simply-Supported Plate

2
¢_mn : (__)2

• Clamped-Clamped Beam

2

n : 1, q_l : 0.396

2
n=2, qb2 = 0.439

n_>3, qb3 : 0.437

• Clamped-Clamped Plate

m,n : 1, _112 = (0.396) 2

For example, the space average mean square acceleration

response in g2 of a simply-supported beam to a point force

at the center is obtained by combining Equations 3.370 and

3.374a with the above relationships to give

_2//__p_p/2 _ [(f/fn)2 iHn<fll] n
g2 _Wb] nl_ = odd

(3.375)

= O, n = even

where W b = pALg - the weight of the beam.

For any single mode, this space average mean square ac-

celeration will be approximately equal to (P/Wb)2 (f/fn)2

for f>>fn. The latter value is equivalent to the static

acceleration that would be obtained by applying a steady

acceleration with a magnitude P equal to the amplitude of

the point driving force.
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• JointAcceptance
a b

=! p_mn(Y,Z)Jmn Po// dy dz

0 0

4/mn_2, mand n odd
=

0, m or n- even

• Generalized Mass

1 1 wab
Mn =4pabh- 4 g

where h = plate thickness

w/g = ph = surface mass density

• Natural Frequency

Itmt+(b)]fn=_. D_ 2 2

Typical response functions for a simply-supported plate

with a uniform (in-phase) sinusoldal load may be sum-

marized as follows.

• Maximum Displacement Response at Center of Panel

a b
(-_,_ t) pa4 co cox , = ---_- _--_, _"_ amn(t )

m n

where (3.377a)

16 sin (m _/2)sln(n=/2)lHmn(f) j cos (2_ft- en)

amn = _'6 mn [m 2 + (n a/b)2] 2

• Space Average Mean Square Displacement

-- 1 P2_mx2 =2 n n 8 IHm.(f)l ]_2 (2_ fmn) 2 ph

(3.377b)

• Space Average Mean Square Velocity

1 p2 m_ _-_ [8 !f/fmn) IHmn(.f! .1 2
_2 =_ n_..,Lmn2 (2_ fmn ph)J

(3.377c)

• Space Average Mean Square Acceleration

="'x =_ (_---_)2 _"_" [m-_ 2 (f/fm)2'Hm(f)']mn 2 (3.377d)

Similarexpressions for beams or plates with other boundary

conditions are determined by using the basic relationships

specified in Sections 3.3.5.4 and 3.3.5.6, respectively.

3.3.6.3 Response of a Beam to a Traveling Step Load

The load on a structure subjected toa traveling overpressure

wave from a blast may be approximated by a propagating

sudden change in pressure with a constant amplitude Pso

traveling with a velocity vacross the structure. Consider

the case illustrated in Figure 3.104 where a simply-

supported beam with a length L and width bls subjected

to sucha traveling load. The generalized force acting on

the beam in the nth mode is defined for two separate time

periods which are: a) the time of passage of the pressure

front across thebeam, and b) the timefollowing this transit

time t = L/v. (t =0colncldeswith the time of arrival of

the pressure stepat the left end of fhebeam.) The response

of the beam during these two periods can be determined as

follows.

• 0 < t < L/v - Pressure Step Passing Over Beam

p(t) p(t- y/v) p(O)

b

y---4

FIGURE 3.]04 General Problem ofa StepChenge in

Pressure Traveling Over a Simply-

Supported Beam

For any time t < L/v, the pressureat any point y which I_es

within the propagation distance v t, is the constant pressure

Pso' The generalized force Fn(t ) over the entire beam can

be determined, therefore, by integrating only over the dis-

tance y=0toy= vt, or

vt vt

/ f nl_yFn(t ) = b p(t-y/v) _n(y ) dy = Pso b sin _ dy

0 0

- Ps°bk [1 _nvt]" (3.378)
n - cos--£-j t < L/v

The time varying generalized force is equivalent to a

suddenly applied static load Pso bL/_n minus a suddenly

applied cosine load - Pso bL [cos _n vt/k]/_n. The dis-

placement of the beam may be defined by the superpositlon

principle as

GO

x(y,t) = _"_ [qnl(t) + qn2(t)] (pn(y)

n

(3.379)

where

qnl(t) = response of nth normal coordinate to a step
input, and

qn2(t) = response of nth normal coordinate to a cosine
input.
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Response of Simply-Supported Beam to a Uniform

Sinusoidal Pressure

The preceding results for the response of a beam to a point

force can be extended to distributed uniform sinusoidal

pressure p(y,t) = p cos(2_ ft)which acts in-phase at all

points on the beam. It is only necessary to redefine the

following terms.

• Amplitude of Total Force

where

Po = pbL

bL = surface area of beam of lengthLandwldthb

• Joint Acceptance

L

Jn = _"o/P sln(n_ Y/'1-)' dy

0

t 2/n-_ , n =odd

t0, n = even

(Note that the total force and joint acceptance for a uni-

form dynamic pressure on the beam are identical to those

specified in Section 3.3.6.1 for a uniform static load.)

Utilizing these new values for the total force Po and the

joint acceptance Jn in Equation 3.368 or 3.374a, the fol-

lowing typical response functions can be defined for a uni-

form sinusoldal pressure on a slmply-supported beam.

• Displacement Response at Point y

pbk 4 £ 4 IHn(f)J (slnn_y/k)cos(2=ft-en)

x(y,t)- El n,odd (_n) 5

(3.376a)

where pb=thedrlvingforce per unit length.

Except for the frequencyand time varying terms, JHn(f)I and

cos (27 ft - en) , this is identical to Equation 3.360 for a
static load.

• Acceleration Response at Center (y = L/2)

_(L/2, t) = pbL ao 4sin(n'_/2)
n,_odd _ (f/fn)2 IHn fllcos(2-,ft-en)

(3.376b)

where W b=pALg-welghtofbeam.

Unlike the acceleration response to a point force, the

amplitude of the modal acceleration response for a uniform

load decreases as 1/n above the fundamental mode. This

is equivalent to a decrease as l_n slnce fn0¢ n 2. The

The sign of every other odd mode changes from +1 to -1 in

contrast to the constant sign for a point for point force
excitation.

• Space Average Mean Square Acceleration

_ (pb k'_ 2 c°
=\ Wb f _["_"_ (f/'fn)2 IHn(f)J] 2 (3.376c)

n

The essential difference between the mean square response

For the distributed versus point force is defined by the dif-

ference in the joint acceptance (2/n_ versus ±1) for the

two forms of excitation for a simply-supported beam. This

concept is illustrated in Figure 3.103.
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FIGURE 3.103 General Trend in Maximum Acceleration Response at

Center of Simply-Supported Beam Loaded by Uniform

Distributed Sinusoidol Pressure or Point Force at Center.

Only odd modes excited in each case. Q assumed to

be constant for each mode.

Response of Simply-Supported Plate to a Uniform

Sinusoidal Pressure

The response of a slmply-supported plate with a stiffness D,

sides (a) and (b) and thickness (h) to a uniform pressure

p(y,z,t)=pcos (2_ ft) can be determined by substituting the

following parameters in the general response equations

(3.368 or 3.374b).

• Amplitude of Total Force

Po = pab

where a b = area of plate

• Mode Shape

¢Pmn(Y,Z) = sin (m_ y/a) sin (n_ z/b)
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Thecompletesolutionsfortheresponseofasingledegree
offreedomsystem(i.e., nthnormalmode)tothesetran-
sientinputsweregiveninTable3.1,page3-5.Applying
thesesolutionsto thiscase,assumingnodampingand
lettingtheloadperunitlengthPsobbegivenbyPso'then
ql(t)+q2(t)become

PL[ql(t ) + q2(t ) _ so I - cos _n t

_n _ M n
n

l_n v t )]- Hn(f ) cos-_- cOS_n t

where

2 Mn = generalized stiffness of beam for nth mode with
n

o natural frequency w n and generalized mass

Mn

I/[ I_nv127Hn(f) = l - ,- the dynamic magnification
_nLl J factor.

The complete solution for the displacement of any point

during this period is the summation over all modes given by

PsoL4 a° 2sin(_ny/L)I 1 v2c°s_nt-CoSV_nt tx(y,t) = --_ _n (_n) 5 + 1 _ v--_ "

(3.380)

where v =:nv/_nL =nv/2 fn L

For an infinite propagation velocity, (v _ ao) this expres-

sion reduces to the usual form for the displacement under

a static load equal to 1/2 Pso (see Equation 3.360). The

factorof 1/2 represents the average relative static pressure

during the passage of the shock front over the beam.

There is o critical velocity of propagation of the pressure

change for which the response of the undamped beam would

appear to become infinite. This occurs when

1 - (nv/2 fnL) 2=0

or

v = 2 fn L/n (3.381a)

As shown in Section 3.3.5.4, the velocity of bending or

flexural waves c B in the beam at the nth natural frequency
is

CB = fn ;_n = fn (2 L/n) (3.381b)

where ;kn is the bending wavelength. Thus, this critical

propagation velocity v for the nth mode is identical to the

bending wave velocity c B in the beam for the same mode.

This coincidence of the propagation velocity of o traveling

load and the propagation velocity of resultant bending

waves is a very important phenomena which will appear

later in Chapters 8 and 9 in the discussion of response of

walls to propagating acoustic pressure waves.

For the case of a propagating "static" pressure wave, a

finite response is actually obtained when v42 fnL/n.

Letting v --, 1 in Equation 3.380, the bracketed quantity

becomes [1 - cOS_n t] which is the relative response of a

single degree of freedom system to an instantaneous change

in force. Thus, at "coincidence," when V=CB, the beam

responds to the traveling pressure wave as if it were appl led

instantly over theentlre beam but wlthan amplitude of 1/2

its peak value.

The maximum response of the beam during this transit period

occurs at the end when t = L/v. This leads to a considera-

tion of the response after the pressure front has passed over

the beam.

• t > L/v - Pressure Step Past the Beam

During this period, the beam response will consist of the

residual transient vibration generated during the first period

plus the pure static deflection under the load. Let

t' = t- L/v be the time variable for this period. The

general solution for the nth normal coordinate is

i • tl
qnr(t ) = A cos Wnt' + B sin gn + _ (3.382)

where

2 Pso L 4 Pso L4

qns 2 Mn (_n) 5 EI
_n _l n

- the static deflection for

the uniform static load

during this final period.

The constants A and B must satisfy the initial conditions of

displacementqn(t' =0) and veloclty_ln(t' =0). These, in

turn, are determined by the response at the end of the first

period at the time t =L/v. The displacement and velocity

at this time are found from Equation 3.380 to be

x(y,t = L/v) - Pso L4 _-_ 2sin (_n y/L)

v2 cos _n/v- cos _n]
X +

1- v 2

(3.383o)

t = L/v

Pso L4

_(y, t = L/v) - E I__/2'_ sin ('nny/L) gn

n (_n) 5

[2
X

L I-,2 Jt=L/v

(3.383b)

where v = _n V/gnL .

Solving Equation 3.382 for the initial displacement and

veloclty, utilizing the above expressions to determine the

constants A and B, the displacement of the beam during
this period is given by the modal summation
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p L4 m
so 4 sin (_n y/L)

x(y,t) - E I
n (_n) 5

X COS

2 (1 - v 2) Un

+ v 2 sin (=n/v) sin (ent')+l/ (3.383c)

2 (1 - v 2) /
J t > L/v

The bracketed quantity in this expression defines the total

displacement (following the passage of the pressure front)

relative to the displacement for a stationary static load.

Thls relative dynamic response is shown in Figure 3.105 as

a function of v (or nv/2 fn L) for the first mode of the

beam. The maximum response occurs when v --, oo and

approaches a value of 2 which is the expected dynamic

response factor for a suddenly applied load (i .e., infinite

propagation velocity).
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FIGURE 3.105 Relative Dynamic Displacement in First Normal Mode

of a Simply-Supported Beam Subjected to a Traveling

Step Load. Solid line for peak displacement after step

load has passed over beam. Dashed line for peak

displacement during transit time of load over beam.

Only during the passage of the pressure front across the

beam is there any evidence of a coincidence effect on the

dynamic response of the beam. This is shown by the dashed

line_ in Figure 3.105, which represents the maximum rela-

tive displacement at the end of the transit time (t = L/v)

as defined by Equation 3.383a. In contrast to the impor-

tant influence of coincidence for traveling dynamic loads

which will be shown later in Chapters 8 and 9, the "co-

incidence effect" is relatively insignificant for the type of

traveling "static load" considered here.

3.3.6.4 Response of a Beam to Motion of Its Supports

In addition to the types of excitation considered so far,

excitation due to motion of the support points is commonly

encountered. As an example, consider the case illustrated

in Figure 3.106a on the following page of a simply-

supported beam driven by a sinusoldal motion U cos (2-n f t)

at its pinned ends. The equation of motion of a beam with

moving supports can be expressed in terms of the absolute

motion, x(y,t) of the beam or in terms of the sum of the

support motion u(t) and the relative deflection, e (y,t) of

the beam. Thus, if the bending stiffness is El, the mass

per unit length is pA, and x(y,t) = u(t) + e(y,t), the

equation of motion can be written as

82
El 84x(y't) +pA x(y,t) -0 (3.3848)

8 y4 8 t 2

or as

82 _ 82 u(t)
El 84e(y't) _pA e(y,t) pA_

8y 4 8t 2 8t 2

since

84x 84_ 84u
- for - 0

8 y4 8 y4 a y4

(3.384b)

A direct solution for the forced response is obtained with

Equation 3.3848 by specifying the motion of the end sup-

ports as boundary conditions. As discussed earlier in

Section 3.3.5.1, this results inaset of nonhomogeneous

equations which are solved simultaneously without resorting
to normal modes. A normal mode solution is obtained

with Equation 3.385b by treating the inertia load

pA 82 u(t)/82 t 2, generated by the support motion, as a

distributed external load on the beam. This concept was

discussed in some detail for lumped parameter systems in
Section 3.3.3.2.

Direct Solution Method

For the direct solution method, the boundary conditions

are

x(O,t) :x(L,t) :u(t)

x"(0,t) = x"(L,t) = 0 (zero moment at pinned ends)

Applying these conditions to the general solution for lateral

vibration of beams (see Equation 3.310, page 3-111), the

closed form solution for the amplitude of the absolute

motion of an undamped slmply-supported beam of length L,

for symmetrical motion of its supports is (References 3.67

and 3.1, Chapter 7)

U IcoshK tanh_-_LsinhKy+cosKy+tan?slnKy]X(y) : _ y-

where

1/4
K : u/c B : _/_"[pA/EI]

u = 2_f : frequency of excitation

(3.385)

c B : bending wave velocity

U : amplitude of excitation u(t) : U cos ut
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ForKL= roT,withn = odd, the last term (tan KL/2) goes

to infinity slncethis corresponds to the value of KL for the

nth natural frequency of a simply-supported beam.

A flnlte response for excitation of these natural frequencies

is obtained by including material damping in the system.

Considering only the motion at the center of the beam

(y = L/2) at excitation frequencies near resonance, Equa-

tion 3.385 indicates that only the last term is significant

for low values of damping.

e (y, t)

E
I-'-y L

o) Foundation Motion of a S_mply-Supported Beam
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FIGURE 3.106 Absolute Deflection at Mid Span of a Simply-

Supported Damped Beam with Moving Supports

and Loss Factor q

Damping Effects

To incorporate damping, replace K by its approximate

value K(1 -j q/4) for damped flexural vibrations of a struc-

tural element. The loss facto," q defines the relative magni-

tude of the imaginary or "lossy" part of the complex

modulus of elasticity E(1 + j q). As discussed later in

Section 3.3.7.1, a complex modulus is used to define

hysteresis damping for structural materials. Incorporating

these changes, it can be shown that at resonance Equation

3.385 is closely approximated by

(k) Fsinh rI KL/4 sin KL/2 7 e -j _/2
X _- max = U Lcos KL + cash q KL/4 J

As indicated by the complex quantity exp (-j _/2), the

displacement response lags behind the input motion by 90

degrees at resonance. For low damping and for KL = _,

3_, 5_, etc. at the natural frequencies of the beam, the

displacement amplitude can be simplified further to

x(LI 4 U -j_t/2 (3.386)
\_'/mox _ _---'_" e , n : 1,3,5, etc.

The approximation for the maximum response given by this

expression is shown in Figure 3. 106b along with the exact

response, without damping, given by Equation 3.385.

Note that these response functions also define the absolute

acceleration response for a given acceleration input.

While it is generally possible to determine o simplified

form for such complex response functions at the resonance

frequencies of the structure, the direct solution method is

generally awkward unless the expressions are to be evalu-

ated by digital computers.

Normal Mode Solution

A normal mode solution for the relative displacement e (y, t)

is readily obtained, using Equation 3.384b. Define the

generalized force for the nth mode as

L

Fn(t) : pA'U(t)S Cn(y ) dy

0

where

_n(y) = sin n_ y/L for a simply-supported beam, and

Li(t) =s_ (2_f)2 U cos (2_ ft) - the acceleration of

the supports.

Thus, the generalized force con be expressed as

Fn(t) : Po Jn cos (2_ ft)

where

Po:- pAL(2_f)2 U- amplitude of the total inertial

force due to motion of the sup-

ports

1

Jn : l/sin (n_ y,,/L)

0

dy - joint acceptance

12/n'n , n : odd

= I 0 n : even
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Applythisto theequationofmotionforthenthnormal

coordinate qn(t), including damping. As shown in Section

3.3.3.5, the solution for steady state sinusoidal excita-
tion is

Po Jn IHn(f)[ cos (2_fnt- On)

qn(t) =

(2_Tfn )2 M n

where

IHn(f) I = dynamic magnification factor (see p. 3-146).

For excitation at the nth natural frequency f = fn and

IHn(f)l reduces to 1/2 6 n __ 1/q where 6n = critical damp-

ing ratio. Therefore, combining the above relationships,

The maximum amplitude of the relative deflection e(y) in

the nth mode has an absolute value at the center of the

beam equal to

I 4 U=-- -- , n = 1,3,5, etc. (3.387)le (L/2)n max n_ q

Since low damping is assumed, the maximum amplitude of

the absolute deflection X(L/2) is very nearly equal to the

relative deflection e(L/2) so that Equations 3.387 and

3.386 provide essentially equivalent results, it should be

pointed out that, at resonance, the relative deflection e (t)

is in-phase with the support motion and hence leads the

absolute deflection x(t) by 90 degrees.

The basic concepts outlined for this simple case can be

readily extended to other types of structural elements to

evaluate their response to foundation motion. The normal

mode approach provides a particularly simple method for

evaluating the peak response at a resonant condition.

3.3.6.5 Reaction Forces at Boundaries of Beams and

Plates

For the analysis of vibration transmission through structures,

it is desirable to define the forces developed at support

points of vibrating beams and plates due to external loads

or local vibratory forces located on the member.

x(y, t)

vc° l,k ),
fR,

_--..- y L

FIGURE 3.107 Reaction Forces Developed at Support

Points of Vibrating Beam

The basic method fordefining the reaction forces at support

points may be demonstrated by considering the case illus-

trated in Figure 3.107. As shown in Table 3.5, the verti-

cal shear V(y,t) at any section of the beam of stiffness E I

and deflection x(y,t) is

V(y,t) =- EI x"'(y,t)

This is the shear force as viewed, for example, from the
left end of the beam so that the reaction forces which

oppose this shear at each end are

Left Reaction Force Ro(t) = + E l x"' (0, t)

Right Reaction Force RL(t)=-Elx'"(L,t)

Using a normal mode expansion for the deflection, the

reaction force at the left end can be given by

O0

Ro(t) = + EI _. qn(t) _n'(O)

n

(3.389)

.... (0) is the third derivative of the mode shape withwhere Cpn

respect to y at y=O. This general form for the reaction

force at y = 0 can be applied to any beam whose motion is

described in terms of normal modes. Based on the expres-

sions developed in Section 3.3.6.2 for the forced response

of simply-supported beams, the following expressions for

the reaction load at the ends of a simply-supported beam

can be derived. In all cases, the mode shape _n(Y) is as-

sumed to be sin (n_ y/L). Sinusoldal loads or motions are

specified ina general form i.e.,P(t) , omitting the usual

cos (2_ ft) term. The resulting expressions relate the

reaction loads to the excitation force or an equivalent
inertial force.

• General Vibratory Motion of Beam

qn (t)

Ro RL

O0

Ro(t) :- W b _ (_n) ] ""g qn (t)
n

RL(t) = Ro(t) [- (-1)n], n = 1,2,3, etc.

where Wb= weight of beam

qn(t) = modal acceleration in nth mode

g = acceleration of gravity

(3.390a)

• Point Sinusoldal Force at Yl

P(t)

I----y1--- _

Ro RL

gO

Ro(t) = + P(t) _ ('_n) sin (n_ Yl/L)JHn(f)l

n (3.390b)

RL(t) = Ro(t) [- (-1)n], n = 1,2,3, (Yl JL/2)
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• UniformSinusoidalForceperUnitLength

p(y,t)

Ro RL

_ II,Hn(f),n= odd (3.390c1Ro(t) p(y,t) L

n

RL(t) = Ro(t)

where

IHn(f)l= I/[(I-(f/fn)2)2+ (2 8n f/fn)2] 1/2

• Uniform Vertical Acceleration of Pinned-Supports

Z U(t)T

Ro RL

U(t) I_ (_n)2 IHn(f)l- 11
R°(t) = Wb _" n =

RL(t) = Ro(t)

odd

(3.390d)

For the first two cases i l l ustrated above, both odd and even

modes are possible. For even modes, the two reaction

forces are 180 degrees out of phase. For the last two cases,

the assumed symmetrical Ioadlngsuppressesany even modes.

Reaction Forces at the Boundaries of Vibrating Plates

A similar concept can be used to determine reaction forces

at the boundaries of plates. The total reaction forces are

defined by more complex expressions which account for the

vertical forces due to vertical shear and twisting moments

along the edges of the plate (Reference 3.66).

Z

o R(y,O)

FIGURE 3.108 Vertical Reaction Farces (per Unit Length)
Along Edges of Vibrating Plates

Based on the coordinate system illustrated in Figure 3.108,

the vertical reaction force per unit length R(y,O) along

side (a), for a lateral deflection x = x(y,z), can be ex-

pressed as

R(y,O)=+D[_-_t82x+ B2x_+(I-v)B3x,_] (3.391o)
_,8 y2 onz 2 ] 8z By2j

where D, v = plate stiffness and Poisson's ratio,

respectively.

Along side (b), the reaction force R(0,z) is

R(O,z)=+ [_-y ( a2x 82x/+(1-v) B3x 7\8y---_-+ az 2j 8--_z2 j (3.391b)

(Note that the internal force acting on the edge of the

plate has the opposite slgn.)

A general evaluation of reaction loads for plates is not

practical here. For example, the reaction forces at the

corners of a rectangular plate are not considered (Refer-

ence 3.66). It is sufficient to illustrate the general trend

by considering the reaction forces at the edge of a simply-

supported plate with a stiffness D, thickness h, mass density

p, which is vibrating in the mnth normal mode wlth a de-

flection given by

Xmn(Y,z,t) = qmn(t) [sin(m _-_a)sin(n "_)]

The frequency for this mode is given by

D m 2
2_ Finn Wren

Using these expressions in Equation 3.391a, it can be

shown that the amplitude of the reaction force per unit

length along side (a) is

Wp co 1 _mn I1 +(2- V)
/m/a/27

 ly.ol:- 'n/b! Jsln(m y )

m n [ /,rn/a21 21+ kn/b I j

where (3.392)

Wp./a = weight of plate per length of side Ca)

qmn = peak amplitude of mnth mode at center of

plate.

The similarity is clear when this equation is compared wlth

Equation 3.390a for the beam. For example, for a square

plate vibrating in its 1,1 mode, setting v = 0.3, the re-

action force along side (a) per unit length would be

WpI [2.7J v,
R(y,O)- a _ g [4]

sin(ii

Replacing sin _y/a by 2/7, the average reaction force per

unit length will be (2.7) ('_/2)/4. This is 0.43 times as

great as an equivalent beam with the same weight per unit

width Wp/a and the same peak acceleration in g's at the
center.
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3.3.6.6 Dynamic Stress at Resonance of Vibrating
Structure

In lleu of carrying out detailed dynamic stress calculations

on complex structure exposed to high intensity dynamic

loads, such as rocket noise or blast overpressure, simplified
alternate methods can be used in certain cases. One such

method is based on the re latlonshipbetween peak vibratory

stress in a simple structure at resonance and its peak ve-

locity (Reference 3.68). The method is particularly well

suited for approximate stress analysis, using the method of

normal modes to define structural response to a dynamic

load.

The concept may be illustrated simply by analyzing the

peak dynamic stress in a barvlbrating longitudinally in one
of its normal modes.

For the clamped-free bar illustrated in Figure 3.109, the

displacement amplitude of any element of the bar from its

neutral unstressed position will be equal to (see Section

3.3.5.2)

x(y) = q'n sin(3_ -)

where
q'n = amplitude of maximum deflection at the anti-

node points at y = L/3 and L.

. -- /-- Displacement Mode Shape

_l t 'l \ "_ ,J
/I a, ", %

_1 t-"xCy)_\ "-. <'
'" /" .... Lh---y

Strain Mode Shape

FIGURE 3.109 Deflection and Strain in a Clamped-Free Bar

Vibrating in Its Second Natural Frequency

3
f2 = 4" Ck/L, where ck = longitudinal wave

velocity in bar.

The natural frequencies for this configuration are given,

in general, by

fn L/CL = (2n-1)/4

or, for this case, where n = 2,

3 CL
f -
n 4 L

where c L = longitudinal wave velocity in the bar.

Since the vibration in this normal mode can be assumed to

be sinusoidal, the maximum velocity at the displacement

node points will have an amplitude equal to

3.ff

-_-n = 2_ fn qn = 2"L- CL "q'n

The strain _ = 8x(y,t)/ay in the bar is a maximum at the

antinodes, in this case at y = 0 and 2/3 L. Since, for this

caser the mode shape is also sinusoldal the maximum strain

at either strain node point is thesame (neglecting damping)

and is equal to

_ 8x(y,t) _ 3_
n max -_Y max 2L qn

Comparing these twoexpresslons, it is clear that the maxi-

mum strain and maximum velocity are related by

n max = C--L-
(3.393)

This simple relationship turns out to be very general for all

longitudinal vibration of bars in their normal modes. In

fact_ with the addition of an appropriate shape factor Ks,

it will be shown that a similar relationship holds for all

simple structural elements vibrating harmonically in a nor-

mal mode. The maximum dynamic stress a n max in the nth

normal mode is simply E • _nmax" Thus,

n max = Ks c L (3.3948)

and

(3.394b)
°'n max = Ks E

The factor K s has the followlng values for common types of

uniform structural elements (Reference 3.68).

• Longitudinal Vibration of Uniform Bars, K s = 1

• Torsional Vibration of Uniform Bar, K s = 1

(Replace c L by Cs)

• Lateral Vibration of Uniform Beams, K s = E/v/TT_

_ = distance from netural plane to outermost fiber

_-'A= radius of gyration

• Lateral Vibration of Rectangular Solid Bars, K s =

• Lateral Vibration of Circular Solid Bars, K s = 2

• Lateral Vibration of Plates, K s= 1.2-2.0

(K s varies with mode, Poisson's ratio and bending wave-

length)

The usefulness of this simple proportlonalitybetween maxi-

mum velocity at a displacement node and the maximum

stress at a stain node should be emphasized.

• The proportionality constant, K s varies over a rather
limited range for the simple elements considered.

• The only other quantity involved, the longitudinal ve-

locity of compressional or sound waves in the material

c L, is nearly the same for all metals (see Table 3.39 at

the end of this chapter).

• The relationship is independent of the size of the struc-

ture. In practice, the maximum velocity of the structure

in any mode will vary with the type of loading, the stiff-

ness of the structure and its natural frequency.
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AmoregeneralderivationofEquation3.394forbeamsand
platesmaybegivenasfollows.

Velocity-Stress Relationship for Beams

The bending stress in a beam is

a = ME/I

where

M = bending moment

E = distance from centroid to outermost fiber

I = area moment of inertia.

The bending moment M for lateral vibration of a beam has

an amplitude given by

82 x(y)
M=EI_

a y2

where El = stiffness of beam.

Assume a sinusoidal mode shape for the nth normal mode

so that the modal deflection is

Xn(Y) = q'n Cn (y) = A sin _n Y/CB + B cos _n Y/C B

where

q'n = amplitude of nth mode, and

c B = _ [EI/pA] 1/4 - bending wave velocity.

Using this expression to find the bending moment M and

inserting the result in the first equation for the stress

__ ( n12
an = - Ec qn \CB/ _bn(Y)

Substituting in the expression for c B and choosing the

maximum value for the mode shape q)n(y ) = 1, the maxi-

mum stress in this mode can be shown to be:

or

EE (an " qn
(7 _-"

°max

_n

e =K s "E--
n max c L

(3.395)

where K s = E/_//]7"A"

This is the same value for K for beams defined earlier.
S

VelocitT-Stress Relationship for Plates

In a similar manner, it can be shown that for plates with

sides (a) and (b) whose mode shapes can be approximated

by sinusoids, the value of the shape factor K s is given by

(Reference 3.68)

K S =

where

v

I (a/m /2

= Poisson's ratio

a<b

(3.396)

a/m = 1/2 "sinusoldal" wavelength along short side a

bin = 1/2 "sinusoidal" wavelength along side b.

This shape factor is plotted in Figure 3. 110 for plates with

slnusoidal-like mode shapes and v =0.3. The direction

of the maximum stress, in this case, is parallel to side (a)

and falls at adisplacement node point which is also a point
of maximum curvature.

2.0 i

u.

1.5

,
}.0 I I I I I

0 0.2 0.4 0.6 0.8 I .0

o/m 1/2 Wavelength - a Direction

a/n I/2 Wavelength - b Direction

FIGURE 3.110 Shape Factor K sin Equation 3.395 Relating

Maximum Stress in Simply-Supported Panel

to Maximum Velocity at Node Point

3.3.7 DAMPING OF CONTINUOUS STRUCTURE

Analytical methods for including damping in the vibration

analysis of structure have been considered in preceding

sections, particularly Section 3.3.3.1. Some aspects of

the type of damping encountered in the analysis of vibra-

tion, and propagating of vibration through damped struc-

ture are briefly considered in this section.

3.3.7.1 Types of Damping

The various ideal forms of damping, discussed in Section

3.3.3.1 are often selected for their convenience in analysis

rather than accurate models of the damping process itself.

This isa realistic approach; however, there are many forms

of damping which may be experienced by vibrating struc-

ture. No one mathematical model can accurately describe

all these various forms so that it is common practice to

assume a simplified model which exhibits the same general

effect of damping that is observed in practice. The various

forms of mechanical damping may be categorized as fol-

lows (References 3.69, and 3.1, Chapter 36).
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INTERNAL OR MATERIAL HYSTERESIS DAMPING

• DYNAMIC HYSTERESIS DAMPING (Stress-straln laws

are dependent on straln-rate or velocity)

• Viscoelastic Damping (Nonmetals)

• Anelastlc Damping (Metals- significant only at very

low stress levels)

• STATIC HYSTERESIS DAMPING (Stress-strain laws are

dependent on strain or displacement and independent of

strain rate)

• Plastic Strain Damping

• Magnetoelastic Damping

INTERFACE DAMPI N G

• SURFACES WITHOUT BONDING MEDIA

• Coulomb Friction (Dry sllp damping)

• Viscous Damping (Lubricated joint)

• Separation Damping (Contact surface chatter)

• SURFACES WITH BONDING MEDIA

• Viscoelastic Shear Damping

EXTERNAL DAMPING

• ACOUSTIC RADIATION DAMPING

• AERODYNAMIC DAMPING

• Viscous Drag

• Aerodynamic Pressure Drag

Analytical Models for Damping

Refined analytical models for the damping force generated

by these various forms of damping have the common feature

that the damping force is opposite to the direction of ve-

locity. This directionalHy is inherent in thedeflniHon of

the damping force fd for linear viscous damping which is

commonly assumed for vibration analysis. General forms

for the damping force for the other types of damping can

be defined by the following. For viscous and dynamic

hysteresis damping, c represents a proportionality constant

between damping force fd and velocity. For static hyster-

esis damping, let h represent the proportionality constant

between damping force and displacement. For coulomb

damping, let fc represent a constant friction force. The

general forms for damping can then be given as

Linear Viscous Damping fd = - c,k

Nonlinear Viscous Damping fd = -cx H n-1 n> 1

Linear Hysteresis Damping

Nonlinear Hysteresis Damping

Coulomb Friction Damping

fd = - h Ixl Ix--]-

fd = - hlxl n I_

fd = - fc IX---j"

The awkward form required for other than linear viscous

damping is apparent.

Static Hysteresis Damping

Static hysteresis damping is the most significant form of

internal energy loss for most structural materials. Fortu-

nately, a convenient mathematical form for linear static

hysteresis damping can be employed, providing the vibra-

tion is restricted to slnusoidal motion (Reference 3.70). It

will be assumed that this form of damping is implied from

here on when describing hysteresis damping in general.

Hysteresis damping forces are dependent on displacement

rather than velocity, but act in the direction opposite to

velocity. If the slnusoldal dlsplacementx(t) and velocity

R(t) can be defined with complex notation by

x(t) = X e"jut

£(t) = .jw X e]_t = j w x(t)

then the hysteretic damping force can be expressed as

fd(t) = - .j h x(t) = __._h R(t) (3.397)
w

where g is the slnusoidal frequency.

By this approach, a hysteretlc damping force can be de-

scribed mathematically so that it is proportional to the

absolute value of displacement Ix I = I_ t/_ but acting

180 degrees out of phase with velocity. That is,

_(t) _ h _(t)
fd :- h Ix(t)l l /t/i

when x(t) is slnusoldal.

The equivalent forms for a hysteretic damping force given

by Equatlon3.397 makes it posslble to specify the damping

force in real or complex form.

Hysteretlc Damping for Lumped Systems

When the damping is attributed to hysteresis losses in

lumped spring elements with a stiffness k, then the damping

force can be given as

or as

fd(t) = - 2k G ,_(t)

!
fd(t) .j k g x(t)

(3.398)
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whereg=2G_0=thestructuraldampingconstant.

Foranalysispurposes,eitherformof Equation3.398can
beused,thechoicedependingontheexpectedtrendin
dampingasa functionoffrequency(seeTable3.3,page
3-64).

Hysteretic Damping for Continuous Structure

Stiffness properties of continuous structural elements with

distributed mass are specified in terms of their modulus of

elasticity E or shear modulus G. Hysteretlc damping is

accounted for, in this case, by defining the modulus of

elasticity in a complex form as

E* = E (1 + j r I) (3.399a)

where

E = the real or pure elastic modulus

jEq = imaginary or Iossy part of the modulus corre-

sponding to the quantity j k g for the lumped

spring, and

q = material loss factor (extensional).

Similarly, the complex shear modulus can be given as

where

G =

G* = G (1 _ j l3)

pure elastic shear modulus, and

(3.399b)

!3 = material loss factor in shear.

Damping Energy

The damping energy Do dissipated by a damping element

during one cycle of vibration is represented by the net

work clone by the damping force fd over one cycle. If a

l i near viscous damper(c)is connected in parallel wl tha spring

(k) and the combination driven by a slnusoidal force P(t) =

P cos _t, it can beshown that the driving force varies with

displacement of thesprlng-damperalong anelliptlcal path,

asillustratedlnFigure3.111a. The area within thlselllp-

tical loop represents the damping energy Do lost per cycle

and is given by (Reference 3.69)

DO =/fd(x) dx = _ c g X (3.400a)

where X = amplitude of the displacement.

For a structural member such as a bar with linear hysteretic

damping, the variation in the dynamic stress-strain curve

for a slnusoidal drivingforce varies along a hysteretic-type

loop such as illustrated in Figure 3.111b. The area within

this loop is the damping energy Do for a continuous struc-

tural element. It is given by (Reference 3.69)

2
ema x q V o

D° = E (3.400b)

where

e = maximum stress in bar
max

q = material loss factor

V o = volume of bar = AL

E = modulus of elasticity.

c

P{t) _x{t__ )

x(t)

P(t)--,_ II _.
i

_ ×(t)

o) Viscous Damping b) Hysteretic Damping

in Lumped Spring in Bar

FIGURE 3.111 Variation in Driving Force P(t) with Displacementx(t) for

Spring Elements with Viscous (a) or Hysteretic (b) Damping.

Driving force isslnusoidal. Area within loop represents

damping energy lost per cycle of vibration.
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FIGURE 3.112 Material Loss Factor q Versus Maximum Stress a
max

for Several Metals. Critical stress sensitivity limit

a L indicated by {A). Endurance limit for 2 x 107

fatigue cycles indicated by (V). (Data from

Reference 3.1, Chapter 36)
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tn contrast to viscous damping, the damping energy for
linear (static) hysteresis damping is independent of fie-

quency_ providing q is not frequency dependent. Formany
engineering materials, this is approximately true so that
hysteresis damping is generally a better approximation for
damping effects in structure when interface and external
damping mechanisms are not present. On the other hand,
materials used for damping and vibration isolation of struc-
ture tend to exhibit more nearly viscous damping charac-
teristics.

Most structural materials exhibit a nonlinear damping be-
havior as evidenced by a deviation in the proportionality

betweendamping energy Doand the square of the maximum
stress emax indicated in Equation 3.400b. This deviation

becomes particularly marked at the so-called critical stress

sensitivity limit ak.

The critical stress sensitivity limit ak is of the order of

50- 100 percent of the endurance stress ae for most ma-

terials. Above this limiting stress, the effective loss factor
q for the material tends to increase rapidly. This trend is
illustrated in Figure 3.112 for several common materials.
Other damping characteristics of materials exhibiting either

dynamic or static hysteresis damping are shown in Table
3.19.

3.3.7.2 Propagation of Damped Longitudinal and
Flexural Waves in Structure

The velocity of longitudinal waves in bars c L and the

velocity of flexural bending waves in unlform beams cB
i

and uniform plates cB can be defined in the form

cL = _ (3.401a)

c B = 11_CL r (3.401b)

c B uII/'_TL h [1/12 (1 v2)] 1/4' = - (3.401c)

where

E = modulus of elasticity

u = frequency- radlans/sec

= radius of gyration 11/T_for beomsr

h = plate thickness, and

v = Polsson's ratio.

TABLE 3.19

CHARACTERISTICS OF MATERIAL HYSTERESIS DAMPING (1)

Type

Mechanism

Stress-Strain Laws

Damping Energy - D

rI Affected By:

Stress

Frequency

Temperature

Stress Cycles

Static Load

Stress Range of
Impo#ance

DYNAMIC HYSTERESIS STATIC HYSTERESIS

Viscoelastic Anelastic Plastic Strain Magnetoelastic
(Internal Friction)

Internal Structural Changes_ Thermal Plastic Flow Magnetoelasticity
and Eddy Currents

Linear Plus Straln-Rate Effects Nonlinear No Rate Effects

No Rate Effects

Doce n

q = 0.001 - 0.5 (e < aL)(2)

0.001- >0.1 (_>a L)

D = a 3

q = 0.01 - 0.08

No No Small Effect (a < :k))Large Effect (a > q o_ a

Crltical Crltical No No

Critical Critical Mixed Effect Yes

No No (a < aL)

Yes (a > aL)

Little Effect or

Increases q

No No

Yes - Reduces q

All Stresses Low Stress Medium to High Low - Medium

(1) From Reference 3.1, Chapter 36.

(2) a L = critical stress sensitivity limit.
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To include the effect of material hysteresis damping, the

modulus of elasticity is expressed in complex form as

shown in Equation 3.399a. When this complex form is used

in Equation 3.401a, b or c, it may be shown that the ratio

of damped velocities to the corresponding undamped ve-

Ioclties to the corresponding undamped velocities is given

by

• For longitudinal waves,

CLd/CL VgiT - + 1 (3. 402a)

• For bending waves,

CBd/CBor I = [I + q2] I/4

CBd/CB [1 (1 +q2)1/4 + _/T _2-n + 1 1/2

(3.402b)

The subscript d signifies the damped velocity. As shown

in Figure 3.113, this change in velocity of longitudinal

and bending waves is not significant for loss factors in the

usual range of less than 0.2.

A much more important influence of the damping is the

attenuation of thesewaves as they travel through the struc-

ture. This attenuation can be defined interms of thefrac-

>.

%

IOO
- I I ii
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/
-/
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o._i I I II
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I I II I I I _

Attenuation

Per Wavelength ,___ £

j / .uamped Wave Velocity-
J / "Undamped Velocity

" // _.,-"/ _

-- Longitudinal Woves

--_-- Bending Waves

I I II I I
1

q - Loss Factor

I I

10

FIGURE 3.113 Propagation Lossond Wave Velocity for Longitudinal
(or Torsional) Waves and Bending Waves in Medium
with Complex Elastic Modulus E* = E (I + j rI)

tlonal loss in amplltude per unit wavelength by an expo-

nential loss term e-°y which defines the decrease in

amplitude of a longitudinal or bending wave as it travels

the distance y in the bar (or beam). The attenuation can

be expressed in a convenient form by the attenuation con-

stant M in decibels (dB) per wavelength Xwhere Xis the

longitudinal or bending wavelength (see Chapter 4 for ex-

planation of decibel attenuation). The constant M is defined

by the fol lowing expressions.

Attenuation Constant for Longitudinal Waves

I_ L = 2_ (8.68)
,) dB/wove,eog,h

_/1+ q2+l
(3.403a)

Attenuation Constant for Bending Waves

I/2

([7, ,/½PB = 2_ (8.68) ......

- dB/wavelength.
(3.403b)

The correspondlngvalues for M L and MB are shown in Figure

3.113 as a function of the loss factor q.

For loss factors less than about 0.4, these two equations
reduce to:

Longitudinal Waves

ML = 8.68 _ q- riB/wavelength

Bending Waves

MB = 4.34 _ r1- riB/wavelength

General observations which can be made relative to the

attenuation of damped structural waves are:

1)

2)

For longitudinal waves, the wave velocity is essential ly

constant and the attenuation rate increases linearly

with frequency. The attenuation per wavelength is

independent of frequency and directly proportional to

the material loss factor q.

For lateral bending waves in beams, the wave velocity

and the attenuation rate both increase with the square

root of frequency. The attenuation per wavelength,

then, is still independent of frequency but is 1/2 as

much per wavelength as for longitudinal waves.
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3.4 VIBRATION DESIGN TABLES

Tables 3.20 through 3.39, presented in this section, pro-

vide a convenient summary of vibration design formulas
and tabulations of natural frequencies for structural ele-
ments. These tables provide an extension of theanalytical
treatment of structural vibration discussed in previous sec-

tions of this chapter. The tables were compiled from a
thorough review of previously published design charts and
recent results from the literature. Additional details have

been provided, as necessary, to maintain clarity and ac-
curacy of presentation for the benefit of the user.

The content of the tables is summarized in the following
list of titles.

TABLE

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

TITLE PAGE

EQUATIONS FOR STRENGTH OF MATERIALS ................................ 3-164

SPRING STIFFNESS OF BEAMS .......................................... 3-164

STIFFNESS OF VARIOUS BASIC ELEMENTS .................................. 3-165

STIFFNESS OF VARIOUS PLATE ELEMENTS .................................. 3-166

TORSIONAL STIFFNESS AND POLAR MOMENT OF INERTIA OF STRAIGHT UNIFORM 3-167
BEAM WITH COMMON SECTION ........................................

NATURAL FREQUENCIES OF SIMPLE TRANSLATIONAL SYSTEMS ................... 3-168

NATURAL FREQUENCIES OF UNIFORM BEAMS FOR LONGITUDINAL AND TORSIONAL

VIBRATIONS AND IN UNIFORM PIPES FOR LONGITUDINAL ACOUSTICAL RESONANCE . . . 3-169

NATURAL FREQUENCIES OF BEAMS IN FLEXURE ............................. 3-170

NATURAL FREQUENCIES OF BEAMS ON MULTIPLE EQUALLY SPACED SUPPORTS ........ 3-171

FUNDAMENTAL FREQUENCIES OF COLUMNS IN LATERAL VIBRATION .............. 3-173

NATURAL FREQUENCIES OF AXIALLY LOADED BEAM CARRYING DISTRIBUTED MASSES

AND DISTRIBUTED FOUNDATION SUPPORTS ................................ 3-174

NATURAL FREQUENCIES AND MODE SHAPES OF UNIFORM PLATES IN FLEXURE ........ 3-176

NATURAL FREQUENCIES OF PLATE IN FLEXURE .............................. 3-181

NATURAL FREQUENCY OF CIRCULAR PLATES OF UNIFORM THICKNESS ............. 3-182

NATURAL FREQUENCIES OF CIRCULAR MEMBRANES .......................... 3-183

NATURAL FREQUENCY OF UNIFORM RING VIBRATING IN ITS OWN PLANE ........... 3-184

NATURAL FREQUENCIES OF UNIFORM RING IN FLEXURAL (NORMAL TO ITS OWN
PLANE) AND TORSIONAL VIBRATIONS .................................... 3-184

NATURAL FREQUENCIES OF AN ANISOTROPIC (ORTHOTROPIC) PLATE IN FLEXURE ...... 3-185

NATURAL FPEQUENCIES OF PLATE IN FLEXURE, WITH CLOSED CAVITY BEHIND ........ 3-187

POISSON'S RATIO, YOUNG'S MODULUS, MODULUS OF RIGIDITY, SOUND VELOCITY,
AND MATERIAL CORRECTION FACTOR FOR SOME ENGINEERING MATERIALS ......... 3-188
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TABLE3.20

EQUATIONS FOR STRENGTH OF MATERIALS

F
Tensile, Compressive or Shear Stress e = "_" = E_

FL
Elongation e = A---E= Le

Strain Due to a Load _ = o'
E

Modulus of Elasticity E = _
£

Mc

Bending Stress a b = -_-

Where Bending Moment, M = El d 2 y/dx 2

Torsional Shear Stress _ T..__c
O" --

s K
r

Twist of Rotational Displacement e = --
TL

KG
r.

VQ
Vertical Shear Stress as =T_-

1 a2
Strain Energy per Unit Volume U = _" _-

Stress Due to Simultaneous Axial F Mc

and Transverse Loading of Beam emax =A-+T

MIr
_mStress Due to Combined Bending ab I

and Torslonof Circular Bar max
With Radius r

T'r

s J
max

Where M' = _-

TABLE 3.21

SPRING STIFFNESS OF BEAMS

Beam System
Translational

(Due to Force F)

3El
k =m

L3

3ElL

(ab) 2

96 Elk
b(5b 2 - 3L 2)

Rotational

(Due to Moment M)

El
kr L

3 ElL

L2 - 3abr

4 ElL3

kr - bl4L3 3b(L+I

a)(k+b) 1

Beam System

F
k'- o --,--.-b--- I

i

M

k- L-------4

Translational

(Due to Force F)

3 ElL3
k =

(ab) 3

Rotational
(Due to Moment M

ElL3
k -

r ab(L 2 - 3ab)

3Elk -
r L

4Elk -
r L

Symbols for Tables 3.20 and 3.21:

A = Cross-Sectional Area
c = Distance from the Neutral Axis

to Extreme Stressed Fiber

E = Modulus of Elasticity
F = Concentrated Load

G = Modulus of Rigidity
1 = Area Moment of Inertia

M = Bending Moment Q = A' Y, where A' is Portion of Area
k = Translational Spring Constant of Cross Section Lying Above (or
kr = Rotational Spring Constant Below) b', and Y, is Distance from
V = Total Vertical Shear Neutral Axis to Centroid of A'

b' = Distance Across a Beam (Normal T = Torque
to Direction of Load) Measured J = Polar Movement of Inertia

Through the Point in Question K = Torsional Constant (= k L/G, andr . r=,J for Circular Sechon)
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TABLE3.22

STIFFNESSOFVARIOUSBASICELEMENTS

SpringsinSeries

SpringsinParallel

Helical Spring in
Axial Loading

Helical Spring
in Torsion

Helical Spring
in Bending

Spiral Spring
Unde£ Torsion

Pneumatic or Hydraulic
Stiffness of CIosed
Chamber

Column Under
Vertical Load

Uniform Shaft
Under Torsion

k 1 k2 kn
_.--.,V_VV_ -- -_/v_,-_-
F F

M M

/////' //, P.I

/, ,
IIIIlii'_14

_F

i
I

_11#/11111#

0r)T

n

1/ktota i = _ 1/kn
1

n

ktota] = _ kn
1

Gd 4F= k -
8 8nD 3

T Ed4
--=k=--

r 64nD

M Ed4 1
--=k=
e 32nd 1+ E/2G

k =T/@=EI/L
r

k=
V

AEk _
k

k = GJ/L
r

See Table 3.24

Symbols:

E = Modulus of Elasticity
L = Length, or Total Spring Length
I = Area Moment of Inertia
G = Shear Modulus
J = Polar Moment of Inertia

T = Torsion

= Torsional Angle

F = Axial Force

M = Bending Moment
e = Flexural Angle
8 = Axial Deflection
d = Wire Diameter
D = Mean Coil Diameter
n = Number of Coils

k = Spring Constant
k = Torslonal Spring Constant

r (Torsional Stiffness)
A = Area of Piston or Column

p = Mass Denslty of Media in Chamber
c = Speed of Sound for Media in Chamber
V = Chamber Volume
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TABLE3.23

STIFFNESSOFVARIOUSPLATEELEMENTS
(Reference3.53)

CircularPlate:
AllEdgesClamped

AllEdgesSimplySupported

SquarePlate:
AllEdgesSimplySupported

All EdgesClamped

RectangularPlates:
,AllEdgesSimplySupported

All Edges Clamped

Equilateral Triangular

Plate, All Edges Simply
Supported

/Z/Z/Z

_77J

• F a -_

!j[__F

k - 16_D
2

a

a2 _,3"3-_-_-v,/

k = 86.1,D/a 2

k = 192.2D/a 2

k = 59.2 (1 +0.462r 4) D/b 2

r = b/a< 1

k = Dy/b 2

a/b 4 I 2 1

I' 167 I 147 192

k = 175D/a 2

Symbols:

k = Force/Deflection, Spring Constant

D = Eh3

12(] - v 2)

E = Modulus of Elasticity
v = Poisson's Ratio
h = Plate Thickness
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TABLE3.24

TORSIONALSTIFFNESS,krrANDPOLARMOMENTOFINERTIA,JrOF
STRAIGHTUNIFORMBEAMWITHCOMMONSECTION

(Reference3.5J)

Circle:
CJosedor
Split

Ellipse

Square
Hexagon

Rectangle

Equilateral
Triangle

Any Solid Compact
Section Without

Reentrant Anglesl

Any Thin Closed
Tube of Uniform
Thickness t

Any Thin Open
Tube of Uniform
Thickness t

Any Open-Section
Beam

A = Cross-Sectional Area

S

-._--- 2a

2b

ilf r 2b

• __3_.
_2a_

--_ I_t 1
?-
b 1 a_"_ly Ix t 2

I C Iosed: Split:
4 G Tr G

k r = _" (D4-d )-L- k = d (D-d) 332 r 24 T
1T

J = _- (D4- d4)

= Mean Circumferential Length
(Length of Dotted Lines Shown)

= Length of Beam, or bar

= Polar Moment of Inertia of Area About Polar Axis

Through Centrold (_)

k = lta3b3 G j
r a2 + b2 L =_-ab(a 2+b 2)

Square: Hexagon:

0.1406 a4 4 G
k = L. k = 2.69a T-

r r

J = a4/6 J = A(12r2+a2)/24

/ 4kr = b3 16 3.36 ub 1- J=_-ab(a2+b 2)CI "_--- t

k _3a 4 G 31/3- 4
r = 80 L J - _-- a

GJ
kr = q_--, where qGJ = Torsional Rigidity

q = Shape Factor

=J_r2"f dA _ A4/40j2(=- 1, for Circular Section)J

A

St3 G
k _'_

r 3 L

k"-r i_-':_13ibiti3/3] G/'L J = Ix÷ly

bl/t i 1 2 4 I oo
13i .423 .689 I .844 1 (Reference 3.73)

I = Area Moment of Inertia About In-Plane Axes Through
Centrold

G = Modulus of Rigidity (Shear Modulus)

k r = Torsional Stiffness = Moment/Angular Deflection

(Also known as Torsional Rigidity per unit length)

Kr = Torsional Constant -= kr L/G
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TABLE 3.25

NATURAL FREQUENCIES OF SIMPLE TRANSLATIONAL SYSTEMS

Massive-Spring
Mass System

Point Mass on
Cantilever Beam

Point Mass at Center

of Clamped Beam

Point Mass at Center of

Simply Supported Beam

Simply Supported Mass-
less Beam With Off-
Center Point Mass

C lamped-C lamped Mass-
less Beam With Off-
Center Point Mass

Mass-Sprlng
Mass System

Multi-Mass

Spring Systems

Mass Spring and Lever
Systems (Inertia of _
Lever Negligible)

SYSTEM

klm"

_ M

M

k,rn,L

k"_-L "1

/"a't'--b--t

k---- L -----_

_- a --_-.,,-- b _._

k_ k

I"a"l

NATURAL FREQUENCY, f_, Hz.

1__ /

1/ k/(m + 0.33m)2tr

E,,IL3 M12-_" 192 +

1__/3El L/a 2b2M
2tt

2-]'_3 El L3/a3b3M

1 ¢ k M 22-_ (M 1 + M2)/M 1

(_-/_lt) { k 1/M 1+k2/M I +k2/M 2:1: [(k 1/M 1

+k2/M1 +k2/M2)2 4k I k2/M 1 M211/2 }1/2

(_'_2-/_t){(k 1 +k2)/M 1 +(k2+k3)/M 2 :_ [((k 1 + k2)/M 1

+ (k 2 + k3)/M2)2 _ 4(kl k2 + k2k3 + k3k 1)/M 1M2] 1/2 /1/2

2-_ ml + b2M2 k k 1 b2 k2

I
a

Symbols:

M = Point Mass

m = Total Mass of Spring Element

k = Spring Constant
a,b = Distances
E = Young's Modulus

I = Area Moment of Inertia of Beam

L = Beam Length

(References 3.1 and 3.53)
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TABLE 3.26

NATURAL FREQUENCIES OF UNIFORM BEAMS FOR LONGITUDINAL AND TORSIONAL VIBRATIONS
AND IN UNIFORM PIPES FOR LONGITUDINAL ACOUSTICAL RESONANCE

Longitudinal or Torsional
Vibration of Uniform

Clamped-Free Beam

Longitudinal or Torsional
Vibration of Uniform Clamped
Clamped Beam

Longitudinal Acoustical
Resonance of Uniform Pipe
System (with Pressure Mode
Shape shown);

C Iosed-Closed Pipe

Open-Open Pipe

with and without
Baffle

Piston-Drlven Closed

Pipe

Piston-Driven Open Pipe
with and without Baffle

at end

Helmholtz Resonator
with and without
Piston Driver

SYSTEM-MODE SHAPE NATURAL FREQUENCY, Hz.

,/ I n

_ '_ _"_', I n =2

_'_ n= 1

"" _.-" n= 2

_------ L --------_
K//////////////////J ----L

2a

vl//////////////////_ --T

._- n_2

_-_-L
,////////////_',

_711111111 IIIlllllli_/t

_ n
jr _

_ n

=I

=2

2a

n=2 L_-- _ "'_ ___"

,_,/zz/I/////,a _I i
--'il 2o :

•",Tillililiii'lJ _ V ;

f
n

c I

2n - 1 c'

4 L

= speed of sound in beam

= _ in longitudinal vibration

= _/G/p' in torsional vibration

n C )
f -
n 2 L

c' = speed of sound in beam. (See above)

n C
f -
n 2L

c = speed of sound in gas

n c

= 2 L'

L' _- L+ 1.2a- No Baffles

-_ L+ 1.45a - Baffle at one end

L + 1.7a - Baffle at both ends

_)n- 1 c
f =
n 4 L

n cf -
n 2 U

(fn < c/4_ a)

L' _ L + 0.85a (with Baffle)

L' = L + 0.6a (without Baffle)

Fundamental Mode

___ .... n=1

c, mT/
fl - _-_T_)/ T (fl <c/2_a and

fl < c/4-_ L)

L' = L+0.85a(withpiston)
L' = L + 1.45 a (without piston)
Vt = _a 2L' V = cavity volume.
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TABLE3.27

NATURALFREQUENCIESOFBEAMSINFLEXURE

f C r 104
= --_ x x Kn n m

th
where f = n Natural Frequency, Hz.

n

C = Frequency Constant of nth Mode, Listed in Table Below
n

r = Radius of Gyration of Cross-Section of Beam, _J_A', Inches

L -- Length of Beam, Inches

K = Material Constant, See Table 3.39
m C

n

UNIFORM BEAMS

Clamped - Clamped

Clamped - Free

Clamped - Hinged

Clamped - Gulded

Hinged - Hinged

Hinged -Guided

I I

Free - Free

Free - Hinged

Free -Guided

Guided -Guided

71.95

11.30

49.57

17.98

31.73

7.93

MODE NUMBER, n

2 3

198.29 388.73

70.85 198.30

160.65 335.17

97.18 239.98

126.93 285.60

71.40 198.33

642.60

388.73

573.20

446.25

507.73

388.73

959.94

642.60

874.65

715.98

793.33

642.60

(Reference 3.59)
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TABLE 3.28

NATURAL FREQUENCIES OF BEAMS ON MULTIPLE EQUALLY SPACED SUPPORTS

f = x 104x K
n m

where f
n

C
n

r

L =

K ---
m

th
= n Natural Frequency, Hz.

= Frequency Constant of nth Mode, Listed in Table Below

= Radius of Gyration of Cross-Section of Beam, _jl_j_, Inches

Span Length, Inches

Material Constant, See Table 3.39

C
n

BEAM SYSTEM

I----L -_-._-- L -_-_-- L----_

Uniform Beam°
Extreme Ends Simply Supported;
Equal Spans

NUMBER
OF

SPANS

31.73

MODE NUMBER, n

126.94 285.61 507.76 793.37

2 31.73 49.59 126.94 160.66 285.61

3 31.73 40.52 59.56 126.94 143.98

4 31.73 37.02 49.59 63.99 126.94

5 31.73 34.99 44.19 55.29 66.72

6 31.73 34.32 40.52 49.59 59.56

7 31.73 33.67 38.40 45.70 53.63

8 31.73 33.02 37.02 42.70 49.59

9 31.73 33.02 35.66 40.52 46.46

10 31.73 33.02

11 31.73 32.37

12 31.73 32.37

34.99 39.10 44.19

34.32 37.70 41.97

34.32 37.02 40.52

(Reference 3.59)
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TABLE 3.28 (CONTINUED)

BEAM SYSTEM

Uniform Beam,Extreme Ends

Clamped; Equal Spans

A Z_ A :.

Uniform Beam,
Extreme Ends Clamped -
Simply Supported; Equal Spans

A A A

C
n

MODE NUMBER, n

1 4 5

NUMBER
OF

SPANS

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

72.36

49.59

2 3

198.34 388.75

72.36 160.66

59.56 72.36

642.63

198.34

959.98

335.20

40.52 143.98 178.25

37.02 49.59 63.99 72.36 137.30

34.99 44.19 55.29 66.72 72.36

34.32

33.67

33.02

33.02

33.02

40.52 49.59

38.40 45.70

37.02 42.70

35.66 40.52

34.99 39.10

34.32 37.70

34.32 37.02

160.66 335.2

63.99 137.30

49.59 67.65

32.37

32.37

59.56

53.63

49.59

46.46

44.19

41.97

40.52

573.21

185.85

49.59

37.02

67.65

62.20

56.98

52.81

49.59

47.23

44.94

874.69

301.05

34.32 132.07 160.66

33.02 42.70 56.98 69.51 129.49

33.02 39.10 49.59 61.31

54.46

49.59

45.70

43.44

32.37

32.37

37.02 44.94

35.66 41.97

34.99 39.81

34.32 38.40

33.67 37.02

33.67 36.33

32.37

31.73

31.73

31.73

41.24

39.61

70.45

63.99

57.84

53.63

49.59

46.46

44.19
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TABLE3.29

FUNDAMENTALFREQUENCIESOFCOLUMNSINLATERALVIBRATION
(Reference3.56)

r
fl = C1 _-_x 104 x Km

wherefl = FundamentalFrequency,Hz.
C1 = FrequencyConstant,Listedin

TableBelow
r = RadiusofGyration,_ Inches
L = LengthofColumn,Inches
K = MaterialConstant,SeeTable3.39m

COLUMN C1

I LateralVibration

columnaxialload
criticalbucklingload

(_/L) 2 E I

modulus of elasticity

minimum area moment of inertia of column

C-F

11.30

Boundary Condition

C-CS-S C-S

31.73 49.57

29.96 46.92

28.25 44.35

26.43 41.62

24.46 38.69

71.95

Symbols:

p =

PI =
=

E =

I =

= 1/4 for C-F column

= 1 for S-S column

= 2 for C- Scolumn

= 4 for C-C column

Boundary Conditions:

C = clamped

F = free

S = simply supported

.4 8.85 55.82

.5 8.11 22.33 35.49 51.05

.6 7.29 19.97 31.96 45.74

.7 6.34 17.30 27.97 39.69

.8 5.20 14.13 23.27 32.47

.9 3.73 9.99 17.31 23.01

1.0 0

.1 10.71 68.02

.2 10.14 64.23

.3 9.52 60.19
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TABLE3.30

NATURALFREQUENCIESOFAXIALLYLOADEDBEAMCARRYINGDISTRIBUTEDMASSESAND
DISTRIBUTEDFOUNDATIONSUPPORTS(Reference3.71)

SYSTEM

AxiallyLoadedBeamsCarryingDistributedMassesand
DistributedFoundationSupports.

L--

h
_. T/I/ / I I/II//I/II IIIII_

Symbol s:

r =

L =

C =
n

K

m

a,al,a 2 =
W =

Wb =

n =

k =

Pn =

E =

I =

P =

2 =

N =

F---"

radius of gyration of beam, _ I/A,inches

length of beam, inches

frequency constant of an unloaded
beam (simply supported or clamped),
as listed in Table 3.27

material constant. See Table 3.39

distances, see figure above

total weight of applied load, Ib

weight of beam, lb

mode number = 1, 2

foundation modulus in Ib/in.2

critical buckling load, Ib

modulus of elasficlty, Ib/in 2

moment of inertia of beam cross section

axial load, Ib

coefficient representing mass distHbutlon
for simply supported beams

coefficient representing mass dlstrlbution
for clamped beams.

buckling toad constant

NATURAL FREQUENCY, fn' Hz.

Simply supported at both ends:

f -- C r x 104
"-_ x K x An n m n

for n = 1,2

Clamped-clamped at both ends:

f C r 104= --_-x x K x B
n n Lz m n

forn = 1,2

where:

A =
n

B1 =

B2=

P, + { L _4 k ] I/2

J
1 + Wb°_n

1 -

4 k 1/2

+W
'

i . ;6P iiL ]1/2

JW N 2

1 +Wb a

Pn = _n _2 El/L2

where:

L ( 2n_a 2,_n = a - 2n'-_ sin_

2L / 2_a2
N.1= a - _ _sln L

4Tra 2+ _ sin L

+ sin

- sin 2___a])

4_ a 1 )- sln
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TABLE 3.30 (CONTINUED)

n

SYSTEM NATURAL FREQUENCY, fn' Hz.

= Buckling Load
Constant

Values of _n :

Mode No.

n

Clamped
Ends

Simply
Supported
Ends

L t 2_a2 4_a2
N 2 = a - _ (sin Y + sin

L | 6_a2 sin 6__al)oe

\sin L

For the symmetrical case where

sin Y - sin

4

2

8.17

4

a I

a,/L

= (L - a2):

t st Mode

21/a

2ndMode lstMode

_/a N1/a

2ndMode

N2/a

0 2.000 0 2.667 0

.1 1.984 0.065 2.623 0.127

.2 1.936 0.243 2.500 0.459

.3 1.859 0.495 2.313 0.870

0.766

I .000

.4 2.087

1.849

1. 756

1.637.5

1.223

1.424

.6 1.504 1.156 1.621 1.460

.7 1.368 1.216 1.418 1.377

.8 1.234 1.189 1.249 1.243

.9 1.109 1.104 1.111 1.111

1.0 1.000 1.000.000 1.000
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TABLE3.31

NATURALFREQUENCIESANDMODESHAPESOFUNIFORMPLATESINFLEXURE

hf = C ---_x 104x K
n n z ma

where f = nth Natural Frequency, Hz.
n

Cn = Frequency Constant of nth Mode, Listed in Tables Below

h = Thickness of Ptate, Inches

a = Side of Plate, Inches

K = Material Constant, See Table 3.39
m C

n

SQUARE PLATES
b=a

I_- a--'t
F -t--

: F b

c _3_
F F

C F

C

F

F F

F

S

s

C

C C

S

C

C C

C

! ]
Pinned Corners, Free Edges

6.77

13.72

19.20

23.01

6.91

8.32

23.43

19.99

48.00

50.28

53.26

71.42

MODE NUMBER, n

3 4

20.86 26.71

26.07 46.75

23.26 34.98

76.82 96.01

57.06 83.79

67.44 92.02

105.36 128.03

18.60 37.35

30.32

61.44

59.93

124.82

97.58

99.43

128.71

42.28

63.47

163.25

110.13

t25.60

160.72

F = Free, C = Clamped, S = Simply Supported (= Pinned) ( References 3.59 and 3.62)
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TABLE3.31 (CONTINUED)

C
n

MODE NUMBER, n [MODE SHAPE (o,q) IN BRACKET[

I
I 2 3

UNIFORM PLATES

H- a --_

c -7
C C b

I__LC 1

C

F 1-

---

F T
C C b

F --I-
iC F b
i

F __}_

____ o ___.___

--f-
C b

_ a _

b

__L

"IcF c
b

b=a

a/b

1.0

0.8

0.6

0.4

0.2

1.0

i/.8

I/.6

1/.4

I/.2

1.0

0.8

0.6

0.4

0.2

0.5

1.0

2.0

5.0

2

4

8

14

8 _

15°

30 °

45 °

35.0 (I ,I)

29.1 (1,1)

25.1 (1,1)

23.0 (I ,I)

22.0 (1,1)

21.5 (I ,I)

21.4 (I ,I)

21.3 (I ,I)

21.2 (1,1)

21.0 (I ,I)

21.5 (I ,I)

21.5 (I ,I)

21.5 (I ,I)

21.6 (I ,I)

21.6 (I ,I)

3.41 (I ,I)

3.40 (I ,I)

3.38 (I ,I)

3.36(1,1)

6.7 (I ,I)

6.6 (I ,I)

6.6 (I ,I)

6.6 (1,1)

5.5 (I ,I)

6.2 (I ,I)

6.4 (I ,I)

3.50 (I ,I)

3.85 (I ,I)

4.69 (I ,1)

(I ,2)
71.4 (2,1)

51. i (1,2)

36.2 (1,2)

27.1 (1,2)

22.7 (1,2)

25.6 (1,2)

27.6 (I ,2)

31.5 (1,2)

40.4 (I ,2)

57.0 (2,1)

25.6 (t ,2)

24.2 (1,2)

23.1 (1,2)

22.3 (1,2)

21.8 (I ,2)

5.23 (I ,2)

8.32 (1,2)

14.5 (I,2)

20.9 (2,1)

28.6 (2,1)

28.5 (2,1)

28.4 (2,1)

28.4 (2,1)

23.6 (2,1)

26.7 (2 ,I)

28.1 (2,1)

8.63 (I ,2)

9.91 (I ,2)

13.38 (I ,2)

105.3 (2,2)

66.6 (2,1)

55.4 (I ,3)

33.5 (I ,3)

24.2 (I ,3)

42.3 (I ,3)

54.2 (1,3)

59.0 (2,1)

58.6 (2,1)

70.0 (I ,2)

42.3 (I .3)

34.8 (I ,3)

28.9 (I ,3)

24.8 (I ,3)

22.4 (I ,3)

9.98 (I ,3)

20.9 (2,1)

21.0 (2,1)

33.8 (I ,2)

56.6

83.5

146.1

246

4

128.0 (I ,3)
(3, I)

86.7 (I ,3)

63.5 (2,1)

45.4 (I ,4)

26.3 (I ,4)

59.4 (2,1)

59.2 (2,1)

74.2 (1,3)

89.3 (2,2)

115.0 (3,1)

59.4 (2,1)

56.5 (1,4)

40.6 (1,4)

29.7 (1,4)

23.5 (1,4)

21.4 (2,1)

26.7 (1,3)

49.9 (2,2)

103.0 (2,2)

137

240

457

79O

F --- Free, C = Clamped;p*= Number of Half Waves Along Side a, q = Number of Half Waves Along Side b

* For the last four cases, cantilever mode _ exists when p = I.
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TABLE3.31(CONTINUED)

U _

1000
8OO

600

4OO

2O0

100

8O

60

40

2O

10

t I I I I I -

1000
800 600

600 400

4OO

200

f-

u

200

100

8O

100 60
8O

U C60 4O

4O

2O

2O

10
8

10 6
.2 .4 .6 .8 1 2 4

o,'b .2

p = Number of Half Waves Along Side a, q = Number of Half Waves Along Side b.

.4 .6 .8 1 2

a/b

(References 3.61 and 3.76)
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TABLE3.31(CONTINUED)

C

L)

80O

10C

8C

.4 ., 1 2 4

a/_

600

J

2(

IC
.2 .4 .6 .8 1 2

a,'S

2O

.2 .4 .6 .8 1 2 4

a/b

p = Number of Half Waves Along Side a, q = Number of Half Waves Along Side b .

In the last case, cantilever mode exists when p or q is 1.

4oc I I I I Ill I I I_

//c b
._.L

- I II//

I i r"

p=2,q=l 7/-"'-
2C _ _, _,_

-- // / -

-/.'/ _.......,,"/

3"i_ J i I i i
.4

a,,_

(ReFerences 3.61 and 3.76)
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J

4OO

2OO

100

80

6O

4O

2O

10

8

6

4

3
.2 .4 .6 .8 i 2 4

a/b

TABLE 3.31 (CONTINUED)

2OO

100

8O

60

4O
E

u

2O

10

8

6

4

3
.2 .4 .6 .8 1 2

o/b

u

300

2OO

I00

8O

6O

4O

E

2O

10

8

6

4

.2 .4 .6 .8 1 2 4

a/b

4OO

2OO

100

80

6O

4O
E

u

2O

10

8

6

4

3
.2 .4 .6 .8 1 2

a/b

p, q = number of node lines perpendicular to side a, or b, respectively. (References 3.61 and 3.76)

NOTE: p and q are defined differently on this page. Both __I and _ would be defined as

first vibration mode, but notice that the first one has one node line and the second has two. This new

definition of p and q is necessary due to the presence of free edge(s).
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TABLE3.32
NATURALFREQUENCIESOFPLATEINFLEXURE(Reference3.72)

h 104f = C _ x xKn n z ma
where f -- nth Natural Frequency, Hz.

n
C = Frequency Constant of nth Mode, Listed in Tables Below

n
h = Thickness of Plate, Inches

a = Side of Plate, Inches

K = Material Constant, See Table 3.39
m

C
n

SYSTEM NATURAL FREQUENCY, fn' Hz

Uniform Plate Simply Supported
at Four Corners

a/b

C 1

a/b

C 1

1.0

6.91

4.0

9.28

For a/b = 1

C
n

1

6.91

I
1.5 2.0 2.5

8.67 9.02 9.09

6.0

9.39

8.0

9.46

10.0

9.54

2 3

15.29 18.60

4

37.35

3.0

9.16

GO

9.58

42.28

I
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TABLE 3.33

NATURAL FREQUENCY OF CIRCULAR PLATES OF UNIFORM THICKNESS

CIRCULAR PLATES

Clamped at Circumference

Free Circumference

Clamped at Center

f = C h 104m x x K
m,n m,n R2 m

th
where f = m-n Natural Frequency_ Hz.

mtn

C = Frequency Constant of m-n th Mode,
m,n Listed in Table Below

h = Thickness of Plate, Inches

R = Radius of Platet Inches

K = Material Constantt See Table 3.39
m

I I

t
h

' fU I
h

Simply Supported at Circumference

(Reference 3.53)

NUMBER
OF

NODAL

CIRCLES, m

C
mtn

NUMBER OF NODAL DIAMETERS_ n

0 1 3

9.936

38.713

86.516

8. 832

37.487

0 3.649

1 20.349

2 59.053

3 116.490

5.0

20.651

19.970

58.255

33.906

5.110

34.295

11.902

51.491
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TABLE3.34

NATURALFREQUENCIESOFCIRCULARMEMBRANES

_Ii __/--i_xf = C K
m,n m,n R_ h m

where f = Natural Frequency, Hz.
min

C = Frequency Constant of m-n th Mode, Listed
m,n in Table Below

R = Membrane Radius, Inches

h = Membrane Thickness, Inches

a = Tension at Circumference, Ib/in.

K = Material Constant, See Table 3.39
m

C
m,n

CIRCULAR
MEMBRANE

h

NUMBER
OF

NODAL

CIRCLES,
m

NUMBER OF NODAL DIAMETERS, n

143.26

1 14.09 22.49 30.12 37.46 44.56 51.55

2 32.41 41.22 49.44 57.30 64.94 72.22

3 50.79 59.71 64.94 76.45 84.55 92.18

4 69.28 78.09 86.90 95.12 103.34 111.56

5 87.48 96.88 105.68 113.91 122.13 130.35

6 106.27 115.08 123.89 132.69 140.91 149.13

7 124.47 133.87 142.68 150.90 159.70 167.92

8 152.07 160.88 169.68 178.49 186.71

(Reference 3.53)
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TABLE 3.35

NATURAL FREQUENCY OF UNIFORM RING VIBRATING IN ITS OWN PLANE

f = Cn r
104x

n -_x K m

where fn = nth Natural Frequency, Hz.

C n = Frequency Constant of n th Mode,
Listed in Table Below

r = Radius of Gyration, I_,for Bending in its
Own Plane, Inches --

R = Ring Mean Radius (>> Thickness of Ring), Inches

Km = Material Constant, See Table 3.39
C n

CIRCULAR RING

Circuiar or 2_-----_

Rectangular
Cross Section

PURE
RADIAL
MODE

cL
8.62

MODE NUMBER, n

24.4 46.7 75.6

cL = Velocity of Longitudinal (Sound) Waves in Material. (Reference 3.1)

TABLE 3.36

NATURAL FREQUENCIES OF UNIFORM RING IN FLEXURAL (NORMAL TO ITS
OWN PLANE) AND TORSIONAL VIBRATIONS

111.0

VIBRATION CIRCULAR RING NATURAL FREQUENCY, fn, Hz.

fn =
Flexural

Torsional

,r. __ r CL I/n 2 (n2 - I)2'

2_r R2 _' n2+1+v

forn> 1

Rectangular or Circular
Cross Section

fn - I Cs,, R i'n-1)2+(1+')"
forn > 1

fl = 2_

Circular Cross Section

Rectangular Cross Section

Symbols:

cL

C s

V

R

Ix

(Reference 3.1)

= Ring Mean Radius (>> Thickness of Ring), Inches
4

= Moment of Inertia With Respect to Radial Line, in

= Velocity of Longitudinal (Sound) Waves in Material = _/-'p', in/sec (See Table 3.39)

= Velocity of Shear Waves in Material = G_/-'pp, in/sec

= Polsson's Ratio r = Radius of Gyration, Inches

J = Polar Moment of Inertia, in4

n = Mode Number, Integer
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TABLE 3.37

NATURAL FREQUENCIES OF AN ANISOTROPIC (ORTHOTROPIC) PLATE IN FLEXURE

(Reference 3.66)

SYSTEM NATURAL FREQUENCY, fm,n

Anisotropic Plates
All Edges Simply Supported

Case 1:

Case 2:

l [Dx (_-_) 4+ 2 H (_'_)2 ('_) 2

oy/ l ]ix l2
y - Hz

mass density of the plate per unit area

mass moment of inertia of the plate per unit
area about i axis; i=x, y.

Number of Half Waves along Side a

Number of Half Waves along S_de b

Same as Case 1 except an additional set of rib
stiffeners running parallel to x axis, e distance

apart.

1
f -
mtn 2_

where ph =

T° =

I

m =

n --

Dx, D and H are defined below for a few
Y typical special cases:

Case 1:

D = H=Eh_/12(1 -v 2)
x

D
Y

!

= Dx + (Ey l'x/d)

For symbols E' E' ' 'x' y, Ix , ly, see Case 5.

Case 2:

Dx = [Eh3/12(I-v2)] + [Exlly/e ]

H = Eh3/12(1 -v 2)
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TABLE 3.37 (CONTINUED)

Case 3,

_Z j_

_ase 4:

/. a ./

COse 5:

Uniform Plate of Anlsotroplc Materla[

E _ E
x y

a 7/

Case 3:

D x =

D =
Y

H =

k =
r

EdhV/1_ 2(d- e+eh3/T 3)

Elx/d = E e (T - 0.5 h)3/3d

(Gh3/6) + (k r b/2d)

torsional stiffness of one rib

See Table 3.24

Case 4:

Dx = Ed h3/12(1 - v 2) S

(0 T)D = El x =ET2h .19+0.156 +1.25

Y d2//_
H = S E h3/12(1 +v)d

S = d [1+ (_T/4d) 2 ]

Case 5:

Dx= Ex@]2

_y: E;h3j12
E "h 3 G h3

H = _ +
12 6

and

E" ---

x
[(1-_)]along x direction

E" =Y [_1
along y direction

where:

E = modulus of elasticity of base plate

E' E' = modulus of elasticity of rib stiffener, or

x' y modulus of elasticity of an anisotroplc

plate in x or y direction

I' I' = moment of inertia of a stiffener, taken

x' y with respect to the middle axis (x or y) of

the cross section of base plate

along either x or y direction

V

G

= Polsson's ratio of plate

= modulus of rigidity of plate without rib

stiffener.
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TABLE 3.38

NATURAL FREQUENCIES OF PLATE IN FLEXURE,WITH CLOSED CAVITY BEHIND

SYSTEM NATURAL FREQUENCY, fn' Hz.

Simply Supported or Clamped Rectangular Plate
with Closed Cavity Behind.

k

Symbols:

a, b = Length of Plate, in.

d = Cavity Depth ,in.

A = Area=axb, in2

V -- Volume=axbxd, in3

= Wave Length of Natural Frequency, in.

h = Thickness of Plate, in.

p = Mass Density of gas, Ib-sec2/in

c = Velocity of Soundof Gas in
Cavity, in./sec

f = f' xK Hz.
n n c

where f = n th Natural Frequency of the System, Hz
n "

f_ = n th Natural Frequency of Plate Without Closed
n Cavity.

.c.__ h
n 2 x 104 x Kin, Hz. See Table 3.31

a

K = Cavity Correction Factor
C

p

k = Cavity Stiffness
C

- A2pc2 Ib/in
V '

k = Plate Stiffness
P

= (2_f')2M, Ib/in
n

M = Total Mass of Plate, Ib_ec2/in

LIMITATION:

For the closed cavity to become effective on plate
natural frequency, cavity depth_ d must be less
than _/16 for the simply supported plate and
less that _/48 for the clamped plate



3-188 FundamentalsofVibration

TABLE3.39

POISSON'SRATIO,YOUNG'SMODULUS,MODULUSOFRIGIDITY,
SOUNDVELOCITY,ANDMATERIALCORRECTIONFACTORFORSOME

ENGINEERINGMATERIALS(References3.13.6,3.7,3.9,3.33,3.53,3.74and3.75)

Material
(atTemperature*

inBracket)

Poisson's
Ratio

V

Modulus of

Elasticity, E
(Young'sMod.)

x 10-6psi

Modulus of

Rigidity,
G

x lO-6psi

Longitudinal Sound

Velocity in Bars

c L =_/-_,

Hz

Material Correction
Factor

Km = _

Average Steel 0.30 30.0 12.0 16,820 1.000
Aluminum 0.33 10.3 3.8 0 985
Brass, Bronze
Cast Steel
Cast Steel (200)
Concrete

Copper
Copper (100-200)
Cork
Glass
Granite

0.33-0.37

0.28-0.31

0.07-0.10
0.33-0.37

_0
0.16-0.24

0.17-0.25
0.28-0.30
0.40-0.45

0.35

Iron, Cast

15.2
29.0-30.5

0.8-3.4
17.0

9.0-12.5
7.0

15.0-22.0
25.0-30.0

2.4
6.2

Iron, Wrought

5.0
11.5-12.5

0.07-0.15
6.5

3.5-4.0

6.0-11.0
11.0-12.5

6.8Lead

16r600
11,480

16,500-17,000
15r710

8_000-15,000
11,670

9,690-I0,080

I_640
16,400-19,700

19r680
12,500-15,000
16,000-17,600

4r000
16,200Magnesium

Marble

0.680
0.98-1.01

0.933
0.46-0.67

0.682

0.575-0.598
0.0974

0.97-1.17
1. 169

0.74-0.86
0.95-1.02

0.238
2.3 0.961

7.2 12,500 0.743
MonelMetal 0.33 25.5 9.5 14,700 0.872
Nickel 0.31 30.5 11.5 0.95516r000

7,000-10,000
4.0

Plywood 0.30-0.40
Si Iver 0.38

1.5-1.8
11.0

Si Iver (100)
8,800

_0.42

0.522
8,660 0.515

Tin, Rol led 0.33 8.0 3.0 9,000 0.535
Titanium 0.32 16.0-17.0 6.0-6.4 0.97-0.99161300-16t700

15,300-16,300Titanium (90-200)
Titanium (325-540) 13,100-14,600
Woods:

Along Fibers 0.23-0.45 1.2-2.0 11,000-16,000
Across Fibers 0.1 4,000-4,500

Zinc, Rolled 0.25 15.2 6.1 12,600

0.91 -0.97
0.78-0.87

0.65-0.95
O. 24-0.27

0.749

* Room Temperature is Implied Where No Entry Appears; Temperature in °C

Symbols: E = Young's Modulus for Material, Ib/in 2

p = Mass Density for Material, Ib-sec2/in 4

Es = Young's Modulus for Steel = 30 x 106 Ib/in 2

Ps = Mass Density for Steel = 735 x 10-6 Ib-sec2/in 4.
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4.2.3 ACOUSTICAL QUANTITIES

4.2.3.1 Sound Pressure

The sound pressure measured at a point is expressed as a

sound pressure level (SPL) in decibels through

SPL = 20 log10 (p/Pref) (4.1)

where

Pref= reference pressure, dyne/cm 2

p = measured effective pressure of the sound wave,

dyne/cm 2

The effective sound pressure p is the root-mean-square val-

ue of the instantaneous sound pressure, averaged over an in-

tegrating time long enough to make its value insensitive to

small changes in the length of the averaging time. Time

averaging of random signals is discussed in Chapter 3. The

reference value = 0.0002 dynes/cm 2 (microbars) is

customary and is Pre_ throughout this manual. However,

other reference values are sometimes used and the reference

value should always be stated. Typical values of sound

pressure level for various environments and for stated dis-

tances from single sources in a free field are given in Fig-

ure 4.5, from Reference 4.3. Chart 12.3 (Chapter 12)

provides a graphical conversion between sound pressure

and SPL.

4.2.3.2 Sound Intensity

The sound intensity is the acoustic power flow per unit

area. It is an intermediate quantity that may be obtained

from sound pressure measurements wherever the pressure

and particle velocity are in phase (i.e., for a plane wave)

and integrated over incremental areas surrounding a source

to obtain the sound power. For a plane wave, the time

averaged value of I = _ becomes

2
I=P__

Pac

Intensity is expressed as an intensity level through

IL--10 log10 (ir_f) (4.2)

where

IL = Intensity level, dB

I = Intensity_ watts/m 2

Ire f = Reference intensity, watts/m2

The reference value of I = 10 -12 watts/m 2 is standard;

Chart 12.2 provides a graphical conversion from intensity

to IL.

Decibels re 0.0002 dyne/cm 2

At a Given Distance Environmental
From Noise Source

1 atm _ 194

I
190

I
180

0.1 atm -_

170 Near Large Rocket Exhaust

I
160

0.01 arm ---_

150

140
I

50 HP Siren (100') I

130

I

Jet Takeoff (200') I
120

I
Riveting Machine 110 Casting Shakeout Area

Cut-Off Saw IPneumatic Peen Hammer

100 Electric Furnace Area

I

Textile Weaving Plant I

I

Subway Train (20') 90 Boiler Room

I Printing Press Plant

Pneumatic Drill (50') I

80 Tabulating Room

I Inside Sport Car (40 MPH)

Freight Train (100') I
Vacuum Cleaner (10') 70

Speech (I I

J Near Freeway (Auto Traffic)

60 Large Store

J Accounting OfficeLarge Transformer - 200' Private Business Office

50 Light Traffic I300')

I Average Residence

40 Min Levels - Residential Areas in

I Chicago at Night

Soft Whisper (5') J

30 Studio (Speech)

I
20 Studio for Sound Pictures

I
lO

ThresholdofHearing l IYouths - 1000 - 4000 Hz 0

FIGURE 4.5 Typical Sound Pressure Levels (from Reference 4.3)



4-6 Fundamentals of" Acoustics

4.2.3.3 Sound Power

The sound power, or total sound energy radiated by a source
per unit time, can be obtained from sound pressure level
measurements over an imaginary surface surrounding the
source as it radiates into a free field1 provided the mea-
surements are taken in the far field (where the acoustic
wave front is essentially plane). The sound power can also
be obtained from sound pressure measurements in the dfffuse
field of a source operating in a reverberant room. The
sound power level in decibels is obtained from

Then the sound pressure level at a point is related to the

sound power level of a directional source by:

SPL = PWL + DI - 10 log10 r + 10.6

wHh units the same as those given above. Other correc-
tion factors, as for nonstandard atmospheric conditions and

attenuation by the atmosphere, are given in Chapter 7.

laNL = 10 l°glO (Writ)
(4.3)

where

PWL = Sound power level, dB

W = Acoustic power, watts

Wre f = Reference power, 10-13 watts

The reference value of 10 "13 watts is used throughout this
manual, but a value of 10 -12 watts is sometimes found in

the literature; the value being used should always be stat-
ed. Figure 4.6 (from Reference 4.3) shows typical power
and power levels for acoustic sources. It can be seen_ for
example, that the Saturn rocket engine generates the same
sound power as about 40 million large chipping hammers.
Chart 12.1 (Chapter 12) provides a graphical conversion
between sound power ratios and corresponding decibels.

4.2.3.4 Directional Characteristics

For a simple source in free space (which radiates sound

omnldirectlonally, see Section 4.4)_ the sound power level
and the sound pressure level at a point in decibels, with
reference values for power and pressure as given above,
are related by:

SPL = PWL - 20 log10 r + 10.6

where r is the distance from source to measurement point in
feet. This relation accounts only for spherical spreading
and not for any atmospheric effects. A6 dB decrease in SPL
for every doubllng of distance results from the second term.
Most sources are directional; that is, lines of equal sound
pressure level in any plane are not concentric circles about
the source_ e.g._ Figure 4.7. Data for the sound fields
aboutdlrectional sources are often given in terms of direc-
tlvity factor, Qt or dlreetlvlty index, DI, variation with
angle. The directivity factor is the ratio of the intensity
(at a designated angular location) at a stated distance r to

the intensity that would occur at the same point for a sim-
ple source radiating (omnldlrectionally) at the same total
acoustic power. The directivity index is

DI = 10 log10 Q

Power Power Level

(Watts)
(dB re: 10-13 watts)

25 to 40
205

Million I

100,000 180

I
10,000 170

I
1,000 160

I
100 150

I
10 140

I
1 130

I
O. 1 120

I
0.01 llO

I
0.001 100

I
0.0001 90

I
0.00001 B0

I
0. 000001 70

I
0.0000001 60

I
0.000,000,01 50

I
0.000,000,001 40

FIGURE 4.6

Source

Saturn I Rocket

Ram Jet

Turbo-Jet Engine with Afterburner

Turbo-Jet Engine, 7000 Lb Thrust

4-Propeller Airliner

75 Piece Orchestra t Peak rms Levels in

Pipe Organ t 1/8-Second Intervals

Small Aircraft Engine

Large Chipping Hammer

Piano _ Peak rrns Levels in

Tuba _ 1/8 Second Intervals
Blaring Radio

Centrifugal Ventilating Fan (13,000 CFM)

4' Loom

Auto On Highway

Vaneaxlal Vcntilatlng Fan (1500 CFM)

Voice-Shouting (Average Long-Time rrns)

Voice- Conversational Level

(Average Long-Time rms)

Voice - Very Soft Whisper

Typical Acoustic Power and Power Level

Magnitudes (from Reference 4.3)
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60 _

u_ 5o

r_ 40

o

_ 30

i_ 20

10

149 /__152

,o,
__ _ Flow Boundary

, ilb 20 _0 4o 5o 6o 7b

SPL

x/De-Axial Distance

The choice of level of detail for analysis of a signal into

frequency bands must be based on the characteristics of the

source. The two extremes of source spectral characteristics

are white noise (equal energy per unit frequency bandwidth

over a specified total frequency band), Figure 4.8(a), and

pure tones (single-frequency sine waves), Figure 4.8 (b).

In interpreting acoustical data, it is necessary to bear in

mind that, depending on the source, the various degrees

of resolution can yield very different results for thesame

signal input. As an example, Figure 4.9 compares areal

spectrum (for a continuous random signal with a superposed

slnusoidal signal at 400 Hz) with the apparent spectra ob-

tained for various degrees of resolution.

FIGURE 4.7 Typical Contours of Equal Overall SPL in dB re.0002

Microbar for a Rocket with Distance Expressed in Terms

of Nozzle Exit Diameter (D e )

4.2.3.5 Spectral Characteristics

The analysis of a signal into its distribution across the fre-

quency spectrum can be performed in very fine or broad

frequency bands, according to the characteristics of the

sourceand the use to which the data will be put. Theover-

all level (for power or pressure) is a single figure which

provides no information on the spectral content. The first

level of information on spectral content is obtained from

analyzing the signal in octave bands. Octave bands have

constant percentage bandwidths with the upper frequency

limit of each band twice the value of its lower frequency

limit. The audible range of frequencies is covered in ten
octaves.

The next level ofdetall is based on one-third octave bands,

where one-third octave is the interval between two fre-

quencies with the ratio cube root of two. The current stan-

dard for the spectrum allocation into octave and third-

octave bands is the preferred series given in Reference4.4;

the table of center frequencies is given in Table 12.12,

page 12-12. A series of octave bands widely used in the

past ranged 75- 150 Hz, 150- 300 Hz, etc., and much

published data still exists in this form. A method for con-

vetting octave-band levels given in this older series to

levels in the preferred series is given in Appendix A of

Reference 4.5.

The most detailed spectral distribution information is the

spectrum level. Pressure spectrum level is the effective

sound pressure level of the sound energy contained in a

bandwidth of 1 Hz centered ata specified frequency; power

spectrum level is the power level in a band 1 Hz wide

centered at a specified frequency. Chart 12.4, page 12-

10, gives a graphic conversion from octave or third-octave

band levels to spectrum levels. Rarely is such detail as

from 1 Hz bandwidth analysis required. Between the two

extremes of octave band levels and spectrum levels are

numerous nonstandardized analysis bands, of two types:

(1) constant percentage bandwidths and (2) constant band-

widths of equal frequency increments. A 6 Hz bandwidth

filter usually gives more than adequate definition unless

the data extends to unusually low frequencies (< 50 Hz).

o_

Frequency

a) White Noise

o.

f
Frequency

Three Pure Tones

..J

E
2

Frequency

c) Random Noise with

Super posed Discrete

Components (Spikes)

FIGURE 4.8 Spectral Content of" Several Signals
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FIGURE 4.9 Comparison of the Outputs of Several Levels of

Spectral Analysis for the Same Input Signal

!From Reference 4.6)

4.3 THE ACOUSTIC WAVE EQUATION

The following section, by presenting the assumptions and

simplifications underlying the acoustlc wave equation_

provides a foundation for the subsequent sections on source
radiation and transmission.

A one-dimensional derivation of the wave equation for

acoustic waves in a gas is developed here to show thebasic

assumptions and approximations involved in conventional

linear acoustics theory. Some convenient properties of the

wave equation and useful physical concepts are also pre-
sented.

4.3.1 DERIVATION

Firsb viewing the propagation of an acoustic wave through

a gas on the molecular scale, imagine that at some instant

the molecules of a gas are distributed as shown in Figure

4.10(a). The lines, a b c d, form a conceptual "control

volume" containing a particular number of molecules. The

undisturbed gas has no mean velocity_ as the random mo-

lecular motion has no preferred direction. Introduce a

disturbance propagating into the control volume from the

left propagating at a velocity _ and traversing the box in

a time St• The gas is more dense ahead of the transitional

layer and, as the wave propagates, the box must become

smaller if it is to contain the same number of molecules,

the side cd moving to c'd' as the wave passes to the other
side of the box. Since no movement of molecules is al-

lowed across side c' d', this side must move with the mean

velocity u while the volume has decreased in the ratio

(_ - u)/_, and the density has increased inversely.

Viewing the motion on a larger scale, consider a one-

dimensional case of fluid flowing through a control vol-

ume, Figure 4.11, defined by two fixed planes of unit area

normal to the single coordinate direction x, located at po-

sitlons x a and x b. The fluid has density p and velocity u,

both functions of position x and time t. The mass flow

across the control volume must be conserved; that is:

Transitional

Layer •

• . "" II

d d:i•i* °. • .• ., I-:21.
• : ".d." • I"

• . k-._-_l' "
c . . b . c".ll. ". b." "" c.." c'. • lib

• " II '.-" • • .'.'.'-'1.
...... • " " "11.

(o) Quiescent gas (b) Pressure wave (c) Compression of
before propagating the control
disturbance from left volume by the

disturbance

FIGURE 4.10 Typical Instantaneous Position of Gas Molecules
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FIGURE 4.11 One-Dimensional Control Volume For Wave

Equation Derivation

(massinflux) - (mass efflux) + (int_.) =
net internal

,,,,s_urces change of mass

A small enough element has been taken so that the rates

of change with distance can be considered linear and the

statement of mass conservation becomes

pu  x/(u /
where-_ is the mean value of p in the element. Let 6x--_0

and take _ _' p:

pu- p + dx u + _x dx :-_- (pdx)

Expanding, dividing through by dx, and neglecting second
order terms leaves:

8p 8u 8p _
u _x + P _x + N-- 0

8p 8(pu) Continuity
-,_-+ - 0 ; (4.4)-Tx Equation

Momentum is also conserved across the fluid element; that

is, the net force or differential pressure acting in the +x

direction must equal the rate of change of momentum of

the intervening fluid• Therefore,
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p-(p +-_Sx) : pu (u +-_"xCqU8x -u)+a-_(_L-66x /

letting 8x'-_0, dividing by dx, and collecting terms gives

cq(pu) + a(pu 2) ap Momentum (4.5)
at _ = 8x ; Equation

The condensation _', or fractional change in density is
defined in terms of the instantaneousdensity p and the am-
bient mean density Pa:

_" : (p - pa)/Pa

Make the acoustical approximations:

(1) The fluctuations are of small amplitude, _<< 1.

(2) The mean velocity of the medium is zero (more speci-
fically, that

au au
u _x<< aT

Then introduction into the continuity and momentum equa-
tions of (a) p : Pa(1 + _ and (b)the acoustical approxima-
tions will give for the continuity equation

au

_a-t_+ _ = 0 (4.6)

and for the-momentum "equation

8u I 8_p_aU+u
8t ax Pa (1+_ 8x

Because of the smallness of'_, the blnominal theorem can
be applied to give

I _ I-_'
1+_'

Again neglecting second order terms and taking p_ pa t
the momentum equation becomes:

au 1 ap
aT + --pax = 0 (4.7)

Equations 4.6 and 4.7 are Jineardlfferentlal equations
in three variables (p, ut p); a third relation is needed for
solution.

Take the pressure as a function of onlyone of the two other
state variables (density and temperature), say p = p (p).
Since acoustic wave propagation is an isentropic process,
the specific relatlon is

poc py

8p_., dp
Thus _p dp " Evaluated at ambient conditions, this

gives the speed of sound in the medium:

dPt : c 2 (4.8)
Cal

Then the momentum equation becomes

8u c 2 8_ 0 (4.9)aT + ax :

By cross differentiating the llnearized continuity and mo-
mentum equations (4.6 and 4.9) and adding the two re-
sulting equations, one obtains the wave equation which
can be expressed in terms of acoustic pressure as

_ 1 : 0 ; Wave (4.10)
8x 2 c 2 8t2 Equation

The wave equation can also be expressed in terms of the
velocity perturbation, the compression, and the particle
displacement, as well as in terms of" the pressure.

4.3.2 SOLUTIONS

The solution for the wave equation is, in terms of a general
variable _:

_(t, x)= c_÷(t-x/c)+CL (t +x/c) (4.11)

The functions c_+ and c__ are quite arbitrary; that is_ any
functions of the variables (t - x/c) and (t + x/c)will satis-
Fy the wave equation as long as they do not violate the
assumptions on which it is based. The first termc_+ repre-
sents a wave (of arbitrary shape) propagating in the ¢x di-
rection at velocity c and thec_ term represents a wave
motion traveling in the -x direction.

The wave equation is linear, so solutions can be construc-

ted by superposition, and Fourier synthesis can be applied
to construct any desired wave shape from harmonic com-
ponents: sines and cosines or exponentials. For this reason,
and because of the occurrence of harmonic functions in

acoustics, the harmonic forms of wave equation solution
are of the most practical interest. As an example, take
the particle displacement d:

d:fl (t-x/c)+f2 (t+x/c)

In a harmonic wave, the frequency f (or inverse of the
period T) is related to the angular frequency _ by u = 2_f
and to the wavelength X by X = c/f. The propagation
parameters are conveniently taken as u(t-x/c) and
_(t + x/c). Then the solution in complex form is

d =A eju(t -x/c) + B_eJU(t +x/c) (4.12)

where A is the complex displacement amplitude of a plane
wave of frequency _ traveling in the +x direction at velo-
city c, and the Bis the complex amplitude of a similar
wave traveling in the -x direction, in complex form the
other important acoustic variables are:

P : -Pa c2-_ : j Pa c"(d-+ - cl_) (4.13)

P = - _ = J c d_+ - d_ (4.14)

8d (d + d ) (4.15)u:_:j_ + _
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whered+ is the first term in 4.12 andd is the second.
The instantaneous values for these acoustic variables are

given by the real parts of Equations 4.12 through 4.15,
obtained through applying the relationship

ejB= cosB+j sinB

For example, in the special case where A and B are real
constants A and B, the instantaneous values are

d = Acos (gt--_x)+Bcos (_t÷_x)
C

p = -PaC_ [Asin (_t-_c x)-Bsin (_t+--_x)]

g= -T sln(_t- x)-Bsln(_t+ x)

u = -_ ksin (at -_x)+Bsin (gt+-_x)]
C

Some useful interrelations among the acoustic
should be noted:

p=pa c2 _'

variables

P = Pa c u (4.16)

for waves running in the +x direction; and

p = -PaCU

for waves running in the -x direction. The relations be-
tween pressure and velocity are applicable to plane waves
only.

4.3.3 SOME PHYSICAL CONCEPTS

The energy flow crossing unit area normal to the propaga-
tion direction can be found by considering the work done

by the fluld. The work is done at a rate(pu)on a surface of
unit area normal to the propagation direction. The energy
of waves propagating ;n the +x direction crosses unit area
at a time-averaged rate given by

I : _ (4.17)

where I is the acoustic intensity, introduced in Section 4.2.
For a plane wave signifying a time averaged mean square
value by a --, this is equivalent to

,- - 0aC? (41S/
Pac

For waves propagating in the -x direction, a negative sign
occurs, showing that acoustic power is always propagated
with the wave_ whether the wave is compressive or expan-
sive. The total acoustic power of a source can be deter-
mined by integrating, over a closed surface about the
source, thevalues ofintensityobtalned from pressuremlcro-

phone measurements in the far field.

Fora wave propagating in one direction, in time t the en-
ergy passingunlt area will be It, occupying adlstance ct.
On the average, wlthineach unltvolume of the fluid med-
ium there is an amount of acoustic energy given by

2 -_
e = I/c= P_ = PaU (4.19)

Pa c2

and this quantity is called the energy density of the sound
wave. This concept is used, for example, to define a dif-
fuse sound field; a diffuse field exists when the energy
density is uniform in the entire region considered and when
all directions of energy flux (in all parts of the region) are
equally probable.

The product pa c appears repeatedly in the above relations;
it is called the characteristic impedance of the medium.

For a plane wave it is equal to the specific acoustic impe-
dance_ which is defined as the ratio of driving pressure p to
resu Iting particle velocity u, analogous to voltage and cur-
rent in an electrical circuit. For plane waves, the speci-
fic acoustic impedance is purely resistive, since the par-
ticle velocity vector is always along the propagation di-
rection For air at standard temperature and pressure the
value oi pac is 415 inks rayls (kg/m 2 sec). For other than
plane waves, the specific acoustic impedance includes a
reactive part (as the particle motion can be elliptic or cir-
cular) and becomes a property of the source as well as the
medium. This subject is expanded in the following sections
on sources and on analogies.

4.4 ELEMENTARY SOUND SOURCES

An acoustic source is a region of space, in contact with a
compressible fluid medium such as air, where new acoustic

energy is being generated. Any vibrating object will ra-
diate sound into the air, the amount being dependent on

the vibration amplitude of each part of the vibrating ob-
ject, the area of each part and the time pattern of the vi-

brations. The acoustic field of any vibrating object can
be synthesized from an array of simple sources (with the
proper amplitudes, relative time patterns and spatial dis-
tribution) to represent the vibrating object. Therefore, it
is useful to review first the acoustic field of a simple
source and methods of constructing more complex sources
from combinations of the simple source (References 4.7

through 4.10). This is followed by a discussion of the sound
radiated by cylindrical and piston sources.

4.4.1 THE SIMPLE SOURCE OR MONOPOLE

Consider a sphere that vibrates uniformly over its entire
surface_ producing particle motions aligned with its radial
direction, of equal phase and amplitude over the entire
spherical surface at any given time. This source can be

visualized as a round balloon with air being periodically
pumped in and out so that the surface contracts and ex-
pands uniformly. To be treated as a simple source (ormon-
opole) it must have a radius that is small compared to the
shortest wavelength of interest.



Elementary Sound Sources 4-11

With a three-dimenslonal control volume and a procedure
slmilar to that in Section 4.3, one can derive a wave equa-
tion in three dimensions:

1 829 = 0
v2, _ 7 (4.20)

whereV 2 is the Laplaclan operator and 9 is any physical

quantity which statlsfles the wave equation; e.g., the par-
ticle displacement d, particle velocltyu, acoustic pres-
sure p, compression _" and velocity potential 9" The
velocity potential is defined by

U. = - .-.4..
I ax,

i

(where i is a direction index)and is related to theacoustlc

pressure by

89
P = Pa 8-T"

The Laplacian of the pressure_72 p at a point is proportion-

al to the difference between the average pressure near the

point and the pressure just at the point. The wave equa-
tion states that, for a concentration of pressure at a point,
the pressure will tend to decrease. In spherical coordi-

nates (r, O, _) the Laplaclan operator is (explicitly):

=7 _r + r2sin 8 a8 in

The monopole represents the spherically symmetric case
(i .e., the acoustic parameters such as p(r,t) are indepen-
dent of the angular coordinates e, _) and the wave equa-
tion, expressed in terms of the compression _', reduces to:

a2(r_ _ 1 82(r_ = 0

a r2 c 2 at 2
(4.21)

Since the one-dlmensional wave equation had a solution of
the form

P'= fl (t - x/c) + f2 (t + x/c)

then solutions of the wave equation for spherical symmetry
will have the form

(r_ = fl (t - r/c) + f2 (t + r/c) (4.22)

The first term represents a spherical wave diverging from
the origin at velocity c; and the second, a wave converg-
ing on the origin. Converging waves have little physical
significance; and the solution becomes invalid very near
the origin, as the large amplitude buildup violates the
small amplitude assumption in the derivation of the acous-
tic wave equation. Only the first term is retained.

Considering diverging waves only, a harmonic solution of
the wave equation, in terms of the velocity potential 9,
for example, is

j (_t - _ r)S
9 = 4_---7 e (4.23)

where S isa constant representing themonopolestrength,
or amplitude of the volume source in the expanding and
contracting balloon representation of the monopole source.

4.4.1.1 The Field ofa Monopole

The field properties of a monopole radiating into free space
are next reviewed. The field properties are all functions
of radial distance only, and not of angle; that is1 the
radiation is nondirectional, and surfaces of equal phase

and amplitude are spheres centered on the source.

The radial component of the particle velocity is obtained
from the definition of the velocity potential and Equation
4.23

j(ut _2 r)

u s c (1+j r)
= - -- r_ • er Or 4 it

The pressure fluctuation is

89 s j (ut - -Ur)c
P= Pa-_" = 4Trr " jUPae

(4.24)

(4.25)

The specific acoustic impedance (ratio of the pressure fluc-
tuation to the particlevelocity component in the direction
of radiation) is

z -p J-_-_._r

-u- r = pac \1 + j ucr/ (4.26)

In the case of a plane wave, the specific acoustic impe-

dance was simply z = pac, a property of the medium. For
a spherical wave, it depends also on the source frequency
u and the distance r from the source; these two can be

combined into a radial distance in terms of wavelengths,
for any given medium.

The field can be examined in two parts; in order of in-
creasing distance from the source, they are

• The near field

• The far field

The hydrodynamic region is that part of the near field
nearest the source where only a small portion of the fluc-

tuations which exist are radiated away. Very near the

source, e.g., where u-- r << 1, the radial component ofc

particle velocity reduces to:

S eJUtU -..e_

r 4_ r2
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b)
For the acoustic pressure, for _- r << 1:

S ejW t
P "-"4_rr jWPa

and for the specific acoustic impedance:

z ---_j w par

In the hydrodynamic region, therefore, the acoustic pres-
sure decreases inversely with distance from the source, and
the particle velocity inversely with the square of the dis-

tance. The flow is just like that of a source in incompres-
sible flow, and the impedance is reduced to its purely re-
active part. Physically, this means that the shell of fluid

surrounding the source exhibits inertia as it expands or
contracts, but does not dissipate the kinetic energy associ-
ated with the morion. Analogous to the case of a purely

inductive electrical circuit, the energy is alternately
supplied and absorbed by the source.

W

To obtain the far field limit, let _r >> 1; then the acous-
Hc parameters approach the values:

W

S w j (wt - _ r)
Ur--'_4_ " Jc " e

S j (_t -_-r)
P'-"_4-'_-r " Jc°Pa e

z 'm_pa c

Both the particle velocity and the pressure fall off inverse-
ly with the radius; and they are in phase, so that the im-
pedance is purely resistive. The impedance is a function
of the medium only, and is the same as for plane waves.

In the far field, the spherical waves have diverged to such
a large radius of curvature that they are effectively plane
waves.

In the intermediate region of the near field, the quantity

--_-r) is neither very large nor very small, all the terms in
quations 4.24 through 4.26 must be retained, and the

impedance contains both reactive and resistive parts.
Therefore, the pressure and the radial particle velocity
are not in phaset and a pressure microphone cannot give a
measure of the intensity. Analogous toalternating current, a

knowledge of the power flow requires the phase angle be-
tween voltage (p) and current (u). Figure 4.12 shows the
behavior of a spherical wave withdistance from the source;
the abscissa {_--r_is equivalent to 2_ times the distance in

_C /

wavelengths. In practlce_ the far field begins where a
6 dB drop in sound pressure level occurs for each doubling
of distance from the source.

4.4.1.2 Source Power

The sound intensity I, or tlme-average rate of energy pro-
pagation per unit area, can be integrated over an imagin-
ary surface enclosing the source, to give the total acous-
tic power of the source. Taking a spherical surface in the

far field, so that the pressure and particle velocity are in
phase, the total acoustic power of a monopale is given by:

2

Ws = 4_r21 - PaW ISl2 (4.27)
4-_c

where I Jmeansabsolute magnitude, and where pa S can be
interpreted as the instantaneous mass flow rate to or from
the source. The sound power of a monopole, therefore, is

proportional to the density of the medium, inversely pro-
portional to the wave propagation speed and proportional
to the square of frequency.
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FIGURE 4.12 Behavior of a Spherical Wave with Distance from the

Source (from Reference 4.7)

4.4.1.3 Examples of Monopole Sources

A physical source need not be spherical to act as a mona-
pole source; if its dimensions are small compared to awave-
length, the waves spread out around the source and nearly
uniform spherical wave fronts result. For example, loud-
speakers radiate as simple sources when mounted in one
side of a closed box and operating at low frequencies. The
same is true of an exhaust plpe from a reciprocatlngenglne,
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low frequency noise from unstable burnlng in a rocket en-
gine, the human voice, and other devices that employ in-
termittent airflows (e.g., the pulse jet and some whistles
and sirens). Generally, monopole radiation can be expec-
ted whenever there is a fluctuating mass in a fluid flow and
the typical dimension is much smaller than a wavelength.
Given a physical source in steady operation in a free field
with most of its energy in the audible frequency range, a
judgement on whether or not to treat the source as a mono-

pole can be made by walking around it at a constant (far
field) radius; no perceptible changes in level or frequency
content should occur for a simple source.

4.4.2 SOURCES CONSTRUCTED FROM MONOPOLES

Combinations of monopoles can be used to represent higher
order sound sources. The properties of the next two higher
order of source (dipoles and quadrupoles) are next intro-
duced.

4.4.2.1 The Dipole Source

To produce monopole radiation requires a periodic volume

fluctuation in a small region of space, the source point.

The dipole source can be constructed from two monopoles
of equal magnitude but opposite sign, located a short dis-
tance b apart, as illustrated in the sketch below. There is

no net change of volume, but o change of momentum (as
the flow direction between the two monopoles alternates),
and so the dipole is associated with a fluctuating force
rather than a fluctuating volume. The lateral oscillation
of a small solid object, such as a sphere, exerts a fluctu-
ating force on the adjacent fluid and radiates a dipole
field. Very near the source, the fluid motion is the same
as that of a hydrodynamic source-sink pair.

Field point
(observer)

Provided the vector distance between the two monopoles is
small compared to a wavelength and compared to the radi-
al distance to the observer, they can be treated as a single
point source. Use of the point source concept requires that
the observation point be a sufficient distance from the
source that the field behavior is independent of the size of
the source. The sound waves from a large source vary with
absolute distance differently from waves produced by a
small source, but at a distance of several (3 to 4) times the

largest dimension of the radiating source, spherical spread-
ing is approached, and the point source concept can be
applied. In the mathematical derivation of the dipole,
this is implied by a limiting process in which the distance
b---0 as S_co, such that the product Sb (the dipole
strength) remains constant.

The following acoustic pressure and particle velocity com-
ponents (radial and tangential) occur at the field point
r, e when the dipole strength D = Sb:

_r)

P= 4"_r cos 6 1 - e

C

D 2j 2 j(.t-c
- cose eUr 4_ r 2

c

(4.29)

u e - °r)
j _ D j j (gt -c

c sin 8 - e
4_" r2

C

(4.30)

and the total sound power of the dipole source is

Pa _4

Wd: ID12  431/
12_ c3

The directionality of the dipole field is evident from the
dependence on e, which exists even in the far field.

For (-_ r)>>1:

w

2 pa c j (_Jt--_-r)

p-'-_-(c _---) D--cosee
4_ r (4.32)

u --. P Ue-.-o
r pac '

The pressure amplitude varies inversely with r, but has a
maximum along the dipole axisand drops tozero at 8= _'/2.
Figure 4.13 qualitatively compares thedirectivlty of a di-
pole with that of a monopole in terms of surfaces of equal
intensity. The nonspherlcal dlrectivity pattern of the di-
pole occurs because of the time delay between the signal
received from one source (monopole component of the di-
pole) and that from the other source.

Examples of dipole sources encountered in practice are a

rotating propeller, the aeolian tones produced by wind
blowing across cylinders (wlres), and the combination of a
turbulent flow and a solid boundary, all of which involve
a fluctuating force.

4.4.2.2 The Quadrupole Source

The next higher order point source is the quadrupole, con-
structed of two dipoles of opposite sign. It has two defin-
ing axes, one from the direction of the dipole strength
and one from the vector joining the two dipoles. The gen-
eral case is the oblique quadrupole, where the two axes
cross at some oblique angle; but it can always be resolved
into a set of longitudinal quaclrupoles (with axes parallel)
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and lateral quadrupoles (with axes perpendicular). The

quadrupole strength is

Q = abS

where a and b are the two typical dimensions of the quad-

rupole and S is the strength of the four simple sources of

which it is composed. The acoustic power from a lateral

quadrupale is

p 6

a IQI2 (4.33)
WQ - 601, c 5

and that for a longitudinal quadrupale is larger by a factor

of three. The most important example of quadrupole radi-

ation is the noise generated by free turbulent flows as

from a jet engine exhaust; jet noise characteristics are

satisfied by a set of convected lateral quadrupales.

(a) Monopole (10) Dipole

(d) Lateral Quadrupole (el Longitudinal Quadrupole

Figure 4.13 Direcfivlty Comi_aHlon of Point Sources, Qualitative

Three-Dimensional View Showing Surfaces of Equal

Intensity

The three basic paint sources, when compared on the basis

of sound power show

W S _ (j2/c

W D ~ _4/c3

WQ ~ u6/c 5

Therefore, in a flow containing more than one type of

sourcer the simple source may be dominant at low frequen-

cies, and the higher order sources dominant at higher fre-

quencies. A qualitative comparison of source directlvities

is given in Figure 4.13.

4.4.3 SOUND FIELD OF A MOVING SOURCE

When a sound source is moving at some translational ve-

locity with respect to the observer, several important

changes in its sound field occur, in addition to the well-

known shift in apparent frequency as a source approaches

or leaves an observer in its path. The motion of a source

increases the intensity in the direction of motion, and at

the same time decreases to a lesser degree the intensity in

the opposite direction. The net result is that a moving

source radiates more acoustic power than the same source

when stationary, with the power output strongly depen-

dent on the Mach number of the motion. Figure 4.14

shows, for example, the increase in power output and the

change in directional patterns for a moving lateral quad-

rupale.

5o 5c
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a) Effect of motion on

Power Output

r![M=0.9

'AI I
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Sta _lonary

-40 Q uadrupo,,le
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8 (in degrees)

b) Effect of motion on

Directivity

e = 0 ° = DirecHon

of Motion

Figure 4.14 Effect of Motion on the Power and Di rectional Patterns

of a Lateral Quadrupole (from Reference 4.8)

4.4.4 LINE, CYLINDER AND PISTON SOURCES

4.4.4.1 Line Source

A line source can be constructed from a linear array of n

simple sources (vibrating in phase) on a line length d

spaced a distance b apart.

Field point

(observer)
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FIGURE 4.15 Directlvity Patterns for a Linear Array of Four Simple

In-Phase Sources at Even Spacing (Adapted from Ref-
erence 4.9)

0o 0o
_o 30 °

600 _0 °

2700_01_0900 2700_ 900
0dB ,0 dB

]80° 180°

(a) --- x/4 d=x
-- x/2 (b)

oo o°

°

270 ° 270°_ 90 °
90 °

Od8 _0dB

180° 180°
d =3),/'2 d = 2),

(_) (d)

FIGURE 4.16 Directlvity Patterns for a Line Source Radiating Uniformly

Along Its Length (Adapted from Reference 4.9)

Figure 4.15 shows the dlrectlvlty patterns for an array of
four simple sources in a line at even spacing. The direc-
tivity patterns are lines of constant (far field) intensity in
a plane passing through the source. As the extent of the
radiator increases (in terms of wavelengths)rthesharper the
principal lobe (along B=0) becomes, and the larger
the number of side lobes. Alternately, for a radiator of
given length • this trend corresponds to increasing frequen-
cies (decreasing wavelength). The llne source result is
obtained as the number of simple sources n_co and the

spacing distance b_0; the dlrectivlty patterns for this
case are given in Figure 4.16. A llne source of infinite

extent corresponds to the limiting case (zero radius) of an
infinite cylindrical source• next discussed.

4.4.4.2 Cylinder Source

The general solution of the wave equation in cylindrical
coordinates for the case of uniform radiation from a cylin-
der is given, for example, in Reference 4.10. For large
distances from an infinite pulsating cylinder, r_co, the
expression for the acoustic pressure reduces to:

w

2 j (wt-c r)+ j_/4

p---A _/F e

The far field pressuret for a cylinder source• decreases as

1,_with distance from the source• corresponding to a 3
decibel decrease in sound pressure level for doubling of
distance. At small distances from the cylinder, r_0:

p--_-j(-_-) _n (r) ejut

The value of the constant A is determined from the fact

that the velocity of the air normal to the surface must equal
the surface velocity. For a cylinder of radius small com-

pared to a wavelength, the pressure and particle velocity
at large distances (in wavelengths) from the cylinder are

j (,.,t--_r)+ j (,/4)u
P-- Paa e (4.34)

Ur..-_'rra U° _/r2__r c

j(ut _{a r)+ j (./4)
c

e

(4.35)

where U is the cylinder surface velocity amplitude and
a is the°cylinder radius. Again the product of the real

parts of the pressure and the particle velocity gives the
energy flow per unit area; and the radiated power per unit
length of cylinder is:

•IT2
2 2

W 1/2 Uo- (4.36)= a pa(O
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4.4.4.3 Piston Source

The field of many radiating sources (such as vibrating
platesand high frequency radiation from an open pipe) can
be predicted from the model using an oscillating rigid cir-
cular piston. The piston's rigidity means that all parts of
its surface vibrate in phase and that its motion is independ-
ent of the acoustic loading on its surface.

Unbaffled Piston

For the case of an unbaffled rigid circular piston radiating
into free space, the field is given (to a first approximation)
by a dipole source, Figure4.17, since each axial move-
ment compresses the air on one end and simultaneously
rarefies it on the other. The dipole approximation is most

valid for low frequency radiation (-_a < 1).

0 ° 0 °

60° _0 °

2700 . 900 270° _r_'_l/__ 90°

 OdB
180° 180°

Caa= 1 .--_a = 3
C C

0o 0o

60 ° 60°

270°_ 90 ° 270 ° 90 °

180o

•_-_a = 4 .._wa = 5
c c

FIGURE 4.t7 Directlvlty Patterns for an Unbaffled Rigid Circular

Piston of Radius a (Adapted from Reference 4.9)

Piston in an Infinite Baffle

When the rigid circular piston is placed in a rigid infinite
wall (baffle), Figure 4.18, the piston radiates only into
half-space, and the acoustic pressure at a field point
(obtained from the sum of contributions from all the ele-
mental surface areas of the piston) is

LI2J1('_"asin8)-1_"sin e
1 j__. Uoa2 ..... eJ("t-_ r)P= _- r Pa " _a -

(4.37)

where

Uo = piston velocity amplitude

J1( )= Bessel function of first kind.

iiI

Plane Wall

FIGURE 4.18 Rigid Circular Piston in an Infinite Baffle

The resulting dlrectivlty patterns, Figure 4.19, approxi-
mate that of a monopole at low frequencies, becoming in-
creasingly directional and adding side lobes as thefre-
quency increases. These patterns are very similar to those
of a dlrect-radiator loudspeaker or the low frequency radi-
ation from a plate vibrating in its first mode. As for all
the foregoing directivity patterns, the result is only appli-
cable to the far field; i.e., for a field point at a distance
r large compared to the typical source dimension a.

0° 0o
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,<..
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90°1 _ 190 ° 9001 I'_O 90 °

(e) (f)
--_a = 5 --%_a= 10

c c

FIGURE 4.19 Directlvity Patterns for a Rigid Circular Piston in an

infinite Baffle (Adapted from Reference 4.9)

piston in the End of a Tube

A rigid piston in the end of a long circular tube, Figure
4.20, can radiate in all directions, and the analysis for
the field includes the effect of diffraction around the edge
of the tube. The directivity patterns are given in Figure
4.21, again approximating a monopole directivity at low
frequencies, but gradually changing to a more complex
pattern with a major and a minor lobe as the frequency
increases.
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FIGURt: 4.20 Rigid Circular Piston in the End of a
Circular Tube
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FIGURE 4.21 Directlvlty Patterns for a Rigid Piston in the End of a

Long Tube (Adapted from Reference 4.9)

An important general conclusion can be drawn from all the
foregoing directionality patterns. In each case, at suf-
ficiently low frequencies, thesource radiates equally in all
directions, whereas at high frequencies, the radiation is
substantiallyforward. The changeover point occurs rough-
ly when the wavelength of sound is less than twice the
maxlmumdlmension of the radiator. This conclusion applies
generally to all types of stationary acoustic sourcedistrl-
butions. Thus, for sufficiently high frequencies (long
wavelength) the sound radiation is highly dlrectional,and
several approximate methods of analysis become valid, as
discussed in the next section.

4.5 EFFECTS OF BOUNDARIES

The foregoing properties of sources and their fields were
for sources operating in a free field; that is, in an infinite
medium free of surfaces. A detailed treatment of trans-

mission, reflection and absorption of archltectural ele-

ments is given in Chapter 9, supplemented by design data
on transmission loss data for walls and absorption of mate-

rials in Chapter 12. Chapter 8 includes design charts for
diffraction of acoustic waves by rectangular obstacles,

and Chapter 7 covers the shielding of one obstacle by an-
other against blast waves. The purpose of this section is

to introduce the physical concepts involved when sound
waves encounter an obstacle or a surface, as well as some

practical results in familiar cases.

When a wave encounters an obstacle, some of the wave is
deflected, and the resulting pattern depends on the rel-
ative size of the obstacle and the wavelength. The dif-
ference between the actual wave and the undisturbed

(free field) wave is termed the scattered wave; it spreads
out from the obstacle, interfering with the original (free

field) wave pattern. For obstacles which are large in re-
lation to the wavelength of the incident plane wave, half
of the scattered wave (the reflected wave)spreads out
uniformly from the obstacle while the other half (the in-
terfering wave) cancels the plane wave behind the obsta-
cle to form a sharply defined shadow zone. This case
warrants the use of geometrical optics or ray acoustics
and applies to large surfaces or walls. For anobstacle
small in terms of wavelengths, the scattered wave propa-
gates in all directions and there is no sharp shadow. The
following section treats the cases where the wavelength is
longer than or of the same order as the obstacle, which
occurs frequently for sound waves.

4.5.1 EFFECTS OF OBSTACLES

Cylindrical and spherical obstacles will be used to illus-
trate scattering effects: the angular distribution of the

scattered wave on the pressure variation over the obstacle
and hence the force on the obstacle.

4.5.1 .I Scattering of Plane Waves by a Cylinder

To find the scattering by a cylinder of radius a, consider
aplanewave traveling along a path normal to the cylinder
axis. It will be convenient to work in cylindrical coor-
dinates (r, ¢p), following Morse, (Reference 4.10) and to
use subscripts i for the incident wave and r for the scat-

tered (or reflected) wave. For an oncoming plane wave of

intensity I° propagating along the + x axis, the acoustic

pressure is

o--- r cos _)
c (4.38)

Pi = Poe = Po e

where the pressure amplitude for plane waves is related to
the intensity by

2
Po = 2 Pa c I°
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Expressing the plane wave in cylindrical coordinates re-

quires a series of Bessel functions, representing a series of
cylindrical waves:

GO

Pi=Po[Jo(_'r) +2 m=l_ (-j)mcos(me)d m(ur)] ej_t

(4.39)

The corresponding radial particle velocity is

po{ ° [m:::,Jm+'

(4.4o)

Now inserting the cylinder into this field of plane waves
with its axis at r = 0, the field is distorted by the addition
of a scattered (outgoing) wave to suit the boundary condi-
tion that the radial particle velocity be zero at the cylin-
der surface, r = a. The expressions for the scattered wave
pressure and radial particle velocity gre also series of
Bessel functions and contain a series of coefficients A to

m

be determined by setting the radial particle velocities u.
i

and u r equal at r = a. These coefficients include a phase

angle 7m that entirely determines the behavior of the scat-

tered wave, defined as

2m

Ym - (m :.2

For the far field, at a distance r, large compared to the

cylinder radius and the wavelength of the plane wave

(° )--_ a > > 1 , the pressure and radial velocity of the

scattered wave simplify to:

(.4 pa c Io a )1/2 j (ut-_r)Pr"-* - _r " _r (¢_) e
(4.41)

'r

u _

r pa c
(4.42)

and the scattered intensity at a point (r,q_) is

21 a

,= o i(,)1 (4.43)r _ r _r

where

*r(e) 1 _._ em sin (_m) ejYm cos (mop)

Uc_ m=0

I_r[ 2

(:0

- maul m_n=0 emensin _,mSin yn- cos (l,m_ yn)
C

x cos(me)cos(ne)

and

%= 1, em =2 (m >0).

The intensity pattern is shown qualitatively in polar plots,
(Figure4.22), for several values of wavelength ;kand

cylinder radius a. For long wavelengths, the scattering is
small and is almost uniform in the backward directions.

For higher frequencies, diffraction peaks appear and move
forward. The total scattered intensity rises rapidly with
decreasing wavelength up to 2wa,/X _ and then levels off.

(a) _

v i

CO 1 2 3 4 5

2_ a/X

(a) Variation of Directionality of the Scattered

Wave with Wavelength X and Cylinder

Radius a; and

(b) Variation of Total Scattered Intensity with

Wavelength X and Cylinder Radius a

0.8

0.6

a

u- _ 0.4

0.2

0i

FIGURE 4.22

2_ a/X

(c) Amplitude of the Side Force F on the Cylinder,

for Scattering of a Plane Wave of Pressure

Amplitude Po and Wavelength

Scattering of a Plane Wave by a Cylinder

(from Reference 4.10)
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The ratio of the total scattered power to the power of the

incident plane wave approaches the following limiting
values at very long and at very short wavelengths respec-
tlvely:

f
W ) 65a4 7;,3 for;k >>2_a
W.

. (4a for X < < 2_a

Thus, the limiting value for total scattered power at very
short wavelengths is the power contained in a beam of
incident plane waves twice as wide as the cylinder diam-

eter. A curve showing numerical values of the power
ratio is given in Chapter 8 for all wavelengths.

The acoustic pressure distribution over the cylinder surface
gives a side force on the cyllnder_ obtained from inte-
grating the sum of the plane wave and the scattered wave
around the cylinder. For wavelengths large with respect
to the cylinder (X >>a), the net force per unit cylinder
length is

.niT

_t + J1'1 - J
F = 4aPo e (4.44)

where

C1 = 1_/Tr 2(4
m a

c

The portion of the exponent (+ 1,1 - _/2) represents the

phase angle by which the force lags the pressure of the un-
disturbed plane wave at r = O.

At low frequencies, g < < (c/a), the force approaches the
value

• / 4_"2 a2 _ -

F _-jg _km/ Po ej_t (4 •45)

and for high frequencies, X < < 2_a,

j(gt-_a) -.j_/4
F "-_ ,/4_" e

Po (4.46)

The side force per unit cylinder length is shown in Figure
4.22 as a function of2_a/_ . For low frequencies, the
force is proportional to frequency, peaks at a wavelength
equal to one cylinder circumference, and then decreases

with increasing frequency. For very long waves (at the
low frequency extreme) the distortion of the plane wave
due to the presence of the cylinder contributes a factor of
two to the net force on the cylinder.

4.5.1.2 Scattering of Plane Waves by a Sphere

The procedure for a sphere is very similar to that for a
cylinder. Following Morse, (Reference 4.10), conversion

of the incident plane wave to polar coordinates, for a
rlght-running wave on the polar axis, gives

j(gt _rcos

Pi = Po e

CO

Po _ (2m+l)(-J)m Pm(c°s)_m(cr)e J_t
m=O

(4.47)

where P is the Legendre function of order m, and m ism

the spherical Bessel function. The acoustic pressure of the
scattered wave (for a sphere of radius a centered at the
origin) is

CO

Pr = - Po Z (2m+l)(-J)m+l ejSrn sin 8mPm(COS e)
m=O

×[ m(cr)-Jnm(cr)] eJ_t (4.48)

where n is the Neumann function, and the phase angles
m

(-:)8 are functions of m and of wavelength through a
m

The intensity of the scattered wave at a far field paint
r>>ais

Is = ('_-) I° (2m + 1)(2n + 1)x
=0

sin 8m sin 8 n cos (8m - 8n) Pm (cos 8) Pn (cos 8)

which for low frequencies (_a < < 1)
value

/

approaches the

I --- -T _ Io(1- 3 cose)2
S

r
(4.49)

I,g

and for h_gh frequencies (_a > > 1) approaches

2[ 21 + cot 2 (e/2)J1
Is -"- 4 r2
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Figure4.23shows the angular distribution of scattered in-

tensity for a plane wave encountering a sphere, and the
forward directionality increases with frequency similar to
the case of a cylinder. The net pressure amplitude at the
point of the sphere nearest the oncoming wave is also
given in Figure 4.23.

2

x: 2_a I

(a) Variation of the Directionality of theScatteredWave
with WavelengthXand SphereRadiusa

pa/p ° 1

f

o ' _ .....4 6 d
2.na,/X

(b) Amplitude of the Pressureat the Leading
Pointof the Sphere,0 =

FIGURE4.23 Scatteringof a PlaneWavebya Sphere
(FromReference4.10)

4.5.1 .3 Practical Consequences

In the audible frequency range 20 - 20,000 Hz, the pri-
mary effects of scattering by solid objects arise in acous-
tical measurements and in hearing. For sound waves in air
the following approximate frequency-wavelength relation
hal ds:

f

(feet) (Hz)

100 11
10 110

1 1,100
0.1 11,000

Wavelengths in the audible range, then, range roughly
from 10 feet to 0.1 foot. Given a spherical microphone,
the measured amplitude will be larger than the actual am-
plitude of the plane wave being measured for wavelengths
shorter then its circumference approaching a 100 percent
error at high frequencies, (Figure 4.23), and significant

microphone corrections will be required for frequencies
much above 10 kHz, depending on microphone size. The
presence of an obstacle in the sound field behind the mi-

crophone (that is, on an extension of the line connecting
source and microphone) also requires corrections tothe
measured sound pressure levels, (Table 4.2). In the I kHz

region, iust where loudness curves indicate human hearing
is the most sensitive, a significant distortion is caused by
an obstacle the size of the human head, which probably
accounts for our sound dlrection-sensing ability. At the
lowest end of the frequency scale (10< f < 100 Hz)sol-
id obstacles the size of buildings (10<X< 100 feet)can
have significant scattering effects. Scattering by atmo-
spheric turbulence also corresponds to the low end of the
frequency scale; this is discussed further in Chapter 7.

TABLE 4.2

THE EFFECT OF AN OBSTACLE ON SOUND PRESSURELEVELS MEASURED BY A MICROPHONE

LOCATED ONA LINE BETWEEN THE SOUND SOURCE AND OBSTACLE (FROM REFERENCE 4.11)

Obstacle

Sphere

Cylinder

r/a

1

4

10

1

4

50

200

Size of Obstacle in Wavelengths, a/_

AdB < 0.5

< 0.038

< 0.093

< 0.038

< O. 025

< 0.058

AdB < 1.0

< 0.064

< 0.145

< 0.047

< 0.038

m-

6.0

1.3

0.5

~ 6.0

~ 4.0

~ 1.0

0.5

Max A dB

a/X >

a/X >

a,/X >

a/X >

, a/X>

1.0

0.25

0.25

.4

.12

a = radius of obstacle; r = distance from center of obstacle to observation point;

Adb = change in sound level due to obstacle; X = wavelength of incident plane wave field.
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4.5.2 REFLECTION OF SOUND AT AN INTERFACE

For obstacles that are large compared with the wavelength
of the incident sound, the obstacle may be approximated
by a plane surface and the interaction treated in terms of

the reflection, absorption and transmission properties of
the obstacle. This topic is primarily of interest in archi-

tectural acoustics and is covered in Chapter 9, including
oblique incidence (incident waves striking the surface at
angles other than 90 degrees), diffuse incidence (incident

waves arriving from all angles) and effects of absorption
at the surface. An introduction to reflection at a surface
is given below for the simplerone-dimenslonal case of
normal incidence, using sound propagation in tubes as an
example. Neglecting the viscosity of the medium, the

model excludes the edge effect of the tube walls on prop-
agation of the wave, and the results represent the one-
dimensional propagation of a plane wave in an infinite

medium. To obtain plane wave fronts in a tube requires
a small enough tube diameter that the ratio of the sound
wavelength to the tube radius, X/a > 3.

Consider a rigid cylindrical tube, closed by a rigid, per-
fectly reflecting wall at one end, and a flat piston oscil-
lating slnusoidally to generate the sound wave at the other

end (Figure 4.24). The piston oscillates with an angular
frequency 61, and peak velocity amplitude UoOcCurringat

x = 0. The piston velocity is the real part of

u = Uo eJ61t

Since reflections are to be included, both rlght-running
and left-running waves must be considered; a convenient
form for the particle velocity is

j<=t-+x) j<61t++x)
u (x,t) = u+e +u e (4.51)

and the corresponding acoustic pressure is

j(61t -_X)c j(61t ++ x)
p (x,t) = p+e +p_e (4.52)

with p+, p_, u+ and u_ complex quantities to be evalu-

ated from the boundary conditions. The boundary condi-
tions to be met are (a) zero particle velocity at the end
(for a non-absorbing termination) and (b) at the piston
face, a particle velocity equal to that of the piston.

FIGURE 4.24 Oscillating Piston in the End of a Tube

At x = 0,,

U+ + U = U
0

Atx=L
.[O .61

- j--_- L j-_-L
u+e +u_e =0

Using the relation between sine and exponential functions,

then - j ----_L
U e c

o
u =

- 6)

-2j sin (c L)
.61

u el_ "L
o

U+ =

2 j sin (+L)

and the solution for the particle velocity is

61 61

sin (cL-cx) .
u(x,t) = u eJut (4.53)

L)o sin ('_-

For a given tube length L and wave frequency _, the
particle velocity varies from zero at x = L to a maximum
at the quarter-wavelength point (L - x) = X/4. The di-

rect wave and the reflected wave alternately cancel and
reinforce each other, to produce a standing wave. The

wave pattern produced by the sum does notpropagate
along the tube, but exhibits nodes (planes of zero velocity)
and antlnodes (planes of maximum particle velocity) that
are stationary in space, (Figure4.25). The nodes are

I

2

t=4- _

x=O
x=L

FIGURE 4.25
Standing Waves (_ _) Generated by

Incident (_) and Reflected C----)

Waves in a Tube with Rigid Termination
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n_
located at x =-_-- - L, and the antinodes a quarter wave-

length away. The root-mean-square particle velocity u
evidently can become very large at the antinodes (for
certain combinations of frequency and tube length) and is
only prevented from becoming infinite (which would vio-

late the acoustic approximation on which the wave equa-
tion derivation was based) by the presence of some dissipa-
tion in the tube. This is termed the resonance condition

and occurs at (_. L) = _/2; the first resonant frequency

corresponds to a wavelength four times the pipe length.

The acoustic pressure (complex rms time average) is

bJ _O

cos (-_ L -_'x)
P = -JPa cu (4.54)

o sin (-_-_cL)

which reaches a maximum where the particle velocity is
zero, and is zero where the particle velocity is maximum.

The specific acoustic impedance is p/u:

z = -j Pa c cot (---_L --- x ) (4.55)
C C

At all frequencies the impedance either leads or follows
the pressure by 90 degrees, depending on whether (- z,,_)
is negative or positive.

The input impedance of the tube is obtained from the spe-
cific acoustic impedance at x = 0 and is a constant. When

the value of_ (L - x) is small (that is, for short tubes orc

low frequencies) the impedance may be approximated by a
constant. Consider the first two terms of the cotangent
series:

cot[--Uc(L-x_ 1 1 U(L_x )
_u (k - x) -'_" c
C

For small values of _ (L - x) the second term may be neg-
C

lected. For example, replacing the value of cot[_ (L-x)]
.J

by the first term of the series within an accuracy of 3 per-
cent requires that the tube length be less than 1/20wave-
length. When this occurs, the tube can be treated as a

single lumped element over which the acoustic parameters
effectively do not vary with position. A short length of
tube can be represented as a capacitor, where the value
of the capacitance C is given by the relation

S

1 1

J_ (L - x) jgC s
Pac

Another form is based on the acoustic impedance ZA of the

element, which differs from the specific acoustic imped-
ance z byanarea factor, thus relating to a tube of specific
dimensions.

1 1 1
ZA ="-_- z - =

j_ (V/Pa c2) J_CA

This is an example of an acoustical element which is ame-

nable to analog methods involving lumped parameter cir-
cuits.

4.6 ANALOG METHODS

4.6.1 BASISOFANALOGIES

When the differential equation for the dynamics of one
system is of the same form as that for another, solutions
are applicable to both systems through the use of analog
relationships between system elements. Because of the
similarities among mechanical, electrical and acoustical
systems, electrical networks can be used to represent both
acoustical and mechanical systems. Two major advantages
result: (1) The dynamics of complete systems containing
all three elements can be analyzed, and (2) The expedi-
tious techniques of electrical circuit theory can be applied
in estimating frequency response characteristics.

In some frequency ranges, acoustical elements must be
treated as distributed elements, with their values a func-

tion of two independent variables (corresponding to partial
differential equations), analogous to electrical transmis-
sion lines or large-amplitude mechanical vibrations. An-
alog methods in acoustics are most advantageous; how-
ever, in the frequency ranges where acoustical elements
can be treated as functions of a single variable (corre-
sponding to ordinary differential equations), analogous to

lumped parameter electrical circuits. The input impe-
dance of a tube, for example, (Section 4.5), is effec-
tively a constant at low frequencies, allowing the tube to
be treated as a capacitance element. It is the intent of

this section to introduce the basic concepts involved in
lumpedparameteranalog treatment of acoustical elements,
and to provide a limited reference table of circuit ele-

ments and equations.

Mathematically, the elements in on electrical network
(e.g., resistance, inductance, capacitance) are the co-

efficients in the set of differential equations describing
the network. Identification of the analogous elements in

another (linear) physical system consists of setting up the
differential equations for that system; the coefficients
then bear a one-to-one correspondence. The number of
differential equations required to describe the dynamics of
a system corresponds to the number of degrees of freedom
of the system. In the analogous electrical circuit, the
number of degrees of freedom corresponds to the number of

nodes (as the set of equations can be derived by continuity
of current flow into each node), or to the number of loops
(as the set of equations can be derived by summing voltage
drops around each loop).
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4.6.2 THE IMPEDANCE AND MOBILITY ANALOGIES

The two basic analog systems are the impedance analogy
(in which a mechanical force corresponds to an electrical

voltage and velocity to current) and the mobility analogy
( in which velocity corresponds to voltage and force to
current). Briefly, the primary property (impedance or
inverse mobility) connected with an element is the ratio of

the potential drop across the element to the current through
the element. Thus the impedance Z and mobility _ are
defined by:

Impedance, Z -

e vo Itag.______eElectrical: .-:- ,
current

f force
Mechanical: .-- ,

x _ty

Acoustical: P pressure

velocity

Mobility, ..,¢/ - _ Mechanical: x--

( f ' force

The relations among circuit elements in the electrical,
mechanical and acoustical systems are:

Electrical

Vo Itage

Current

I ndu ctance

Capacitance

Resistance

Mechani col Acousti col

Z

Force Velocity Pressure

Velocity Force Volume

velocity

Mass Compliance Acoustical
reactance

Compliance 1/Mass Acoustical
compliance

Mechanical 1/Mechanical Acoustical
resistance resistance resistance

The mobility analog is most practical in application to
mechanical systems, or to systems with electromechanlcol

or electroacoustic coupling involved; the impedance anal-
ogy is widely practical in acoustical applications and will
be used exclusively here to represent acoustical elements.
An extensive reference table of elements is given in Ref-

erence 4.12, covering all three physical systems (electri-
cal, mechanical and acoustical) and both analog methods

• (mobility and impedance), and the reader is also referred

to References 4.9 and 4.13. Table 4.3 (from Olsen, Ref-
erence 4.13) summarizes the useful analogous quantities
(according to the impedance analogy) together with their
symbols, basic dimensions, and units.

The simplest example is the slngle-degree-of-freedom sys-
tem involving all three types of circuit elements. In the
mechanical system, this is the simple mass-spring-damper

system, Figure 4.26. In the impedance analogy, this

corresponds to the simple R-L-C electrical circuit and to
the acoustical Helmholtz resonator. In the mechanical

system, the mass provides an inertial force, the spring
provides a restoring force proportional to the displace-
ment, the dashpot provides a force proportional to veloc-
ity and against the direction of motion, and the system
receives a slnusoidal force input analogous to sinusoidal
voltage source in the electrical circuit.

The Helmholtz resonator consists of a chamber of air con-

nected to the atmosphere by a narrow neck. The mass of
air in the neck provides the inertia, the enclosed air in
the chamber provides the stiffness (spring); and the fric-
tional drag in the neck, the resistance.

////,

Spring

Constant, k

7Z_Z

t Force Foe'J _t

Mass, m

j Frictlonal Resistance, R
m

Mech. Elect.

m _ L e

R _ R
m e

l,/k _ C e

FoeJgt ~ EoeJWt

Vibrating Mechanical System,

Single Degree of Freedom

Re L e

EoeJ_t C e

b) Analogous Electrical Circuit

rn a , Ra

c) HelmhoJtz Resonator

Acoust. Elect.

m a _ k e

R _ R
a e

C ~ C
a e

FIGURE 4.26 Example of Analogous One-Degree-of-Freedom System:

Mechanical, Electrical and Acoustical

4.6.3 IMPEDANCE VALUES FOR ACOUSTICAL
ELEMENTS

The concepts of specific acoustic impedance of sound
sources and characteristic impedance of the medium are

familiar from Sections 4.3 and 4.4. The acoustic impe-
dance differs from the specific acoustic impedance only by
an area factor, for that area involved in the volume flow.

z -p ZA = P-_ ' -13"

where p is the acoustic pressure, u the particle velocity,
andU the volume velocity for the flow area of the element

in question. The mechanical impedance of an acoustical
element represents the air load upon its moving surface,
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Electrical

Quantlty Unit

Electromo- Volts x 10 8

tlve Force

Charge or Coulombs x 10 -I

Quantity

Current Amperes x 10 -I

Electrical Ohms x 10 9

Imped-

ance

Electrical Ohms x 109

Resl st-

ance

Electrical Ohms x 109

Reactance

Inductance Henries x 10 9

Electrical Farads x 10 -9

Capacl-
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Power Ergs per Second

Sym-

bol

Z
e

R
e

X
e

C
e

P
e

Dimensions Quantity

M1/2L3/2 Force Dynes,

T -2 Pounds

M 1/2L1/2 Linear Dis- Centimeters,

placement inches

M1/2L1/2 Linear cm/sec

T-1 Velocity in ./sec

LT -1 Mechanical Mechanical

Impedance Ohms

LT -1 Mechanical Mechanlcaf

Resistance Ohms

LT -1 Mechanical Mechanical

Reactance Ohms

L Mass Grams,

Slugs

L -1 T2 Compliance Cm/dyne

l_/Ib

M L 2 T -3 Power Ergs/sec

In-lb/sec

Mechanlca_ Rectillneal

Unit Sym-
bol
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m
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X
m

c m

Pm
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M LT -2

L

LT-1

MT-I

MT-1

MT -I

M

M-I 1-2

ML2T -3

Mechanical Rotational

Quantity Unit

Torque Dyne - cm,

in .- Ib

Angular Rodlans

Displace-

ment

Angu lar Radl arts per

Velocity Second

Rotational Rotational

Imlaed- Ohms

once

Rotational Rotational

Resist- Ohms

once

Rotational Rotational

Reactance Ohms

Moment of Grams - cm 2

Inertia Ib-sec 2- in.

Rotational Radlans/Dyne-cm

CompJi- i Radlans/in. - Ih
once

Power Ergs/sec

in.-Ib/sec

Sym -

hal

dpor 0

Z r

X
r

Cr

Acoustical

Dimension Quantity Unit

ML2T -2 Pressure Dynes per

Square
Centimeter

1 Volume Dis- Cubic Cen-

placement timeters

T -1 Volume

Current

M L2T -1 Acousti col

Impedance

ML2T -1 Acoustical

Resistance

ML2T -I Acoustical

Reactance

ML 2 Inertance

M -1 L-2T 2 Acousti col

Capacl -

tance

ML2T -3 Power

Cubic Cen-

tlmeter/sec

Acoustical

Ohms

Acoustical

Ohms

Acoustical

Ohms

Grams per

(Centlmeter) 4

(Centime-

ter) 5 per

Dyne

Ergs per

Second

Sym-

bol

P

X

_orU

Z
a

R
a

X
a

M

C
a

P
a

Dimension

ML-1T-2

L3

L3T-1

ML-4T-1

ML-4T-I

ML-4T-I

ML -4

M-1L4T 2

M L 2 T-3

Q
3

O
B
ul

o

O

c

n

TABLE 4.3

SUMMARY OF ANALOGOUS QUANTITIES IN THE IMPEDANCE ANALOGY

(From H. F. Olson, "Acoustical Englneerlng," Chapter 4, Copyright 1957,
D. Van Nostrand Company, Inc .)
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as defined by the ratio of driving force to the velocity of
the surface. Table 4.4 lists working equations for calcu-
lating the acoustic impedance and mechanical impedance
values of several acoustical elements, beginning with the

sources introduced in Section 4.4. Values of the resistive

and reactive parts of the specific acoustic impedance are
given in the accompanying charts, from Olsen, where

impedance values for numerous other acoustical elements
can also be found.

TABLE 4.4

IMPEDANCE EVALUATION EQUATIONS FOR ACOUSTICAL ELEMENTS

Element Impedance Equations

Z
a 1Pulsating Sphere

(monopole)

Oscl Ilating Sphere
(dipole)

Pulsating Cylinder

Piston in Free Space

pc 4_ a2

Z
- (4_ a2) 2

m

pc

Z
a 1

u 2
(.--_a) + j'_ a

I + j ("_ca)2

Z
a

pc

pc 12_ a 2

Z Z
= (4'rr a2) 2m a

pc pc

Z
a 1

pc _ a

(2--_ a)2+ j2_a"

1 + (2 _ a )2

(See Figure 4.28)

Z Z
m - (2_ a)2

pc pc

Z
a 1

pc
ira pc

(r1 + j x 1) (see Figure 4.28)

Z Z
m 2)2 a= (11" a

pc pc

forallpistoncases.

Definitions

Z = mechanical impedance1
m mechanical ohms

p = density, gm/cm 3

c : velocity of sound, cm/sec

u = frequency, radlans/sec

a : radius of vibrating body_ cm

Z : acoustical impedance,
a acoustical ohms

r I = acoustical resistance per unit
area, ohms

x 1 = acoustical reactance per unit
area, ohms
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TABLE 4.4 (CONTINUED)

Element Impedance Equation Definitions

Piston in Infinite Baffle

Piston in End of Semi-
Infinite Tube

Tube, Small Diameter
and Short Length,
L<<X

Narrow Slit,
d<<L<< X

Circular Orifice in
Thin Wall

Horn, Infinite

Cylindrical

Horn, Finite Cylindrical

Za 1 J1 (2_ a) (o K 1 (2--_ a)

pc 2 1 - _0 a4 (o3
-- a 2_ c (-_)_a c

(see Figure 4.27)

Z
a 1

pc "Z---
_ra pc

(r 1 + j x 1) (see Figure 4.27)

Z
a L

pc 2
_a pc 4

+T J_Pt

/

Z
a 1

pc pc
L + j 5Ld /

Multiply by 2 the values for piston in infinite baffle.

ZA 1

pcS

ZA1 1

pc S1

to L) + j sin (-_-L)S1 ZA2 cos (c p c

u u L)j SlZA2sin (c L+pccos c

JI'K1 : Bessel functions of first
and second kinds

M = viscosity coefficient,

1.86 x 10-4 for air

L : tube length, cm

d = width of slit normal to flow

direction, cm

ZAI : input impedance (at throat),
ohms

2
S = Cross--sectional area, cm

ZA2= output impedance (at mouth),
ohms

SI = throat cross-sectional area,
2

cm

L = horn axial length, cm

S2 = mouth cross-sectional area
2

cm

= length of slit in direction of
flow, cm
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TABLE 4.4 (CONTINUED

Element Impedance Equation Deft ni tlons

Horn, Infinite Conical

)2
ZA 1 (_ Xl _ Xl

--=-- _ 2 + J"' g 2

pc Sl 1 + (-_x 1) 1 + (cXl)

Horn, Finite Conical

Horn, Infinite

Exponential

p c sin_- L
j ZA2sin _ (L --e2) +

• _ + sin_(L +sin c (L el -e2) . pc el)

ZA2 S,nce1" _ sin_e 2 -J-_'2 sin_e 1
J

Above Cutoff frequency, _0 > m

ZA 1

pc S 1 1 - m +J 2 _--

c

- +
6O

x 1 = distance of throat from
x=O, cm

x2 = distance of mouth from
x=0_ cm

c el) : ton-1 (cXl)

(_82) = tan -1 (_c x2)

m = flare constant of an ex-

ponential horn, defined

by the cross-sectional area

2.0

1.0

Ij'

" . //Pl
J" /

//I/
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i , i [ i TIll I I I r I IFI I

P = Piston in an Infinite Baffle

-PP = Piston in a Pipe End _ _:::_,_..

-
- ,,

/

FIGURE 4.27 Acoustical Resistance and Reactance per Unit Radiating
Area, Normalized to the Characteristic Impedance of
the Medium: Piston in an Infinite Baffle; Piston in an

Infinite Tube (Data from Reference 4.14)
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= cutoff frequency,
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FIGURE 4.28 Acoustical Resistancer and Reactance x per Unit
Radiating Area, Normalized to the Characteristic
]mpedance of the Medium: Pulsating Infinite Cylinder;
Piston in Free Space (From H. F. OIsen, "Acoustical
Engineering," Chapter 5, Copyright 1957, D. Van
Nostrand Company, Inc.)
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4.7 INTERPRETATION OF ACOUSTICAL DATA

Facility designers of rocket launch installations will base
much of their design on data from acoustical measurements
(e.g., characteristics of a noise source or transmission loss

of a wall). The interpretation of acoustical data requires
some knowledge of sources of error in acoustical measure-
merits. The following sections introduce the elements of

sound measuring systems, some precautions necessary in
their use, and a chart for combining levels in decibels.

4.7.1 ELEMENTS OF SOUND MEASURING SYSTEM

The basic elements of any sound measuring system (such as
two typical systems illustrated in Figure 4.29) are a pres-
sure-sensitive transducer to convert the fluctuating pres-
sure to a fluctuating voltage, the electronic circuitry for
operating upon the voltage signal as desired (which may
include filters for frequency analysis or weighting circuits
for emphasizing some frequencies more than others), and
a readout (such as a meter dlal or a strip recorder) or data
storage for later analysis. For cases where the sound
varies rapidly with time (such as rocket launches or en-

gine starting transients), or where a finer frequencyanal-
ysis is required, the signal may be tape recorded for later
analysis by (1) spectrum analyzer and level recorderor
(2) analog-to-digital conversion and analysis by digital
computer.

Notes

O_'O-'_a I1

and O .B.

Sound

Pressure

Octave Levels)

Sound Sand

Level Fi Iter J J

Mi crophone Meter Set

Acoustic

Signol I I _ I I

a) System with No Data Storage Stage (Sound Level

Meter with Octave Band Filter Set)

4.7.2 SOUND LEVEL METERS

Minimum equipment for the measurement of sound pressure
levels and sound levels, according to the applicable
American Standard (Reference 4.15), consists of (1) a

sound level meter as specified in Reference 4.16, and (2)
an octave band filter set as specified in Reference 4.5.
Such sound level meters can be used to advantage when
the sound source is steady over a sufficient time to allow
sequential switching through the octave bands or when

only the overall levels are desired and are not fluctuating
rapidly.

If the noise to be measured is characterized by a momen-
tary, very high peak pressure and rapid decay rote (i .e.,
impulsive noise, such as from a drop hammer), a stand-
ard sound level meter cannot follow the rapid transient,
and would give values as much as 30 dB too low, even on
the fast scale. An accessory peak reading instrument (im-

pulse noise analyzer) can be used to obtain the peak SPL
and the average SPL over various short averaging times.

The standard terminology for measured levels is

Sound pressure level: A level (overall or by
octave bands) to which no frequency-dependent
weighting has been applied.

• Sound level: An overall value obtained from ap-
plying a frequency-dependent weighting network.

The three weighting networks available on standard sound

level meters are represented by their frequency response
specification curves, Figure 4.30, and tolerance limits from
Reference 4.16. The A network is most frequently used for

ranking noises according to their annoyance to people, as
it is the single-number value which correlates best with

annoyance judgment experimental results. Simpler instru-
mentation than called for in the American Standard exists

in the form of sound survey meters, which give only the
three weighted overall sound level readings, but overall
levels are generally insufficient for facility design pur-
poses.

DATA

COLLECTION:

LATER

ANALYSIS:

Acoustic

Signal

Mi crop'hone, Tape

Preamplifier, Recorder

Power Supply.

Tape Spectrum Level

Recorder Analyzer Recorder

I H
b) System Incorporating Data Storage Stage

(Magnetic Tape)

FIGURE 4.29 Two Instrumentation Systems for Acoustic

Data Collection and Analysis
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4.7.3 PRECAUTIONS

Sound field measurements must take into account such

properties of the atmosphere and surroundings as will af-

fect the signal received by the microphone and hence the

interpretation of the source acoustic properties. These

include weather conditions, terrain, reflecting and absor-

bing surfaces such as the ground planeandbuildings;

techniques for taking these into account are given in

Chapter 7. Beyond this, a number of precautions apply

to use of the instrumentation, which should be borne in

mind by users of the resulting data. Errors arising from

insufficient resolution in the spectral analysis of a signal

were mentioned in Section 4.2. The following list gives

the most frequent sources of error in acoustical data.

• Field distortion by nearly obstacles

• Ambient acoustical noise

• Wind Noise

• Electrical noise in the instrumentation system

Frequency response limitations of instrumentation

system components (e.g., microphone, Figure

4.31, or tape recorder)

• Effects of temperature extremes on instrumentation

or power supply
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FIGURE 4.31
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Typical Microphone Frequency Response Vor;ation with

Incidence, Frequency, and Microphone Size. (From

Reference 4.6)

For purposes of resolving conflicting data trends, the

reader should consult References 4.3, 4.6, and4.7as

well as the cited standard documents and instruction

manuals published by manufacturers of the instrumentation

involved in the collection and analysis of thedata in

question.

4.7.4 ADDITION OF LEVELS IN DECIBELS

The combining of several noise levels stated in decibels is

often required; for example, to obtain a combined level

from several levels in different frequency bands or to ob-

tain the cumulative effect of transmission loss through

several layers. Since decibels are a logarithmic quantity

and cannot be added directly, one must convert back to

the original physical quantity, perform the addition, and

convert the answer to decibels. To facilitate this proce-

dure, charts or tables, such as Figure 4.32 (taken from

Reference 4.3), are useful. Greater accuracy is seldom

warranted, due to accuracy limitations in the data; but

when it is desired, Table 12.11, Chapter 12, is useful.

e
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Decibels

Numerical Difference Between Total And Smaller Levels

FIGURE 4.32 Chart For Combining Levels of Uncorrelated Noise

Signals (From Reference 4.3)

To Add Levels:

Enter the chart with the "Numerical Difference Between Two Levels

Being Added." Follow the line corresponding to this value to its

intersection with the curved llne_ then left to read the "Numerical

Difference Between Total and Larger Level." Add this value to the

larger level to determine the total.

Example: Combine 75 dB and 80 dB. The difference is 5 dB.

The 5-dB llne intersects the curved line at 1.2 dB on the

vertical scale. Thus the total value is 80 + 1.2 or 81.2 dB.

To Subtract Levels:

Enter the chart with the "Numerical Difference Between Total and

Larger Levels" if this value is less than 3 dB. Enter the chart with

the "Numerical Difference Between Total and Smaller Levels" if

this value is between 3 and 14 dB. Follow the line corresponding

to this value to its intersection with the curved line, then either

left or down to read the "Numerical Difference Between Total and

Larger (Smaller) Levels." Subtract this value from the total level

to determine the unknown level.

Example: Subtract 81 dB from 90 dB. The difference is 9 dB.

The 9-dB vertical llne intersects the curved line at 0.6 dB on

the vertical scale. Thus the unknown level is 90 - 0.6 or

89.4 dB.
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CHAPTER 4

FUNDAMENTALS OF ACOUSTICS

4.1 INTRODUCTION

Acoustics treats the generatlon, transmission and reception
of acoustic waves, both audible and inaudible. The pur-

pose of this chapter is to introduce some fundamental con-
cepts on acoustics so that the methods given in laterchap-
tars can bemore easily understood and applied. The topics

covered here include the physical nature of sound propaga-
tion through the air, properties of simple sources radiating
into an infinite medium, effects of discontinuities and ob-

stacles in the medium, the use ofequivalentanalog or net-
work methods to solve acoustTcal problems, and sources of
error in data from acoustical measurements.

4.1.1 THE NATURE OF ACOUSTIC WAVES

Examples of wave motion are very common. All small-
amplitude wave motion has in common two properties:

• Energy is propagated to distant points,

• The disturbance travels through the medium without giv-
ing the medium as a whole any permanent displacement.

Both of these properties are easily observed in the motion
of waves across an initially smooth water surface where a
pebble is dropped into the water. The ripples spread out-
ward carrying energy with them, until they meet asolid
boundary or the energy is dissipated. Any small float on
the water surface is only disturbed as the wave passes, and
is not swept bodily along with the wave. Another visible

example occurs when one end of a rope lying on the ground
is shaken up and down: A wave runs along the rope, the
up and down motion being communicated from the end as
the wave goes up, just enough to pass the disturbanceon-
ward, yet the rope's final position is not changed from its

original position. In all these cases the local velocity im-
parted to the medium as the disturbance passes (particle
velocity) is very much less than the velocity at which the
disturbance is propagated through the medium.

Acoustic waves dlffer from those in the above two examples
in that I) generally they are waves in three dimensions,
and so can be more complicated than those in one or two
dimensions, and 2) they are longitudinal waves. In the
rope and water wave examples, the waves were transverse;
each part of the rope, for example, moved in a direction
perpendicular to the propagation direction of the wave as
it passed. In the case of acoustic waves in air, the (statis-

tical)average disturbance experienced by themolecules of
air is in the direction of the wave propagation. There are
no altemating crests and troughs, as with the transverse
waves on a water surface, but alternate compressions and
rarefactions. This kind of motion can be seen in the lon-

gitudinal vibrations of a spiral spring, Figure 4.1. Fluids,
such as air or water, have mass density and volume elasti-

city. The elasticity causes the fluid to resist compression
(providing the restoring force that keeps the wave going),
and the inertia of the mass density causes the motion to
"overshoot" into a rarefaction.

1
a) Time t 1

.. i

b) Time t2> t 1

?Ii? :Iii:ii i i"i i Iilii   iiii

I
c) Time t3> t2

RGURE 4.1 Longitudinal Wave in a Spiral Spring
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As an introduction to the physical characteristics of acous-
tic waves, consider the propagation of a sinusoidal plane
wave. Plane waves are those whose wave fronts (points of
equal phase) lle on a plane surface normal to the direction
of propagation. For example, the sound propagated in
tubesor at large distances from a source have approximately
plane wave fronts. An acoustic disturbance at any point
can be defined in terms of the instantaneous displacement
of a particle of the medium, the particle velocity, pres-
sure fluctuation, or density fluctuation. The acoustic
pressure is the difference between instantaneous and am-
bient mean pressure. The compression is the fractional
change in density (referenced to the ambient mean density).
In most cases of practical interest, the acoustic pressure is
sufficient to specify a sound field; units in use for acous-
tical pressure are lb/in2 and dynes/cm 2.

A plctorlal representation of the phase relationships among
the acoustic variables is given in Figure 4.2. For a wave
traveling in the +x di rectlon ,the acoustl c pressure p, com-
pression _', and partlcie velocity u are in phase with each
otherand lead the particle displacement d by a quarter
cycle. For waves traveling in the -x direction, the par-
ti cle velocity leads the displacement by a quarter cycle, and
compression and pressure lag by a quarter cycle. This dif-
ference in phase relations for waves moving in opposite di-
rections occurs because pressure and compression are scalars
while veloclty and displacement are vectors. Regardless of
the propagation direction, a maximum in pressureand com-

pression isassociated with a maximum of particle velocity
in the propagation direction, and all three lead the max-
imum displacement by a quarter cycle.

Wave

(el

III I I I IIIII I I
(b)

(c)

(a) Particle Displacement d.

(b) Particle Spacing when Displaced as Shown ;n (a)

(c) Particle Velocity u.

(d) Acoustic Pressure p, and Compression _' .

FIGURE 4.2 Phase Relations For a Plane Wave Traveling in the + x

Direction, as Functions of Position (From Reference 4.1)

4.1.2 PROPAGATION VELOCITY OF ACOUSTIC
WAVES

An acoustic wave is, by definition, of sufficiently small
amplitude that it doesnot alter the temperature of themed-
ium. Its propagation velocity is, therefore, a function
only of the medium and not of any property of the wave.
In an ideal gas (such as air) the absolute pressure p, abso-

lute temperature T, and density p are connected through
the equation of state

p = pRT

where R is the gas constant. The two properties of the gas
which influence the wave propagation are its isothermal
compressibility K, and coefficient of thermal expansion 13.
The isothermal compressibility is the fractional rate of ex-
change of volume (or density) with pressure, at constant
temperature; and coefficient of thermal expansion is the
fractional change in volume (or density)with temperature
at constant pressure. For a perfect gas, they are simply
related to the pressure and temperature, respectively, such
that the wave propagation velocity can be shown to be

c = '_fyRT

where i' is the ratio of specific heats, Cp/Cv =1.4 for air
at standard conditions (1 atmosphere pressure and 20°C);
and the acoustic velocity is 1127 feet per second.

The propagation velocity of acoustic waves in a gas can
also be simply derived from kinetic theory. Consider the
molecules as they collide with each other and any solid
boundaries. The pressure in the gas is caused by its molec-
ular motion and in an ideal gas is given by

p=(1/3) pv 2 ,

where v2 is the mean square molecular velocity and p is the
density (composed of the number of molecules present per
unit volume). Then the propagation velocity is

In liquids and solids, where intermolecular forces are large,
the speed of sound is much larger than this root-mean-
square speed ofvlbration of a molecule about its mean po-
sition. In solids, c is roughly equal to the mean speed a
molecule would have if its amplitude of vibration were
equal to the mean distance between molecules. However,
wave propagation in solids becomes complex, as both
longitudinal and transverse waves can occur; see Chapter 3.
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4.1.3 THE STRUCTURE OF NOISE CONTROL PRO-

BLEMS

All noise control problems involve three basic elements:

the sound source, the receiver, and the transmission path

between source and receiver. A knowledge of the charac-

teristics of and means of modifying all three is required

for an economically efficient solution to any noise control

problem. In the simple example of Figure 4.3, the source

is the engine noise from a rocket launch, and the receiver

may be either the building structure or the occupants of

the building. The transmission path includes the effects of

the atmosphere and of intervening terrain and obstacles,

and of the building structure. The problem may be alle-

viated by suppression at the source, by modifying the trans-

mission path, by local protection of the receiver, or by
the best combination of all three.

_// ROCKET

/ ENGINE

equipment)

I S..... _ T.....Pathissi°n Receiver J

FIGURE 4.3 Elements of a Noise Control Problem

4.1 .3.1 Source Properties

The properties of a soundsource for which numerical values

must be known are its

• Total sound power produced

• Directivity, or angular distribution of the power

• Frequency characteristics of the sound, which can be in-

cluded by giving directivity as a function of frequency.

• Decay with radial distance from the source, in a free

field.

The required properties of acoustic sources relevant to this

manual are given in Chapter 6. In the present section,

emphasis is placed on some physical concepts helpful in

understanding the behavior of these sources.

4.1.3.2 Receivers

In the present application, the possible receivers include

structures, people, and sensitive equipment. Ineachcase

the criteria for limiting the acoustic exposure, and means

of modifying the receiver or protecting it locally in order

to raise the acoustic environment limits, must be known

by the designer. The subject of receivers is covered in

Chapters 8, 10 and 11 .

4.1.3.3 Transmission Path

The transmission between source and receiver is affected

by propagation (effects of the medium, such as the dis-

sipation or diversion of acoustic energy before it reaches

the receiver)tby obstacles in the transmission path, and

by transmission properties of structures surrounding the

receiver. Propagation through the medium is thoroughly

covered in Chapter 7, along with shielding effects of

buildings, barriers and ground covers. Coverage of sound

transmission loss through structures and absorption at sur-

faces is given in Chapter 9, but an introduction to the

reflection and absorption of sound is provided in this

chapter.

4.2 QUANTITATIVE DESCRIPTION OF SOUND

The fundamental physical quantities, units and reference

levels used to describe and measure acoustic waves in air

are next introduced. The most fundamental quantity is the

acoustic pressure; from measurements of pressure, such

secondary quantities (Figure 4.4) as intensity over a given

plane, energy density in a given volume, and acoustic

power of a source can be calculated under certain field

conditions. Since the propagation, transmission and re-

ception characteristics of sound vary with frequency, it is

usually necessary to make predictions or analyze data in a

form that shows the distribution of pressure or power over

the frequency spectrum. Typical precautions and opera-

tions required in the use of data from acoustic measure-

ments are briefly discussed at the end of this chapter.

Elemental VolumeW"
\ in the MediumEnergy Density

(Energy Per Unit \\ \

Volume) ---__

_'-- Acoustic ce _ J_"_
\Source e..e_ O_ ./_

t\ _)J) ] Ac ,oustlcP..... reat the Point/

_._ / _t_._ _ Wave Front

Total Sound Power

Radiating Through p
Surface Surrounding
Source

lty

_y
Per Unit
Area

FIGURE 4.4 Conceptual Diagram for Physical Acoustical Quantities
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4.2.1 DECIBEL SCALE

Because magnitudes of pressure and power encountered in
practice range over more than 12 orders of magnitude, it is
convenient to use a logarithmic scale and express the re-
suiting levels in decibels. Levels in decibels (dB) are

formed from the logarithm of a ratio of the measured quan-
tity to a reference value, and since several reference val-

ues are in use, the reference being used should always be
stated. Strictly speaking, a level in decibels denotesa
ratio of two quantities that are proportional to power.
However, common practice has extended the decibel scale
to sound pressure levels, for which the proportionality is
exact only for plane waves. The decibel scale is often

used to express relative levels; here one of the two quan-
tities being compared is used as the reference level.

4.2.2 UNITS

Acoustical quantities are normally expressed in either

metric cgs units or mks units. Tables are given in Chapter
12 for conversion among cgs, inks and English units. The

most frequently encountered quantities used in acoustics,
aside from those used in analog methods (given in Section
4.6) are listed in Table 4.1 in cgs and mks units. A com-
plete list of standard definitions and units (for shock and
vibration as well as acoustics) is available in Reference
4.2.

TABLE 4. I

BASIC ACOUSTICAL UNITS

cgs
UnitQuantity Dimension

Sound pressure ML -1 T-2 dyne/cm 2

(microbar)

Velocity LT-1 cm/sec

Frequency T-1 hertz (or sec-1)

Density ML -3 gm/cm 3

L3 T-1 cm3/sec

inks
Unit

Conversion

Factor*

newton/m 2 10-1

m/sec 10-2

hertz

kQ/m 3 103

m3/sec 10-6Volume velocity

Sound energy ML 2 1.-2 erg joule 10-7

Sound energy density ML -1 1.-2 erQ/cm 3 joule/m 3 10-1

Sound intensity MT-3 er£/sec cm2 watt/m 2 10 -3

Sound power ML2T -3 erQ/sec watt 10 -7

Acoustic impedance ML -41 "-1 acoustical ohm inks acoustical ohm 105
(resistance, reactance)

Specific acoustic impedance ML -2 1"-1 rayl mks rayl 10

* Multiply values in cgs system by conversion
factor to obtain value in inks system.
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CHAPTER 5 5.2 THE SYSTEM APPROACH

SONIC AND VIBRATION

CONTROL PLANNING

5.1 INTRODUCTION

The development of new or enlarged ground facilities for
the testing or launching of rocket vehicles requires a con-
certed planning effort well in advance of starting con-
struction. Decisions reached during this planning stage
may involve major commitmentsof resources in manpower,
finances, and materials. These decisions must be made on
the basis of a systematic evaluation of a series of alterna-
tive choices which may involve such elements as

• Site location

• Land acquisition

• On-slte facility lay-out

• General concepts for protective design

As this decision process gains momentum, more detailed

problems become significant, often requiring supporting
trade--off studies to provide a reasonable basis for making
a choice between one or more design concepts. Ul-
timately, a detailed development plan evolves , which
must be implemented bya technical staff employinga broad
spectrum of skills including experience in:

A loglcal starting point for thisplanning guide is to consider
the system approach for defining the basic control concepts
to be evaluated in detail.

The scope of problems discussed ranges from the decision

that a new rocket ground test or launch facility is required
to the beginning of detail design for a single facility unit.
Therefore, it will be of interest (1) to the project leader/
planner whowill bemaking the early, large-scale decisions
and (2) as introductory material to the englneer/designer
who will be responsible for the design of each facility unit

and will be utilizing the design chapters of this manual .
For convenience, the term vibro--acoustlc, employed in
this next section, will be understood to imply all of the
acoustic, blastand vibration environments to be considered.

5.2.1 ELEMENTS OF THE GENERAL VIBRO-
ACOUSTIC DESIGN PROBLEM FOR A
ROCKET FACILITY

Every vibro--acoustic design problem can be condensed, in
its simplest form, into a source-transm ission path-receiver
relationship. The design problem is to control the vibro-
acoustic environmentat the receiver so that it does not ex-

ceed some maxEnum allowable level established by the re-
ceiver, by selecting that combination of design solutions
which corresponds to minimum system cost. That is,

(Source Characteristic)+I_-_.(Control Elements)]
m in. cost

= Receiver Criterion Level

Land utilization

Architectural design

Facility operational requirements

Civil and mechanical engineering design

The technical elements of the vibro-acoustlc protection de-
sign problem (listing specific categories of sources, path
elements and receiversappl icable to rocket facility planning)

.are given in Figure 5.1. The figure also refers to chapters
of themanual containing specific design information in each
of the categories.

Electronic and electrumechanical equipment
design Sources

• Human factors design

• Medical safety

Thus, thepurposeofthischapter is to: 1) provide a general
9uide for carrying out this planning effort in the area of

sonicandvibrationenvironments, 2) brieflyrevlew theprin-
cipal design criteria involved for the protection of structures,
personnel and equipment in these environments, and 3)re-
view the general concepts for environmental control which
can be employed to meet these criteria. The chapter forms
a logical introduction to the specific technical material con-
tained in the succeeding chapters which consider the various
technical facets of sonic and vibration environments for
ground facilities in more detail.

The sources are listed in order of their importance in set-
ting the design strength for facility components. This is
followed by a listing of the support equipment necessary
toany rocket testing complex. The blast and engine noise
sources are subdivided into

• Ground test facilities

• Launch facilities.

This division is necessary because there are more methods

available for reducing the source magnitude for captive
rocket firings than for rocket launches. In ground test fa-
cilities, the engine noise can be suppressedby selected or
modified terrain, and the amount of propellant available
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Source
Transmission

Receiver

Source

Control

Elements It
_m

• Ground Test Facility
Terrain Barriers

• Ground Test Facility

Suppressors/Shields

• Underground Storage

of Propellants and

Explosives

Chapter 6,7

Natura I

Transmission

Elements

• Distance

• Terrain

• Forestation/
Ground Cover

• Meteorological
Anomalies

Chapter 7

Transmission

Control

Elements

• Blast Barriers

• Underground

Placement

• Bui Iding
Orientation

• Shielding by

Other Buildings

Chapter 7,8

Receiver

Control

Elements

_u

• Building Design for
Blast and Transmission

Loss

• Internal Room

Arrangement

• Room Absorption

• Vibration Isolation/

Decoupling

• Vibration Isolation

oF Entire Structure

• Equlpment Enc I osures/
V_bratlon Isolators

• Personnel Protection

Enclosures

• Individual Personnel

Protection

Chapters 8,9,10,11

• Exploslon/Blast

a) Ground Test Facility

b) Launch Facillty

ORocket Engine Noise

a) Ground Text Facility

b) Launch Facility

• Sonic Boom

• Support Equipment

Miscellaneous Noise

and Vibration Sources

Chapter 6

• On-Facility

a) Structures

b) Equipment

c) Personnel

• Off-Faci lity

a) Structures

(residential

and general)

b) People

Chapters 8,10,11

FIGURE 5.1 Technical Elements of Protective Design for Sonic Loads

and Vibro-Acoustlc Environments
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foran explosion can be l imited by underground storage and
automatic shutoff mechanisms. Figure 5.2 compares the
sourcesoflateral building loads with the two natural Ioad-
ings (wind and earthquake), for which design criteria in
building design are customary.

IlXxlXlilixllxxl IIlIIIIIIII/11111_IX_11

FIGURE5.2 Sourcesof LateraFBuilding Loadsat RocketTestSites

Receivers

The receivers are listed in Figure 5.1 in groups according
to the degree of control that can be utilized in their pro-
tection:

• On-facility receivers

• Off-facility receivers.

The facility designer can control the location and design
of all structures and equipment, and can control the ex-
posure of personnel by establlshlng "restricted areas" within
the base perlmeter. However, once the rocketslte location

is selected and sufficient land purchased to provide a buf-
fer zone foranysurrounding (present or future) communities,

there is usually no further means available for the facility
manager to protect the structures or people in those cam-
munities short of curtailing the test operations. Thus, the
initial siteselectionand required landacquisition is a criti-
cal initial problem to be resolved.

Transmission Path

The transmission path between any source-receiver pair
must include all control elements (relevant to that specific
pair) necessary to kring the environment clown to the limits
implied by the receiver. The transmission path, Figure
5.1, is subdivided into source control elements,(implylng
localized treatment of the source), receiver control ele-

ments (withmagnitudes subject to influence by careful site
selection and placement of sourcesand facility units), and
those elements of transmission path control requiring engl-
neering design and construction. The lists of sources and
receivers are complete; while the transmission path ele-
ments are typical, to illustrate the general nature of the
protectian design problem. Each of the decrements inthe
transmission path implies an element of cost which will
feed into the final system selection process.

5.2.2 PROBLEM SCOPE

The problems to be solved in a facility design project be-
gin with the initial decision that a facility is required and
involves consideration of the range of engine size/thrust
levels and propellant types, plusa time span of operational

years for the facility. The scopeofthe problems to be con-
sidered decreases (while the level of detail required for
solution increases) as the facility design project proceeds
along a time scale such as illustrated in Figure 5.3. The

facility design process may be broken down into three ma-
jor phases:

• Site selection

• Site Layout planning

• Design of facility units.

Site Selection

Site selection involves choosing a geographical location
which will satisfy all the requirements relevant to a rocket
facility, including, for exomple, supporting logistic and
transportation facilities, power and communications; for a
launch facility, the effect of geographic location on or-
bits which can be attained is an important factor. Clear
space forprotectlon of surrounding communities wilt be re-
quired in case of nuclear rocket or toxic fuels accidents.

The vibro-acoustic portion of the site selection phase in-
cludes the establ ishment of an outer faciii ty perimeter and
an inner lim it boundary for adjacent communities, with an
intermediate buffer zone cleared of residents and main-

tained clear in the future by land purchase {see Figure
5.3a). The expense of relocating whole communities and
the variation of land prices in different regions may have
a large influence on the location of the rocket facility.
The extent of the buffer zone will usually be determined
by the blast environment from explosions for launch bases,
but may be determined by community noise from rocket en-
gine firings, particularly for rocket ground test facilities
where the blast source size and location are sufficiently
controlled. Estoblishmentof the land area for the facility
and its perimeter will require tradeoff considerations of

distance versus design in order to protect facility units,
as well as surrounding communities, from blast and noise.
In fact, it is in the site selection phase that themgjor step
toward protection of the surrounding communities can be
achieved.

Site Layout

The site layout planning phase consists of the placement of
the facil ityunltswithin the facility perimeter (Figure 5.3b).
Environmental protection (e.g., hilly terrain, dense forest,
distance) may be utilized to obtain maximum separation of
blast or noise sources from sensitive receivers. Figure 5.4

illustrates the importance of distance between source and
receiver in determining the design loads on the receiver.
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For planning purposes, various functional elements of the
facility are classified bycriteria levels, and receivers are
grouped within each function. ,Judicious placement of func-
tions on the facility map will greatly influence the total
cost of noise and blast protection.

T
q

w

GROUND VIBRATION

FIXED BUILDING LOADS

I//////I/I/I/I///

DISTANCE

FIGURE 5.4 The importance of Distance as a Protective Measure

Once the function and location of each facility unit has
been established in the layout phase, the next step is the
design of each unit (Figure 5.3c). A facility unit may be
defined as any structure or building on the site. The re-
required amount of total transmission path control is es-
tablished by the environment at that location and the cri-
teria forthe receiver, lndesigninga unitwhlchwill contain
personnel and equipment, each of the three sets of receiver
criteria must be considered, and the dominant ordesign-
critical source determined for each. In general, the most
cost-effective setofdesign solutions for a facility unit in-
volving several receiver types will be that combination
which meets all criteria, but does not exceed any. This
implies that no segment of the transmission path has been
overdesigned. Forexample, ina building designedtowlth-
stand blast, and only occupied by personnel during firings,
the personnel hearing loss criterion would not be allowed
to cause major overdesign of the building

5.2.3 SYSTEM COST MINIMIZATION

Aside from the necessary protection of life and health and
the requirement that all the facility units fulfill their op-
erating function, the single theme running through the en-
tire design process is cost. Every design solution implies
a cost figure, and cost tradeoff studies will be requiredat
different levels as thefacilitydesign progresses. The mini-
mization of total system cost is the criterion by which al-
ternate solutions can be compa red. Prelim inary cost studies,
while inaccurate compared to later detailed cost estimates,
should be used to identify parameters having a large influ-
ence on total system cost, and to guide the large, early
decisionsofslteselectionand layout. A simple illustration
of a cost trade-off evaluation is given in Figure 5.5, using
site selectlonfor a ground testfacitity as an example. The
tradeoff is between (a) the cost of control at the source
(e.g., constructed barriers or suppressorsfor rocket en-
gine noise at the test stands, and undergrounding and
blast-proof flow cutoff mechanisms for propellants and (b)
the cost of land acquisition to increase the distance to
inhabited areas. In an actual case, there would be a
family of source control cost curves, corresponding to de-
grees of control. While the minimum cost point is con-
trolling in the example shown, the minimum acceptable
distance for protection of llfe and health in adjacent
communities may control in others, if it falls to the right
of the minimum cost point.

Minimum Acceptable D;stance //

/-- to Avoid Blast Injury or ///

/ Hear;ng Damage /7

/2"
\\ _1 Total System / / "_

cast  -costof
Y / Land

_)_,_ /t / Acquisition

T "--_'-_ -''i''T'- _ / /'- Cost of Reducing/

/ _ "_,,,_ / / Controlling Blost

' _ _ I I and A .... tic

_Mioi. om / Sour=.
- To,oiC_t_Opt;mo,.
J _ Distance

Distance from Source to Receiver

FIGURE 5.5 Cost Minimization Example:

The Site Selection Problem for a Ground Test Facility

5.2.4 TYPICAL ENVIRONMENT TRENDS APPLICABLE
TO SITE PLANNING

Site selection and facility layout planning considerations

require two basic types of information about each major
source:

i Magnitude variation with distance

• Time-dependent characteristics
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For the sake of illustration, Figures5.6 through 5.11 show

qualitative trends of these two factors for the two major

types of source inherent in a rocket facility. Ground

vibration, while not necessarily a major design environ-

ment, is also illustrated:

• The acoustic environment from rocket engine

firings

• The ground vibration from rocket engine firings

• The blast environment from propellantexploslons

The natural forces (wind and earthquake) may set design

requirements for some facility units, but they are not in-

fluenced by facility unit location on the site, and so are

not included in these figures. These various environ-

ments are covered in detail in the next two chapters.

5.2.4.1 The Acoustic Environment From Rocket Engine

Fi rings

The acoustic environment (airborne noise) from rocket en-

gine Firings can be grossly described in terms of the over-

all sound pressure level variation with distance (Figure

5.6) and the frequency distribution of acoustlc energy

(Figure 5.7). The overall acoustic power level (and

hence the sound pressure level at a given distance) can be

estimated for a rocket of any size from its thrust and exit

velocity. Approximately 0.4 percent of the jet mechan-

ical energy is typically converted into acoustic energy;

the conservative extreme is 1 percent. Ideally, every

doubling of distance between the source and receiver de-

creases the overall sound pressure level at the receiver by

6 decibels. Additional atmospheric attenuation can pro-

vide a further significant reduction in overall noise levels

for distances beyond 4 miles. Conversely, extreme con-

ditions of atmospheric focusing can result in levels appre-

ciably higher than expected for the normal attenuation.

As discussed in Chapter 7, an upper bound for focusing con-

ditions is approximated by decreasing the sound levels at

a rate of only 3 dB per doubling of distance.

t
®1_'"_ _ Inverse Square Law

;'1 "_--. / 1% Energy Co .... sion

_o I _ Efficiency (Upper Limltl

21 6 o.,%E.,ciency
_: Doubling of_'_,_ /-- (Typical for Large

Distan_"e _. Rocket Engines)

_ A t_ _

0 at Le_C;iequEefnf;ic:: J \l_

Distance from Test/Launch Pod (log scale)

FIGURE 5.6 Magnitude Trend with Distance, Acoustic

Environment from a Rocket Engine Source

Rocket Noise Frequency Spectrum

Besides generating more total acoustic power, larger rock-

ets produce relatively more of their acoustic power at low

frequencies, Figure 5.7. When the distribution of sound

pressure across the frequency spectrum (relative to overall

sound pressure level) is plotted against a dimensionless

frequency, all rockets fall into a single llne. As a result,

given the measurement point and the rocket exit diameter

and exit velocity, (1) the rocket noise spectrum can be

predicted and (2) larger exit diameters result in a shift to

lower frequencies. Peaks in the vicinity of" 20-50 Hz for

Saturn class vehicles shift to 8-10 Hz for 10-20 million

pound thrust rockets. Since the shift is accompanied by

an increased level for the entire curve (Figure 5.7), in-

creases on the order of 10 dB can occur at frequencies
below 20 Hz.

-_ _10dB Increasing Rocket Engine Thrust

Frequency (log scale)

FIGURE 5.7 Trend of Acoustic Energy Distribution Over the

Frequency Range with Increasing Rocket Size

5.2.4.2 The Ground Vibration Environment From Rocket

Engine Firings

In acoustic fields of the magnitudes generated by large

rocket firings, the airborne waves can induce appreciable

ground vibrations. However, these ground vibrations are

a result of local pressure fluctuations in the acoustic wave

traveling out from the source.

In this case, the ground tends to act like just another

acoustic medium and the frequency spectrum of the ground

vibration is very similar to that of the acoustic spectrum;

Figure 5.8. However, potentially damaging levels of air-

coupledground vibration are unlikely except in the imme-

diate vicinity of a rocket stand. In this region, direct

coupled vibration induced by fluctuating engine thrust

forces and the turbulent exhaust blast on the ground may

predominate. This direct coupled or seismic vibration

attenuates much more rapidly with distance than the air

coupled ground vibration; See Figure 5.9. Thus, beyond

the immediate vicinity of a test stand or launch pad area,

ground vibration is not expected to be a significant design
load.
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FIGURE 5.9 Illustration of Trend in Attenuation with Distance

of Air-Coupled and Direct Coupled Ground

Vibration Near Rocket Test Stand

It should be noted that for above-ground buildings, the

vibration protection design requirements in a rocket noise

field are established by the acoustic field itself and nat

the induced ground vibrations. Underground buildings

located close to a test stand (i .e., less than 1000 ft) may

require some vibration isolation from the ground vibration

in this region.

5.2.4.3 Blast Environment

The blast environment from possible propellant explosions

is often the dominant source in site selection and function

placement, and the controlling design factor for many

facility units (e.g., for distances on the orderof3-

5 miles). This is particularly true for launch facilities (as

opposed to ground test facilities)where the entire pro-

pellant supply of the launch vehicle is potentially avail-

able for an explosion. Therefore, consideration of the

blast overpressure magnitude and duration trends with dis-

tance, Figure 5.10,will play a crucial part in the facility

design. Specific values for these parameters will be given

later in this chapter in terms of the equivalent weight of

TNT of the propellants.
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FIGURE 5.10 Magnitude and Duration Trends, Air Blast Environment

from Propellant Explosions

Assessing the methods and costs of designing a building

against failure from blast involves a consideration of the

duration of the blast relative to the natural period (i .e.,

1/(natural frequency) of the structural walls exposed to

the blast. This dynamic response effect can be translated

into an effective static pressure on the building, Figure

5.11, which would produce the some peak deflection of

the walls.

h_

g
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u.J

Natural Frequency of Building Walls (log scale)

FIGURE 5.11 Trend in Equivalent Static Pressure with Natural

Frequency of Building Walls for Given Source

Distance and Several Blast Source Sizes
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5.2.5 DETERMINATION OF THE DESIGN-CRITICAL

CASE

Any receiver on a rocket facility will be exposed to an

environment from several major sources, and a determi-

nation must be made as to which source produces the con-

trolling environment for the design.

For the case where the receiver is a building, Figure

5.12 illustrates the trends (with distance from the source)

for all the dynamic loads in addition to normal static de-

sign loads. All the dynamic loads have been reduced to

equivalent static loads, to provide a slngle-number-scale

comparison, from which the design-critical source can be

selected. The design level for wind and earthquake loads

depend on the meteorological and geological records of

the area (and in many cases, standard building require-

ments for structural design.) Although sonic boom over-

pressure is shown as a dynamic input load, it will not be

significant as a design load on primary building structures

due to necessary operational restrictions placed on super-

sonic aircraft flights.

_ Blast

_/ Dominant
•o Rocket"_ t_ /-- Acoustic Noise _

"6 _ / bource on

u _._ Facility

\ W,ndL dsot
\ \

>aJ \ _ • n _ Maximum Wind Speeds
-- _omc ooom\ _ ....... _ for Geogroph,c Realon
_J \F vverpressures, _ v
l /Y_ Allowed Flight _ _Earthquoke
/ / _ Altltudes _/Lateral Wall

_'_'////_'_'""_|/////_--////_//////_///_,_#7"._-- Load

Distance from Source (linear scale)

FIGURE 5.12 Screening to Select the Deslgn-CriHcal Sourceby
Comparison in Terms of Equivalent Static Loads

If the building represented in Figure 5.12 is designed to

survive a blast environment, it will generally be more ex-

pensive than one designed only against acoustic noise, for

regions near the source. For large rockets, the region in

which blast is the controlling source has a radius of 3 to
5 miles.

For structures and equipment not involving personnel

safety, the decision on the degree of blast protection to

be provided is an economic one, made by comparing the

cost of a given level of protection against the cost of re-

placement or repair of failed units, Figure 5.13. This

comparison requires a prediction of the probable number

of failure-crltical blasts during the facility lifetime. The

crossover point may be markedly different in the case of

a launch facility (where a launch vehicle explosion is a

major disaster and is guarded against by many precaution-

ary measures and preflight checks) as compared with a

ground test facility for development work (where explo-

sions are more frequent and inevitable).

u

Cost of Replacement

Crossover ?of Failed Units

\
Cost of Protection \/

against Blast 7

_ J:_:::_Decision:

/ _ Design for Blast

_ ProtectionDecision:

/ Replace Failed
/ Units

FIGURE 5.13

Prdoable Number of Failure -
Critical Blasts during Facility Lifetime

Cost-Based Decislon on Necessity for Vlbro-AcousHc
Protection of Structures and Equipment Units not
Involving Personnel Safety

5.2.6 THE DESIGN PROCESS FORA FACILITY UNIT

Given a facility unit of defined function and location for

which internal and external environmental criteria are

defined, the designer must then develop a concept which

meets all the technical requirements (the usual functional

requirements as well as the vibro--acoustic criteria)at

near--minimum cost or within budget.

5.2.6.1 The General Design Process With Vibro-

Acoustic and Cost Considerations

The flow of the design process, for any general facility

unit design problem with vlbro-acoustic inputs, is dia-

grammed in Figure 5.14. The designer is given a de-

scription of the bull ding functlonal requi rements, of which

the vibro-acoustic portion are the criteria for an accept-
able environment and the actual local environment ex-

pected from the various vibro-acoustic sources. From this

initial point, the process proceeds through the preliminary

design phase, including layout of the functional spaces

within the building (with vibro-acoustic inputs suchas

orientation with respect to the source and shielding of one

room by others). The initial preliminary design phase cul-

minates in a technically feasible design meeting the cri-

teria, with its cost estimated. An iteratlve process of

modifying design solutions (and sometimes compromising

on the criteria) follows_ until a suitably cost-effectlve

preliminary design has been achieved. This forms the

basis for the detailed design, specifications and cost es-

tlmate for the facility unit.
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FIGURE 5.14 A Typical Design Processwith Addition of Vibro-Acoustic
and Cost Considerations

5.2.6.2 Design Check Lists

As a rough guideline to the technical content of the pro-

tective design process, design check lists are given below
for the three classes of receivers:

• Structures

• Personnel

• Equipment

These check lists relate only to the vibro-acoustic con-

siderotlons in the design process and must besupplemented

by coverage of the other (standard) design requirements.

Protection of Structures Against Blast, Acoustic and

Vibration Environments

• During site selection, use adjacent structures and terrain

for shielding against blast and acoustic pressure waves;

orient heaviest wall towards probable source and/or con-

struct additional shielding walls; alternatively, plan for

partial or total underground placement.

• Employ wall and roof venting toequalize pressure loading

when protected interior is not essential; or include blow-

out panels in walls.

• Where architectural ly feasible, use curved external walls

for extra stiffness and resistance to blast pressure waves.

• Minimize lengths of unsupported flat roof and wall spans

to provide for added stiffness and reduced deflection and

stress levels; and stagger supports in order to localize

vibrations; also, consider double wall construction when

economically feasible, and use air gap as decoupllng

mechanism.

• Design for added bracing of joints between walls, Floors

and roof to limit joint deformation and possibility of joint

separation and failure; or construct joints with large

inertial discontinuities to provide vibration reflection

boundaries and limit vibration transmission through struc-

ture; or construct open joints with minimum of structural

load transmittlngcapabilltles tominlmize vibration trans-

mission.

• Limit use of large glass windows, and provide soft rubber

mounting at edges at all necessary windows; use special

glass having high transmission loss; and externally shield
windows from source.

• Avoid use of internal masonry when this could possibly

crack and collapse, and lead to personnel injuries.

• Minimize use of large unsupported panels near regions of

high intensity noise. Add damping by insulation or sur-

face coating to reduce sonic vibration. Anticipate fa-

tigue failure sensitivity around any joint, particularly

when stress gradients are very high.

• For blast designed structure, allow plastic deformation

whenever feasible to minimize conservative design prob-
lems.

• Optimize balance of design requirements for blast resist-

ance of walls and doors to achieve maximum economy in
construction.

• Whenever possible, increase separation of structure and

blast or noise sources so as to prevent dynamic loads be-

coming the critical design load.

Personnel Protection

Composite noise rating in nearest adjacent communities

due to rocket firings below acceptable level for all anti-

clpated engine sizes.

Distance to nearest adjacent community sufficient to

insure against glass breakage from blast, for largest pro-
pellant charge anticipated.

Facility restricted areas with limited personnel access (a)

durlng hazardous propellant transferoperations, and (b)

during rocket firings.

Blast-proof buildings for all personnel participating in

hazardous/rocket firing operations.
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• Inhabited structures designed to isolate personnel from

the low vibration frequencies critical to human perform-

gnce .

• Hearing protection devices provided and required where

set by rocket-firing noise levels.

• Support and office personnel protected from blast and

broken glass injury (e .g., by distance/building orienta-

tion/glass shield screening).

• Support/office/communicatlons personnel provided with

adequate speech communication environment (e.g., by

distance, building design).

Equipment Protection Design Against Vibration Due to
External Sources

• Minimum use of cantilevered mounting for parts.

• Use of chassis-clamps for wire lead-connected compo-

nents larger than about 0.4 in. in diameter.

• Wire lead connections made to minimize fatigue failure

(e.g., short leads with some slack plus insulation cover-

ing to provide damping).

• Internal and external wiring laced intoa cable and se-

cured tochasslsat frequent intervals topreventconductor

vibration fatigue.

• Use of close-flttlng alignment pins or guides to bear

shock and vibration loads between chassis, assemblies
and enclosures.

• Heavier parts located as close as possible toload bearing
structure.

• Maximum rigidity of mounting chassis without excessive

weight.

• Adequate reinforcement at corners of mounting structure

and at other stress concentration points.

• Proper bend radii of sheet metal parts.

• Minimum unsupported spans of circuit cards.

• Static balance of rotating or pivoting parts.

• Minimum use of large unsupported cabinet walls for

component mounting.

• Proper choiceandapplication of shock mounts toachleve

desired isolation with minimum cross-coupling between

modes of vibration.

5.3 DESIGN CRITERIA FOR SONIC LOADS ON

STRUCTURE

The preceedlng section has developed, in general form,

the system approach utilized for evaluating sonic loads on

ground facilities and the essential steps in the design pro-

cess. The basic initial input to this process for sonic or

vlbro--acoustlc loads is the specification of environmental

criteria - in other words, the definition of environmental

levels to which the facility element must be designed (or

protected) to be able to perform its function.

5.3.1 CONVENTIONAL LATERAL DESIGN LOADS

ON BUILDINGS

In order to put these criteria in perspective, conventional

static lateral design loads on building walls due to wind

and earthquake forces are considered first.

5.3.1.1 Wind Loads

Maximum wind loads on a building depend on(Ref-

erence 5. I):

• Wind Speed V

• Height above ground H

• Gust Factor C
GH

• Shape Factor C R

• Geographical location

• Storm Frequency

The last two factors must be determined individually for
each location based on local measurements. Standard

procedures for determining the wind load on terms of the

first four factors are summarized as follows using the pro-

cedures specified in Reference 5.1.

WIND SPEED

Design wind speeds are given in terms of the fastest-sln-

ale-mile wind speed equal to the wind speed in miles per

hour based on the shortest recorded time interval the wind

traveled horizontally a distance of 1 mile and measured

at a distance of 30 feet above the ground. Standard

values for this wind speed, based on a 50 year recurrence

interval, range from 60 to 120 MPH in the United States.

(Reference 5.2). For sea level conditions, the steady "dy-
namic" pressure due to this wind is

1 v2
qo =2"P

= 0.00256 V 2 Ib/ft 2

• Adequate clearances to avoid collision, where V -- velocity in MPH
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Height above Ground

At distances other than 30 ft, the wind velocity V H at

height H is computed by the "l/7"th power law as

(H / 1/7
V h = V30 \_'_'/

Gust Factor

A standard gust factor CGH = 1.3 is normally used to

increase the fastest-single-mile wind speed so that the

fastest gust velocity VI30, at 30 ft is

Vi30 = CGH V30

Shape Factor

The resultant wind pressure on a rectangular building is
equal to the incident wind dynamic pressure multiplied by

a shape factor CR = [0.8-(-0.5)] = 1.3where (0.8)

represents the relative pressure on the windward face and
(-0.5) represents the relative suction pressure an the lee-
ward side.

Wind Load

From the above relationships, the resultant deslgn wind

pressure on a rectangular building at any height H is

PIH = CD 0.00256 (VIH)2

= 0.00333 (CGH V30 )2 (H/30) 2/7 (5.1)

For H = 30 ft, and CGH = 1.3, this reduces to a resultant

design wind pressure at 30 ft of

Pi30 = 0.00562 V302 Ib/ft 2 (5.2)

Values for this resultant wind pressure on rectangular
buildings are shown in Figure 5.15. Similar design wind
loads are specified in standard building code manuals.

The wind load on the windward wall of the building (at a

height of 30 ft) will be equal to (0.8/1.3) or 0.615 times
the values given by equation 5.2. For hurricane winds,
such as at Cape Kennedy, the maximum wind velocity,

including gusts, is used in place of CGH V30 in equation
5.1.

\

FIGURE 5.15 Minimum Allowable Resultant Wind Pressure at 30 Feet (Reference 5.1)
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Spectrum of Wind Load

These wind pressures are considered equivalent to statlc

loads even though they are based, in part, on maximum

loads during momentary gusts. The actual frequency spec-

trum of storm turbulence near the ground has been re-

ported in Reference 5.3 and, as shownln Figure5.16,

the peak frequency of the mean square fluctuating veloc-

ity is well below natural frequencies of building com-

ponents. Thus, the dynamic portion of design wind Joads

is generally negligible.
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Spectrum of Fluctuating Velocity Components in a

Strong Wind. Expressed as the mean square

velocity in (mph) 2 over octave band intervals

(data from Reference 5.3).

5.3.1.2 Earthquake Loads

Lateral loads are imposed on buildings during excitation

by earthquakes. Conventional building code methods for

specifying the magnitude of these lateral loads normally

reduce to the following simple procedures.

Net Horizontal Loads on Entire Buildlng

Total Lateral Force = C • W (5.3)

where W = Weight of Building

C = load factor in g's that varies

with frequency

A typical value for the load factor C is shown in Figure

5.17 for buildings in the seismic zone 3 for the United

States. This is the zone of most damaging earthquakes as

illustrated in Figure 5.18.
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FrGURE 5.17 Typical Spectra for Earthquake Load Factor -

Seismic Zone 3

Lateral Load on Building Walls

Pressure = Cp • W - Ib/ff 2 (5.4)

where Cp = constant load factor = 0.2 g's

W = surface weight of wall - Ib/ft 2

This is a highly simplified method for specifying the dy-

namic loads imposed by earthquakes in terms of an equiv-

alent static inertial load. The next level of sophistication

in determining the load is often based on the use of a

shock response spectrum such as illustrated in Figure 5.19.
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FIGURE 5.19 Average Velocity Displacement and Acceleration

Response Spectrum Equivalent to the El Centro,

1949 Earthquake (Solid Lines) Compared to the

Maximum Envelope of the Observed Ground

Motion for this Earthquake (Dashed Line)

(Data from Reference 5.4)
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Damage by Earthquakes (Reference 5.4)

This shows the envelope of the maximum displacement,

velocity, and acceleration response of the simple mass-

spring system illustrated in the figure with varying degrees

of damping (specified by the critical damping ratio c/c )
C

for a lateral base motion equal to the actual ground mo-

tion recorded for a typical "design" earthquake. The

envelope of the ground motion recorded for the El Centro,

California 1940 earthquake is also shown in thefigure.

Buildings exposed to this severe input motion would ex-

perience a lateral motion at about 0.33 g at frequencies

above 2 Hz and about 0.9 ft/sec at frequencies between

0.3 and 2 Hz. This is a severe lateral load on buildings

which generally have lateral bending resonance frequen-

cies in this frequency range.

Regardless of the methodused to specify earthquake loads,

the important point is that earthquake loads are indeed

dynamic loads with maximum energy in the same general

frequency range as primary resonances of buildings.

Buildlngs designed to withstand these loads will therefore

exhibit different, and generally more resistant, dynamic

response to sonic or blast loads near rocket test facilities.

5.3.2 BLAST DAMAGE CRITERIA FOR STRUCTURE

Damage to structure due to an explosion is caused by two

ma jar phenomena which accompany any blast.

• The rise of an excess of pressure over normal atmos-

phere, called overpressure, and the dynamic pressure

due to the wind originated by the explosion.

• The fragmented missiles which are generated by the

explosion.

Design criteria for these effects are presented in this
section.

The formation of the shock wave from propellant explosions

and the relationships of its parameters are discussed in de-

tail in Chapter 6 where design charts are presented for pre-

dicting these last parameters. For convenience in the

presentation of blast damage criteria to buildings, the

blast parameter curves in Chapter 6 are plotted in the

modified form illustrated in Figure 5.20.

The peak overpressure and peak dynamic pressure are

plotted versus the equivalent positive phase duration with

distance and TNT weight as parameters. These modified

figures are very useful for determining the environmental

condltlonscreated by any propellant explosion with known

equivalent TNT yield. As shown by Figure 5.20, lines of

constant positive phase impulse become straight lines with

a slope of -1 on this plot. This provides a simple form for

identifying the equivalent triangular pulse load on the

structure for a given distance R and equivalent TNT

weight (WT). Detailed plots for the overpressure Pso and
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dynamic pressure qso for propellant explosions are shown in

this form _n F_gures 5.21 and 5.22.

5.3.2.1 Blast Damage Due to Overpressure and

Dynamic Pressure

To predict the exact degree of damage occurring foany

specific structure due to propellant explosions, detailed

calculations are required, as shown in Section 8.2,

Chapter 8, and exact generalizations cannot be specified.

However, by combining the information collected from

blast damage tests on structures with trends indicated by

analytical investigations, simplifled design criteria for

blast damage to structures can be developed. These are

presented here as a design tool for predicting the degree

of blast damage expected for common types of structures
located near rocket launch and test facilities.

The following data are derived primarily from Reference

5.5 and are based principally on surveys made at Nagasak_
and Hiroshima and on the results of blast tests carried out

at the Nevada test site in 1953 and 1955. The types of
buildings considered are:
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I. Wood-Framebuilding

2. Masonry,load-bearingwall,apartmenthousetype
buildings

3. Blastresistant,reinforcedconcretebuildings

4. Earthquakeresistant,reinforcedconcreteframeoffice
typebuildings

5. Reinforcedconcreteframe,officetypebuildings

6. Earthquakeresistant,steelframe,officetypebuiId-
ings

7. Steelframe,officetypebuildings

8. Steelframe,industrialbuildings.

Thebuildingsincategories1through3aremostsensitive
toblastoverpressure,whiletheremainingtypesaresensi-
tivetodynamicpressureandareusually called drag-type

buildings. Three degrees of damage are considered.

• Slight Dama.qe - A degree of damage to buildings

resulting in broken windows, slight damage to roofing

and siding and blowing down of light interior par-
titions.

• Moderate Damage - The principal members are dam-

aged so that the effective use of the structure is pre-

cluded unless major repairs are made.

• Severe Damage - A degree of damage that precludes

further use of the structure without essentially com-

plete reconstruction.

Ranges of peak blast overpressure values which may cause

slight damage are presented in Table 5.1 . For wood frame

and masonry buildings, the expected damage depends pri-

marily on the peak blast overpressure because of the short

periods of vibration and small plastic deformation at failure

for this type of structure. Criteria for moderate and severe

damage for this type of structure are listed in Table 5.2.

TABLE 5.1

BLAST DAMAGE CRITERIA FOR FAILURE OF

PEAK OVERPRESSURE- SENSITIVE ELEMENTS

(Data from Reference 5.8)

Structural Element

Glass windows, large and
small.

Corrugated asbestossiding.

Corrugated steel or
aluminum paneling.

Wood siding panels, stand-
ard houseconstruction.

Failure

Shattering usually,
occasional frame
failure.

Shattering.

Connection failure

followed by buckling.

Usually failure occurs
at the main connec-
tions allowing o whole

panel to be blown in.

Approximate
Incident Blast

Overpressure
(psi)

0.5-1 .0

I .0-2.0

I .0-2.0

1.0-2.0

TABLE 5.2

LIMITING VALUES OF BLAST PEAK OVERPRESSURE

FOR WHICH DAMAGE IS INCURRED BY THE TYPE

-_,(1)OF STRUCTURE INDICATEL,

Type of

Building

Moderate

Damage

Severe

Damage

psi psi

Wood-Frame 2.0 3.3

4.0

Masonry, Load

Bearing Wall,

Apartment

House Type

4.7

(1) Data from References 5.5 and 5.8.

Figures 5.23 through 5.28 show the zones of moderate and

severe damage for each type of building from 3 to 8 as de-

scribed above. These curves have been plotted over sim-

plified versions of Figures 5.21 and 5.22 so that it is pos-

sibleto predict the damage in terms of the TNT-equivalent

weight and distance or in terms of other shock parameters

(such as, peak overpressure (Pso) or peak dynamic pressure

(qso), equivalent positive phase duration and positive im-

pu Ise).

1oo

•_ 10
i

o

' 1.0o

0.1
lO

t
pe

100 1000

- Equivalent Positive Phase Duration - Milliseconds

FIGURE 5.23 Blast Damage Criteria for Reinforced Concrete Buildings
(Criteria Adapted from Reference 5.6)

Figures 5.24 through 5.28show that the limiting curves for

the moderate and severe damage are approximated by the

isoimpulse lines. However, the damage criteria lines ap-

proach lower values of impulse in the high pressure region.

This divergence can be explained by the fact that the

equivalent TNT weight for propellant explosions is based

on the calculated terminal yield at a large distance from

the explaslon. In the close field, the apparent yield is

smaller than the actual yield (as shown in Figure 6.30 of

Chapter 6). Therefore, if the actual value of impulse yield
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is used todetermine the equivalent TNT weight, the limit-

ing curves would approach values of constant impulse.

Criteria for limiting values of impulse for types 3through8

are listed in Table 5.3. Figures 5.23 through 5.28 show

that the damage criteria curves tend to become horizontal

lines in the low pressure region, approaching minimum

values of peak overpressure or peak dynamic pressure under

which no damage occurs. These limit values are listed in

Table 5.4.

The minimum values of both peak overpressure and peak

dynamic pressure are presented in this table. Blast resistant

reinforced concrete buildings are most sensitive to over-

pressure while for the others the limiting value is dynamic

pressure.

The blast design criteria presented in this section must be

employed with discretion since they are based on

• Limited experimental data, and

• A necessarily rough grouping of structure into a

limited number of types without any differentiation

for different resistance characteristics of buildings

within each type.
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FIGURE 5.24 Blast Damage Criteria for Earthquake-Resistant Office-

Type Building (Criteria Adapted from Reference 5.6)
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However, the blast criteria presented in this section pro-

vide a comprehensive summary useful to the designer for

initial evaluation of blast hazards when siting and laying

out rocket test facilities.
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FIGURE 5.26 Blast Damage Criteria for Steel Frame Earthquake-

Resistant Office-Type Building (Criteria Adapted

from Reference 5.6)
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TABLE 5.3

LIMITING VALUES OF BLAST POSITIVE PHASE

IMPULSE FOR WHICH DAMAGE IS INCURRED BY

THE TYPE OF STRUCTURES INDICATED

Type of

Building

Moderate

Damage

Severe

Damage

psi x msec psi x msec

Earthquake Resistant
Reinforced Concrete 400 750

Frame, Office Type

Reinforced Concrete
200 400

Frame, Office Type

Earthquake Resistant

Steel Frame, Office 600 1000

Type

Steel Frame
200 650

Office Type

Steel Frame
100 200

Industrial Type

TABLE 5.4

MINIMUM VALUES OF PEAK OVERPRESSURE AND

PEAK DYNAMIC PRESSURE UNDER WHICH NO

SEVERE OR MODERATE DAMAGE OCCURS

Type of
BuHdlng

Blast Resistant

Reinforced Concrete

Earthquake Resistant
Reinforced Concrete

! Frame, Office Type

Reinforced Concrete

Frame, Office Type

Earthquake Resistant
Steel Frame,
Office Type

Steel Frame,
Office Type

Steel Frame

Industrial Type

Moderate Damage

Peak

Peak Dynam;c
Overpressure Pressure

(psi) (psi)

18.0 6.5

7.8 1.3

5.2 0.6

7 __8 I .3

5.0 0.55

2.8 0.18

Severe Damage

Peak

Peak Dynamic

Overpressure Pressure

(psi) (ps;)

21.0 8.8

10.0 2.2

7.0 1.1

14.0 4.0

10.0 2.2

4.2 0.4

5.3.2.2 Blast Damage Due to Fragmentation

A significant amount of blast damage to structure can be

due to the fragmented materials which are thrown out at

high velocity by the explosion. These fragments originate

both from the rocket and from the adjacent structure and

ground surface.

The following important parameters can be predicted for

the fragments coming from the rocket body (Reference 5.6).

• The striking velocity of a fragment that impacts a

target at some distance from an exploding rocket.

• The depth of penetration into mild steel.

• Maximum fragment distance.

Str_klng Velocity - The velocity, Vs, with which a frag-

ment strikes a target at a distance R, away from an ex-

ploding rocket isa function of the initial velocity, mass,

and average presented area of the fragment. The striking

velocity is found from the following equation.

-kR
V s = V o e (5.5)

where

A

k = CD-- m Pa

V s = striking velocity (ft/sec)

V
O

= initial velocity (ft/sec) [-"=6400 ft/sec for

rocket explosions according to Gurney Law

(Reference 5.6)]

R = distance traveled (ft)

C D = drag coefficient (see Table 8.2.1, Chapter 8)

- average presented area per unit mass

(ft3/Ib-sec 2) (Table 5.5)

PO
= air density

0.00238 Ib-sec2/ft 4 (59°F at sea level)

TABLE 5.5

STEEL FRAGMENTS

PRESENTED AREA/MASS (A/m)

(Data from Reference 5.6)

I Mass ! Sphere Cube
(oz.) j ft2/Ib ft2/Ib

1,/8 i 0.098 0.122

1/4 I 0.078 0.097
1/2 f 0.062 0.077

. i
0.049 0.061

Depth of Penetration - The depth of penetration of irregu-

lar fragments into mild steel can be computed by the fol-

lowing Demarre's empirical equation (Reference 5.6)

4/3

d=0.112 ml/3(_s ) (5.6)

where
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d = depthofpenetration(inches)

m : mass(ounces)

V = striking velocity (ft/sec)
S

The graph of Figure 5.29 is a plot of the depth of pene-

tration versus striking velocity for fragments of 1/8, 1/4,

1/2 and 1 ounce.

1.6 i , i i I

•
, 1.2 4

, 0.4

0 I I I I I

2000 3000 4000 = 5000 6000 7000

V - Striking Velocity - ft/sec
s

FIGURE 5.29 Depth of Fragment Penetration into Mild Steel

vs Striking Velocity (Reference 5.6)

Maximum Fragment Distance - Figure 5.30illustrates the

observed maximum range reached by all types of fragments

as a function of the equivalent explosive weight. The

upper bound of this curve is recommended as a design

criteria for maximum range of blast-generated missiles when
calculations outlined above cannot be made.
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Fragments Generated by the Explosion

(From Reference 5.61

Information for the fragmentation from the ground is rela-

tively scarce. However, some data are available con-

cerning the missile density distribution as a function of

fragment size, equivalent explosive weight, ground ma-

terial and distance from the explosion.

Figures 5.31 and 5.32 present empirically derived curves

of density of ejecta from the ground versus distance from

the explosion for 5-, 100-, and 500-ton explosions over

clay and basalt soils.
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For other groundmaterlals and charge weights, the follow-

ing relationship can be used to determine ejecta denslty
(Reference 5.6)

$ -- /¢ R-n W n-1 (5.7)

where

8 = ejecta density (Ib/sq ft)

R = distance from the explosion (ft)

W = equivalent explosive weight (tons)

= _ 2.93 for W_<50tons
/ 3.65 for W >50tons

K constant tabulated in Table 5.6 for different

earth media.

TABLE 5.6

CONSTANT K TO BE USED IN

EJECTA DENSITY PREDICTIONS

(Reference 5.6)

K K

Earth Material Up to 50 Tons 50 Tons and Up

Desert Alluvium

Basalt

Residual Clay

Clay (Unsaturated)

Clay (Saturated)

Limestone

8.64 x 103

I .77 x 103

2.43 x 104

6.66x 103

1.34 x 104

2.60 x 103

9.24 x 104

1.89 x 104

2.59 x 105

7.10x 104

1.43 x 105

2.77 x 104

5.3.3 CRITERIA FOR ACOUSTIC LOADS ON

BUI LDINGS

A criteria for acoustic loads on wall structure can be ex-

pressed in the form of a critical 1/3 octave band sound

level at the fundamental frequency of a wall which is the

approximate threshold for acoustically induced fatigue

failure. The analytical methods by which this criteria is

developed are covered in detail in section 8.1.5, Chapter

8. From this analysis, it can be shown that the critical

1,/3 octave band sound pressure (rms-psl) can.be given by

P(f)c-_ _ _"
CLa c f wmn

KFFJ E
sepmn

(5.8)

where
c L = longitudinal wave velocity in bars of

wall material - in/sec

= in 2o c critical stress in wall - Ib/

K = shape factor'1.57 for a simplys
supported plate with an aspect
ratio of 2:1

F = stress concentration factor
C

F = effective peak to rms ratio for

P random response

J = joint acceptance (a relative effective

mn driving force) for mn th mode of panel

E = modulus of elasticity - Ib/in 2

Q = resonant amplification factor for
mn mn th mode

w = surface weight of wall - Ib/in 2

f = natural frequency of mn th mode - Hz.
mn

Applying this expression for a number of common wall

materials, the acoustic criteria curves shown in Figure

5.33 are developed. These are based on a typical simply

supported wall with an aspect ratio of 2:1, a stress con-

centration factor of 1.5 and appropriate values for the

remaining constants as defined in Chapter 3,8, and 12.
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FIGURE 5.33 Acoustic Environment Cr:terla for Damage to Walls

and Windaw$. Based on Critical I/3rd Octave

Band Sound Level at Fundamental Frequency of

Panel.
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It must be emphasized that these curves define the critical
I/3 octave band level at the Fundamental natural fre-

quency of the wall. By superimposing a predicted envi-
ronment on these curves_ the possibility of acoustically
induced Failure is readily determined.

5.3.4 CRITERIA FOR SONIC BOOM LOADS

The structural elements which are most sensitive to sonic

boom loads are llghtwood-Frame walls and ceilings and
windows. It is shown in Section 8.3 that the maximum

stress in wood-frame members For houses exposed to sonic
boom loads is given approximately by

where

areax---28 Po -psi

Po = sonic boom overpressure in Ib/Ft 2

(5.9)

For controlled sonic booms in populated areas, the over-

pressures will be generally less than 5 Ibs/sq. ft and will
not generate significant stresses in wooden building Frame
members.

Stresses developed in plaster and gypsum board walls may
be as much as twice the value predicted by equation 5.9.
Stresses imposed by normal sonic booms on such structure,
will not be expected to cause Failure, providing the
material is in good repair.

Window Damage Criteria for Sonic Boom Loads

A similar criteria is developed in Section 8.3, Chapter 8,
for sonic boom damage to windows. It is shown that no
sonic boom damage to windows is expected for

(a)2 < 0.8 106 Ib/sq. ft (5.10)Po h - x

where a/h = ratio of average side dimension to
thickness.

Standard building codes for windows restrict the maximum
value of a/h to approximately (Reference 5.9)

a_. < 330 ../'L"'_-
h -

where a/b = window aspect ratio

For controlled levels of sonic boom overpressure, and for
windows in good repair, these two criteria combine to in-

dicate that sonic boom damage to windows is unlikely.

5.4 DESIGN CRITERIA FOR PERSONNEL
ENVIRONMENT

Detailed working values and techniques for establishing
personnel protection design criteria are given in Chapter
10. Summarized values are presented here to provide a
general indication of the types and magnitudes of criteria
to be expected for personnel protection.

5.4.1 ACOUSTIC ENVIRONMENT CRITERIA

The primary criteria elements For on-facility personnel in a
noise environment deal with protecting against hearing loss
and providing a suitable environment for necessary voice
communications. For people in adjacent communities, the
acoustic environment criteria are set by levels Found ac-
ceptable to the public.

5.4.1.1 Hearing Damage Risk Criteria

Figure 5.34 gives the hearing damage risk contours for

limiting daily exposure to noise for daily durations from
less than a minute to 8 hours. For Frequencies below 1000
Hz, where most of the acoustic energy of large rockets is
produced, 135 dB is themaximum allowable exposure level
without ear protection, regardless of the time duration.
Therefore, hearing protection is a more restrictive criterion
than the threshold of pain, Figure 5.34, which is approxi-
mately 140 dB. Air Force Regulation 160-3, which gives
slightly more conservative damage risk contours, specifies
a maximum exposure level at 150 dB under any condition
(with ear protection). No effect on working efficiency
occurs at sound pressure levels less than 90 dB, a less re-
strictive criterion than the 8-hour hearing loss contour.

At Frequencies below the range of hearing damage risk
contours (below 100 Hz), limit criteria for noise are set by
the unpleasant effects of induced body vibrations, Figure
5.35, providing ear protection is used. The most sensitive
range of Frequencies is 30-50 Hz, where levels above 100-

120 dB become unpleasant. There is no evidence of per-
manent damage for sound pressure levels up to 153 dB.

5.4.1.2 Criteria For Voice Communication in Noise

A widely used parameter for estimating the speech inter-
ference qualities of a noise environment is the Speech
Interference Level (SIL), which is the arithmetic average
of sound pressure levels in three octave bands in the speech
range (Chapter 10). Table 5.7 summarizes the values of
SIL which barely permit reliable speech intelligibility at
various talker-llstener distances and voice levels.

5.4.1.3 Community Annoyance Criteria

A currently preferred method of predicting community re-
sponse (likelihood of complaints or group action) to noise,
is based on the relation behveen data on complaints and
the corresponding values of the noise on the Composite
Noise Rating (CNR)scale shown in Figure 5.36. The CNR
scale shown is based on statistical results for individual

subjective response (or "noisiness" judgments) on the PNdB
scale, modified by weighting factors to account for

• Time histories of noise stimulus exposure.

• Background noise.

• Temporal Factors; time of dayr time of year.

• Frequency of firings.

• Previous exposure

• Population distribution
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TABLE 5.7

SPEECH INTERFERENCE LEVELS* THAT BARELY
PERMIT RELIABLE SPEECH COMMUNICATION

Distance

(ft)

0.5
I
2
3
4
5

6
12

Voice Level (Average Male)

Normal Raised

71 77
65 71
59 65
55 61
53 59
51 57
49 55
43 49

Very Loud Shouting

83 89

77 83
71 77
67 73
65 71
63 69
61 67

55 61

*Average octave band sound level. In decibels

re: 0.0002 microbar in the frequency range from
600 to 4800 Hz.
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Significant communitycomplaint levels can be expected if

CNR values of 95 dB are exceeded, and a 6 PNdB increase

in CNR corresponds to a doubling of complaint response.

5.4.2 BLAST CRITERIA

Personnel in exposed places at the time of an explosion

accident would be subject to direct blast effects such as

eardrum rupture or lung damage as well as such secondary

effects as injury by blast-generated missiles.

Table 5.8 gives threshold blast overpressures which would

produce the direct effects_ for fast rise-time Iong-duratlon

blasts typical of propellant explosions, both for personnel

in open areas and for personnel in front of reflecting walls

(which increase the effective overpressure). During rocket

firing operations, the minimum safety requirements (dis-

tance) imposed by blast damage criteria (2 psi overpressures)

will tend to predominate over hearing risk criteria.

When safety considerations include injury by blast-

generated missiles or glass splinters from a broken window,

minimum personnel distance from the blast source is in-

creased by a factor of about 5.7, based on a maximum

allowable free field blast overpressure of about 0.2 psi to

avoid window breakage, making hearing protection criteria
even less relevant.

TABLE 5.8

THRESHOLD BLAST PRESSURE FOR PRIMARY

EFFECTS OF FAST RISE TIME - LONG

DURATION BLAST PULSE

Effect

Ear Drum Rupture

Lung Damage Threshold

Lethality 1% Fatalities

(t:> 0.1 sec) 50% Fatalities

99% Fatalities

INCIDENT PRESSURE

No With

Reflection Reflection

(psi) (psi)

5 2.3

10--12 4.4--5.1

30-42 11-15

42-57 15-18

57-80 19-24

(t; is the duration of the positive phase of the blast .)
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5.4.3 SONIC BOOM CRITERIA 5.4.4 VIBRATION-ENVIRONMENT CRITERIA

No acoustic protection is considered necessary for facility

personnel exposed to sonic booms, since no damage either

to the eardrum or of any other kind has been experienced

even for the highest boom overpressures which can be

generated by low-flying aircraft. However, injury by glass

splinters from shattered windows is possible for such extreme
cases.
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Two primary elements enter into vibration control criteria

for personnel: the degree of human tolerance to vibration,

and theeffects of vibration upon task performance. Figure

5.37 summarizes the peak accelerations (for sinusoidal vi-

brations) corresponding to varying degrees of unpleasant-
ness. An absolute tolerance limit is also shown. For the

absolute limit, the most critical frequency region is 2-10

Hz (corresponding to 2-3 g), with the tolerable level in-

creasing rapidly for frequenciesabove 10 Hz. Figure 5.38

shows the criteria regions based on task performance; again

the minimum occurs at 2-10 Hz. The region of "very dif-

ficult" task performance corresponds roughly to the extreme

of the "unpleasant region" in the tolerance criteria (about

0.1 g); and the lower limit of the region of"impossible"

task performance corresponds roughly to the voluntary

tolerance limit below 10 Hz (0.2-0.5 g).
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FIGURE 5.37 Tolerance Criteria for Sinusoidal Vibrations

(See Chapter 10) FIGURE 5.38 Criteria for Vibration Effects on Task Performance
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5.5 DESIGN CRITERIA FOR EQUIPMENT
ENVIRONMENT

Detai led environmental design and control requirements for
equipment are given in Chapter 11. Summarized values
are presented here for protection of equipment in acoustic
noise fields, and against blast and sonic boom.

5.5.1 ACOUSTIC ENVIRONMENT CRITERIA

It is desirable to establishenvironmental criteria forequip-
ment on the basis of

• Reliability requirements

• Equipment type

• Mounting or installation configuration.

Values of recommended acoustic environment limits for the

major generic classes of sensitive ground support equipment
are given in Table 5.9. These limits havebeen determined

from data on failure rates of generic equipment types in a
laboratory environment, multiplied by factors (against
failure rate)to account for operational conditions. Effects
(on failure rates) of exceeding these limit values can be
estimated from data in Chapter 11 .

TABLE 5.9

RECOMMENDED ACOUSTIC DESIGN ENVIRONMENT FOR GROUND
SUPPORT EQUI PMENT

(Maximum Octave Band Sound Levels in the 200 - 2000 Hz

frequency range or at the frequency of internal
equipment resonances - dB re: 0.0002 Microbar)

TYPE OF EQUIPMENT

Electronic Equipment

Accelerometers

Isolated Bending Type
Compression Type

Cabinet or
Shock Mtd.

MOUNTI NG

Rigid Mtg.
or Blast Proof Enclosure

130 140

High Pressure Components 140-150 150-160
(> 10psi)

Pyrotechnic Components -- 150-160

Low Pressure Components
(< 10 psi)

-- 140

145
Isolated Compression Type 155

Heavy Duty Relays, Switches 130 140

Sensitive Relays

Potentlometers 120 130
Commutators

Solid State Components 145 155
Resl stors

Capacitors

Vacuum Tubes

Signal < 10mv 100 110
Signal > 10 mv 120 130

Laboratory Electronic Equipment 100 110
not Covered Above

Ruggedlzed Electronic Equipment 120 130
not Covered Above

Pneumatic, Hydraulic Equipment
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5.5.2 BLAST AND SONIC BOOM CRITERIA

5.5.2.1 External or Unprotected Equipment

Exposed ground equipment near rocket launch and test
stands is subject to damage by blast from propellant ex-
plosions, and the decision must always be made whether to
protect the equipment or consider it expendable. For some
equipment (such as meteorological instruments or radar

scanners) it may be technically infeasible toprovlde a pro-
tective housing without interfering with the function of the
equipment. For equipment that forms part of a launch
tower complex, the blast environment from an explosion
on that pad may be so severe that the equipment must be
considered expendable and designed only to withstand
explosions on other pads.

Peak overpressures from blast and sonic boom can range
from 2 psf for normal sonic boom overpressures, through
120 psf for very low-flying aircraft, to more than 100 psi

near propellant explosions. For any but the most remote

locations or expendable equipment, the design criteria will
therefore be set by the blast environment. For equipment
which must continue to function during an explosion or for
which internal damage must be prevented, Table 5.10
gives blast overpressure limitations and the related acous-
tic equivalents on which they are based.

5.5.2.2 Internal or Protected Equipment

For equipment housed in blast-reslstant buildings, the
criteria for additional equipment protection requirements
must take into account the entire vlbration-excltatlon

path between the blast and the equipment. This requires a
blast load analysis for the particular building structure as
given in Chapter 8, and specific blast or sonic boom over-
pressure criteria cannot be expressed without reference to
the building characteristics. Once the transfer effects of

the building are known, equipment protection criteria in
terms of acoustic noise (for airborne inputs) and vibration
(for structure-borne inputs) can be applied.

TABLE 5.10

ESTIMATED BLAST OVERPRESSURE CRITERIA FOR EQUIPMENT

MALFUNCTION

(Sensitive Equipment)

DAMAGE _MALFUNCTION
(Sensitive (Rugged
Equipment) Equipment)

DAMAGE

(Rugged Equipment)

Octave Band Level at

Equipment Resonance
dB re: 0.0002 mlcrobar

Equivalent Incident
Blast Overpressure

psi
Q=5

Q = Dynamic Magnification Factor

130 .01

150 .11

170 1.0

190 8.0

Q=25
.023

.23

2.2

15.0

5.1

5.2

5.3

5.4
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CHAPTER 6

SOURCE CHARACTERISTICS

The basic character of the sources of sonic loading; rocket

noise, blast overpressure, and sonic boom, ore covered in

detail in this chapter. A thorough understanding of the

source is the essential first step in any detailed analysis of

sonic loading on facilities adiacenttorocket engine launch

and test sites. For this reason, emphasis is placed on the

first two sources.

6.1 ROCKET ENGINE NOISE

6.1.1 INTRODUCTION

The prediction of noise from rocket engines is primarily

dependent on analysis and correlation of measured data.

While the general mechanism for rocket noise generation is

broadly understood, a useful theoretical analysis of the

radiated sound field is not practical within the present state

of the art. Even for subsonic jets, the basic aerodynamic

noise generated by mixing of the flow with the ambient air,

while more complete ly understood theoretically, (Reference

6.1), can not be completely defined without resorting to

experimental data.

For a supersonic rocket exhaust, two basic mechanisms are

responsible for the noise produced. First there is the tur-

bulence shear flow noise, as for a subsonic jet, and which

is associated mainly with the subsonic downstream exhaust

flow. Secondly, there are the sources due to the super-

sonic aspects of the flow; the Math wave radiation of

supersonically convected turbulence, the nozzle boundary

layer lip-shock interaction, and the turbulence shock wave

interactions downstream in the flow of a nonideally ex-

paned flow.

It is believed that the first source is the major mechanism

of the radiated sound, while the other sources have only a

small modifying effect on the total acoustic field.

Additional noise generation will occur from a deflected

rocket exhaust due to interaction of the jetwith the stand-

ing shock wave of the deflector. The details of all these

mechanisms are still under examination, (Reference 6.2)

and the exact proportion of the noise field generated by

each processhas not yetbeen determined. Thus, prediction

methods will rely on measured data and can use theoretical

considerations only in helping to explain the effects of

various flow conditions, vehicle velocity, deflected flow,

and clustered rocket engine configurations.

The general characteristics of rocket noise can be summar-

ized in the following manner. The noise power generated

for a supersonic (M> 3) rocket exhaust scales proportionally

to the third power of the jet velocity. The sound field

emitted is highly dlrectlonal, and the sound pressure levels

measured in different directions can vary as much as 20 dB
for the same dlstance. Most of the sound is radiated at an

acute angle to the jet flow direction, with the angle of

maximum level increasing with jet velocity. The low fre-

quency noise is generated by the downstream flow, and its

maximum makes a smaller angle to the jet flow than the

high frequency noise, which is radiated from the flow near
the nozzle. The shock wave interaction and Mach wave

noise are formed in the initial part of the flow. It is esti-

mated that up to 25 percent of the noise could be generated

here, although there is some controversy over the relative

importance ofthls type of noise, (References 6.3 and 6.4).

An empirical prediction method for rocket englne noise will

be given in the following sections. Some examples of the

noise field of some large boosters will also be presented,

and the way the sound varies with altitude and velocity is

indicated. Certain empirical curves are also presented to

allow the sound pressure levels to be predicted at the launch

pad area, the umbilical tower, and other regions in the

immediate near field. The effects of water cooling on

noise suppression are also mentioned. Finally, a method

for estimating the temperature and velocity of the exhaust

blast is given.
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6.1.2 DESCRIPTIONOFROCKETNOISE

Theoctavebandsoundpressureobservedatapointdistant
fromarocketexhaustisgivenbythefollowingexpression:

OBSPL=OAPWL+ ¢_ (f De/Ve)

where

- 101og10(r+ h) r+ DI

- a r/1000 + C - 10.5

OAPWL the total acoustic power generated by the

rocket and equals 101og10 q 0.678T Ve+

130 where T is the thrust in pounds and
Ve is the jet exit velocity in fps.

¢P(f De/V e a function which describes that part of
the acoustic power occurring in an octave
band centered at the frequency f, rela-

tive to the total acoustic power. De is
the nozzle exit diameter of the engine.

the distance from the rocket exhaust to
the observer.

= the height of the vehicle above the
ground.

DI = a term that accounts for the dlrectlonality
of the sound field radiated.

o r/1000 = a term toaccount for theatmospheric ab-
sorption of the propagating sound, and

= a factor to allow for the effect of the

vehicle, which affects the total sound pro-
duced, the directivity pattern and the
frequency of the sound heard by the ob-
server.

Each of these terms will be discussed in the following
sections.

6.1.2.1 The Acoustic Efficiency of Rocket Noise
Generation

Acoustic efficiency relates the acoustic power generated
to the mechanical power of a rocket. Measurements have
shown that the acoustic efficiency increases as the jet
velocity increases_ asymptotically approaching a value of
about 0.6 percent fora 10,000 fps exhaust flow. Further,
it is suggested in Reference 6.5_ that an increase in over-
all thrust is accompanied by an increase in acoustic
efficiency.

Figure 6.1 shows a series of measured acoustic efficiencles
for a wide range of chemical rockets. On the basisof these

results, it is recommended that an acoustic efficiency of
1 percent be used in all predictions. This will give a
slightly conservative value.
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FIGURE 6.1 Acoustic Efficiency of Rocket Noise Generation

6.1.2.2 The Spectrum of Overall Noise Power

Figure 6.2 shows the normalized octave band spectrum of
the sound power generated bya rocket, where the values
are obtained by integrating the far field measurements to
obtain the total noise generated. The values are fora free
undeflected flow, and are given relative to the overall

sound power produced by the rocket. This result is for a
rocket exhaust flow only, where the basic flow properties
of velocity and density are reasonably consistent for all
modern chemical rockets. Various other normalizing factors
have been suggested in order to extend these results to in-
clude all flows (References 6.4 and 6.6), but the curve

given here has proved to be most satisfactory for rocket
exhaust flow noise.
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SP--L = OAPWL - 10 log10 A + 0.5 (6.1)

where A is the area in square ft, and
OAPWL is the overall sound power generated in
dB re: 10-13 watts.

-10
o

For clustered nozzles, the diameter used is selected as

the equivalent diameter of a single circular nozzle,whose
exit area equals the sum of all the nozzles. This approach
is only directly applicable for closely spaced nozzles.
When the nozzles are widely spaced, then a complicated
flow pattern occurs, and it will be necessary to solve this
flow to accurately predict the noise generated. The sound
generated by the different flow reglons must be determl ned.
Because of the relatively slow rate of exhaust flow width
growth, compared to subsonic jets, the individual nozzle
flows do not mix and combine immediately. Therefore, the
sound generated by widely spaced nozzles can have
similar characteristics to that of a single nozzle. For most
clustered flows the two techniques, of either considering
the nozzles as having individual mixing flows or taking a
sufficiently large area to geometrically include all the
nozzles at the exit plane, prove equally inaccurate. The
former gives a spectrum that peaks at too high a frequency;
the latter gives a spectrum that peaks at too low a
frequency. The use of an equivalent single nozzle exit
area gives a good representation,and is recommended as a
simple alternative to the flow solution technique of
Reference 6.4.

2
For spherical radiation the value of A is 4_r , where
r is the distance to the observation point in feet. For
hemispherical radiatlon,when the rocket booster is on the

ground, the area becomes equal to 21tr 2. As the rocket
climbs through the atmosphere,for an observer on the ground
some distance from the launch point,the area is a sphere
with a segment removed. The area A is then given by,

A = 2Tr(r + h) r (6.2)

where r is the distance from the rocket to the observer

and h is the height of the rocket above the ground.

6.1.2.3 Inverse Square Radiation

The sound pressure level reduces with distance from the

source,asthe acoustic power spreads over an increasingly
larger area. A convenient measure of the average sound
level in the far field of a source is the Space Average
Sound Pressure Level (_'E). This is defined as the sound
pressure level that would be observed if the sound was
radiated equally in all directions.

At normal atmospheric conditions,

6.1.2.4 Directivlty of Sound Radiation

The sound field radiated by rockets is highly directional .
Figure 6.3 shows the recommended directivity curves for
calculating the sound field. The values are based on a
series of experimental measurements (References 6.4,

6.7, 6.8 and 6.9) and are given for Strouhal numbers

based on the exit flow conditions. These curves can easily
be extended, by following the basic shift of a standard
curve, for frequencies outside the range presented. The
curves indicate the characteristics of rocket engine noise,
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with a highly directional sound field and the angle of
maximum radiation increasing with increasing frequency.
These curves are plotted to a normalized value such that
each curve, when integrated over a spherical surface, will
give a zero value. In use, the Directlvltylndex is added
to the Space Average Sound Pressure Level to give the

required directional properties of the rocket engine sound
field.

6 o1.2.5 Atmospheric Attenuation

The sound radiated will also be attenuated by the effect of
atmospheric absorption. This phenomena is discussed in
detail in Chapter 7, and Figure 6.4 shows the curve used

for calculation purposes in this chapter. The curve defines
empirically the observed increased attenuation for increas-
ing frequencies. This suggested value is a conservative
estimate, based on measurements for rocket noise propa-
gation and is preferred for the calculations. The data
used for this curve were llmlted to frequencies below 1000
Hz, and the recommended value is given by the following
empirical expression.

a = 0.02 f0.566 dB/1000 ft (6.3)

This expression should not be used for frequencies above
1000 Hz.
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6.1.3 VEHICLE VELOCITY EFFECT ON THE SOUND
GENERATED

The motion of the vehicle through the atmosphere will
cause three effects on the sound generated.

a) The overall noise generated will bereduced be-

cause the relative velocity of the jet to the
atmosphere will be reduced.

b) The dlrectivlty pattern of the sound radiated will
change.

c) The frequency of sound radiated will change due
to the Doppler effect.

Examination of the results of Reference 6.10 indicates

how the directivity change can be simply allowed for by
shifting the angle of radiation to a newvalue. Figure 6.5
shows the angle of maximum sound radiation in several

frequency bands as a function of vehicle velocity, as
obtained from thedlrectlvlty curves of Reference 6.10.
These values were obtained by a reverse prediction calcu-
lation using measured acoustic results from the Saturn 1
vehicle.These results show a strong trend for the maximum

angle of radiation to decrease with increasing vehicle
velocity. The slope of the mean line through the data is

Z_(Omax )
A------_--'= - 0.021 deg/fps

v

(6.4)
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FIGURE 6.5 Velocity Effect on Directivlty

The effect of velocity can be included by shifting the dir-
ectivity curves towards the zero angle axis by the value
given by expression (6.4). In practice the value of the
angle between the rocket exhaust flow direction and the

radius to the observer is increased by 0.021 V v in reading
the Directivity Index from Figure 6.3. This has the ad-
ditlonal effect of reducing the total noise generated,
since now the Directlvlty Index curve integrates over o
sphere to give an increasingly negative value as the ve-
Ioclty increases. A series of check calculations has in-

dicated that this inherent correction is too great and so a
further correction C is added to the level calculated.
This is equal to the vehicle velocity times a constant
given by,
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C,/'V v = 0.00135 dB/fps (6.5)

In combination with the shift in the dlrectivity curve, this

produces the required reduction in the level to account for

forward velocity effects on sound level.

To apply the Doppler frequency effect, the octave band

sound level is calculated for a given octave band fre-

quency and then the frequency is corrected according to

the equation,

)p o +'Vv cos 0

where f
O

O

= octave band frequency at zero velocity

= speed of sound in air

V v = vehicle velocity

the angle between the exhaust fl ow di rec-

tion and the line from the vehicle to the
observer.

Obviously, these corrections cannot be applied indefinitely

for an ever increasing velocity, since this would produce a

noise peak at less than zero degrees. A restriction is

therefore placed on the application of these corrections.

They are not to be applied to velocities over 1200 fps.At

higher velocities, the 1200 fps corrections are used. This

is a falr restrlction, since the sound field radiated back-

wards from the rocket rising vertically at the speed of sound

will be generally well below the maximum levels during
launch.

6.1.4 FAR FIELD PREDICTION OF ROCKET

ENGINE NOISE

A technique for predicting the far field noise of a rocket

rising through the atmosphere will now be given, based on

the discussion of the previous two sections.

The information required is,

Rocket Thrust

Exit Gas Velocity -

Nozzle Exit Diameter-

No. of Nozzles-

Trajectory Height-

Vehicle velocity -

Distance to observer from point

immediately under the Rocket

T pounds

V e fps

De ft
n

h ft

V v fps

d ft

The actual trajectory of the vehicle can be used to deter-

mine the angle of the vehicle to the line jolnlng the rocket

and observer, and to calcu late the distance to the observer.

For a vertical trajectory the distance to the observer is

simply r = (h 2 + d2) 1/2, and the angle of sound radiation

is given by 0 = tan-ld/h

Steps in the Prediction Method

a) Calculate total noise power generated

OAPWL = 101og100o00678TV e+130 (6.7)

dB, re: 10 -13 watts.

b) Calculate spectrum of overall power generated.

For each octave band center frequency to'

calculate fo De/Ve

For multi-nozzle rockets use equivalent diameter

De = D_- and calculate

fo D_/%

Then the Octave Band Power Level (OBPWL) is

determined from Figure 6.2.

c) Calculate the Space ,Z'verage Sound Pressure

Level for the octave band,

OBSPL = OBPWL- 101ogl0(r + h)r

- 10.5 (6.8)

d) Calculate the angle from observer to racket

0 = tan -1 (d/h)

for vertical trajectory.

e) Calculate corrections for vehicle velocity

0' = 0 + 0.021 Vv (6.9)

(e and B I in degrees)

f)

C = 0.00135 Vv dB (6.10)

Obtain Directivlty Index, DI, for octave band

from Figure 6.3, using the value of O'.

g) Correct the octave band center frequency to

account for the Doppler frequency change .

p o c + cos 0

where c is the speed of sound in the atmosphere

and may be taken to be 1100 ft/sec, for

practical purposes.

h) Determine Atmospheric Absorption rate (a) from

Figure 6.4,at the Doppler frequency fp,andthe
Total Atmospheric Absorption as

a r/1000 dB

i) Calculate the predicted Octave Band Sound Pres-

sure Level

OBSPL = OBSPL + DI- ar/1000 + C (6.12)

dB, re. 0.0002 microbars.

j) Repeat steps b) to i) for other required octave

bands. The resultant values are Octave Band

Sound Pressure Levels for octave bands centered
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k)

6.1.5

at the Doppler frequencies f •P

Plot spect_m to determine levels in required
octave bands centered on standard frequencies
(2, 4, 8, 16, 32, 64, 125, 250, 500 etc. Hz.).

COMPARISON OF MEASURED AND
PREDICTED VALUES

Reference 6.11 gives the measured far fleld sound pressure
levels during the launch of the SA-6 vehicle.

The relevant parameters are approximately,

Thrust = 1.3 x 106 pounds
Nozzle Exit Dia. = 3.8 ft
No. of Nozzles = 8

Exit Gas Velocity = 8 x 103 fps.

The trajectory for this vehicle was determined, and the
sound history at three observation points calculated using
the prediction methods of Section 6.1.4. The process was
computerized and the empirical prediction curves fitted
by polynominal expressions where appllcable.Some of the
calculated results are compared with the measured levels
in Figures 6.6 to 6.8. The measured one-thlrd octave
band results have been converted into octave band levels

for this comparison. The distances chosen for the calcula-
tions are not exactly equal the distances to the measuring
stations, which were set at various positions in different
directions to the launch point. However, a comparison
with similar distances is sufficient to show the agreement,
without the need for correcting for the different distances.

The scatter inherent in the measurements, due to atmo-
spheric focussing and attenuation effects, means that
several observation points in different directions have to
be considered to validate the prediction method.

In Figure 6.6, the sound pressure level at a point 17,100
ft. from the launch pad was calculated and is compared
with the measured value at an observation point (Hangar
D), 16,890 feet distant from the launch pad. The observed
values are for the time 34 seconds after lift off, and the

time necessary for the sound to propagate to the observa-
tion point is included in the calculations. The agreement
is fair. The measured results show considerable scatter,

anda peaked spectrum. Obviously, a prediction technique
based on a smoothed curve through many measured data
pointswill not account for minor variations in the spectrum
shape observed for any one measurement. Such random
variations can be accounted for by adding an appropriate
design margin when predicting sonic loads on buildings.
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Figure 6.7 shows the measured and far field results for a
distant ground point for a time 100 sec.after llft off_ The

calculated resu Its are for a ground point 64,000 ft. distant
from the launch pad. The measured results are for three
pointsr 53,000, 74,000 and 87,000 ft. from the launch

pad. They are all in different directions and should be
within :t: 2 dB of each other based only on the different
inverse square law loss. However, the degree of scatter

that is actually observed in the measured levels is con-
siderable and is indicative of unpredictable propagation
anomalies discussed in Chapter 7.The measured data were
also corrected for spreading and attentuation losses(based
on Figure 6.4) to a distance of 64,000 ft. and then
averaged. As shown in Figure 6.7 this average measured
level illustrates more clearly the validity of the prediction
method which is based on nominal propagation conditions.
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Figure 6.8 shows the time histories of the overall levels at

three distant points, and the calculated levels for 64,000 ft.

from the launch pad. The calculated results, indicated by

the open circles, provide a reasonable estimate of an aver-

age of the measured data. However, the latter exhibit

considerable scatter. During the early part of the flight,

points B and C, at approximately the same distance, have

comparable sound levels, but are 10 to 15 dB below point

A which is about 24,000 ft. closer. On the other hand,

during the latter part of the flight, points A and B, in the

same direction from the pad, show similar sound levels but

exceed the levels at point C by about 10 dB.

These results indicate two points. First, there is the

reasonably good agreement between the predicted and

average measured results. Second, a wide range of scatter

is shown for the measured levels for points at a similar dis-

tance, but different directions from the rocket. These

differences are due to; wind effects, atmospheric focussing,

and effects of the trajectory. Therefore, the reader is

cautioned that the calculated results represent a nominal

prediction for an average day. Thus, the calculated

values can be used to give the expected "mean" levels.

An estimate of any possible increase due to propagation

anomalies can be obtained from Chapter 7to determine

possible maximum levels.
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6.1.6 NOISE FIELD PRODUCED BY LARGE BOOSTERS

The calculated results of the last section were obtained

using a computerized version of the prediction technique

given in Section 6.1.4. This program was then applied

to a series of large boosters, both existing and proposed,

described in References 6.15 and 6.16, to indicate the

expected far field sound levels that would occur during

the flight of such vehicles. The details of the boosters

considered are listed in Table 6.1 , which also gives the

calculated overall sound power generated. They were all

considered as following the trajectory given in Figure

6.9 , which is typical of those for the Saturn vehicles.

The levels were calculated for the following three

observation points, on the assumption that the booster was

climbing vertical ly.

Point a)

b)

c)

1000 ft. typical of the distance to the edge

of the launch pad.

17,100 ft. typical of the distance to the

nearest inhabited building during a launch

at the Kennedy Space Center.

64,000 ft. typical of the distance to the

nearest civilian inhabited areas.

Other vehicles were considered, but those listed are

typical of existing and proposed large boosters. Figure

6.10 shows the octave band spectra of the predicted

noise power for the listed boosters. The largest booster

sound power is characterized by very low frequency con-

tent, and, in fact, most of the sound power will be in the

sub-audible region. However, because of the increased

amounts of sound generated, the levels of the high fre-

quencies will still be significantly higher than for the

Saturn 1 vehicle (Rocket 1).
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FIGURE 6.10 Octave Band Sound Power Level for Large Boosters
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TABLE 6.1

BOOSTERS CONSIDERED FOR THE CALCULATIONS

1

Designation Sat 1B

Thrust
pounds x 106 1.6

Engines 8 x HI

Nozzle
Nominal 3.81
Exit Dia. ft.

OAPWL (1) 209

dB, re:lO -13

watt

Type

2 3

Sat V Ad.Sat
V

7.5 9.0

5 x FI 5 x FIA

11.2 11.75

216.5 218

•"------ LOX - RP

4 5

Sat V I C (2)

+ (3)
Solid Class I

7.5
3.4" 32.4

5xFIA
4x 120" 18x FIA

11.75 11.75
11.2

218.5 223.5

LOX-RP
Solid LOX-RP

6 7

(2) (2)
24-G 33

(3
Class II

18 30.2 55

8

(2)
T 65C

18x HPI 24x HPI 6x 260"

8.42 8.42 23.5

222 224 225

LOX- H2 Solid

(I) Based on 1 percent Acoustic Efficiency

(2) From Reference 6.15

(3) From Reference 6.16

For two of the eight boosters, a complete time history
of sound pressure level at the three observation points
was calculated, and the results are summarized in Figures
6.11 and 6.12. Figure 6.11a shows the octave band
spectrum of sound pressure level at various times for Rock-
et No. 3_ an advanced Saturn V vehicle. The results
show a shift in the sound heard to lower frequencies as
the vehicle rlses.This is the result of the combined effect

of the Doppler frequency shift and the higher atmospheric
absorption for the higher frequency sound. At 17,100 ft.
(Figure 6.11 b) the low frequency noise remains high a'nd
only starts to fall after some considerable time from llft-
off. The high frequency levels fall away very rapidly .
For the 64,000 ft. observation point (Figure 6.11 c),this

effect is magnified, and the low frequency sound remains
high to the final point of the calculations. The overall
level is decreaslngl but this decrease is almost all due to

the reduction in high frequency noise.

The time histories of the overall sound level for Rocket

No. 3 shown in Figure 6.11 dt show a leveling off of the
sound after the initial peak_ Further, this initial peak is

only significant for the nearest observation point. The
leveling off of the sound occurs because the decrease in
sound level due to the greater distance between the rocket
and the observer is off-set by the directionality effect of
the sound field. The Directivlty Index curve gives higher
values as the rocket rises and the angle of radiation
decreases. Once past the peak angle of sound radiation,

the noise falls off rapidly. For the far observation paint_
the sound field remains constant withln 5 dB over the whole

of the initial flight. Therefore, the structures and person-
nel exposed to this level receive a continuous loading for
some 300 seconds.
It must be painted out that these calculations assume a

vertical trajectory. As shown earlier in Figure 6.8, the
measured results for an actual trajectory, which would
include a horizontal down-range component, show signi-
ficant scatter. The discrepancies caused by the different
distances of the real trajectory are compounded by the
variations in sound pressure level caused by the atmospheric
effects. It can therefore be concluded that these calcu-

lated levels are representative of those levels that actually
would occur.

Figure 6.12 shows the calculated results for Rocket Number
8, which was the largest booster considered. Herethe

octave band spectra of sound at the 17,100 feet observation
point are plotted, and they show the very low frequency
content of the sound generated. However, because of the
large size of the booster, the levels at 64 Hz. still remain
very high. Also for this booster, the sound level is not
attenuated so rapidly, because the atmosphericattenuatlon
effects are not so significant at these lower frequencies.
The overall level far the 64,000 ft. point shows a consist-
ent sound pressure level near 110 dB through the whole
initial flight phase. This is similar to the levels experi-
enced directly beneath jet aircraft at takeoff.
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6.1.7 STATIC TEST FIRINGS

For captive test firings, the sound can be calculated in a
similar manner as for the flight cases. The exhaust flow
will normally be deflected to just above the horizontal
direction. Byassumlng that the total flow is in this direc-
tion, the sound pressure levels can be calculatedasbefore,
except that the total sound is now radiated into a hemi-
sphere. Therefore, the area for the calculation of the
Space Average Sound Pressure Level is now

A = 2Trr 2 (6.13)

where r is the distance to the observer.

The directivity curves can be applied as before, the angle
being measured between the deflected flow and the llne
to the observer.

It should be noted that additional ground attenuation can"
occur which will generally reduce the level for an
observer on the ground. However, the possibility of sound
reinforcement by focussing can occur as discussed in
Chapter 7, and this may increase the level. This means
that a wide range of scatter from the calculated value can
occur, and should be recognized in planning for facilities
and equipment" located near the test stands.

6.1.8 WATER COOLING AT TEST STANDS

The addition of large quantities of water into the exhaust
stream is an accepted method of cooling the deflector
during static test firings, and has the added advantage of
causing a reduction in the noise generated. The mass of
the water causes the mixing process of the exhaust flow to

proceed more quickly with a resulting smaller volume of
flow for noise generation. However, it is necessary to add
large quantities of water to obtain significant silencing.

The curve of Figure 6.13 shows the expected decrease in
overall level of the acoustic power generated for various
ratios of cooling water mass flow. These results were
obtained from the values given in Reference 6.12 for
model and full scale rockets.
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The noise reduction will be greatest for the low frequency
sound; the high frequency noise originating from those
regions of the exhaust flow before the water is added. The
estimated reduction of Figure 6.13 should therefore not be
applied directly across the spectrum. Figure 6.14 shows
the recommended reduction in the peak octave band sound
power level, as given in Reference 6.12. The reduction
in the other octave bands will vary with configuration and
the reduction will be greater for lower frequencles and less
for higher frequencies as indicated in Figure 6.14. How-
ever, these results should be used with caution when the
distance of the nozzle from the deflector is greater than
about five nozzle diameters.
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6.1.9 LAUNCH PAD NOISE

The structures in the immediate launch pad area will re-
ceive an intense acoustic loading during the launch phase
and, similarly, equipment and buildings associated with
test stands will have to be carefully designed to eliminate
acoustic response effects. The electronic equipment and
systems in the umbilical tower and rooms in the tower and
base will have to be protected. The following notes indi-
cate how to estimate the external sound pressure levels in
these areas. The problem of prediction is that the rocket
exhaust noise cannot be considered as radiating from a

single point. The sound will be generated over a region
that will be large compared with the dimensions to the ob-
server. A position near the exhaust flow will receive
sound from a series of directions. Also, if the observer is

sufficiently close to the flow, near field effects (hydro-
dynamic effects)will occur, and the sound levels increased
from those simply calculated on the basis of the far field
measurements. The following empirical techniques are
presented to help determine the noise field in this im-

mediate pad reglon.

6.1.9.1 A Point Near the Exhaust Flow

Near the flow, the sound field will be characterized by a
complex distribution of multiple sources. As the observer
moves farther from the flow, then the sources can be

approximated to a point. However, for the large boasters
listed in Table 6.1, this approximation will not be valid
within 1000 ft. of the exhaust flow. The recommended

technique is therefore to utilize the source distribution
given in Figure 6.15. This type of representation is not
strictly correct, since the exhaust flow will contain a
spectrum of sources at each point, and not just a single
frequency. However, the method does allow empirical
results to be quickly calculated. The distance clown the
jet to each source is given in terms of the core length,

x t. This core length is defined by

x t = 3.45 De (1 +0.38M) 2 (6.14)

where M is the exit Mach number of the flow and De
is the exit diameter of the nozzle. For multiple nozzles,
the equivalent diameter is used, as before,

Then, once the total acoustic power and octaveband spec-
trum have been calculated, the source location for each
octave band is calculated, and the distance tothe observer

measured. The dlrectlvity functions of Figure 6.3 are then
used, with the calculated Space Average Sound Pressure
Level, to obtain the Octave Band Sound Pressure Level .
For regions very close to the rocket exhaust, the sound
level can be estimated from near field measurements for

rocket engines which have been reduced to equal sound
level contours, such as shown in Figure 6.16.
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6.1.9.2 Umbilical Tower

For the umbilical tower, a different situation exists. The

maximum level in each octave band will occur at different

times. The exhaust stream will pass by the observation

point on the tower as the vehicle rises, and so the level

on the tower will vary asd_fferent parts of the flow are

presented. For testing purposes, and calculating transmis-

sion losses into the rooms, the maximum level in each

octave band will be required. These maxima will not be

addedto glvea maximum overall level because they do not

occur simultaneously. For this case, to calculate the

maximum sound pressure level in each octave band, the

Space Average Sound Pressure Level is calculated from the

power spectrum using the distance directly from the center

of the exhaust flow to the observation point. This value is

corrected by subtracting a factor for the spread of the

sources at the frequency under consideration.

OBSPL = OBL - 5 (6.15)

dB, re: 0.0002 microbar

The factor 5 dB is calculated by taking - 10 dB for the

jet spreading, based on the calculated source distribution

given in Reference 6.4, and adding 5dB for the direc-

tivlty effect. As an example, the maximum sound pressure
level measured in the 16 Hz. octave band for the

umbilical tower of the Saturn V rocket is calculated as

follows. Assuming the vehicle center I;ne to be30 ft.

from the observation point, and noting the 16 Hz.octave

band power level is 209.6 dB , the Space Average Sound
Pressure Level for this octave band is

OBL16 = 209.6 - 101og10 4tr(30) 2

= 169 dB, re: 0.0002 mircobar

Then the maximum sound pressure level at the umbilical

tower in this octave band is,

OBSPL16 = 169- 5

= 164 dB, re: 0.0002 microbar

6.1.9.3 Deflected Exhaust Flow

When the rocket rises from the pad, part of the exhaust

flow will be vertical from the nozzle to the deflector, and

this length will increase as the vehicle rises. Then, in

calculating near field levels, the two component parts of

the flow must be considered. This is normally done by

utilizing the source location technique of Figure 6.15.

A further effect is caused by the deflector altering the

properties of the jet exhaust significantly from the unde-

flected case. This can cause the characteristics of the

radiated sound field to change. An unconstrained deflector

plate will cause the exhaust flow to spread and produce an
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ellipticalsoundfieldaroundthejetaxisdirection.This
will generallybeadvantageousforpointsontheground,
sincelesssoundwillberadiatedhorizontallycomparedto
theupwardsdirection.Theelliptlcityofthesoundfield
will dependonthespreadingoftheexhaustflowandwill
alsochangewithfrequency.Thehigherfrequencysound,
comingfromtheregionnearer the deflector will show a

greater variation because of the higher aspect ratio of the

exhaust flow cross-sectional area. As the flow continues

downstream, it will tend to form back to a circular cross-

section. Figure 6.17 shews the ellipticlty of the sound

field formed by a flat plate deflector, and is obtained from

the results of References 6.14 and 6.4. The peakoctave

band and overall level give the same effect, which is more

pronounced for the high frequency sound and less pronounced

for the low frequency sound. The corrections for an obser-

vation point on the ground, when the deflected rocket is

fired clown onto a flat plate (¢p = 90 degrees) and turned

horizontal are given in Table 6.2.
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However, it shou Id be noted that most deflectors have sides,

and that the exhaust flow will be contalnedso it issues as

a flow with an even cross-section. In this case, no ellip-

ticity advantages can be obtained for the sound levels on

the ground.

TABLE 6.2

ELLIPTICITY CORRECTIONS FOR FLAT PLATE

EXHAUST DEFLECTOR AND GROUND OBSERVER

Octave Band Correction dB

Peak and Overall Level -4

Peak Plus 1 -5

Peak Plus 2 and above -6

Peak less 1 -3

Peak less 2 and lower -2

6.1.9.4 General Launch Pad Sound Pressure Levels

Because the problem of launch pad acoustic environment

prediction is complicated, it is often best simply dealt

with by prediction from other measured results. Figures

6.18 and 6.19 show the estimated sound level contours for

a rocket of overall acoustic power 216 dB, re: 10 -13

watts. The overall levels are given for the exhaust flow

deflected in one direction in Figure 6.18, and in two

directions in Figure 6.19. The overall sound levels can

be scaled for other rockets on the basis of exit velocity
and diameter as follows.

For two different rocket engines with exit velocities V 1

and V2, and exit diameters, D I and D2, for the same

2 and
acoustic efficiency, the mean square pressures P1

2
P2' at similar positions, r 1 and r2, at the same angle

relative to the exhaust will be approximately related by;

P4 = (D1 /2 / r2 7 (Vl / 3I 71 /
(6.16)

Thus, the sound pressure levels for one may be estimated

from known data for the other by the expression,

SPL 1 = SPL 2-201ogrl/D 1 + 20log r2/D 2

+ 30 log V 1/V 2 (6.17)

Thus, at the same number of nozzle diameters r/D e and

forthe same nominal jet exit velocity, acoustic efficiency

and directlvity factor, the overall sound pressure levels

will be the same at the two similar positions. The exit

diameter should be based on an equivalent or character-
istic diameter of the flow.
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6.1.9.5 Shielding by Buildings

For buildings in the immediate vicinity of the launch pad

area, there will be a shielding effect for those walls fac-

ing away from the rocket. Doors or other openings into

launch pad buildlngswill normal ly be located on such wal Is.

Thus, it will be important to know the external sound levels

on shielded walls containing low sound transmission loss

paths. The shielding effect of the building is a function of

frequency and may be estimated on the basis of Fresnel

diffraction theory by using the following parameter.

(s. 18)

-1500
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SPL, dB (re: 0.0002 microbar)

- I000
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I
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500

1000

150 /_

1500 _
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I x , J I
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FIGURE 6.19 Near Field Noise Contours, Static

Firing, Exhaust Deflected Equally

in Two Opposite Directions

where h is the distance down from the top of the build-

ing to the observer, and ;k is the wave length of sound.

Figure 6.20 illustrates the arrangement. In this case the

building is assumed to be at least four times as wide as the

distance h. Then the reduction in each octaveband,from

the level that would exist without a building is

'% = 71ogl0v - 7.1 dB (6.19)

for 0.1<v< 2.0

and

A = 201og10v- 7.1 dB (6.20)

for v > 2.0.
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Oncethevehicle lifts from the pad,this shielding effect

will be reduced and finally lost when the vehicle is ef-

fectlvelyoverhead.This should be borne into consideration

for buildings at the launch pad. Further details on dif-

fraction of sound around buildings are covered in Chapter

8.

_ Observer

\\\\ \\\ \\ \\\\\\ \',, \\\\\\\\

FIGURE 6.20 Building Shielding

6.1 . 10 EXHAUST BLAST VELOCITY AND

TEMPERATURE ENVIRONMENTS

As the vehicle lifts from the launch pad, the exhaust flow

will spill over the deflector opening and the launch area

will be subjected to blast velocity and high temperature

loads. In addition, the effect of ground wind will cause

the vehicle to drift from a vertical trajectory, and the

exhaust gas impingement will spread even further. Also

if the drift is towards the umbilical tower, then the ex-

haust flow can envelop the tower. These Ioadlngs can be

estimated byscaling the normalized results of Figure 6.21.

20

E
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:6 0 ,e. _
0

Ambient

I '_'" ' _

10 20 30 40 50 60 70

Axial Distance - Nozzle Diameters

o) Temperature Profiles

2O

%

Z

}0
0 I0

I
30 ft/sec

200 It/lee
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Axial D_stonce - Nozzle Diameters

b) Veloc;ty Profiles

FIGURE 6.21 Rocket Exhaust Velocity and Temperature Profile

In Figure 6.21, the temperature and velocity profiles for

a typical rocket engine exhaust are given in terms of the

nozzle exit diameter.These resu Its are for a typical rocket

with gas exit velocity of 8500 fps, exit Mach number of

3.2, and gas exit temperature of 3600 OR. The resultscan

be scaled to other rocket engines of different exit

conditions by use of a core length x t. This will be 15 D e

for the example of Figure 6o21 . For a different flow ve-

locity, the new core length is calculated using Equation

(6.14), the axial scale adjusted, and the given velocities

scaled according to theexltvelocities. These profiles can

then be overlayed on a drawing of the launch pad and

umbilical tower to give the predicted Ioadlngs. The re-

sults are positioned on the vehicle trajectory to determine

the maximum loading during launch.

For clustered nozzles, the contours for a single nozzle are

calculatedandapplied in turn to each of the outer nozzles,

and the results smoothed to provide the final contours.

The fluctuating velocities in the exhaust stream can be

estimated as having an rms intensity of 0.1 times the mean

velocity. Thus, at the 100 fps contour, the fluctuating

velocity rms intensity will be 10 fps. If V is the mean

velocity, then the static pressure is

P _ 1/2 pV 2 (6.21)

where p is the density, and assumed 0.0015slug/ft 3 if

unknown,

and P is then the pressure in psf.

The fluctuating velocity component will result in a fluctu-

ating pressure. Setting the intensity of the fluctuating

velocity component equal to 0.1 times the mean velocity,

the fluctuating pressure intensity is

p' = 20 IOgl0P (psf) ÷ 113.5 (6.22)

in riB, re: 0.0002microbar.

The spectrum of the fluctuating pressures can be estimated

from the turbulence spectrum and the results of Figure6.22

may be used with the calculated overall level. Here x is

the distance from the nozzle to the point under considera-

tion, and x t is the length of the laminar core as given by

Equation 6.14.

The drift in the vertical trajectory due to the wind loading

is quickly calculated from the basic parameters. The total

wind drag loading can be obtained by assuming a drag

coefficient of 1, and then the sideways acceleration
calculated from the vehicle mass.

= F/M (6.23)

where _ is the sideways acceleration _n fps

M is the vehicle an-pad mass in slugs

and F is the applied wind force in pounds.

The initial vehicle acceleration, k:, is obtained from the

trajectory details, or estimated as typically 0.3 g (9.6 ft/

sec2). Then the drift angle is given by,

tan -1 e = _/_ (6.24)

where 8 is the angie of the trajectory to the vertical.
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FIGURE 6.22 Normalized Spectra for Fluctuating Pressures

Due to Exhaust Impingement

Theeffect of wlnddrift will be to increase the Ioadings for

a point over which the vehicle moves. The temperature

loading can show a significant increase due to this effect

in the first few seconds of flight.

As an example, the contours of the exhaust blast velocity

and temperature for the Saturn V, both with a vertical

trajectory and the maximum allowable wind drift, were

calculated. The maximum Ioadings that would then occur

were plotted on a plan of the launch area in Figure 6.23.

The results show that drift causes the contours to be shifted

by almost 50 ft at the pad level, and that the roof of the

Pad Terminal Connection Room could then fall into the

area of influence. The contours of Figure 6.23 show that

the temperatures over the Instrument Bay Rooms could

reach 240°F, which would require special roofing. The

blast velocity will not be too slgnificant at these polnts,

150 ftfrom the initial center line of the vehicle, although

amean pressure of over I psfwill be felt. The fluctuating

loading will be small, and generally insignificant com-

pared to the acoustic loading.

The launcher umbilical tower will receive considerable

loading if the maximum allowable drift occurs directly to-

wards the tower. The vehicle will just clear the top of the

tower, and the top landings and associated systems will be

placed directly into the exhaust flow.

6.1.11 CONCLUDING REMARKS

The techniques recommended here for rocket noise pre-

diction are empirical. They do not involve the detailed

studies of source spectrum location or the detailed mecha-

nisms of noise generation. However, they will produce

consistent results, in good agreement with measured values.

Recent studies have indicated the complicated nature of

rocket jet noise generation, and techniques to determine

the relative importance of the different noise generation

processes have been proposed, (Reference 6.2). There is

still some degree of controversy over the source allocation

in the exhaust flow, and the methods of dealing completely

with deflected and clustered flows remain uncertain.

Therefore, it is recommended that the empirical methods

presented here are the most suitable for quick estimation

of the rocket exhaust noise environment. If more detailed

answers are preferred, then it is recommended that the

source spectrum location technique of Reference 6.4 be

utilized. Finally, it should be noted that the empirical

results are limited to the present and next generation of

chemical rocket exhaust flows.
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6.2 PROPELLANT EXPLOSIONS

6.2.1 INTRODUCTION

The uncontrolled release of energy stored within rocket

propellants will result in an uncontrolled chemical reaction

which may take the form of a deflagration or detonation.

When the chemical reaction process occurs at a low rate

of energy release, it is called a (slow) burning or deflagra-

tion. If the reaction process occursat a high rate of energy

release, the reaction is called a detonation and it is char-

acterized bya reaction front moving ata supersonic speed,

burned gas flowing after the front, and a pressure increase

through the front (now called a shock front). A detonation

wave in the propellants generates the shock wave in air

that characterizes the blast of rocket explosions. Thus,

the capability of some propellants toreact at a high rate

of energy release makes them possible "explosives".

The propellant explosions covered in this manual include

both liquid and solid propellants, however, the emphasis

is placed on liquid oxygen (LO2) for the oxidizer and

either the hydrocarbon (RP-1) or liquid hydrogen (LH2)

for the fuel. These are stressed since they represent the

most common types of propellants proposed for future rocket

booster vehicles. (Ref. 6.15, 6.16)

The predicted blast parameters are based partly on data

from "equivalent" TNT explosions, with additional details

from theoretical analyses of nuclear explosions, (Ref .

6.17 - 6.21). However, the essential differences between

explosions from solid explosives and liquid propellants are

recognized and have been analyzed in detail (Ref. 6.22 -

6.24). Available experimental data are used, where

appropriate, to support the estimated blast parameters pro-

posed for regions close to rocket propellant explosions.

(Ref. 6.25) The latter data will not be presented in

detail, however, since they represent only preliminary

results from part of an extensive and continuing program

(Project Pyro) directed towards a detailed experimental

evaluation of propellant blast phenomena.

6.2.2 EXPLOSION ENERGY OF ROCKET

PROPELLANTS

For an explosion to occur, reacting propellants must first,

of all, mix. This can occur accidentally, for instance,

because of leaks or rupture of the tanks or propellant feed

systems, or intentionally due to initiation of a vehicle

destruct slgnal. The fuel to oxidizer mixture ratio must

fall within a certain range before the reaction can start.

This reaction can then start spontaneously because of the

strong affinity of the propellants (hypergolic propellants)

or be started by external energy sources such as: heat, an

electrical spark, shock, friction, et cetera. Once the re-

action is started, the heat released by the initial reaction

will be sufficient to trigger further reaction in the remain-

ing propellants. The speed of this chain reactlondefines

the rate of energy release for given propellants. The rate

of energy release is not a constant but varies with the mix-

ture ratio, the temperature of the propellants, thedegree

of turbulence, and the amount of propellant.

The total energy released will be a function of the amount

of mixed propellant which will, in turn, depend on the

geometry of the propellant tankage, the geometry of the

surrounding launch or test stand, the position and velocity

of the vehicle, the mode of the failure, the rate of vaporiza-

tion of the released gases, the rate of liquid mixing, the

physical characteristics of the propellants and,finally, the

delay in the ignition process° Thus, the energy which is

expected to be released, Eo, might be expressed in the
form

Eo = q e .E. [qm .Wp] (6.25)

where

qe =

E

rlm =

Chemical efficiency of the explosion for a

given quantity of reacting propellant

Energy released per unit propellant weight

for 100 percent efficiency

Fraction of the total propellant weight, Wp,
that is mixed.

No successful attempts to predict values of qe and rlm have
been found in the literature.

The expression for the theoretical energy E released by an

explosion of reacting propellants can be stated in the fol-

lowing form (Reference 6.30 and 6.24):

E =SPdv -- -H + Q (6.26)

where

._d V = Mechanical work done by explosion products

on surrounding atmosphere

H = Heatof explosion (change in chemical energy)

Q -- Internal energy (change in temperature and

entropy).

To define H and Q, it would be necessary to know the

products of the explosion. These can not be readily deter-

mined for most propellant explosion reactants. However,

for perfect or stolchiometrlc burning of the fuel in a bal-

anced or oxidizer rich mixture, the heat of the explosion

can be assumed equal to the heat of combustlon . The heat

of the explosion is inherently negatlve,as viewed from the

point of view of a decrease of chemical energy, and its

net contribution to the energy of an explosion is therefore

positive. Since it is generally the largersourceofexpto-
slve energy and can be defined in terms of the known heat

of combustion, it is listed in the fourth column of Table

6.3. The value indicated is actually the ideal heat of

combustion for one pound of fuel divided by one plus the

mixture ratio to convert it to an energy per pound of pro-

pellant. The mixture ratios used, shown in the third

column of Table 6.3 are typical values,notstoichiometrlc

values, so that the maximum heat of explosion indicated is

only a rough estimate of the explosive energy for compari-
son of various fuel combinations.
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TABLE 6.3

ENERGIES OF PROPELLANT COMBINATIONS

PROPELLANT COMBINATION
OXIDIZER FUEL

TNT (Explosive)

Oxygen Hydrogen

Oxygen RP-1

Oxygen Ammonia

Oxygen Ethyl Alcohol

RFNA Aniline

RFNA UDMH

RFNA JP-4

Nitrogen Hydrazine
Tetroxide

Nitrogen 50% UDMH
Tetroxide 50% Hydrazine

Tetranitromethane Hydrazlne

Bromine Ammonia
Pentafluoride

Chlorine Ammonia
Trifluoride

Chlorine Hydrazine
Trlfl uorlde

(1)
MIXTURE

RATIO

5:1

2.25:1

1.3:1

1.5:1

3:1

2.6:1

4.1:1

1.1:1

2:1

1.4:1

6:1

3:1

2.5:1

H
MAXIMUM
HEAT OF
EXPLOSION
BTU/Ib.

1170

8590

57OO

3470

5120

8250

3940

3630

3950

3750

3460

1140

2000

2380

Y
P

TNT (2)
EQUIVALENT

YIELD %

100

6O

10

10

10

10

10

10

5

5

100

10

10

Eo

TNT EQUI\
EXPLOSIOI'
ENERGY

BTU/Ib.

2000

1200

200

200

200

200

2OO

200

100

100

2000

200

2O0

100

1) Nominal weight ratios (Reference 6.28 , and 6.29)

2) Static test standsonly - see Table 6.4
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Thus,asindicatedbythepreceedingdiscusslon,theoretical
predictionof thetotalenergyin a rocketpropellant
explosionmustrelyondatawhichareeithernotreadily
availableorhavenotbeencalculated.It isnecessary,
therefore,touseexperimentalorempiricalresults.
SinceresultswerenotyetavailablefromProjectPyroon
explosiveyieldsofvariouspropellantcombinations,it was
consideredadvisable,forthismanual,to usetheTNT
equivalentsasrecommendedbytheDepartmentofDefense
inReference6.26.ThesearelistedinTable6.4forstatic
teststandsandlaunchpads.Theyrepresenttheweightof
anequivalentchargeofTNT,expressedasapercentageof
thetotalpropellantweightwhichreleasesthesametotal
energy,Eo.

Therefore,Eomaybeestimatedbythefollowingrelation-

ship
E° = YpWpETNT

where

Yp= FractionalTNTequivalentyield
Wp= Weightofpropellant

ETNT--Energyreleasedperunit weight of TNT

(2000 BTU/Ib).

Values of Eo, calculated by the above expression are
presented in the last column of Table 6.3. A comparison
of the maximum heat of explosion andTNT equivalent energy
Eo shows that the latter varies from 2.3 to 5.8 percent of
the former.

TABLE 6.4

ROCKET PROPELLANT (TNT) EQUIVALENCIES

Propellant Combination

LO 2 - LH 2

LO 2 - LH 2 + RP-1

LO 2 - RP-1 or LO 2 - NH 3

RFNA - Aniline*

RFNA - UDMH*

RFNA - UDMH + JP-4*

N20 4 - UDMH + N2H 4

N20 4 - UDMH + N2H 4 - Solid*

Tetranltromethane (alone or
in combination)

Nitromethane (alone or
in combination)

Sol id

Sum

of

Static Test Stands

60%

(60% for LO 2 - LH2
(10% for LO2 RP-1

10%

10%

10%

10%

5%

5% plus the explosive equivalent
of the solid propellant

100%

100%

20%

Range Launch Pads

60C_

Sum i(60% for LO 2 - LH2

of _ (20% for LO 2 - RP-1

20% up to 500,000 pounds
plus 10% over 500,000 pounds

10%

10%

10%

10%

10 % plus the explosive equivalent
of the solid propellant

100%

100%

2O %

These are hypergollc combinations.

Basis: Recommendations of ASESB Work Group on Explosive Equivalents for Liquid Propellants.
and nltromethane are known to be detonable.

NOTES: I.

2,

3.

Tetranitromethane

The percentage factors to be used to determine the explosive equivalencles of propellant

mixtures at launch pads and static test stands when such propellants are located above ground and
are unconfined except for their tankage. Any configurations other than stated above should be
considered on an individual basis to determine the equlvalencles.

The equivalencles of any non-nuclear explosives will be added to the above equivalencles.

The above values were obtained from Reference 6.26.
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6.2.2.1 Explosion Energies for Possible Future

Vehicle Configurations

It is useful to list briefly the configurations which may be
characteristic of future rockets in order to determine the

energywhlch mightbe released in an accidental explosion.
For thls purpose, data on 8 rocket configurations have been

grouped in Table 6.5. From the current Saturn IB (1.5 x
106 Ib of thrust)to the advanced LH 2 - LO 2 configurations
(30.2 x 106 Ib of thrust), the explosive energy is seen to
increase from .37 x 1012 ft. lb. (.24 x 106 lb. TNT-equl-
valent) to 19.9x 1012 ft. lb. (12.8x 106 lb. TNT-equl-
valent which means that the peak overpressure might, in
the future, be 60 times what is presently expected from a
Saturn IB explosion. However, the TNT-equlvalencles of
Table6.Swere calculated using the propellant percentages
suggested by Reference 6.26 (Table 6.4) and it is felt that
these percentages are conservative for large rockets since,
for the latter, a lower mixing efficiency is anticipated.
However, actual experience with a current vehicle in the
300,000 pound thrust class has indicated that a 10 percent
equivalent TNT yield for LOX/RP-1 is realistic. It is
believed that a 5 x 106 lb. TNT-equlvalency can be con-

sidered reasonable for the largest of the above future

vehicles. On the other hand,the reader is cautioned to

use the D.O.D. specifications in Reference 6.26 until
they have been officlally superseded. A5x 1061b TNT

equivalent explosion is then chosen to carry out sample

calculations which can be repeated for any other TNT
equivalency. Table 6.5 also includes the estimated maxi-
mum chemical energy and mechanical energy available.

The maximum chemical energies exceed both the mechanical
and explosive energies. The chemical energies are based
on heatsof combustlon of 51,500 BTU/Ib for H2 and 18,500
BTU/Ib for RP-1. It would have been more accurate to
choose about 40,000 and 16,000 BTU/Ib, respectively, to
take into account the fact that the mixture ratios actually
used are not stoichlometric. The mechanical energy is the
total kinetic energy of the exhaust gases estimated by
Wp (Ve2/2g) where Wp is the propellant weight, V e the
exit velocity, and g is the acceleration of gravity. The

estimated TNT equivalent explosion energy is about 10 to
40 percent of the mechanical energy.

TABLE 6.5

FUTURE VEHICLE CONFIGURATIONS

Number

Deslgnafion(5 )

Number of Stages

Lift--off Thrust
(Ib x 106)

Lift-off Weight
(Ib x 106)

Total Length
(ft.)

Maximum Diameter

(ft.)

FIRST STAGES

Propel lants and Weight
(Ib x I06)

Mixture Ratio(3 )

1
Saturn

1B

2

1.5

1.37

225

22

LOX

0.69(i )

RP-I

0.31(I )

2.25:1(1 )

2
Saturn

V

3

7.5

6.8

361

33

LOX

3.2(1 )

RP-1

I .42(i )

2"25:1(1 )

3 4
Advanced Saturn

Saturn V
Plus Solid

5
IC

C lass I

6
24_6

Class II

7
33

3 3 3 3 2 3

32.47.5

3.4(6 )
18.09.0 30.2

8
T65C

54.9

8.0 9.5 25.2 14.4 24.2 38.1

410 336 454 386 377 535

33 55 69 70.5 80 70

LOX
12.91

LOX

3. o5(i)

RP-I

1.35(1 )
+ Solid

2.25(1 )

LOX
9.08

LH 2
1.3

7:1

LOX

3.74(i )

RP-I

I .66(i )

2.25:1(i )

LOX
18.6

LH2

2.7

7:1

RP-1
5.74

2.25:1

Solid
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Number
Designation(5)

TotalPropellantWeight
(Ibx 106)

Engines
NumberandType

ExitVelocityq_
(ft/sec)' '

Maximum C hemlcal
(lb. ft x 1012) E(2)_ynera

Total Mechanical Energy
(lb. ff x 1012)

TNT Equivalent
(lb x 106)

SECOND STAGES

Propellants and Weight
(Ib x 106)

1
Saturn

1B

1.0

8 H-I

8,100

4.45

I .02

0.I0

LOX

o. 198(i)

LH2

,0.039(i

Mixture Ratio(3 ) 5:1(1 )

Total Propel lant Weight
fib x 106) 0.237

Engines IJ-2
Number and Type

Exit VelocitYfl _
(ft/sec) _ , 12500

Maximum Chemical Energy 1.57
(Ib. ft x 1012) (2)

Total Mechanical Energy 0.576
(Ib. ft x 1012)

TNT Equivalent
fib x 106) 0.142

2
Saturn

V

TABLE 6.5

3
Advanced

Saturn

4.62 5.40

5 F-I 5 F-IA

9,300 10,200

20.4 23.9

6.2 8.72

0.462 0.54

LOX

0.7825(1 )

LH2

0.1565(1 )

5:1(1 )

0.939

5J-2

LOX

1.0(1 )

LH 2

0.2(1 )

5:1(1 )

1.2

5 RL-20

12500 12500

6.25 8.0

2.28

0.563

2.92

0.72

(CONTINUED)

4 5
Saturn IC

V Class I
Plus Solid

4.40 18.65

1.68(6 )

5 F-IA 18 F-IA
4-1201n

10,200

7,800(6) 10,200

19.4
82.5

3.5(6 )

7.1
30.2

I .6(6 )

0.78 I .86

LOX LOX

1.0(1 / 2.398
_ f

LH2 LH2

0.2(1 ) 0.587

5:1(1 ) 5:1

1.2 3.53

5J-2 3M-IB

12500 12500

8.0 23.5

2.92 8.57

0.72 2.12

6

24-6
Class II

10.38

18HP-1

12,300

52.0

24.4

6.22

LOX

1.4

LH 2

0. 206

7:1

1.6

2HP-I

12500

8.24

3.88

0.96

7
33

21.3

24HP-'

12,300

108.0

50.1

12.8

LOX
0.05

LH 2

0.01

5:1

0.06

6LR -115

12500

0.4

0.146

0. 036

8
T65C

25.0

6-260in

8,500

50.5

28.1

5.0

LOX
6.85

LH2

1.37

5:1

8.22

3M-I

12500

54.8

20.0

4.92



6-24 SourceCharacteristics

TABLE6.5 (CONTINUED)

Number
Deslgnatlon(5)

THIRDSTAGES

PropellantsandWeights
(Ibx 106)

1
Saturn

1B

2
Saturn

V

LOX
0.198(i)

LH2
0.0394(1)

MixtureRatlo(3) 5:1(1)

TotalPropellantWeight 0.237
(Ibx 106)

Engines 1J-2
NumberandType

ExitVelocltY(1(ft/sec)_, 12500

Maximum Chemical Energy I .575
(Ib.ft x 1012 )

Total Mechanical Energy
(Ib.ft x 1012 ) 0.576

TNT Equivalent
(Ib x 106) 0.142

TOTALS

Maximum Chemical Energy
(Ib.ft x 1012) 6.02 28.22

Mechanical Energy
(Ib.ft x 1012) 1.59 9.06

TNT (Ib.ftxl012) 0.375 1.81

EQUIVALENT
TNT 0.242 1.17

(4) (Ibx 106)

3
Advanced

Saturn

LOX

0-292(i )

LH 2

0.058(1

5:1(1 )

0.350

1RL-20P3

12500

2.32

0.850

0.21

34.22

12.49

2.28

1.47

4
Saturn

V
Plus Solid

LOX

0.292(1 )

LH2

0.058(1 )

5
IC

Class I

LOX

0.05

LH 2

0.01

6
24-6

Class II

LOX

0.05

LH2

0.01

5:1(1 ) 5:1 5:1

0. 350 0.06 0.06

I1RL-20P3 6LR-115 6LR-115

12500 12500 12500

2.32 0.4 0.4

0.850 0.146 0.146

0.21 0.036 0.036

106.4

38.9

6.24

4.02

33.22

12.47

2.65

1.71

7
33

8
T65C

N204

0.0485

Aerozlne

0.027

1.8:1

0.0576

2T-20K

Not Available

Not Available

Not Available

Not Avallable

60.64 108.4 106

28.43 50.25 48.1

11.2 19.9 15.4

7.22 12.84 9.92

(1) Theoretical Value, the effective value being unknown

(2) Based on 18,500 BTU/Ib for RP-I; 51,500 BTU/Ib for H2; 2600 BTU/Ib for solids

(3) The mixture ratio is not necessarily equal to the ratio of the propellant weights

(4) TNT Equivalencles in Ib.ft are equal to TNT equlvaiencles in lb. TNT
times 1.55 x 106

(5) Data of configurations 1 through 4 from personal communication with R. Jewel I,
Chief of Advanced Methods and Research Section, P and VE, MSFC, Huntsville,
Alabama - Data of configurations 5 through 8 from Reference 6.15

(6) Solid strap-on



Propellant Exploslons 6-25

6.2.3 THE SHOCK WAVE FORMATION

6.2.3 .I The Origin of the Air Shock

If the energy stored in a rocket propellant is under an un-

controlledsituation, a deflagration or a detonation occurs.

A deflagration creates a pressure wave in air which is far

less important, from a structural design viewpoint, than

the shock wave produced by a detonation. Consider a

mls<ture of liquid propellants resulting from a tank rupture

and assume that a detonation starts at a point in the mix-

ture. Then the detonation propagates through the mixture

at high speed until the interface between the propellant

mixtureand air is reached. At this point a volume of high

energy gases is present, where the propellant mixture ex-

isted previously. The gases, surrounded by an atmosphere

at lower pressure, expand outward, thus generating a

shock wave in the atmosphere itself. This wave is called

a shock wave, because the air properties change suddenly

at its front. On the shock front, the pressure, density,

and temperature of the air rise almost instantaneously.

Behind the shock, a strong blast wind is initiated which

moves in the direction of the shock wave. Eventually,

the pressure and denslty will decay to values lower than

their original ambient values and the wind will reverse its

direction. Finally, the pressure and temperature will re-

turn to ambient levels and the blast wind will cease. The

variations of pressure, density, temperature, and particle

velocity with time and distance are illustrated quali-

tatively in Figure 6.24.

_ t 3

Distance

t 1

o //_/_2 t3

Distance

t 3

Distance

'=.i 1 t

_ t

£

Distance

FIGURE 6.24 Qualitative Variations of Air Blast Parameters with

Distance and Time

6.2.3.2 Air-Shock Ground Interactions

So far an explosion in an unbounded space has been

described. This is the case of a rocket exploding at a high

altitude. If the explosion occurs on the ground surface, the

air blast parameters will correspond approximately to an

unbounded explosion releasing twice as much energy.

When the explosion occurs during the initial part of the

flight near the ground, the shock pattern is slightly more

complicated. In this case the shock is reflected when it

reaches the ground and the incident and reflected shocks

originate a third shock called the "Mach Stem" which is

normal to the ground at the ground level. The blast para-

meters_s experiencedbyan observer standlng on the ground,

may now be different from those previously described.

Sketch A of Figure 6.25 illustrates the reflection process.

Sketch B illustrates a particular aspect of the reflection

process; the generation of the "Mach Stem". It was stated

above that a strong wind fol lows the shock front. A similar

wl nd al so fol lows the reflected shock ,and has to be parallel

to the ground. Since this is not always compatible with a

two shock system,a single shock iscreated near the ground.

This third shock is the "Mach Stem", and is stronger than

both the incident and reflected shocks. Before the forma-

tlonofthe "Mach Stem", in what is called the "Regular

Reflected Region" ,an observer, somewhat above the ground

level, would actually experience two shocks. After the

formation of the "Mach Stem" an observer would experi-

ence one or two shocks according to whether he is located

below or above the triple point surface (Sketch C ,
Figure 6.25).

Sketch A

Explosion Center

tttLL_))));j_,_ Incident Shock

Reflected Shock

Ground

Sketch B

Sketch B

Reflectedkj ! Incident

Incident Reflected Incident Shock "_L_ ShockReflected Shock Shock Shock

Shock . /St .... ./_ -_ St .... Triple \, .• Point --."I Macn

__ ____ Line Wind .__x_. .... L_ine ----Stem'Wind .:_.:@- ...... Wind ::_:._--[ .... Stream

Line

Sketch C
Explosion Center

Triple Point

I = Incident Shock _,l_.----Surface

R = Reflected Shock

M = Mach Stem R I R ,I R_//_

FIGURE 6,25 Ground Reflection of a Spherical Blast Wave and

Mach Stem Foundation
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6.2.3.3 Elements Determining the Air Shock
Parameters

At large distances from an explosion, the explosion energy
is the major element in defining the air shock parameters.
Unfortunately, as indicated earller, no useful theoretical
methods are available for predicting the amount of energy
that is released in a rocket explosion. Thus, the empirical
methods for defining the total energy released, in terms of
TNT equivalent, must be used. It will be shown, in fact,

that onlytheTNT equivalent and the distance from the blast
center are necessary to define the nominal air shock para-
meters at large distances from a propellant explosion. For
an explosion of a large rocket, such distances extend beyond
about 1000 ft. with peak overpressures less than about 1
atmosphere.

For very large distances, weather effects become asimportant
as the total energy. Communities located at a distance of
20 miles would suffer no damage from a rocket exploslon of
5x 106 Ib TNT energy equivalent for a uniform atmosphere.
The peak overpressure would be .04 psi and window breakage
would normally not be expected. But under extreme atmos-

pheric focusing conditions, the local peak overpressure can
bemultiplied by a factor of 5, thus, reaching an overpressure
which would normally be expected by an explosion with

about 4 times the energy of the actualexp Ioslon, and wlndow
breakage would v_ery likely occur. Propagation anomalies
associated with blast are covered in more detail in Chapter
7. Nominal weather conditions without focusing are assumed
throughout the remainder of this chapter.

For regions close to a blast, the rate at which the energy
is released, and the initial air shockvelocltyalso influence
the air parameters. This region general ly encompasses only
the immediate vicinity of a launch pad or rocket test site.

6.2.3.4 The C lose- and Far-Field

The close-fleld is the region within which the air blast
parameters are functions of explosive mass to energy ratio,
rate of energy release, initial air shock veloclty, and
chemical properties of the explosive, in addition to the
total energy released.

The far-field is the region within which the air blast para-
meters are functions only of the total energy released.

If it were possible to theoretically calculate all the shock
parameters for a propellant explosion, there would be no
need to distinguish between the close-fleld and far-fleld.
Such a theoretical calculation has, in fact, been success-
fully made for TNT explosions by Brode. (Reference 6.18).
In the far field of a propellant explosion, where only energy
released is significant, it does not matter where the energy
comes from, and air shock parameters computed (or observed)
for aTNT explosion, are applicable to propellant exploslons.

In the close-fleld however, results for TNT are not directly
applicable to propellant explosions due to the influenceof
the additional effects such as rate of energy release. Thus,
a deviation from the TNT blast parameters is expected in
this region. This will be illustrated subsequently.

For explosions from a large rocket, it is convenient to use
the following ranges of overpressure to distinguish the two
fields.

Far-Field: Peak overpressure < 14.7 psi

Close-Field: Peak overpressure >__ 14.7 psi

6.2.4 BLAST SCALING LAWS

The charts which are given in Section 6.2.5 for the calcu-
lations of the blast parameters are entered with TNT equl-

valencies using scaling laws. It is therefore necessary to
define these blast scaling laws, and their ranges of appli-
cations. These relationships are simply defined in the pre-
sent section. Detailed explanations are glven in Refer-
ence 6.27.

The energy of any explosion is commonly measured in terms
of the weight of a given explosive whose explosion energy
is known. TNT, which releases 252.28 Kcal/mole or
1.55x 106 ft. Ib/IbTNT, is currently used as the equivalent
energy unit for explosions. The "yield" of all propellant
explosions is the equivalent TNT weight expressed as a
percentage of the propellant weight.

Brode has shown theoretically that the overpressure Pso
from a free air blast can be defined in dimensionless form

as follows. (Reference 6.18.)

PSO__po= F1 (;k)= F1 ((-E'_po)l/3 1

where:

Pse

Po

d

E

F I (;k)

= Peak overpressure due to TNT explosion

= Atmosphere pressure = 2116 Ib/ft 2

(Standard atmosphere)

= Reduced distance

= Actual distance in ft.

= Energy of blast in Ib • ft

= Function of the parameter

Since for standard atmospheric conditions,

E WT x 1.55 x 106

Po 2116 733 WT

where WT = Weight of TNT in Lb, Pso may be
expressed by the following function

Pso = F2 (Z)

1/3
where Z = d/W T = 9.02 :k _ free air burst.
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This means that for equal values of Z, Pso isthe same, or

in other words, for a given overpressure, the distances

scale with the cube root of TNT equivalency. For a sur-

face burst, the blast parameters are equivalent to that of

a free air burst with twice the energy of the surface burst.

Thus, the theoretical blast parameters for a free air burst

can be used for a surface burst° In this case

Z = 3_ 9.02X = 11.37 X -surface burst.

The some scaling can be applied to the altitude of an above

the ground explosion. Thus, the following relationships can

be written:

d h WT1/3

- (6.27)
d h 1/3

r r WTr

These scaling laws state that: For a given overpressure, the

distance from the explosion (d), and explosion altitude (h)

are proportional to the cube root of the explosion energy

(WT). Cube root scaling can also be applied to arrival

time, phase durations, and impulse provided that the dis-

tances are first scaled according to the cube root law.

This comes from the following theoretical dimensionless

relationships (Reference 6.18) for duration and impulse

of the positive overpressure pulse.

+

D + - tpCo ([ d] 3/[ ]1/3 :* 1/ (6.28/P E/p ° E/P o

£ "rs + D;

T s

where:

+

Dp

t;
C o

i+
P

: Reduced duration of positive phase

' (dimensionless)

= True duration of position phase

= Speed of sound

= Characteristic positive phase impulse

(dimensionless)

t s Co

•rs = Reduced time of arrival Vo]
t = Time of arrival

S

From Equations 6.28 and 6.29 for standard atmospheric
conditions it follows that:

+

t t)P (6.30)m : _ d._____

WT1/3 2 WT/3

.'t-
I
P

+

s + Dp

= _ d'r

S

/-t s + t +

PO (_/Po)I/3]psO dt

t
S

= K2 WTI_3 = _I

+

'Pw 1/3 : _2

"T

(6.31)

where I + is the true positive phase impulse. Now, ac-

cording to relationships 6.30 and 6.31 it is possible to
/

write:

d WT]/3

dr WTr1/3

t; WT1/3

t-;" = W---'_73 -

Pr T r

a)

and

c)

d WT1/3

- b)
d 1/3

r WTr

(6.32)

1/3
I + W T
P - d)

i+ 173--
WTr

Pr

Therefore, for a given reference explosion energy (WTr),

if distances (dr) , explosion altitudes (hr) , impulses (I;r)

and hme and durations (t_)areknownas functions of peak
Pr

overpressures, the corresponding values for a different

explosion energy can be readily computed. The numerical

examples of Section 6.2.6 will help in understanding the

use of the above expressions.

In using the blast design charts of this manual, attention

must be paid to the fact that the charts can be used for

blast prediction of loaded rockets on the launching pad or

in flight as well as for static test vehicles, partially or

fully loaded which are fired at remote locations not con-

nected with propellant storage areas. For tests of engine

chambers only, further elements must be considered. Dur-

ing an engine test the propellants are generally fed from

storage areas through pipes while the test is in process. In

this case the propellant in the pipes should be considered

as well as the possible delay between an initial explosion

and the actual shut-down of the feeding system. Experi-

ence shows that this time is relevant. Extension of a possi-

ble explosion in the testing area to the storage areas and
vice versa must also be considered. For these and other

storage problems, the specifications given in Reference

6.26 are recommended. These are briefly summarized in

Chapter 4.
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6.2.5 DESIGNCHARTS

Ithasbeenshown(Section6.2.3.4)thattopredictblast
parametersfromrocketexplosions,differentcriteriaand
approximationshavetobeusedfordifferentpeakoverpres-
sure ranges.

In the present section, charts based on TNT data are given

for the far-fleld region. Although, these can be used for

the close-field as well, the results would be conservative.

Estimated values for propellants are therefore provided as
an alternate.

The number of significant figures used in the examples in

the following section are not always consistent with the

approximations inherent in the design charts in this section.

Nevertheless, they are retained to help the reader follow

the problems and to avoid large errors at the end of the chain-

calculations. It is left to the reader to round off the numbers.

6.2.5.1 Peak Overpressure Charts

To determine the peak overpressure, due to the explosion of

a known weight of propellant at a given distance, Figure

6.26can be used. Here, peak overpressure, pso, is plotted

versus scaled distance, Z, which equals the ground zero

distance, d, divided by the cube root of the TNT equivalent

weight, W T of propel lant.

The TNT curve of Figure 6.26 has been plottedaccording

to experimental data obtained from tests run by Ballistic

Research Laboratories for pressures up to 1000 psi. The

very low pressure results were obtained by Wyle Laboratories.

The results for pressures in the range 1000 to 8000 psi

were obtained according to the Brode theory (Reference

6.18). A comparison also has been made in Figure 6.27

between this theoretical value and experimental data, and

very little difference is observed.
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In Figure 6.26, the expected range for propellant explo-

sions has been estimated according to theory, outlined in

Reference 6.24, supported by experimental data obtained

from Project Pyro tests performed at the Air Force Rocket

Propulsion Laboratory, Edwards, California, for NASA,

Marshall Space Flight Center. (Reference 6.25).

The Project Pyro tests have included several variables
which can be summarized as follows:

Propellant Type

Initial Conditions

Weight

Length-To-Diameter Ratio of Tank

Propel lant Orientation

Horizontal Velocity

Vertical Velocity

Boundary Conditions

Confinement Within the Missile

Confinement by the Ground Surface and Vertical

Cylindrical Walls

Ignition Conditions

Time

Type

L_

B.

0

o.
i

2

10000

1000

100

10

.01

{ • 100 Ton of TNT (196I); Ballistic

\ Research Laboratories (BRL)

\ Suffleld Experimental Station (SES

\ o 100 Ton (1961), 20Ton (1960),

_'m 5 Ton (1959) of TNT; and SES

_1L Interim Values

o Wyle Experiments wTth Small

_1 Charges (potassium nitrate and

charcoal powder)

\\ mFaired Line Through Experimental

\_ Data

\_---Theory - Brode

'\

I i J ]_
1 10 100 1000 10000

Scaled Distance, Z = wTdl/3 f/ib_/

FIGURE 6.27 Peak Overpressure versus Scaled Distance for Very

Large and Very Small Charges (References 6.17

and 6.18)

Experimental results obtained from a few of these tests have

been piottedin Figure 6.28 (for 2001b and 10001bLOo/

RP-1 explosion tests) and in Figure 6.29 (for 200 Ib L.C_2/
LH_ explosion tests) on the basis of the observed terminal

yie'_d. These data are representative only, and do not

illustrate the important results obtained from Project Pyro

on variation in yield of propellants.
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The explosive behavior of the propellant mixture in many
cases is different from that of TNT so that explosive yield

generally is a function of distance and of the shock wave
parameters used in the computation. This behavior appears
to take two general forms (Reference 6.25). For very low
yields, about 1 percent and less, both pressure and im-
pulse yields increase with increasing distance from the
explosion,with the yields tending toward a constant value
(The Terminal Yield) at large distances. The impulse yield
is usually higher than the pressure yield and changes more
slowly with distance.

For higher yields, about 10 percent and greater, the pres-
sure yield behaves in the same fashion, but the impulse
yield at close distances is much greater than the pressure
yield and tends to decrease with increasing distance and
ultimately approaches the pressure yield value. These
trends are illustrated in Figure 6.30. Figures 6.28 and
6.29 confirm what has been previously stated, that is, in
the close-field, many parameters, besides the energy re-
leased, influence the blast overpressure; for this reason in

Figure 6.26, an expected range of Pso values is presented
instead of just one curve.

High-Yield Case (about 10% and greater)

---- //

j _Terminal Yield

increasing Distance

Within the far-field region (which means for peak over-
pressure less than 14.7 psi for TNT equivatencies of the
order of 5 x 1061b, as mentioned in 3ectlon6.2.3) the

physical differences between air blast from rocket explosion
and TNT are not going to be any larger than thoseposslbly
produced by secondary effects and can be considered fal ling
within the reliability limit of the TNT curves themselves.
Hence, withinthls far-fleldregion, the use of TNT air blast
charts to predict rocket explosion air blast parameters can
be considered useful and sufficiently accurate for engineering
design in most cases.

Additional charts are presented in this section (Figure
6.31, 6.32, 6°33, and 6.34), giving the values of peak
overpressure as function of ground zero distance and of
burst altitude for a charge of 106 Ib of TNTo In these
figures, good surface conditions refer to ground conditions
approaching the ideal reflecting ones, namely, ice, water
or concrete surface. (Reference 6.20).

Average surface conditions refer to all other possible sur-
face conditions. These curves (from Reference 6.21) are
based upon experimental data (solid lines) established as a

result of full scale nuclear explosions and upon theory and
high explosive experiments (dashed lines). The validity
for extrapolation to propellant explosions must await re-
sults of experimental programs on propellant blast such as

Project Pyro. Assummlng the blast energy is well defined,
peak overpressures and distances from Figure 6.26 are re-
liable to _- 10 percent. Peak overpressures from Figures
6.31 to 6.34 are reliable to + 20 percent; distances to
+ 17 percent.

6.2.5.2 Peak Dynamic Pressure

To predict the peak dynamic pressure of the wind following
the blast wave, Figure 6.35can beused for a surface burst
or an air burst for peak dynamic pressures less than 1.5 psi.
For air bursts with peak dynamic pressures greater than
1.5 psi, use Figure 6.36. As far astherellabilltylscon-
cerned, peak dynamic pressures from Figures 6.35 and
6.36 are reliable to ± 25 percenbfor peak dynamic pres-
sure __ 14.7 psi. (Reference 6.20, 6.21)

Low-Yield Case (about 1% and bess)

Impulse Yield

Increasing Distance _

FIGURE 6.30 General Behavior of Yield - Distance Relations
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FIGURE 6.36 Peak Dynamic Pressure on the Surface (Horizontal

Component) as a Function of Burst Altitude and

Ground Zero Distance; 106 Ib of TNT at Sea Level

for Good Surface Conditlohs

6.2.5.3 Duration of Poshive Phase

To predict the time duration of the positive phase of over-

pressure, t+, and dynamic pressure, t +, Figure 6.37 and

6.38 can _e used. The former applies_o a surface burst.

Figure 6.37 has been plotted according to Brode's theory

(Reference 6.18) for TNT explosions. Measured durations

of particle velocity (Reference 6.31) from a 100 ton TNT

surface blastand experimental data of overpressure positive

phase durations from a spill test of 200 pounds of LO2-LH 2
have been plotted in the same figure, assuming a TNT

equivalency of 60 percent for the LO2-L.H 2 combination.
These data show a good correlation between the actual

values and the theoretical curves which can be considered

reliable to _+ 10 percent.

Figure 6.38, applicable to an air burst, has been derived

from Reference 6.21 and is based on experimental data

from nuclear explosions.
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FIGURE 6.38 Durations of Positive Phases of Overpressureand
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Scaled Positive Impulses for Overpressure, Ip/WT1/'3,

and Dynamic Pressure, Iq/WT1/3, versus Scaled Distance
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6.2°5.4 Positive Impulses for Overpressure and

Dynamic Pressure

The positive impulse for overpressurel I+, and the positive

impulse for dynamic pressure, Iq,+ due to_ rocket explosions

can be predicted from Figure 6.39.

=+/w 1/3In this figure, the curve versus scaled distance,
p T

called "TNT Reference Curve", is based on records from

20-ton and 100-ton TNT shots from Reference 6.33. The

la_/WT1/3- is derived from Brode'scurve Theory (Reference
-1

6.18) for TNTexplosions. The reliability of Figure 6.39

can be considered to be + 20 percent.

In Figure 6.40 and 6.41, a comparison is made between

the TNT Reference Curve, the curve plotted according to

Brode's theoryl and experimental data from LO2-RP-1 and

LO2-LH 2 tests for Project Pyro (Reference 6.25); the

values are based on the observed terminal yield. These

figures show a reasonable agreement between the experi-
mental data and the TNT Reference Curve.

For application to blast loading problems, it is often more

convenient to use the effective value of the overpressure

or dynamic pressure duration. This is defined as the du-

ration of a triangular pulse with the same initial peak

value and the same positive phase impulse as the actual

+ +
blast pulse. Values for the effective value of t and t

are given in Section 2 of Chapter 8. P q

E

1000

100

1
.1

' \7

8rode's Curve l _

! i
® 200 Ib LO 2 RP-1 Test Data

---,oo0,bllllt°2RP-,TestlDatol \ / III
1 10 100

Scaled Distance Z _ wTdl/3 f(23)

FIGURE 6,40 Experimental and Theoretical Values of

Scaled Impulse versus Scaled Distance -

LO2/RP-I (Data from Reference 6,25)

6.2.5.5 Time Variations of Overpressure and

Dynamic Pressure

Figures6.42 and 6.43, (from Reference 6.18) may be used

to define the range of time variations of overpressure and

dynamic pressure by using the calculated peak over-

pressure, dynamic pressure, and overpressure and dynamic

pressure durations with their respective reliability limits.

All the curves within such ranges have to be considered

possible; hence, the worst of them, from a structural de-

sign viewpolnb should be considered. The average curve

is the most probable one.

IOO0

_ 11

0.1 1.0 10 100

Scaled Distance Z = WTI/3 f/ib_

FIGURE 6,41 Experimental and Theoretical Values of

Scaled Impulse versus Scaled Distance -

LO2/'I-H 2 (Data from Reference 6.25)
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FIGURE 6.42 Rate of Decay of Pressure with Time for Various

Values of the Peak Overpressure
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FIGURE 6.43 Rate of Decay of Dynamic Pressure with Time

for Various Values of the Peak Overpressure

6.2.6 USE OF DESIGN CHARTS AND NUMERICAL

EXAMPLES

.o (c)

Examples are g_ven in this Section to clarify the use of

the scaling laws and charts presented in the previous

Section .They will cover some of the most frequent problems
met by designers.

Numerical Examples

Given -A TNT-equivalency of 5 x 106 Ib (WT)

and assuming a ground explosion.

Find -The dlstanceat which the peak overpres-

sures would be < 14.7 psi.

Solution-From Figure 6.26, the scaled distance,

Z, can be found knowing the peak overpressure,

pso ; thus,

_ d =Z - _ 8.0 ft/Ib 1/3

w,o

(b)

.'. d = 8x(5x 106) 1/3=1.37x 103 ft.

Considering the reliability of" Figure 6.26

(+ 10 percent):

d =(1.37+0.137) 103 = 1.507x 103 ft.

Given - A TNT-equivalency of 5 x 106 Ib (WT)
and assuming a ground explosion.

Find - The peak overpressure at a distance of

5,810 ft.

(d)

Solution = From Figure 6.26, Pso can be found

knowing Z.

Z - 5810 = 34 ft/Ib 1/3

(5 x 106)1/3

and from Figure 6.26

Pso = 1.4 psl

Considering the reliability of Figure 6.26

(:E 10 percent):

pso = 1.4 :k 0.14 psi

Given - A :fNT-equlvalencyof 5 x 106 Ib (WT)

Find - The distance from ground zero for

which the peak overpressure would be < 14.7

psi considering possible infllght explosi_'ns.

Solution - Define surface conditions: To be con=

servative,assume good ground conditions. From

Figure 6.31, interpolating between 10 and 15

psi, it is seen that the 14.7 psi line has overti-

cal tangent at about 1,020 ft. from ground zero

and 500 to 800 ft. burst altitude. This means

that a 106 Ib TNT explosion at an altitude of

500 to 800 ft. can give a peak overpressure of

14.7 psi or higher up to a maximum distance of

1,020 ft. Applying the scaling laws, (Section
6.2.4)

h = hr(WT,/WTr) 1/3

d = dr(WT/'M/Tr)1/3

= (0.85 to 1.37) 103 ft.

= 1.74 x 103 ft.

Considering the reliability of Figure 6.31

(17 percent), the desired distance is

d = (1.74 + 0.296) 103 = 2.04 x 103 ft.

for a blast altitude of 710 to 1,600 ft.

Given-A TNT-equivalency of 5 x 106 Ib (WT)
and assuming a ground explosion.

Find - the peak dynamic pressure (qso) at a

distance of 1,370 ft. (where pso = 14.7:t:
1.47 psi).

Solution - Define the surface conditions: To be

conservative, assume good ground conditions.

From Figure 6.35,qso can be found knowing the

scaled distance, 7.
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(e)

(f)

Z = 1370 ibl/3= 8.0 ft/

(5 x 106) 1/3

and from Figure 6.35 qso = 4.0 psi.

Considering the reliability of Figure 6.35,

(_ 25 percent)

qso = (4.0 :_ 1.0) psi

Given - A TNT-equlvalency of 5 x 106 Ib (WT)

Find - The peak dynamic pressure (qso) at a

distance of 1,740 ft. from ground zero, as-

sumlng the explosion to occur at an altitude of

about 1,000 ft. (the peak overpressure at the

point would be 14.7 psi).

Solution - Define the surface conditions:

Assume good ground conditions. From Figure

6.36, qso can be found knowing the reference
distance and the reference altitude for the

explosion under consideration.

Applying the scaling laws (Section 6.2.4)

dr : d(WTr,'WT)I/3 : 1.02x 103 ft.

hr = h(WTr/WT)I/3 = 0.585x 103 ft.

and from Figure 6.36, qso = 0.75 psi.

Considering the reliability of Figure 6.36,

(* 25 percent)

qso = (0.75 + 0.19) psi.

Given - A TNT-equlvalency of 5 x 106 Ib (WT)

and assuming ground explosion.

Find - The duration of positive overpressure

phase (t;) and of positive dynamic pressure

phase (t_ at a distance of 1,370 ft. (wherethe

peak overpressure would be 14.7 :t: I .47 psi).
/

Solution - From Figure 6.37, the two durations

(t; and t_-)can be estimated knowing the

scaled distance for the explosion under consid-

eration.

1370
Z=

(5x 106)1/3
= 8.0 ft/Jb 1/3

and from Figure 6.37

t ÷

P = 1.45

WTI/3

(g)

and

t +

Then

t +
P

t+
q

2.0 msec/Ib 1/3

= 1.45 (5. 106) 1/3 = 0.248sec.

= 2.0 (5 • 106) 1/3 = 0.342 sec.

Considering the reliability of Figure 6.37

(_ 10 percent)

t + = _.248 _ 0.025) sec.
P

t + = (0.342 :k 0. 034) sec.
q

Given -A TNT-equivalency of 5 x 106 Ib (WT) -

Find - The durations of positive overpressure

phase (t;)and of positive dynamic pressure

phase (ta+) at a dlstanceof 1,740ft. from

ground zero assuming the explosion to occur at an

altltudeofabout 1,000 ft. (the overpressure at

the same point would be 14.7 + 2.9 psi).

Solution - From Figure 6.38, the two durations

(t; and ta+) can be estimated knowing the

reference altitude and reference distance for

the explosion under consideration.

Applying the scaling laws, (Section 6.2.4)

dr = d(W Tr/WT)I/3 = 1.020 x 103 ft.

(W_r,/WT)I/3__ = 0.585 x 103 ft.
h h

r

t +
and from Figure 6.38, (p)r = 0.33 sec.

and (tq) r = 0.40 sec.

Applying again the scaling laws:

+ + (WT/WT r )I/3tp = (tp) r = 0.56 sec.

+ +

tq = ( )r (WT"ANTr)I/3tq = 0.68 sec.

Considering the reliability of Figure 6.38

(_ 50 percent)

+
t
P

= (0. 56 * O. 28)sec.

+
and t

q
= (0. 68 * 0. 34) sec.
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(h) Given - A TNT-equivalency of 5 x 106 Ib (WT)
and assuming a ground explosion.

Find - The overpressure positive impulse, I +
p'

÷

and dynamic pressure impulse, Iq , at a
distance of 3420 ft.

Solution - From Figure 6.39, the two impulses
can be estimated knowing the scaled distance,
Z, for the explosion under consideration.

Z - 3420 : 20.0 ft/Ib I/3

(5 x 106) I/3

and from Figure 6.39

+ 1/3
Ip,/W T

+ 1/3
Iq/W T

= 4.0 psi - msec/Ib 1/3

= 0.3 psi - msec/Ib 1/3

Then

i+
p

= 0.68 psi-sec

i ÷

q
= 0.051 psi-sec

and considering the reliability of Figure 6.39

I+ = 0.68 :k 0.14 psi-sec
P

(;)

I + = 0.051 d: 0.01 psi-sec
q

Given - A TNT-equlvalency of 5 x 1061b (WT)
and assuming a ground explosion.

Find - The time variation of overpressure and
dynamic pressure at a distance of 5,810 ft.,

(where Ps = 1.47 :E 0.15 psi).

Solution It is necessary to have already
determined the peak dynamic pressure and over-
pressure and the dynamic pressure positive phase

duration with their relative reliability limits.
The following values are assumed to be the
results of calculations:

Peak overpressure: Pso= 1.47 :k 0..15 psi

Peak dynamic pressure: qso= 0.052 -_ 0.010 psi

Overpressure positive +
phase duration: t = 0.786 :k 0.079sec.

P
Dynamic pressure
positivephaseduratlon: t += 0.839 :E 0.084sec.

q

Now Figures 6.42 and 6.43 can be used to calculate the
following tables.

TABLE 6.6 CALCULATED RANGE OF TIME HISTORY OF OVERPRESSURE PULSE (POSITIVE

PHASE ONLY) AT 5810 FT FROM 5 x 106 LB TNT-EQUIVALENT EXPLOSION

Read From

Figure 6.42

p(t)/Ps ° t/t +P

1.0 0.0
0.9 0.07
0.8 0.15
0.7 0.23
0.6 0.31
0.5 0.40
0.4 0.50

0.3 0.62
0.2 0.75
0.1 0.87
0.0 1.0

Calculated from First Two

Columns by Setting:
(Upper Limit)

Pso : 1.62 psi

p(t)
psi

1.62
I .45
1.29
1.13

0.97
0.81
0.65
0.48
0.32
0.16
0.0

t+= 0.865 sec.
P

t
see

0.0
0.060
0.130
0.199
0.268
0.346
0.432
0.536
O. 650
0.753
0.865

Calculated from First Two

Columns by Setting:
(Lower Limit)

Pso= ] .32 psl

p(t)
psi

1.32
1.19
1.06
0.93
0.79
0.66
0.53
0.40
0.26
0.13
0.0

t =0.707 sec.
P

t
sec

0.0

0°049
0.106
0.162
0.219
0.283
0.354
0.439
0.530
0.615
0.707
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TABLE 6.7 CALCULATED RANGE OF TIME HISTORY OF DYNAMIC PRESSUREPULSE (POSITIVE

PHASE ONLY) AT 5810 FT FROM 5 x 106 LB TNT-EQUIVALENT EXPLOSION

Read From

Figure 6.43

(t)/qs ° t/t +P

1.0 0.0
0.9 0.03
0°8 0°07
O.7 0.I0

0.6 0o14
0°5 0.20
0°4 0.26
0 _3 0.34
0.2 0.44
0.1 0.59
0o0 1.0

Calculated from First Two

Columns by Setting:
(Upper Limit)

qso = 0.062 psi

q (t)

psi

0.062
0_056
0.050
0.043

0°037
0o031
0.025
0o019
0.012
0.006

OrO

+
t --0.923 sec
q

t
sec

0.0
0.028
0.065

0.092

0.129
0.184
!O.240
0o314
0.406

0.545
0. 923

Calculated from First Two

Columns by Setting:
(Lower Limit)

qso--. 042 psi

q (t)
psi

0.042
0.038

0.033
0.029
0.025
0.021
0.016
0.012
0.088
0.004
0o0

t += . 755 sec.
q

t

sec

0.0
0.022
0.053
0.075
0.108
0.151
0.196
O. 256
0.332
0o 445
0. 755

2,0[ '

L

1.0

A

o;2 o'.4 o.6 ole
Time, Sec.

FI GURE 6.44 A Time Variation of Overpressure at a Distance of
5,810 feet from a 5 x 106 Ib TNT Equivalent

Rocket Explosion

B Time Variation of Dynamic Pressure at o Distance
of 5,810 feet from a 5 x 106 Ib TNT Equivalent

Rocket Explosion

The results of these two tables are plotted in Figure 6.44.

Any curve within the calculated range is acceptable, the
average curve being the more likely one.

6.2.7 CONCLUDING REMARKS

The design charts presented in this section for the calcula-
tions of rocket explosion air blast parameters are based on
the use of the equivalent TNT explosion concept. For the
far-field region, the blast parameters associated with the
equivalent TNT weight give sufficient accuracy for blast
load design, but for the close-fleld, they overestimate the
blast loads significantly. This is due to the major differ-
ences between rate of energy release and explosive mass to
energy ratio between propellants and TNT. However, in
the far-field region, the blast parameters are a function,
almost exclusively, of the total energy released during the
explosion.

The design curves given are based on experimental results
for TNT with limited support by experimental data on pro-
pellant explosions. However, more experimental infor-

mation is desired to improve the design curves presented.
Of particular value willbe statistical data on actual yield
obtainedunder a variety of conditions for a given quantity
of propellants.
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6.3 SONIC BOOM

6.3.1 INTRODUCTION

The flight of an aircraft at supersonic speeds through the

atmosphere results in a series of shock waves emanating

from the vehicle, originating from points of area change.

These waves propagate along a conical front extending aft

and outward from the aircraft. Near the aircraft, these

waves interact wlth each other and with expansion waves,

gradually converging into a single bow wave and a single

tail wave for the vehicle, Figure 6.45. An observer in

the near field of the vehicle will experience a complex

pattern of sudden pressure changes dependent on the air-

plane's area distribution. In the far fleld_ an observer

will experience anN-shaped pressure-time variation as

the bow and tail waves pass by at the aircraft velocity.

For typical supersonic operating altitudes, structures on

the ground wilt be in the far field, so that the character-

istics of the N-wave are of most interest.

Ap

Ap

Overpressur e,

Ap

FIGURE 6.46 Sequence of Applied Loading

From Hubbard, Reference 6.36

In addition to this airborne pressure pattern, buildings can

experience earthborne acceleration transients as the shock

front passing over the ground excites the surface layers of

the earth. These surface waves may propagate faster than

the trace of the airborne wave front along the surface,

thus arriving before the airborne N-wave. However,

these earthborneaccelerations are expected to have mag-

nitudes much lower than those associated with earthquake

damage.

I.Z

U. S. Standard Atmosphere No Wind

10 _ !
O.B • ! I

o.i J - -i 1 1 i
05 1.0 1.5 2.0 2.5 3 0 3.5 4.0

y/h kot_ol Oiltance/flight Altitude

FIGURE 6.47 Lateral Distribution of Shock Wave Strength

From Carlson et al., Reference 6.35
_p

FIGURE 6.45 Typical Shock Wave Patterns

Figure 6.46 shows the variety of loading events experi-

enced by a building as the N-wave sweeps over it toward

the left. First the building is forced laterally due tothe

initial positive loading on its front surface. Then it would

be forced inward from all directions, next forced outward,

and finallydisplaced laterallyagain because of the nega-

tive pressure acting on the back surface. The duration of

the N-._vave at a point and its corresponding length at an

instant of time depend primarily on the aircraft speed and

length respectively. For supersonic transport aircraft, the

overpressure signature may be 1,000 feet in length and
0.4 second in duration.

6.3.2 SONIC BOOM CHARACTERISTICS

As the conical shock front propagates away from the

vehicle in directions always normal to the shocks, varia-

tions of temperature in the atmosphere cause a refraction

of the ray paths. For the normal temperature gradient in

a standard atmosphere, the ray paths are bent concave

upward, so that the overpressure signature on the ground

is limited to a finite width corridor and is of decreasing

strength away from the flight path locus within this corri-

dor. Figure 6.47 shows the lateral distribution of shock

wave strength based on data for flight Mach numbers

from 1.2 to 3.0 and flight altitudes of 42,000 to 74,000

feet. The quantity I (y,e), whi_:h is a property of air-

plane geometry only, has been brought into the ordinate

to give a single curve for all airplane geometries. The

lateral extent of the overpressure corridor on each side of

the ground track is given in Figure6.48 for a 1962

U. S. Standard Atmosphere and for a surface elevation at
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FIGURE 6.48 Lateral Extent of Pressure SignatureatGround

From Kane, Reference 6.37

sea level. Total corridor widths of about 60 miles are ex-

pected for aircraft cruising at about Mach 3, for example.

This corridor is bounded fore and aft by the moving para-

bola formed by the intersection of the conical shock front
with the earth surface.

The N-wave produced in the far field of supersonic air-

craft can be described by the magnitude of the initial

pressure rise, (z_o), The duration between the initial and

final waves, (_), and the spectral content. The magni-

tude of the peak overpressure at the ground is controlled

primarily by the aircraft volume and weight and by its

operating altitude. Of secondary importance are the

operating Mach number and the details of the vehicle area

and lift distribution, and such atmospheric conditions as

temperature and wind gradients and turbulence patterns.
Typical peak overpressure magnitudes for several aircraft

typesare shown in Figure 6.49 as a function of flight alti-

tude. The Iowerthree regions represent exposures currently

experienced or anticipated in steady flight. The region

labeled "training maneuvers" represents accelerating flight

for current aircraft, where overpressures as high as 6 psf
can occur o

i I i i

ining Maneuvers

-

6

• """ '".:"_:" _'_"'-F ight er s

I I I I
0 20 4O 6O 80

Altitude, 103 ft.

FIGURE 6.49 Typical Sonic Boom Overpressures

From Hubbard, Reference 6.36

Effects of vehicle weight andflightaltitude on peak over-

pressure at a point in the far field of a typical vehicle

(of length 230 feet and flying at a Mach number of 1.4)

are given in Figure 6.50 . The decrease of peak over-

pressure with altitude is due to the attenuation of the

shock waves as they are propagated over longer distances

in the atmosphere. The curve for zero weight shows the

portion of the overpressure for non-zero vehicle weights

are due to the additional wave generation implied by lift

requirements.
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\\\ voh  ,o oogth
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i 1
2b 3b 4o so _0 7b

Altitude, 103 ft.

FIGURE 6.50 Effect of Weight and Altitude on Far Field Over-

pressure, From McLean et al., Reference 6.3B

A quantity of importance to structural designers is the

impulse, or time integral of the positive portion of the

pressure pulse. The total duration of the N-wave is influ-

enced primarily by the vehicle length. Typical duration

values are 0.04 second for present-day fighter aircraft,

0.2 second for the longest present-day supersonic aircraft,

and 0.4 second for the proposed supersonic transport.

Since vehicle weight has a second order effect on the

magnitude of the overpressure, the positive pressure im-

pulse is affected in two ways even for vehicles of equal

length. The effects of weight and altitude on impulse (for

the same vehicle and flight Mach numbers as those in

Figure 6.50) are shown in Figure 6.51. Increase in oper-

ating altitude above about 40,000 feet does not decrease

the impulse for large transport-type aircraft.

.o
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, t
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Altitude, 103 ft

FIGURE 6.51 Effects of Vehicle Weight and Altitude on Impulse at

Ground, From McLean et al., Reference 6.38

The standard measurement height for overpressure signa-

ture is at ground level, and this has been implied in all

the foregoing discussions of wave characteristics at the

earth surface. However, portions of a building structure

at different heights above the ground will experience

both the directwavesand those reflected from the ground.

For typlcalbuilding heights and overpressure signature
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lengths_ the entire building will be within the region of

superposed direct and reflected waves, Figure 6.52 .

The resulting wave pattern (even excluding reflections

from the building itself) is not the simple N-wave but

such composite patterns as those in Figure 6.52.

Receiver / ///"

Height ft. X _ ///

(c) 0 \,,--'-,, ,,,, ,._ -, ,,-, ,, -, ,, ,, ,._. ., ,, ,. -, ,,_.,.

FIGURE 6.52 Effect of Elevation on Received Sonic Boom Signatures

From Hilton et al., Reference 6.39

The idealized time history of a sonic boom can be repre-

represented by the expression

and

p(t) = Ap - 2Amp o t for 0_t_'r
T

p(t) = 0 for t> "r , t< O.

It can be shown (Reference 6.40) that at high frequencies

the energy spectral density (ESD) is

p(_) :
to

and at low frequencies

p(to) 12

max

2 4
_ Apto -r

36

Thus, the ESD rises and falls at 6 dB per octave and the

low frequency content is highly dependent upon the dura-

tion, increasing by 12 dB per duration doubling. It is also

found (Reference 6.40) that the frequency of the spectral

peak is given approximately by the solution to the equation

8
sin _ "r

tOT

To illustrate the importance of the duration effect, Figure

6.53_ taken from Reference 6.40, shows the effect of air-

craft size on the boom spectrum for aircraft from a small

fighter through a hypothetical transport. The same value

of peak overpressure is assumed in each case. It is clear

from thisflgure that although the audible part of the spec-

trum is practically unaffectedr the infrasonic energy in-

creases rapidly with aircraft size and it is to be expected

thatthe dynamic response of.large buildings due to a sonic

boom will be much greater for the larger aircraft.

6.3.2.1 Energy Spectral Density

For purposes of estimating dynamic response to the transient

N wave_ the spectral distribution of the input energy is

desired° The energy spectral density of a time-varying

pressure is

where:

tZ 12IP(.)l2 -- p(t) e -jut dt

JP(=)l2

p(t)

= energy spectral density

= instantaneous pressure at time t

= frequency in radians

-10

a. -3c

o

o

-40

-2O
.<

0.1

FIGURE 6.53
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Higher Frequencll

10.0 100

Energy Spectra of Sonic Booms for Various Aircraft

and a Hypothetical SST (From Reference 6.40).
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6.3.3 ATMOSPHERIC VARIATION EFFECTS

All the foregoing description has dealt with steady flight
in a standard atmosphere. Variations of temperature and
pressure with altitude and the presence of winds in the
atmosphere will affect the wave propagation and, there-
fore, the strength, distribution and extent of the shock

waves at the ground. Although the effect of variable

properties in stratified nonhomogeneous atmospheres has
been calculated for nominal variations in the atmosphere
(Figure 6.54), actual observations of the variations of

the overpressure about the calculated value for a typical
atmosphere show a much greater range of values than indi-
cated by theory. Extensive records of sonic boom were re-
corded furing the recent series of test over Oklahoma
City and the statistical variation in the observations are
shown in Table 6.8.

_p

A Pst d
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On Ground and Head Wind

-- I - /

1.5 2.0

Mach Number

2.5 3.0

FIGURE 6.54 Range of Calculated Overpressure Variations in Non-

standard Atmospheres, From Kane, Reference 6.37

TABLE 6.8

STATISTICAL DEVIATION IN MEASURED SONIC BOOM PARAMETER

FROM CALCULATED VALUES (FROM REFERENCE 6.41)

Aircraft - Two Airplanes 21,000 - 41,000 feet, Mach 1.2 - 2.0

Observation Point - Three Locations - 0, 5, and 10 miles perpendicular to track

A Pmeas

A Pcalc

A Pcalc from volume and
llft theory, from methods
of NASA TR-198

I ÷

meas
I+
calc

I+calc from theory of Whitham

(Reference 6.42 ) assuming far
fleld, neglecting I ift effects,
and t += t-.

Range - Miles 0 5 10 0 5 10

Percentage of Results*

99 Percent

50 Percent

1 Percent

0.465 0.56 0.47

0.885 1.13 1.16

I .68 2.27 2.98

0.55 0.66 0.57

0.88 1.01 1.063

1.42 1.55 1.98

* Percentage of Results Greater Than Tabulated Ratio of Measured vs Calculated
Value, Based on Log-Normal Distribution.

Departures from a quiescent atmosphere_ especially the
turbulence arising from thermal instability in the first few
hundred feet of the atmosphere_ can significantly affect
the shape of the sonic boom signature and thus il_ spectral
energy distribution. The clean N-waves which occur
when the lower atmosphere is quiescent can be rounded off

to a nearly slnusoldal shape by a hlghlyturbulent lower
atmosphere. Again_ observed results have shown the wide

variation in N-wave signature that is possible. The typical
type of N-waves observed from tests reported in Reference
6.41 are shown in Figure 6o 55 , along with their relative

frequency of occurrence.
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Relative Frequency of Occurrence in 1152 Measurements of 4 Airplanes

-1_-_ I+os

(o) Type P. Peaked Wave With Very Short
Rise Time Associated With
Initial Peak

T'_ At°pos

5.7%

(b) Type N. Approximately N-Wave In Shape 75%

At°pos Y

(c) Type R. Rounded.off Wave Having

Sine-wave-type Appearance
16.8%

÷

jIp 

pos t

(d) Type C. Peaked Wave With Long
Rim Time 2.5%

FIGURE 6.55 Schematic Diagrams Showing Some Categories of Waveforms Measured

at Ground Level During Sonic Boom Tests, (From Reference 6.41)

Aircraft maneuvers involving Iongltudinal_ lateral or

normal accelerations can result in pressure buildups on

the ground called "superbooms", due to the convergence

or focusing of shock waves into a small region. Although

the aircraft and shock waves are moving, the superboom

areas are fixed and do not move with the aircraft. Theo-

retical methods are available for predicting ground over-

pressures during accelerated flight including effects of

atmospheric temperature variation and wind gradients.

Limited experimental measurements for aircraft in level

linear acceleration have shown overpressure magnitudes

about 2.5 times as large as for the corresponding conditions

in steady flight. However• these superbooms are limited

in their spatial extent. (Reference 6.43).

6.3.4 CONCLUDING REMARKS

In summary, facilities and residential areas in the vicinity

of rocket launch and test sites may be exposed to reoccur-

ringsonic booms of the order of 5 psf (2.5 X 2 psf nominal

value) for overflight of future supersonic transports. The

N-waves will have a time duration of abo_t 0.4 second
and a positive phase impulse of 0.5 Ib sec/ft '_. For rocket

test sites near experimental flight test facilities such as

Edwards Air Force Base• peak overpressures up to 10 psf

may be experienced from smaller aircraft. Maximum

ex_oected impulseswould still be of the order of 0.5 Ib sec/

ft =. However• the time histories may no longer be ideal

N-waves in such casesand may cause more severe structural

responses.
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CHAPTER 7

PROPAGATION OF SONIC

PRESSURE WAVES AND

GROUND VIBRATION

7.1 INTRODUCTION

Determining propagation losses is a basic step in the

analysis of any source-transmission-recelver problem in-

volving sonic energy. The following chapter treats this

subject in three parts - propagation of acoustic waves,

blast waves, and ground waves. More is known about

propagation of acoustic waves, so this topic is considered

first. This also allows propagation effects common to all

three sources to be more effectively covered.

7°2 PROPAGATION EFFECTS OF ACOUSTIC WAVES

Propagation effects between an acoustic sou rce and recei vet

may be classified by the following phenomena (References

7.1 and 7.2).

• Divergence Losses (Losses Due to Spreading)

• Absorption Losses (Losses Due to Energy Dissipation

or Conversion in Homogeneous Medium)

• Refraction Effects (Gain or Loss Due to Bending of

Sound Rays in Nonuniform Medium)

• ScatteringLosses(Scattering Due tolnhomogeneitles

of Media or Obstacles on Ground)

For application to design problems, it is convenient to

regroup the various types of propagation effects into three

broad categories as follows:

Nominal or Predictable Effects

• Effect of Static Properties of the Atmosphere on

Sound Power Generated by a Source

• Losses Due to Spreading or Divergence of the Wave
Front

• Losses Due to Classical Absorption, Molecular Ab-

sorption, and Heat Radiation

• Losses by Barriers or Ground Cover

Slowly Varying Propagation Anomalies

• Spreading Anomalies Due to Quasi-Static Non-

uniformity of the Atmosphere

• Attenuation Anomalies Due to Scattering of Energy

in the Atmosphere

Rapldly Varying Propagation Anomalies

• Varying Propagation Due to Fluctuating Conditions

of the Atmosphere

The latter category of rapidly varying propagation anoma-

lies, which cause the average received level to vary over

a period of minutes or less, will not be covered since it is

not generally a significant factor for design. It should be

pointed out that the physical phenomena involved in these

propagation anomalies is known but theoretical design

methods cannot always be developed to account for them.

The slowly varying anomalies represent the combined

effects of loss mechanisms which are sufficiently variable

or unknown as to make theoretical predictions of limited

value for design. In this case, semiemplrical or statistical

estimates are desired. These estimates, coupled with the

prediction nominal losses, form the basis for conservative

design estimates of propagation effects.

A thorough review of sound propagation in air, published

by Nyborg and Mintzer (Reference 7.1), in 1955, provides

limited information applicable to propagation effects of

low frequency rocket noise. Emphasis will be placed, in

this section, on sound propagation at frequencies below

1,000 Hz. Available data on sound propagation in air

down to about 2 Hz is included here, along with recently

reported measurements of sound absorption in the audible

frequency range. These data have been utilized todevelop

new methods for predicting the minimum and maximum

propagation loss in the low frequency range. Acombined

theoretical and empirical correlation of the absorption loss

data, for example, provides for the first time a unique

means of predicting the minimum absorption loss at fre-

quencies well below the range of published data.

7.2.1 AMBIENT ATMOSPHERIC CONDITIONS

Ira point source of sound is placed inauniform, stationary,

infinite med!um, the mean square sound pressure at a dis-

tance r from the source may be expressed by

p2 = W . pc • e -2c_r (7.1)

47 r 2

where

p2 = mean square pressure - Newtons/m 2

W = acoustic power output - Watts

r = distance from source - meters (m)

p = mass density of medium - kg/m 3

c = velocity of sound in medium - m/sec

a = pressure attenuation constant - Nepers/m.

For a constant power output, the mean square pressure

varies directly as the characteristic impedance of the me-

dium pc, inverselyas the square of the radius r, anddecays

exponentially with radius according to the attenuation
constant _. The latter defines the fractional decrease in

sound pressure per unit distance, in a sound wave, due to

dissipation of acoustic energy by various loss mechanisms°

For noise from rocket exhaust, the sound power is also a

function of pc. In fact, it can be shown that the mean

square pressure in the far field of a rocket noise source is

expected to vary as p2/c4(Reference 7.3). This is equiva-

lent to the mean square sound pressure varying with PoZ/T 4

where Po is the ambient pressure and T is the absolute am-
bient temperature. Based on this relationship, the change,
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indecibels,in rocketnoise due to different ambient con-

ditions can be specified as shown in Table 7.1. Reference

conditions of 760 mm of Hg (14.7 psi) and 15°C (59°F)

were used. As an example, if a rocket noise measurement

is made when the atmospheric pressure is 800 mm Hg (15.5

psi) and the ambient temperature is -20°C (-4°F), the cor-

rection factor CA , given in the last column of Table7.1

shows that the measured sound level will be 2.7 dB above

the level expected for nominal reference conditions. For

normal sea level conditions, the variations in sound level

of about -J:2 dB would usually be within the accuracy of

the predicted sound levels for a given rocket engine.

TABLE 7.1

EFFECT OF AMBIENT CONDITIONS ON ROCKET

NOISE SOUND PRESSURE LEVELS

C A = 10 log (Po/760) 2 (288/T°K)- dB

Altitude

ft

Sea

Level

5,000

10,000

20,000

30,000

Po

Pressure

mm Hg

800

760

720

632

523

350

226

Temperature CA(_

°C OF dB

-20 -4 +2.7

15 59 +0.4

40 104 -1.0

-20 -4 +2.3

15 59 0.0

40 104 -1.5

-20 -4 +1.8

15 50 -0.5

40 104 -1.9

5.1 41.1 -1 o0

-4.8 23.4 -2.0

-24.6 -12.2 -4.2

-44.6 -48.4 -6.5

O Change in sound level at large distances from
a rocket noise source due to difference be-

tween pressure and temperature specified and

reference conditions (Po = 760 mm Hg, T =

288°K or 59°F)

7.2.2 SPREADING LOSSES

The mean square sound pressure level in the field of a point

source of sound radiating into free space varies inversely

as the square of the radius from the source, due tospherical

spreading of the wave front.

This spherical spreading loss is shown in Figure 7.1,

assuming a reference distance of I foot. While the inverse

square law is useful for estimating sound levels at large
distances from a rocket noise sourcer the finite size of this

source and the effect of a reflecting ground plane will

cause significant deviations from this inverse square law in

regions close to a rocket exhaust flow or near the ground.

The sound level along a given radial llne from the nozzle

exit will then approach a finite upper limit not predicted

by Equation 7.1.

-20

-40 ,_

8
._i

a -60

-80

-100
1

FIGURE 7.1

10 102 103

Distance- ft

Inverse Square Law Spreading Lossfor Point
Source Radiating Into Free Space, Relative
to Sound Level at I ft from Source

\
104 105

7.2.2.1 Sound Field Near a Finite Size Sound Source

The source of rocket exhaust noise can be represented

conceptually by a distribution of sources which extend out

to 50 nozzle diameters from the nozzle exit. Figure 7.2

shows the relative sound level along radial lines at 90

degrees and 45 degrees to the axis of an array of 10 equally

spaceduncorrelated pointsources and with an origin at one

end of the array. Since the sources are assumed to be

uncorrelated, the mean square sound pressure at any point

is simply the sum of the mean square pressures contributed

by each source acting independently. These results indi-

cate that the spreading loss begins to deviate significantly

from the inverse square law at distances of the order of 1

source length (i .e.r about 50 nozzle diameters) from one

end of the extended source. A similar deviation from in-

verse square alsa occursclose to asinglefinite sizeacoustic

source such as a plate vibrating in its fundamental mode.

In this case, the deviation is negligible for distances

greater than 2L2/X where L is a characteristic source

dimension and X is the radiated wavelength.

The region near a sound source where the sound level de-

viates from the inverse square law due to these finite size

effects of the source is called the near field. The region

beyond this nearfield is called the far field of an acoustic

source and may be considered as the region where the sound

field corresponds to that of a point source.
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7.2.2.2 Influence of Ground Reflecting Plane

The presence of a ground reflecting plane near a noise

source can have two effects on the radiated sound field.

First, the sound power output of the source will be in-

creasedlf the ground plane is rigid and located closer than

approximately I/6 to 1/2 of the radiated wavelength, de-

pending on the type of source (Reference 7.4). The maxi-

mum increase is 3 dB if the source-to-ground plane sepa-

ration approaches zero and the volume velocity of the

source remains constant. This increase in sound power

output is due to an increase in the acoustic radiation

efficiency of the source.

The second effect of a ground plane involves the inter-

ference between the direct and reflectedsound (References

7°5 and 7.6). The deviations from an inverse square law

depend on the height h of the source above the ground, the

radius r from the source, and X, the wavelength of the

sound. The variation in the sound level radiated bya point

source of an ideal octave band of noise as a function of a

normalized radlus rX/h 2 is shown in Figure 7.3 for various

values of the ratio r/h of distance to height of source and

receiver. The wavelength for the normalized distance

is for the geometric mean frequency of the octave band.

The choice of these normalizing parameters provides a

reasonable collapse for the curves for r/h > 2.0. For prac-

tical cases, where the source is a deflected rocket exhaust

50 feet off the ground, the mean of the curves for r/h > 20

in Figure 7.3 would be suitable for estimating the ground

effect for distances greater than I00 feet. As an example

of this ground reflection effect, assume the source is lo-

cated approximately 50feet off the ground and the receiver

or sound level measurement is located at this same height

at 2000 feet from the source (r/h = 40).

If the wavelength X is converted to the corresponding fre-

quency, f = 1120/X, then for frequencies below 90 Hz,

(rX/h 2 > 10), the measured octave band level will be about

4-6 dB higher than would be observed without a ground

plane present. At an octave band center frequency of

about 200 Hz (r X/h 2 -_ 4.5), the sound level will tend to

showa marked decrease in level below the free field value

(without a ground plane) due to the destructive interfer-

ence of the direct and reflected sound rays from the source.

At frequencies above 450 Hz, (rX/h 2 < 2), the reflecting

ground plane increases the level about 2-3 dB. These

effects have been verified experimentally (Reference 7.6)

although the decrease in level for rX/h 2 -4 is not as sharp

as indicated by the ideal curves in Figure 7.3.

In summary, the effects of ground reflection and a finite

size source should be considered when predicting the sound

field of rocket noise, particularly in the near field region.

7.2.3 CLASSICAL ABSORPTION LOSSES

All sonic disturbances lose energy in propagating through

air due to the irreversible conversion of acoustical energy

into heat energy. This energy transfer process may be

broken down into three types: classical absorption losses

which are inherent in all gases due to basic gas transport

phenomena, molecular absorption losses which are asso-

ciated with resonance phenomena within polyatomic gases,

and losses due to radiation of heat energy (Reference 7.7).

Classical absorption losses are briefly reviewed in this

section and, for each type, a simplified expression for the

attenuation constant is given in terms of the decibel at-

tenuation per 1,000 feet at normal atmospheric pressure

and 59°Fo The exact expression is also given in terms of

nepers per unit distance (References 7.1 and 7.7). The

attenuation in decibels is equal to8.68 times the attenua-

tion in nepers (see Table 12.10, Chapter 12).

Viscous Loss

Cause-- Due to viscous drag forces opposing "par-

ticle" motion of sound wave

Attenuation Constant

Approximate a v = 2.58 x 10 -8 f2 dB/1,000 ft

Exact a v - 272 f2 Iq ___] Np/unit
l'Poc L B + J distance

(7.2)

Heat Conduction Loss

Cause -- Due to heat transfer between adjacent con-

densation and rarefaction regions within the

gas

Attenuation Constant

Approximate a n

Exact On

= I .08 x 10 -8 f2 dB/1,000 ft

2._2 f2 r(1'_l)kl Np/unit

=_ L Cp J distance

(7.3)
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Diffusion Loss

Cause -- Mutual diffusion between oxygen and nitro-

gen molecules in air

Attenuation Constant

Approximate a d = 0.38 x 10 -8 f2 dB/1,000 ft

272 f2 -(y-1)ADo_n"

Exact Qd = --
yPo c y

Np/unlt (7.4)

distance

The terminology used in the above expressions is identified

as follows. The physical values for the constants are for a

temperature of 59°F and an atmospheric pressure of 14.7

psi.

f

1' =

Po =

C =

qB =

T1

k =

Cp =

A =

Do_ n

frequency- Hz

specific heat ratio - (1.403)

atmospheric pressure - (2,117 Ib/ft 2)

speed of sound - (I, 117 ft/sec)

bulk viscosity coefficient - (Stokes theory

assumes qB = 0)

shear viscosity coefficient - (3.745 x 10 -7

Ib-sec/ft 2)

thermal conductivity - (4.02 x 10 -6

BTU/sec OR ft)

specific heat at constant pressure -

(7.71 BTU ft/Ib OR sec 2)

molecular constant - (0.51 for air)

oxygen-nltrogen diffusion coefficient

(0.214 x 10 -3 ft2/sec).
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BasedontheseconstantsandEquations7.2 - 7.4, the total

classical absorption at 59°F and normal atmospheric pres-
sure is

acl = 4.04x 10 -8 f2_ dB/1,000ft (7.5)

As shown in the next section, one form of molecular

absorption loss adds an additional 20 percent to this clas-

sical loss which varies with the square of frequency.

7.2.4 MOLECULAR ABSORPTION

Molecular absorption accounts for energy losses due toa

relaxation phenomenon of the molecules of the air which

are excited into resonance by the passage of a soundwave.

The principal effect involves an interaction of water vapor

molecules with the resonance of oxygen molecules so that

molecular absorption is highly dependent on the humidity

content of the air. Other gases in air also exhibit molecu-

lar absorption losses but toa negligible degree in the low

frequency range. Molecular absorption is reviewed in
detailslnce it is the basis for the minimum attenuation loss

at very low frequencies characteristic of rocket noise.

7.2.4.1 Review of Theory

A theoretical explanation for molecular absorption was

first given by Kneser in 1933 (Reference 7.8)concurrently

with experimental studies by Knudsen (Reference 7.9). A

detailed series of measurements of absorption in air were

recently conducted under well-controlled conditions by

Harris, and Harris and Tempest (References 7.10, 7.11,

7.12 and 7.13). These results, corrected for classical

absorption, demonstrate the well known fact that the

theory accurately predicts the maximum attenuation, but

fails to predict attenuation at all ranges of humidity. An

explanation for this discrepancy is still lacking; however,

a clear definition of the basic characteristics of molecular

absorption is desired to ensure consistent design estimates

of attenuation of low frequency rocket noise. The fol-

lowing simplified explanation for the theory of molecular

absorptlonisadapted from thorough reviews of the subject

by Dean (Reference 7.7), Knudsen (Reference 7.14), and

Henderson (Reference 7.15).

For diatomic gases (those having two atoms per molecule),

internal energy states of the gas molecules include two

rotational modes of the atoms about two mutually perpen-

dicular axes, and one vibrational mode of the atoms along

the line of centers as well as three translational modes.

Excitation of the rotational and vibrational modes is at-

tributed to transfer of energy from the translational modes

bycollision of the molecules. The translational energy is,

in turn, determined by the temperature of the gas.

Now, under adiabatic compression by a sound wave, air is

momentarily heated during each compression cycle. This

also increases the translational energy of the gas mole-

cules, thus increasing its ability to transfer energy to

another molecule by collision. However, if the period of

the sound wave is much less than the finite time, known as

the relaxation time, which is required for this process, the

energy transfer will not have time to take place. The gas

then exists, statistically, in an unexcited state (i.e., the

rotational or vibrational modes are not excited). On the

other hand, if the periodof the sound wave is much greater

than the relaxation time, sufficient time is available in

each cycle of the sound wave for the energy transfer to

occur. On the average, the gas will now havea higher

internal energy due to the additional energy of the internal

rotational and/or vibrational modes.

For intermediate periods of the sound compression cycle,

energ Xwill be extracted from the sound field by absorption

into this internal energ Xmodeof thegas molecules. The

amount of energy extracted will be proportional to the

energy of the rotational or vibrational modes which are

excited and will exhibit a resonance phenomenon between

the excitation frequency f, and relaxation frequency

fm _ 1/relaxation time. Thus, maximum energy loss occurs

when these two frequencies are equal. This loss of energy

is the mechanism for molecular absorption in polyatomic

gases.

The resonance effect for molecular absorption losses is

evident in the equation for the absorption loss per unit

wavelength, p, which is given by (References 7.7 and

7.15)

2f/f m
(7.6)

M = Mmax 1 + (f/)"'fm "2

where

_Jmax
= maximum attenuation in terms of the frac-

tional reduction of sound pressure per unit

wavelength _ -- a quantity which isinde-

pendent of frequency

f = frequency of sound wave

fm = relaxation frequency at which maximum ab-
sorption occurs.

For practical purposes, molecular absorption is more con-

veniently expressed as an absorption loss per unit distance.

It can again be defined as the product of a term which is

independent of frequency and a frequency-dependent term

by

(f/fm)2 ]
.... (7.7)[ mox

where

_, = c/f = wavelength of sound of frequency f and

sound velocity c

so that

fm Mmax fm

0lmax f c absorption loss per unit distance at

relaxation frequency
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and

2 (f/fm)2

1 + (f/fro)2

relative absorption loss, proportional to f2

for f << fm and equal to 2 for f >> fm"

Equations 7.6 and 7.7 for the molecular absorption are

plotted in normalized form in Figure 7.4. The values of

P and _ have been divided by their respective frequency-

independent terms Pmax and _max fm/f and plotted as a

function of the frequency ratio f/fm" The normalized plot

for p/Pmax clearly illustrates the "resonance" effect at

f/fm = I.

Cs

0.I
0.1

, I r i i I i !

1 1o

f/f m

FIGURE 7.4 Variation in Normalized Molecular Absorption

Coefficients with Frequency. H = absorption

loss per wavelength and a = absorption loss per

unit distance.

According to Equations 7.6 and 7.7, two parameters Hmax

and fm are necessary and sufficient to define molecular

absorption loss. However, since this process involves two

modes of vibration, rotational and vibrational, there are

two values of each parameter to be defined. It will be

shown that only the relaxation frequency fm for the vibra-

tional mode is not accurately predicted by theory. For the

sake of brevity, only the essential final equations of the

theory are summarized without detailed deviations.

7.2.4.2 Rotational Mode of Molecular Absorption

The value of the maximum absorption loss per wavelength

Hmax for the rotational mode can be given by the constant

(References 7.7 and 7.8)

Hmax (rot) = 27/5 _f_ (7.8)

This mode of absorption loss is not dependent on humidity

and the relaxation frequency, or frequency of maximum

absorption, is of the order of one bill ion hertz and is given

by (Reference 7.7)

- (7.9)
fmax (rot) 41, r1

where

= probability of energy excitation per collision =

0.26 for oxygen in air

Po = ambient pressure

q = shear viscosity coefficient.

When these last two expressions are used in Equation 7.7

and the values for the constants inserted for a temperature

of 59o}: and sea-level pressure (see Section 7.2.3), the

absorption loss for the rotational mode, given in dB per

1000 ft, for the audio frequency range is

a(rot ) = 0.80x 10 -8f2- dB/1,000ft (7.10)

Thus, the rotational mode portion of molecular absorption

loss varies with the square of frequency in the same manner

as the classical absorption loss and adds an additional 20

percent to this loss.

Experimental Verification of Total Absorption Loss for Dry
Air

The total predicted absorption loss fordry air at a tempera-

ture of 59°F is given by the sum of the classical loss and

the rotational absorption mode, which equals 4.84xl 0-8 f2_

dB/1000 ft. The loss increases with temperature by about

0.05% per OF from 0 ° to 100°F.

The total absorption observed in the laboratory for dry air

at a temperature of 20°C is about 2.00x 10 -11 f2 Np/m

(Reference 7.16). When corrected to 59°F and expressed

in practical units, this is 5.3 x 10 -8 f2 dB/1000 ft which

is within 10 percent of the predicted value. In general,

this loss is negligible in the normal frequency range of
interest for rocket noise.

7.2.4.3 Vibrational Absorption Mode

The vibrational mode of molecular absorption is the pre-

dominant known mechanism for absorption loss in the low

frequency range. It is due to energy absorption by oxygen

(O2)molecules vibrating in their lowest excited state° The

vibrational mode is one of axial vibration of the two 0 2

atoms along their line of centers. Excitation of this mode

involves the collision of oxygen and nitrogen molecules

with water molecules, hence this loss mechanism is very

sensitive to moisture content of the air. However, its

maximum values is not dependent on humidity.

In a normal mixture of air, with 21 percent oxygen, the

maximum absorption per wavelength in air for this mode is

0.21 times the value for pure oxygen and can be shown to

be (References 7.7 and 7.8)
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-E/RT
_ 27 (E/RT)2 e (7.11)

_max (vib) (0.21)

where

E = the vibrational energyassociatedwlth this mode -

BTU/mole

R = the universal gas constant - BTU/mole, OR

T = absolute temperature - °Ro

This vibrational energy E divided by the universal gas

constant R is equivalent to a characteristic temperature.

For the lowest vibrational mode of oxygen, this is

E
-- = 2239°K or 4030°R (Reference 7.20)
R

Thus, for an ambient temperature of 59°F (T = 519°R) the

maximum molecularabsorption due to the vlbrational mode,

when expressed in dB/lO00 ft, is

a = 8680" f/cmax Mmax

= 0.0078 f - dB/lO00 ft at 59°F (7.12)

At temperatures other than 59°F, the maximum absorption

is given by

a = 0.0078 f
max

//519 ,_2.5 e7.77 (1-519/T°R)_ dB/1 O00ft

\T°R /
(7.]3)

Experimental Verification of Maximum Absorption for
Vibrational Mode

According to Equation 7.12, the maximum absorption co-

efficient will vary directly with frequency. This linear

relationship has been clearly established by numerous

experimenters. The proportionality constant or slope of

maximum attenuation versus frequency will also vary with

temperature according to Equation 7.13. Recent experi-

mentally measured values of this constant (Harris and

Tempest, Reference 7.11)are compared in Figure 7.5 with

the value predicted by Equation 7.13 and show very nearly

the same variation with temperature. Similar agreement

has been obtained by several other investigations. Thus,

at a temperature of 35°F, reading from Figure 7.5, the

maximum molecular absorption in the vibrational mode

would be given by Oma x = 0.006 f - dB/lO00 ft.

Relaxation Frecluency- Theory

The second parameter required for defining molecular ab-

sorption by this vibrational mode, the relaxation frequency

fm, cannot be predicted theoretically. It is necessary to

resort to experimental results. However, some theoretical

concepts are available to guide interpretation of thedata.

Since the absorption process is dependent on collisions of

oxygen molecules, it can be shown that the influence of

humidity content of the air on the relaxation frequency,

o8

o E

u.uJ , ,

0.00_

0.006

0.004

1 i

J

--Theory

0.002 -- Q Harris and Tempest-
!Reference 7.11 )

• Harris
(Reference 7.13)

0 J I i I i I

-20 0 20 40 60 80

Temperature- OF

FIGURE 7.5 Slope of Maximum Molecular Absorption

Coefficient Versus Frequency as a Function
of Ambient Temperature - Theory and
Experimental Data. (Each O data point is a
mean slope through measurements plotted in
Figure 7 of Reference 7.11 .)

which, in turn, depends on the rate of these collisions,

would have the following simplified form (Reference 7.20)

Po

'm [ah2+bh, ]
(T)O.8

where

a, b, c = constants to be determined experimental ly

h = percent of water molecules in air (percent

mole ratio)

T = absolute temperature

P
0

= atmospheric pressure.

The three constants a, b, and c in Equation 7.14 can be

interpreted as follows. The constant c is the lowest relax-

ation frequency due to energy absorption by collisions of

0 2 and N 2 molecules in dry air. The constant (b)depends

on the number and rate of energy exchange between 0 2 -

H20 and N 2 - H20 collisions. The constant (c) depends

primarily on the number and rate of energy exchange be-

tween double H20-H20 collisions (References 7.7, 7.17

and 7.20). The temperature variation for fro, indicated in

Equation 7.14, is a preliminary estimate based on the

theoretical review by Dean (Reference 7.7).

Relaxation Frequency- Experimental Data

By analysis of experimental measurements of the variation

of fm with humidity, it is possible to obtain a reasonable

estimate of these constants. Such an analysis was carried

out, uti[izing the data from Harris (Reference 7.10), Harris
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and Tempest (Reference 7.12), Evans and Bazley (Refer-

ence 7.18 and Knotzei (Reference 7.19), which is sum-

marized in References 7.10 and 7.11. A"bestfit" line

was constructed for the data based on Equation 7.14, and

is shown in Figure 7.6. Included in this figure are data

from Reference 7.11, covering temperature conditions down

to -20°C (-4°F) and 200 mm Hg (3.9 psi).

I
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Z • C ' -"
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- //e /, ARef. 7.18 (20°C) _

/ /e ii'___l LEamffirlcal Best Fit (Equat, lon 7.1811

0.1 .0

h - Percent Mole Ratio of Water Molecules

FIGURE 7.6 Comparison of Data on Relaxation Frequency

for Vibrational Mode of Molecular Absorption

with Kneser Theory and Revised Theoretical

and Empirical Best Fit to Data

This theoretical curve with empirically derived constants

is defined by the equation

fm -

pi

(T,) 0.8
_0+6.5 103h+4.36 104h21 - HzX X

(7.15)

where P' and T' are the ambient pressure and temperature

relative to a reference condition for the experimental data

of 20°C and 760 mm of Hg. The first or zero order term in

this equation was estimated from data reported in Reference

7.20 for the relaxation frequency for pure dry oxygen.

The suggested theoretical value for fm first proposed by

Kneser (Reference 7.8) is also shown in Figure 7.6. It

differs appreciably from the experimental data and is de-

fined by only one squared term in h given by

f = 5.8 x 104 h2 - Hz (7.16)
m

For practical applications, it is desirable to establish a

more accurate but equally simple expression for the relaxa-

tion frequency in terms of humidity content expressed in

more conventional units.

Humidity content is expressed in these two equations in

terms of percent of water molecules in air to be consistent

with theory. However, humidity content of air is more

commonly expressed in terms of the percent of relative
, 3

humidity or absolute humidity h in gm/m . A conversion

chart is given in Figure 7.7 which relates these three

quantities (Reference 7.1). (Note that the percent mole

ratio on the lower scale of Figure 7.7 has been multiplied

by 10.)

Absolute Humidity - gm/m 3

35 4 .5 .6 .7 .8 .9 I t25 1.5 1.75 2 2.5

.5 £ .7 .8 .9 I t25 1.5 L'r5 2 25 3 :

3 3.5 4 5 6 7 8 9 I0 125 15 17,520 25 30 '_, 40 50
I00%

80%

6O%

40%

2O%

10%

Ioo°F

Absolute Humidity- (% Mole Ratio)x 10

FIGURE 7.7 Chart for Converting Units of Humidity (from Reference 7.1). To convert from Relative

Humidity A at Temperature B, drop vertically to point C at intersection with lower

temperature scale, then along slanted line to point D which is 10 times percent mole

ratio. Absolute humidity in gm/m 3 lies directly above point B on top scale.
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The conversion from absolute humidity h, expressed as per-

cent mole ratio of water molecules, to absolute humldity h'

in terms of gm/m 3 is given by

h' = 7.57 h P*/T* - gm/m 3 (7.1 7)

where

P* -- ambient pressure relative to the reference value

of 14.7 psi

T* = ambient temperature relative to the reference

value of 519°R (59°F).

For the audio frequency range and for the normal range of

humidity, a simple empirical fit to the data in Figure 7.6

was made, as shown by the straight llne. The equation for

this llne, expressed in terms of h', is given by

fm - (T*)0"7 1800(h') 1"5- Hz (7.18)

(p.)0.5

where h' is the absolute humidity in gm/m 3 of the refer-

ence temperature and pressure. The terms T* and P*, de-

fined earlier for Equation 7.1 7, account for the temperature

and pressure variation in frn indicated by Equations 7.14

and 7.15. Although Equation 7.18 fits the data in Figure

7.6, the predicted variation of fm with temperature is op-

poslte to a trend indicated bynew data in Reference 7.13.

However, the temperature correction is small in most

practical cases.

The theoretical molecular absorption due to the vibrational

mode can now be calculated foranyfrequencyand humidity

bycomblning Equations 7.7 and 7.12. The resulting equa-

tion, based on the reference conditions where T* and P* =

1, is

0.0156 f2/f m

dB/1000 ft (7.19)

am°l= [1+(--_-m)2 ]

where fm is given by Equation 7.18 or, more accurately,

by Equation 7.15.

7.2.5 HEAT RADIATION LOSSES

The derivation of the maximum value of radiation absorp-

tion is given by Dean in Reference 7.7 following Smith,

(Reference 7.21). Sound waves radiate heat generated by

compression of the air and so transfer energy out of the

propagating sound wave. Smith's approach to the problem

was based on recognizing the phenomenon as one of heat

radiation from a gas rather than radiation from a solid body

(Stefan-Boltzmann Law) which had been the preferred ap-

proach. As a result, an expression was obtained for the

radiation constant which was directly proportional to the

frequency of the sound wave. Dean evaluated these results

and defined an upper bound to the radiation absorption loss

as a function of temperature, pressure, and frequency. The

following theoretical expression was obtained for the upper

bound for the heat radiation loss normalized to 59°F and

sea level pressure. (This includes a tenfold increase in

Dean's result to correct a typographical error in Equation

76 of Reference 7.7.)

0.116T *3x 10 -3
= f - dB/1000 ft (7.20)

arad p,

where

T* = absolute temperature relative to 519°R

P* = pressure relative to 14.7 psi, and

f = frequency in Hz.

For a given temperature and pressure, the heat radiation

absorption loss is directly proportional to frequency, and

for normal temperature and pressures(T* = P* -- 1), the loss

is small. The equation for this radiation loss is an estimate

of the maximum possible loss, as discussed by Dean, and

the relationship to the first power of the frequency is

exactly the same as for the maximum molecular absorption

loss. No experimental data is available to verify this

absorption loss due to radiation.

7.2.6 DESIGN VALUES FOR AIR ABSORPTION

7.2.6.1 Summary of Theoretical Values

The various theoretical components for air absorption, dis-

cussed in the previous sections, are summarized in Figure

7.8 for air at 59°F and sea level pressure. These theo-

retical values are shown for reference purposes only. Final

design values for air absorption will be based on experi-

mental data.
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FIGURE 7.8 Summary of Components of Theoretlcal

Sc_nd Absorption in Air at Sea Level

Atmosphere Pressure and 59°F
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7.2.6.2 Comparison of Theory with Measured Data

Measured values of air absorption are compared in this

section with the theoretical values in Figure 7.8. The

comparison shows that the well known discrepancy with

theory can be described empirically in aconsistent man-

ner, and the results form the basis of the design charts for

air absorption presented later.

Experimental Data

The first set of experimental results to be considered are

the laboratory measurements of Harris, and Harris and

Tempest (References 7.10 and 7.11). These laboratory

measurements were considered to be more consistent and

complete than any previous results, including those in

References 7.9 and 7.18. The data were obtained by

measurement of the acoustic decay in a sphere containing

air at various values of relativehumidlty at0°C and20°C.

Figure 7°9 shows the results for normal atmospheric pres-

sure and the two temperatures. The measured values plotted

are the smoothed results as published and have been cor-

rected, where necessary, for classical absorption losses.

For comparison with the theory, the data were normalized

by the relaxation frequency, fm, and the corresponding

maximum absorption ama x fm/f which is equivalent to

ama x for f= fm" The relaxation frequency was calculated

from the empirically derived expression, Equation 7.15,

which was the best fit to the experimental results in Figure

7.6.

The value for the maximum absorption at the relaxation

frequency was calculated from the theoretical value given

by Equation 7.13which was also confirmed by experimental

data (see Figure 7.5). The expression for the molecular

absorption from the Kneser theory is also plotted in Figure

7.9. The experimental data agree quite well with the

theory for both temperatures over a wide range of relative

humidity but clearly show the well known discrepancywith

theory at frequencies below about 0.1 of the relaxation

frequency fm" An empirically derived curve was therefore

developed which fits the experimental data over the entire

range of frequencies° Before considering this empirical

expression, results from field tests of air to ground propa-

gation are presented.

Figure 7.10 shows the experimental data for air to ground

measurements of rocket and jet noise normalized in the

same manner as in Figure 7.9. Only those results were

included which showed consistency of measurements, and

for which atmospheric and experimental conditions were

well defined. Also shown are values computed from pre-

viously published design charts which are also based on

field data. It should be noted that the results shown from

References 7.23 and 7.24 represent the average of a large

number of air to ground propagation measurements and thus

have high statistical significance. Ground to ground mea-

surements, such as reported in References 7.26 and 7.27,

were not included because of the additional effects of

ground cover, and temperature and wind gradients, dis-

cussed in later sections of this Chapter.

The results shown in Figure 7.10 cover a wider frequency

range below the relaxation frequency than the laboratory

results, and once again show a good collapse and the same

consistent deviation from the Kneser theory.

Derivation of Empirical Curve

The current theory of sound absorption does not provide

any explanation for this observed anomaly. The empirical

curve in Figures 7.9 and 7.10, which describes the data

quite well, was therefore developed in the following

manner.

An initial attempt to explain the anomaly by adding

another relaxation process, using Kneser theory, was not

successful. Therefore, a second approach was based on

the assumption that another process is occurring at the

molecular level and proportional rathe frequency alone,

and the expression for the molecular absorption would be

modified to become

ama x 2 (f/fro)2
i

amo I = a 1 f +

1 + (f/fm)2

where the second term is that due to the Kneser theory,

the first term allows for the additional effect anda 1 isa

constant to be determined. However_ it was found that

this expression did not provide a satisfactory fit over the

whole range of normalized frequency for the experimental
resul ts.

Finally, it was hypothesized that the additional loss was

indeed due to a molecular energy loss process, but would

occur randomly according to the motion of the molecules.

Therefore, it was assumed that the total loss would be given

by the square root of the mean square values for each loss

or

a I
real

1/2

(a I f)2 + ......

k + (f/fm)2 J

(7.21)

For comparison with the experimental data, this can be
normalized to the form

amol _ al . f 2

area x

(7.22)

where a2 = amax/fm which would be a function of tem-

perature and pressure only for f = fro"

This result was fitted to the experimental results to give

the empirical curve of Figures 7.9 and 7.10wlth the value

of al/a 2 = 0.18. This curve gives a good fit over the

whole range of laboratory and field data and provides a
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consistent basls for defining the discrepancy with the theo-

rectial values of molecular absorption loss. It must be

emphasized that Equation 7.22 has not been verified for

extreme values of temperature and pressure outside the

range normally encountered in the field. There was some

indication in the data that the constant al/a 2 should

change slightly with temperature over the range of 0°to

20°C. However, the evidence was insufficient to warrant

this modlfication. Therefore, in order to providea simple

expression for computing design curves for atmospheric

absorption which are consistent with experimental data in

Figures 7.9 and 7.10, Equation 7.22 will be used with the

value of the constant a 1/a 2 = 0.18.

7.2.6.3 Summary of Design Values

The recommended expressions for calculating the various

components of air absorption are:

Classical Losses at 59°F

acl = 5.3 x 10 -8 f2 _ dB/1000 ft (7.23)

where the constant is based on observed results.

Heat Radiation Losses

As shown by Equation 7.20, the maximum value for this

loss is proportional to frequency. Since the empirical cor-

rection to the molecular loss data is also proportional to

frequency, but with a much higher value, any heat radia-

tion loss was assumed to be accounted for by the correction

and was therefore not included in the calculation of final

design values.

Molecular Losses Plus Empirically Derived Correction

°too° ax . ,00O,
(7.24)

where

fm(T.)-2.5 7.77(1 - l/T*)ama x = 0.0078 e

fm = (10 + 6600 h +44,400h 2) P*/(T*) 0"8- Hz

h ' T*
h = Percent Mole Ratio

7.57 p*

h' = humidity gm/m 3

and P* and T* are the pressure and temperature normalized

to the reference values of 14.7 psi and 519°R (59°F). These

expressions are plotted in Figure 7.11 for three different

temperatures and sea level pressure. Figure 7.11a is for

the reference temperature of 59°F and Figures 7.1 lb and c

are for temperatures of 20°F and l00°F, respectively. The

results are plotted for a range of humidities and show that

at low frequencies the values for the corrected molecular
i

absorption amo I are the same at all humidities. This is

expected since the additional term introduced into the
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theory is independent of humidity and will control the

results at low frequencies. In addition, the empirical

expression will also differ from the Kneser theory at fre-

quencies much greater than fm, when once again the new

term will dominate, and the absorption coefficient will

exceed twice the value of ama x. This extrapolation of the

empirical term is indicated by dashed lines at the very

high frequencies in Figure 7.11b. However, within the

range of frequencies of interest for rocket noise, the effect

is small. The molecular loss at different temperatures can

be interpolated from Figures 7.11a, b and c or can be cal-

culated directly from Equation 7.24. This equation pro-

vides a unique and simple expression for molecular loss

which is consistent with observed values and which can be

readily extrapolated to low frequencies. The classical

absorption loss acl is also shown in Figure 7.11 and should
i

be added to area I at high frequencies.

7.2.7 ATTENUATION OF BARRIERS AND

GROUND COVER

7.2.7.1 Attenuation of Barriers

A building or structure directly between the source and

the observer will increase the attenuation of the transmis-

sion path. The exact attenuation depends on the location

of the source and observer, the dimensions of the barrier,

relative to the wavelength of the sound, and the atmo-

spheric conditions. The sound field is diffracted by the

barrier such that sound is heard in the shadow zone behind

the barrier. The acoustic shielding will be most effective

for high frequency sound when the acoustlc wavelength is

much less than the barrier height.

The acoustic shielding loss will be reduced for low fre-

quencies, and particularly as the wavelength of sound

approaches the typical barrier dimension. Variations in

the speed of sound and wind in the air can cause the

shadow zone to be effectively displaced, and in some cases

eliminated. In addition, the presence of a ground plane

can cause further effects.

The theoretical approach using Fresnel diffraction theory

becomes impractical for any thing other than a rigid bar-

rier and a uniform homogeneous atmosphere. Because of

these limitations, semiempirical methods are normally used

for calculating engineering values of barrier attenuation.

Figure 7.12, from Reference 7.1, shows the loss due to the

shieldingof a slnglethin barrier, in terms of the normalized

frequency parameter v, defined by the dimensions shown

on the figure. This result is applicable for free space when

the source and receiver are some distance from a thin rigid

barrier. Figure 7.13 shows calculated results for an ex-

ample given in Reference7.1. Here a hanger was directly

positioned between the source, an airplane engine, and

the receiver. The calculated values were obtained from

Figure 7.12 for each octave band by assuming a rigid bar-

rier at the hanger center line, and positioning a mirror

image source directly below the ground to account for the

ground reflection effects. The measured and calculated

results show quite reasonable agreement° The peak in the
measured noise reduction at 135 Hz is believed to be clue

to interference effects. The agreement is not as good at

higher frequencies where the measured loss is less than that

predicted by the theory. This is a real effect caused by

turbulent scattering of sound around, and transmission

through the barrier, and is a definite limitation of the

theory. Therefore, maximum barrlerattenuationsare limited

to 25 dB at high frequencies.

Finally, Figure 7.14 is included, based on the results

given by Beranek (Reference 7.28), and can be used for

preliminary engineering estimates of barrier attenuation.
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FIGURE 7.12 Attenuation in Sound Level Caused by a Wall,

Including Effect of Diffraction by Vertical

Sound Velocity Gmdlent dc/dz. A = 0 for

homogeneous medium (from Reference 7.1).
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7.2.7.2 Attenuation by Ground Cover

When the receiver and source are close to the ground,

additional attenuation provided by natural ground cover

can become important. The extra attenuation will depend

on the type of foliage, the frequency, and the angle be-

tween the source-receiver path and the ground. Figure

7.15, taken from Reference 7.30, shows some typical

values for the attenuation rate for various angles of eleva-

tion of the source and types of ground cover. For example,

propagation of noise from a static firing through dense

woods can be expected to show an additional loss of 5-

10 dB/1000 ft in the 150-300 Hz octave band. During a

launch, however, attenuation by ground cover will be

essentlally eliminated when the source to receiver eleva-

tion angle exceeds about 5 degrees.

The additional absorption provided by ground cover may

also exhibit a "resonance" effect with a maximum absorp-

tion in the mid-frequency range (References 7.26, 7.27

and7.29). This is illustrated in Figure 7.16 for horizontal

propagation over a grassy terrain. Similar results were

obtained by Franken and Bishop (Reference 7.31) in a

recent series of measurements of aircraft noise propagation

at and near airports. For some of these measurements,

buildings and homes were directly between the source and

receiver, giving an interrupted line of sight. However,

these results again indicate a pronounced low frequency

excess attenuation, with a maximum effect in the range of

125-250 Hz.
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Mostrocket facilities will beset in reasonably cl ear areas,

but the sources could be high off the ground, so that the

ground effect is minimum at relatively short ranges. The

The S-1C vehicle test stand at Marshall Space Flight

Center, for example, has a deflector located some distance

above the ground plane with the exhaust flow deflected up

at about 30 degrees to the horizontal, so that the predomi-

nant exhaust flow noisesources are well above the ground.

In summary, the effect of extra ground attenuation should
be considered near static test stands when both source and

receiver are close to the ground. Although groundabsorp-

tion losses can occur for propagation over very long ranges,

available data indicate the loss can be neglected. In this

case, maximum levels will be generally governed by focus-

ing effects which are not influenced significantly by the

ground. For shorter ranges, say within the bounds of a

test facillty, the values given in Figure 7.16 will be suf-

ficient for estimating the extra ground absorption.
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7.2.8 PROPAGATIONANOMALIES

In thissection other propagation effects, influenced by

weather conditions, will be presented. They are treated

separately because they represent effects that are generally

difficult to predict and in some cases to substantiate. These

deviations from the calculated inverse square loss, atmo-

spheric absorption, barrier effect, and ground effects are

generally the direct result of a nonuniform atmosphere and

scattering. They represent transient effects which can

change the propagation loss by as much as 20 to 30 dB

within a matter of hours. Nevertheless, these variable

losses may be considered in special cases for a fixed ground
installation. Other transient attenuation effects due to

fog, rain or snow will not be considered in this manual

since they are unlikely to be considered for design purposes.

7.2.8.1 Attenuation Due to Ground Winds and

Turbulence

Two effects are considered which increase sound attenua-

tion, flrst_ the additional attenuation of sound propagating

up-wind, and secondly, that due to scattering effects by
turbulence.

Ground Wind Effects

The wind itself causes some absorption due to sound propa-

gation against the wind direction, but this effect will be

generally negllgible. The principal reduction of sound

upwind of a source is due to thecreation of a shadow zone

caused bywindvelocltyandtemperature gradientsdirectlng

the sound up and away from the ground. These gradients

are dependent on the ground conditions since the actual

boundary layer temperature and ground wind profiles are

directly determined by the ground cover.

An acoustic shadow zone will form when the effective

sonic velocity decreases with altitude, either as a result

of temperature changes or velocity changes in the boundary

layer of surface winds. Figure 7.17 illustrates the forma-

tion of such a shadow zone, with the sound velocity gra-

dient causing the acoustic rays to be bent away from the

earth's surface. If the velocity gradient is steep, the

shadow zone may be bounded by a single ray. Figure7.18

shows a typical shadow zone formed by a wind gradient.

This figure shows how sound is apparently cut off for a

large region upwind and to the side of the source. For a

negative temperature gradient, the boundary of the shadow

zone will be a circle centered at the source. However,

this type of shadow zone due to temperature gradients is
not considered here and the reader is referred to Reference

7.37 for further details.

Shadow
Wincl

Zone

-.--- Di,ectio. \//_'Fs== /

FIGURE 7.17 Formation of Shadow Zone Caused By
Increase in Wind Velocity with Altitude

In practice, some sound penetrates the boundary of wind-

generated acoustic shadows and a finite attenuation occurs

upwind compared to that which would be observed with no

wind effect. This attenuation will vary with the frequency

of the source, the wlnd gradient, and the direction to the

receiver, given by the angle _p in Figure 7.18. A calcu-

lation and tabulation of thls attenuation has been pre-

sented in Reference 7.32 in the form of charts suitable for

the calculation of aircraft noise, with the aircraft and

receiver at the ground. Lacking any comparable data for

rocket noise, these results are presented here as a suitable

method for predicting ground wind attenuation of noise from

rocket test stands. The method is considered reliable for

those cases where the rocket is fired nearly horlzontally

close to the ground and for attenuation over distances less

than 1-2 miles.

Receiver

Shadow //

FIGURE 7.18 Upwind Shadow Zone (From
Reference 7.1)

The distance from a source to the upwind boundary of the

shadow zone (Point A, shown in Figure 7.18), is typi-

cally 200 ft for a 10 mph wind and source and receiver at

6 ft altitude. The exact distance depends on wind gra-

dient, velocity, and the height of the source and receiver.

For rockets at test and launch stands, the height of the

acoustic source could be considerably higher than for air-

craft and this distance will increase. For aircraft noise,

the typical attenuation upwind, in excess of inverse square

law and absorption losses, reaches a maximum value of 30

dB in the 600-1200 Hzfrequency band and at adlstance of

about 1000 ft from the source (Reference 7.32). The ob-

served attenuation decreases with an increase in the angle

of the receiver to the upwind direction, as shown in

Figure 7.18 and 7.20.

The recommended procedure for allowing for wind shadow

effects, following Reference 7.32, is to first estimate the

location and distance to the shadow zone. The distance

x 1 upwind to the edge of the shadowzone decreases as the

wind velocity increases, and can be taken as approximately

proportional to the square root of the velocity. The dis-

tance x 1 also increases in direct proportion to the height

h of source and receiver.
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For illustration, consider the following example. Refer-

ring to Figure 7.19, and assuming x 1 = 200 ft for a source

and receiver height of 6 ft and a mean wind speed V of

10 mph (14.6 fps), then for other wind speeds or heights,

the distance x 1 will be

V _ 1/2 h 8.73 V I/2 h

x1 : 200\1-_-6/ _ :
(7.25)

where

h -- the height of the source and receiver (or mean

height if both are at different heights) - ft

V -- wind velocity (fps), and

x 1 = distance to the start of the shadow zone - ft.

x 1 x2__ 

Distance Upwind of Source

FIGURE 7.19 Attenuation Upwind of Source Due to Wind

for a Source and Receiver at an Average

Height h Above Ground

The maximum attenuation A m is given in Figure 7.20 as a

function of frequency and the angle _. This maximum

occurs at a distance x 2 from the edge of the shadow zone

given by

x 2 = 34.9 V 1/2 h (7.26)
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FIGURE 7.20 Maximum ExcessGround Attenuation Due to
Wind Shadow Effect (from ReFerence 7.32)

Strictly, this distance is a function of the frequency and

angle _ also, but the above expression is a good approxi-

mation. Once these two distances are determined, then a

curve such as Figure 7.19 can be constructed using the

maximum attenuation given by Figure 7.20 for the required

direction, and the shadow effect determined. When the

angle ¢ becomes greater than 120 degrees, the shadow

effect is best disregarded. A final polntconcerns the effect

of ground wind on low frequency sound of large rocket

boosters. The typical acoustic spectrum for these boosters,

such as the first stage of the Saturn V rocket, peaks at a

frequency near 10-30 Hz, and the shadow zone attenua-

tion predicted by Figure 7.20 would be less than 5 dB.

The relatively small shadow zone attenuation would be

representative over short distances from a rocket fired

close to the ground. However, it will be shown later that

at large distances from a rocket test stand (e .g., > 2 miles),

much higherattenuations can occurat these low frequencies

due to wind and temperature gradients at high altitudes.

Thus, the frequency variation of shadow zone attenuation,

indicated in Figure 7.20, should be considered a minimum

value for frequencies below 100 Hz and applicable for

relatively short distances from a test stand.

It must be emphasized that the procedures outlined above

are basically empirical, due to the lack of a practical

theoretical approach. A complete description of the pro-

cess is given in References 7.1 and 7.32 and should be

referred to if a more detailed examination of a particular

problem is required.

Scattering by Turbulence

Additional attenuation of low frequency rocket noise can

be caused by turbulence scattering. The same mechanism

may apply equally well to reduce the propagation loss in

a different direction. The primary emphasis herein will be

concerned with attenuation effect due to scattering and

hence it is treated in this section. Basically, the scattering

of an irregular sound field, such as produced by a rocket,

will tend to cause an equalization of the acoustic intensity

propagating in all directions at large distances from the

source. This process of intensity leveling is a direct result

of scattering of the sound field by patches of nonuniform

sound velocity in the atmosphere. Thus, a highly direc-

tional sound profile for a rocket can be gradually rounded

out by scattering to a more nearly nondirectional pattern

at greater and greater distances from the source. This

effect, which is illustrated in Figure 7.21, is a very signi-

ficant one to be considered when positioning a rocket test

site so as to minimize community noise levels in a given
direction.

Asimplified analytical model for this scattering effect was

developed utilizing the concept of Rayleigh scattering

(References 7.33 and 7.36). The model is applicable in a

frequency range where the acoustic wavelength is of the

order of or less than the size of the scattering patch and

thus assumes that the scattered sound is not highly direc-

tional. A unique set of experimental data on the effect of

scattering, reported in Reference 7.34, was used to esti-

mate the scattering parameters.
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Sound Intensity Due to Scattering by Turbulence
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The essential features of the analytical model may be ex-

plained as follows. The direct sound intensity I r froma

source of rocket noise, without scattering or absorption

loss, and assuming hemispherical radiation, is given by

W o

I r = _ G([3)
2-n r 2

(7.27)

where

W o = sound power of the source

r = distance from source to scattering patch

G(_) = dlrectlvity index of the source

13 = angle relative to the jet axis.

When this direct radiation is incident on a scatteringpatch

of nonunlformatmosphere with a scattering cross section as

and a characteristic volume Vs, then within an incremental

volume dV in the sound field, an increment of scattered

sound power dW s is generated which is equal to the inci-

dent intensity I r times the scattering cross section a s times

the number of scattering patches dV/v s in the volume ele-
ment d V or

dW s = I r a s dV/v s

The ratio as/V s may be considered as a scattering loss co-

efficient ms in units of 1/distance. In other words, if the
radial thickness of the volume element is dr, the direct

soundsuffers a fractional loss (as/Vs) d r = m s d r in passing

through this volume. Thus, if the incident intensity of the

direct sound at this volume is Irt the loss in intensity is

d Ir = - Ir m s d r

or

dl r

-- = -msdr
Ir

Upon integration, this gives the exponential loss in the

direct sound intensity at any radius r due to scattering

only. The spreading loss can also be included to give a

new estimate for the direct intensity as

W o

I r = -- G(_) e-msr
2_ r2

(7.28)

To a first approximation, the increment of intensity d Is of

the scattered sound generated in this volume element, as

observed at some point on the ground a distance rs from the

scattering patch, will be

The quantity S(7 ) is the directlvity of the scattered sound

field where 1' is the angle between the incident sound ray

and the vector rs to the observation point on the ground.

Combining the above relationships it can be shown that the

total intensity of the scattered sound at a fixed observation

point on the ground a distance R from the source and an

angle e from the axis of symmetry (e.g.- jet exhaust axis)

can be expressed in the general form

/ msW° / G(_)S(y)dV/R3(7"29)2__
Is = dl s = 21_R (rs/R)2

V V

where

r s = distance from scattering element d V to observer,
a function of R, r, I_ and e

I' = the scattering angle, a function of R, r, _ and e

R = radius from source to observer

= angle relative to jet axis

e = the fixed value of 13 for the observation point

(measured in a horizontal plane).

This volume integral would be carried out over a semi-

infinite space bounded by the ground.

Although the integral can be readily solved for special

cases, such as for nondirectional scattering S(y) = 1, and

for observation points on the axis of symmetry, 8 = 0, _,

the uncertainties in the actual directional characteristics

of the scattered sound dictate that an empirical expression

be used for now. Thus, the dimensionless integral in Equa-

tion 7.29 is replaced byan empirical constant Ks(e) which
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should be a function of 8 only so that the scattered inten-
sity can be expressed in the form

Ks(e) ms Wo

Is -_ 2"_ R (7.30)

The constant Ks(e) may be considered a measure of the
relative effectiveness of the scattered field in returning

scattered power back to the ground. It will be a constant
for a particular directionality of the scattered field Sly)
and direct field G(13), and may vary with the observation

angle 8.

The important point to note is that, for this simple model,
the scattered sound field is equivalent to a cylindrical
source at the same location as the primary source but with

a sound power equal to Ks(8 ) • ms times the primary source

power. The cylindrical spreading loss for this "scattering
source" is understandable when it is recognized that the

scattered power is proportional to the volume (ocr3) of the

sound field, times the direct intensity (oc1/r2), divided by

a characteristic distance squared (o_r2), thus giving an

intensity proportional to 1/r instead of 1/r 2. When the
direct and scattered intensities are combined at a point on
the ground, the total intensity can be expressed as

=[WoG(@)l [e-msR Ks(8) ]It L 2_R2 J +_ msR (7.31)

The first term in brackets is the usual expression for the
direct sound intensity at a distance R from a point source

of power W o and dlrectlvity G(8).

The second term in brackets is the approximate correction

for scattering and includes an exponential loss term for the
decrease in direct intensity and a first approximation to
the additive term due to the scattered field. Second order

effects for the latter including addltlonal scattering losses
and absorptlon losses are ignored. Thus, scattering loss,

ks, expressed in declbel form, with distance R in units of

1000 ft and ms in units of I/lO00ft, is given, toaflrst
approximation, by

k s = 10 log e-msR + _ ms R -dB (7.32)

The test data employed to evaluate the constants ms and

Ks(8) in the above expression consisted of overall sound

levels measured along one radial line from twolarge rocket
engine noise sources fired diametrically opposed in rapid
sequence (Reference 7.34). The first was the S-I booster
with the exhaust from its eight engines, developing 1.5 x

106 pounds thrust, deflected at 7 degrees to the direction
of the microphones. The second was a single F-I engine,

again with 1.5 x 106 pounds thrust, but with the exhaust
flow deflected at 187degrees away from the line of micro-
phones. The two sources were on opposite sides of the same
standand were fired within a total time of 6mlnutes so that

the atmospheric conditions were considered essentially
identical for both tests. The sound levels measured for the

F-I engine were lower because of the inherent directlvity
of the noise field in the direction opposite to the deflected
exhaust flow. Howeverr the two sources were found to

have essentially the same overall acoustic power level and
power spectra at a distance of 1000 ft from the test stand.
The results are plotted in Figure 7.22and clearly show that
the difference in measured sound levels, caused by the

directivity, decreases with increasing distance from the
two sources. This difference falls from 18.4 dB, at 1000 ft
(0.305 km) to 8 dB at 52,000 ft (15.8 km) from the test
stand.
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FIGURE 7.22 Overall Sound Pressure Levels for Two Sources

of Rocket Engine Noise Measured Along One

Line Under the Same Atmospheric Conditions to

Illustrate the Redistribution of Energy Due to

Scattering. (Increased level at 9 km is due to

focusln_:l.) (Data from Reference 7.34)

This change is believed to be due to a smoothing of the
directivlty pattern with distance as a result of scatterlng.
Thus, the sound level of the S-I decreased more rapidly as
acoustic energy scattered toward the direction of lower
sound intensity radiation. In addition to the scattering
effect, the atmospheric attenuation of the sound from the
F-I engine would be expected to be greater because of its
greaterhigh frequency content in the direction of measure-
ment. However, this effect would cause the measured

sound levels for the two tests to diverge rather than con-
verge, as observed. Undoubtedly this latter effect occurs,
but it is apparently not sufficient to overcome the progres-
sive smoothing of the angular distribution of intensity due
to scattering.

This scattering attenuation can be interpreted with Equa-
tion 7.32 by assuming that at the same observation point
for the two sources (R = constant, g = 7 or 187 degrees),

the scattering loss coefficient ms is approximately the
same. The measured dlrectivity indices at 1000 ft for the
two sources, given in Reference 7.34, are

For the S-I engine, G(7 °) __ 2.3 (+3.6 dB)

For the F-I engine, G(187 °) -_ 0°033 (-14.8 dB)
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Therefore, the difference in sound levels observed at vari-

ous distances for the two tests should be described approxi-

mately by the difference in directivlty close to the source

(18.4 dB at 1000 ft) plus the difference in scatterin 9 loss.

The latter can be determined from Equation 7.32 so that

the observed relative sound level AL should be given by

AL = 18.4 + 10 log
Ie msR + Ks(0 ) msR/2.3

-ms R + Ks(8) msR/0.33 -

(7.33)

As shown in Figure 7.23, this expression shows reasonable

agreement with the experimental data for empirically de-

rived values of the scattering loss coefficient m s = 0.05/

1000 ft and directionality coefficient Ks(B) = 0.03. The

particular values of m s and Ks(8) given here were chosen

partly on the basis of the Iimlted data in Figures 7.22 and

7.23 but were also constrained to be consistent with more

extensive data on excess attenuation at low frequencies to

be discussed shortly. WHh the limited data available,

these scattering parameters must be considered as rough

estimates useful for making a preliminary evaluation of

scattering effects of rocket noise.
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FIGURE 7.23 Comparison of Relative Difference in Sound

Level of Data in Figure 7.22 with Empirically

Fitted Curve Based on Analytical Model of

Scattering (see Equation 7.33 in Text)

Based on these values/a preliminary estimate of the

scattering loss of overall noise levels for rockets in the

1.5 million pound thrust class is given by

Ls =]0log [e -0°05R+0.0015 R/G(B)] - dB (7.34)

where

G(e) = directlvity factor for the rocket noise field,

and

R = distance from test pad in units of 1000 ft.

This expression is plotted in Figure 7°24 as a function of

range for several values of the directivlty index DI =

10 log G(e). In the direction of maximum radiation of the

direct sound, where DI = 0 to +5 dB, the net effect of

scattering, indicated in Figure 7.24, is to show a linear

propagation loss with distance which is approximately equal

to 0.2 dB/1000 ft out to about 40,000ft. This average

scattering loss rate is consistent with other data on propa-

gation losses of low frequency rocket noise in a nonstrati-

fled but turbulent atmosphere (see Section 7.2.8.2). Along

a radial llne for which the direct radiation is low (DI -_

- 15 dB), the effect of scattering shows a slight propagation

gain which would approach a value equivalent to a cylin-

drical instead of spherical spreading loss for the sound field

at about 20,000 ft. This concept of transition from a

spherical to a cylindrical spreading loss will also appear

later on in the discussion of focusing anomalies but for

enti rely different reasons and with a much more si gni ficant

effec t.
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FIGURE 7.24 Estimated Typical Effect of Atmospheric Scattering

on Propagation of Overall Noise Level for Static

Firing Tests of Large Rockets in the 1.5 Million Ib

Thrust Class. All other spreading, refraction and

absorption losses are excluded. Applicable in a

frequency range of 20-30 Hz.

It is important to recognize that the scattering attenuation

discussed in this section is an additional loss (or gain)

which does not include air absorption losses or gross changes

in propagation caused by large scale changes in the sound

velocity profile of the atmosphere. It represents only the

nominal propagation effect due to scattering by patches of

nonuniform sound velocity in the atmosphere. Since this

patchiness is due to a fluctuation in air temperature or air
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turbulence, scattering losses will vary considerably with
weather conditions. Of more practical importance, how-
ever, is the variation of the scattering loss rate with fre-
quency since the estimated scattering losses in Figure 7.24
are only applicable over a limited frequency range of about
20-30 Hz. Peak frequencies of noise from rocket engines
with thrusts appreciably different from 1.5 million pounds
will fall outside this range of frequencies.

Frequency Variation of Scattering Losses

To provide some means of predicting scattering loss at
other frequencies, low frequency sound propagation data
from a number of Saturn static firings have been analyzed.

The tests were conducted by NASA at the Marshall Space
Flight Center prior to 1965 (Reference 7.35). The data
were carefully screened to exclude propagation anomalies
due to long range focusing effects (see next section) or
shadow zonesclose to thesourcedue to surface winds. The

attenuation rate was determined by the slope of a best-fit
straight line drawn through a linear plot of the excess
attenuation versus range and covered distances out to
70,000 feet. The resulting average and extreme values of
excess attenuation are shown in Figure 7.25.
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ExcessAttenuationComputedfrom ObservedOctave
BandSaundLevelsfor SaturnS-I andF-I Static Firings
at Huntsville,Alabama. Dataselectedto eliminate
refractioneffectsof strongwind andtemperaturegradients
in orderto illustrate scatteringlosses,in directionof
maximumradiation, in excessof air absorptionlosses.
(Data FromReference7.35)

To identify the amount of attenuation attributable to
scattering, the approximation range of air absorption losses
in the Huntsville area have been determined based on the

methods discussed in Section 7.2. This range is also plotted
in Figure 7.25 and clearly shows that an additional excess
attenuation is observed at frequencies below 200 Hz. The
average attenuation rate for scattering loss in the direction

of maximum radiation of rocket noise, discussed in the

preceding paragraphs, is also shown in this figure and in-
cludes a correction for average air absorption loss. Al-
though the data in Figure 7.25 vary in extreme values, in

some cases by roughly an order of magnitude, the average
and minimum values indicate a predictable trend useful for

preliminary engineering estimates.

Design Values for Low Frequency ExcessAttenuation

For long range propagation of low frequency rocket noise
in the direction of maximum radiation, the following ex-

pressions are suggested for predicting the combined excess
attenuation due to scattering and air absorption.

Average Values

5 o = 0.06 - dB/1000 ft 0-7 Hz

5 o : 0.0085 fHz - dB/1000 ft 7-60 Hz

5 o = 0.5 - dB/1000 ft 60-200 Hz

Minimum Values

ao min : 0.03- dB/1000 ft 0-7 Hz

ao min : 0.0042 f - dB/1000 ft 7-60 Hz

ao rain : 0.25 - dB/1000 ft 60-200 Hz

These suggested values are not extended above 200 Hz
since air absorption is dominant above this frequency and
methods for predicting this loss have already been covered
in Section 7.2.

These values are subject to several limitations.

They are based entirely on data taken in one geo-
graphical area (Huntsville, Alabama) and should be
applied with caution to any other location, particu-
larly where average weather conditions are very
different.

They should not be used when the sound velocity
profile is very nonuniform resulting in major refrac-
tion effects.

They are applicable for horizontal propagation of
rocket noise in the direction of maximum radiation

over distances between 5000 and 100,000 ft. For
other directions, the results in Figure 7.24 may be
used as a preliminary guide. At shorter ranges_ the
indicated loss would be insignificant. The values
have not been validated at ranges beyond 70,000-
100,000 ft and are not reliable at greater distances.

For vertical propagation of launch noise, the mini-
mum values indicated above are recommended for

engineering estimates of attenuation losses due to
scattering and air absorption at frequencies below
200 Hz.
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7.2.8.2 Reinforcement of Sound Due to Focusing

This section specifically covers focusing effects which
decrease the nominal attenuation losses. This sound rein-

forcement is caused by an atmospheric focusing mechanism
and occurs when sound radiated into the atmosphere is
refracted downward by local variations in the speed of
sound. This causes a bending of sound rays which then
reach the surface at some distance from the source. The

mechanism is similar to that described for the upwind
shadow effect but is the result of variations in the acoustic

propagation speed at much higher altitudes, and furtherr
that these variations in the effective sound velocity are
the result of temperature gradients in the atmosphere as
well as wind velocity gradients. The increase in sound
level associated with this focusing effect can be 10 to 20
dB and must be considered carefully when evaluating

community noise problems associated with rocket test sites.

For design purposes in locating rocket test sites, it will be
sufficient to establish an upper bound for the increased
level due to focusing in a given region and estimate the

occurrence of this maximum level. Each of these aspects
is considered here. First, however, consider the specific
characteristics of the focusing effect.

Figure 7.26 illustrates this phenomenon by showing how an
acoustic ray can be turned back to the earth's surface by a
positive acoustic velocity gradient. Part(a)of Figure 7.26
illustrates a uniformly increasing speed of sound c with
altitude z, and part (b) shows the resultant path of an
acoustic ray starting out at an initial angle 8 to the hori-
zontal.

c - Speed of
Sound

o)

FIGURE 7.26

b)

Sound Roy Trace in a Constant Positive

Sound Velocity Gradient

By well known theory, discussed in References 7.2 and
7.37, it can be shown that the path of a sound ray in a
medium with aconstant sound velocity gradient_ g=dc/dz,
is described by a circular arc whose radius r is given by

c O

r = -- (7.35)
g cos 8

where co is the initial effective speed of sound at the

origin of the ray which leaves the source with an initial
angle 0 to the horizontal. For a combined wind and tem-

perature gradient, an effective speed of sound c is given by

the acoustic velocity plus the component of wind velocity
u cos 8 in the direction 0 of the ray. The maximum height

reached by this ray is given by

zm = r- r cos 0

(7.36)

In Figure 7.26_ the sound velocity gradient is positive so
the center of the ray tracing radius is located a distance

zo below the ground, given by

zo = - rcos e =- Co/g (7.37)

and to the side of the source a distance equal to one-half

the range R of the ray, which is

R = 2rsinO

= 2 co tan 8/g

"2c o O/g when O<< I (7.38)

The ray then returns to the horizontal ground plane at this
distance R. For a constant positive gradient of the effec-
tive speed of sound, all rays emanating from the source
over an angular range of 0 = 0 to 90 degrees will return to
the ground° Each sound ray can be considered to be the
axis of a tube containing a portion of the energy radiated
by the source. Sound focusing, and corresponding increases
in sound pressure level, will then occur when a large
number of these ray tubes return to earth over a small area
on the earth's surface.

This type of acoustic refraction or focusing occurs for a
wide variety of complex velocity profiles. Figure 7.27,
from Reference 7.38, shows several ray patterns formed by
different acoustic velocity profiles in the atmosphere.
Figure 7.27a illustrates the case for a zero velocity gra-
dient where no focusing effects occur. Figure 7.27o is for
a negative velocity gradienb and again nofocusing occurs
since all the sound is refracted upward into the air. This
is similar to the shadow zone formation created by a wind
boundary layer. Figure 7.27c shows the effect of a con-
stant positive velocity gradient, where all rays are refracted
or bent back to the ground but no single focusing area is
evident. Finally, in Figure 7.27d, the strong focusing
effect that is created by a two-stage_ first negative and
then positive, velocity gradient. The pattern of the exact
ray paths and the location of the focusing point for the
more complex sound velocity profiles can be calculated by
the methods of Reference 7.2. Digital and analog com-
puter techniques are also frequently used to trace out ray
paths for an arbitrary velocity profile (References 7.38 and
7.39). However, the determination of the increased sound
pressure level at a focusing region is difficult and is more
readily accomplished for a particular case by the use of
empirical prediction methods. This approach is utilized
here to estimate an upper bound for the maximum sound
level and its probability of occurrence.
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a) Ray Paths in Air When Vertical Velocity

Gradient is Zero

b) Ray Paths in Air When Vertical Velocity

Gradient is Negative

c) Ray Paths in Air When Vertical Velocity
Gradient is Positive

d) Ray Paths in Air When Vertical Velocity

Gradient is Negative in Air Layer Close

to Surface and Postlve in the Layer

Immediately Above

Distance w

FIGURE 7.27 Various Ray Patterns for Different Sonic

Velocity Profiles (From Reference 7.38)

Upper Bound for Focusing Magnitude

Data illustrating the actual change in sound level due to

focusing effects are given in Figure 7.28. These data were

obtaineddurlng static firings of the Saturn S-IC Stage con-

ducted by NASA at the Marshall Space Flight Center and

have been summarized in Reference 7.40. The propagation

losses in overall sound level, measured along one llne in a

direction of maximum radiatl an, were classified into groups

according to six different idealized types of velocity pro-

files shown in Figure 7.28a. The "0" category corresponds

to the case for a zero temperature and wind gradient and

may be considered a close simulation of an ideal uniform

atmosphere where focusing or shadow zones are absent.

As shown in Figure 7.28b, the average attenuation in

excess of inverse square law, for this category, is about

0.22 dB/1000 ft. This minimum loss is considered to be the

net effect of the atmospheric absorption loss (see Figure

7.11) for the typical low frequency noise spectrum of the

S-IC engine, and attenuation due to scattering losses for

propagation in the direction of maximum radiation (see

Figure 7.25). The decrease in absorption loss at45-50,000

ft, shown in Figure 7.28b, is caused by the effect on sound

propagation of a hill located in this region.
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The second velocity profile category (Type I) has a nega-

tive velocity gradient similar to that for upwind propa-

gation and hence there is an additional loss in propagation

beyond inverse square law and air absorption loss. The

average value of this additional loss is shown forthls cate-

gory in Figure 7.28c. Note that the loss is greatest near
the source and decreases to less than 2-3 dB at distances

greater than about 30,000 fto The average frequency of

occurrence for the 0 and I categories, in total, is 87.1

percent.

For each of the remaining velocity profile categories (II-

V), focusing occurs due to the positive velocity gradient.

When this gradient, g = dc/dz, is constant and less than

0.015/sec (the effective speed of sound c and altitude z

are measured in compatible units), then the focusing is rela-

tively weak, and reaches a maximum at a distance of about

10,000fto For higher positive gradients and for all the

other more complex profiles shown, the average value of

the maximum focuslncj effect is about 15 dBo In general,

this maximum is reached at increasing distances from the

source as the initial velocity gradient decreases.

To illustrate application of the data in Figure 7.28, con-

sider the followlng example. Assume a Type V sound

velocity profile has been measured just prior to a static

firing of the Saturn S-IC. At a distance of 40,000ft, the

sound level may be predicted as follows. Once the nomi-

nal level is known, based on inverse square law, a loss of

(40)(0.22) -_ 9 dB, due to air absorption and scattering, is

subtracted and a 14 dB gain, due to focusing, is added to

give a net propagation gain of +5 d8 above inverse square

law. The expected variation about this average level
would have a standard deviation of about :E 5 dB.

The frequency of occurrence of the sound velocity profiles,

which caused focusing in the single direction of measure-

ment, was 12.9 percent. The profile which caused focusing

at the greatest distance (Type VI occurred about 1.6 per-
cent of the time.

An approximate upper bound to the maximum effect of

focusing is illustrated in Figure 7.29. This shows the

envelope of the excess attenuation, measured for a large

number of Saturn static firing tests, including the data from

Figure 7.28, and illustrates that, in the llmlt, the maximum

focusing effect at any location can be estimated by assum-

ing that the sound field has a cylindrical rather than a

spherical spreading loss. In other words, the intenslty is

proportional to I/R rather than I/R 2. As indicated in the

figure, the maximum observed excess attenuation or propa-

gation gain (relative to the inverse square law), corrected

by an average absorption and scattering loss of 0.22 dB/ft,

is approximately equivalent toa cylindrical spreading loss.

For the latter, the absolute sound level decreases 10 dB

for every tenfold increase in distance from the source,

instead of 20 dB, as for spherical spreading.

It must be emphasized that the cylindrical spreading model

defines only an approximate upper bound or envelope for

the focusing effect at all locations and weathercondltlons.

For any one particular weather condition, a finite focusing

zone will usually occur with a definite boundary such as

illustrated by a typlcal measurement in Figure 7.30. A

well defined focal zone boundary is apparent at a distance

of about 13,000ft where the far field sound level suddenly

increases by 11 dB.
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Envelope of Propagation Loss(or Gain) for
Overall SoundLevels Measured for a Large

Number of Static Firings of Saturn I. Upper
bound approximated by cylindrical spreading
loss minus average air absorption loss. (Data
from References 7.35, 7.39 and 7.40)
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FIGURE 7.30 Variation of Overall SoundLevels Upon
Entry Into Focal Zone, Saturn Static Test
Firing, Huntsville, Alabama, 10 December

1960 (From Reference 7.39)
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Statistical Probability of Focusing Conditions

As indicated earlier in Figure 7.28, focusing conditions

were observed for 12.9 percent of the measurements re-

corded along a particular azimuth for a large number of

Saturn I static test firings. A more complete study of the

variation in focusing conditions with azimuth and season

of the year has been reported in Reference 7.41. The

results, given in Figure 7.31 show how examination of the

prevailing wind and temperature profiles can be used to

give an immediate assessment of the probabillty of focusing

at a particular location. As indicated in the figure, if the

initial choice of a rocket test site in this area were suchas

to have a 260-degree azimuth to the nearest population

center, then there would be little chance of soundfocusing

and resulting community annoyance. On the other hand,

if the azimuth between the test site and the nearby com-

munity were 100 degrees, then focusing of the sound

radiated would occur on a significant number of occasions

during the year, particularly during the winter.
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FIGURE 7.31 Probabilities of Sound Focusing by Azimuth,
Nashville, Tennessee, 17:00 Hours, Local

Time (Data From Reference 7.41)

Similar studies of focusing conditions have been made for

other locations (References 7.41 and 7.42). A typical

example is illustrated in Figure 7.32 which shows the

average percent of time maximum focusing, partial focus-

ing, and "no focusing" conditions would exist during each

month of the year between the Saturn V launch site at Cape

Kennedy and the city of Titusville, Florida. The predicted

occurrences are based on an analysis, reported in Reference

7.42, of rawinsonde data from November 1956 to November

1958. It is important to note, however, that noise gener-

ated by a rocket vehicle during the launch phase is not as

subject to focusing effects as is noise from ground firings.

Thus, Figure 7.29 is included primarily to illustrate that

the statistical variation in focusing can vary with general

geographical location as well as with azimuth angle and

time of year. These examples illustrate how a careful

review of atmospheric conditions at a proposed test site

can indicate whether sound focusing will be a serious prob-

lem or not for nearby communities.
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FIGURE 7.32 Average Monthly Variation in Focusing Conditions
Over a Two-Year Period Between Saturn V Launch
Site and Titusville, Florida (Data From Reference 7.42)

7.2.8.3 Statistical Variations in Propagation Losses

It is clear, by now, that there are a large number of vari-

able factors which can influence propagation over a fixed

patho Some statistical measure of the overall variation in

this propagation loss is desirable. Two independent sets

of data were available for analysis of this variation. The

first set provldesdata on maximum overall levels forseveral

Saturn S-I launches, observed at 75,000 ft from the launch

pad at Cape Kennedy (Reference 7.42). The propagation,

in this case, was more nearly vertical and hence not sub-

ject to strong focusing or wind effects. The second in-

volved over 580 measurements during a 35-day period at a

single frequency (250 Hz)and over a fixed horizontal line-

of-sight range, subject to focusing and wind effects, of

23,400 ft over a large lake (Reference 7.43). Analysis of

these data provides an indication of the statistical varia-

tion in propagation losses that con be expected for a wide

range of conditions.

A cumulative distribution of the deviation in sound level

from the expected value based on an inverse square law

spreading loss is shown for these two sets of data in Figure

7.33. This figure shows the statistical variation in the

excess attenuation in dB/1000 ft at 25 and 250 Hz. While

thedata are insufficient todevelop a general mathematical

model for the statistical variation in propagation loss, two

points are clear. The distribution of the excess attenuation

tends to follow a normal distribution, and the standard

deviation is higher, as expected, for the horizontal propa-

gation case at the higher frequency.

7.2.9 DESIGN VALUES FOR ACOUSTIC

PROPAGATION LOSSES

The following procedure is recommended for estimating

propagation losses for design purposes. Unless specific

values for a given set of atmospheric conditions are re-

quired, it is recommended that the range of losses be cal-

culated. This range will depend on the direction of propa-

gation and the variation in climatic conditions. For

horizontal or ground to ground propagation, the variation

in profiles of speed of sound will be particularly important.

For air to ground or ground to ground propagation, the
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variation in temperature and humidity should also be con-

sidered. The results will then give amaxlmum andminlmum

propagation loss and should indicate the probability of

occurrence for each extreme value.
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for 250 Hz over 23,400 ft horizontal range from

Reference 7.43. Data for Saturn launch levels
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7.2o9.1 Determine Overall Acoustic Power and

Spectrum of Source

Using the methods given in Chapter 6, the overall power

and power spectrum can be determined in octave or 1/3

octave band levels, except where large discrete frequency
sources are known to occur. In this case, the discrete fre-

quency sources should be considered separately and the
resultant value added to those for the broad band noise.

7.2.9.2 Determine Source and Receiver Position and

Terrain Between Them

The height of both source and receiver off the ground

should be noted, and the nature of the terrain between

them described. For example, is there a direct line of

sight between receiver and source; are there buildings that

will cause acoustic shielding; what is the ground cover?

7°2.9.3 Calculate the Inverse Square Law Losses

The nominal Sound Pressure Level, based on inverse square

law, can be obtained from the Acoustic Power Level (PWL)

in dB re: 10 -13 watts both for the overall signal and the

octave band values by the expression

SPL = PWL - 10 log10 (47 R2) + 0.5 - dB (7.39)

where R =dlstance from source in ft.

7.2.9°4 Determine the Atmospheric Absorption Losses

For simplicity, the results of molecular absorption only

need be considered, unless the air is very dry. The results

of Figure7.11 can be used to obtain the value. The range

of temperature and humidity expected should be used to

estimate the range of losses that can occur. Typical varia-

tions in the average seasonal profiles of temperature and

humidity at several locations are shown in Figures 7.34

and 7.35.
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7.2o9.5 Estimate the Additional Losses Which Increase

the Absorption

For short distances, less than 5000 to 10,000 ft, these

losses involve shielding, ground absorption, and wind at-
tenuation. Apply the methods of Section 7.2.7 and Figure
7.14 for barriers, Figures 7.15 and 7.16 for ground effects

and Figures 7.17 to 7.20 for wind effects, to estimate the
maximum effect of these addlt;onal losses. These are

ordinarily ignored for propagation beyond 2 miles.

For distances greater than 5000 ft, scattering losses will
become significant below 200 Hz and may be estimated by
the data in Figure 7.25. For conservative design values
for either horizontal or vertical propagation, the follow-

ing expressions are recommended for the combined atmos-
pheric absorption and scatter;ng losses below 200 Hz.

Frequency Range Excess Attenuation

0-7 Hz 0.03 - dB/1000 ft

7-60 Hz 0.0042 f (Hz) - dB/1000 ft

60-200 Hz 0.25 - dB/1000 ft

7.2.9.6 Estimate the Effect of Sound Focusing

Th;s propagatlon effect is described in Section 7.2.8.2
and represents an additional correction to the preced;ng
calculations to account for sound focuslng effects. After
a careful examination of the prevailing weather condltions
at the test site, the possib;lity of sound focusing can be
estimated. For horizontal ground to ground propagation,
the max;mum probable effect of focusing can be estimated
by assuming that cylindrical spreading loss rather than
spherical spreading loss occurs. The result;ng propagation
loss can be obtained by following the methods of the pre-
vious sections, but using a spreading loss, in riB, equal to
1/2 the usual value based on the inverse square loss. The
probability of this max;mum focusing effect occurring should
be noted. When such extreme focusing effects can inter-
fere with operating schedules of test firings due to limita-
tions in allowable community noise levels, the probability

of focus;ng should be further broken down by time of day
and direction. For vertical propagation of noise from a
launch firing, focusing effects would be slgniflcant only

during the on-pad phase of the launch. This can generally
be neglected since maximum noise levels in a community
will occur after lift-off of the rocket.
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FIGURE 7.36 Design Curves for Long Range Propagation Loss of Rocket Noise. Spherical (1/R 2) spreading loss
applicable for nominal conditions for air to ground or ground to ground propagation. Cylindrical
(l/R) spreading loss applicable for maximum focusing conditions with ground to ground propagation.
Excess absorption loss based on minimum scattering and air absorption loss below 200 Hz (see
Figure 7.25), and air absorption at 59°F and 60 percent relative humidity above 200 Hz.
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7.2.9.7 Review of the Calculations

The procedures outlined above will provide reasonable
estimates of the maximum sound levels that can occur for

rocket firings. A complete analysis of the propagaHon loss

should give the values of maximum and minimum attenua-

tion for the overall level, octave band levels, and any

discrete frequency sounds. The probability of the extreme

values occurring should be carefully noted for any fixed

test sites near populated areas. For preliminary estimates,

the combined effects of spreading, absorptionr and scatter-

ing losses are given in Figure 7.36 for several frequencies

as a function of distance. These are based on the minimum

values of absorption and scattering loss, suggested earlier,

for frequencies below 200Hz and on the calculated values

of air absorption loss for higher frequencies, using a

standard temperature of 59°F and 60 percent relative

humidity. For convenience, a reference level of 0 dB is

assumed for all frequencies at a distance of 1000 ft.

The propagation losses shown in Figure 7.36 illustrate the

typical range of attenuation that may be expected as a

function of frequency and distance. However, the full

effect of atmospheric and terrain conditions should be cal-

culated to obtain a more accurate result.

7°3 PROPAGATION LOSSES OF BLAST WAVES

The overpressures generated by an explosion attenuate more

rapidly with distance than a sound wave due to the inher-

ently nonlinear processes involved in propagation of blast

waves. The nominal attenuation of blast waves with dis-

tance has therefore been treated in Chapter 6 as part of

the basic description of the overpressures associated with

rocket propellant explosions° However, three special prob-

lems related to blast wave propagation are treated in this

chapter°

• Focusing Anomalies of Blast Waves

• Shielding Effects of Structures

• Suppression of Blast Waves by Burial of the Source

7.3.1 FOCUSING ANOMALIES

The effects of atmospheric focusing can be particularly

significant for the high blast overpressures due to explo-

sions. The differential between potentially damaging and

safe blast overpressures for structural damage or injury to

humans is small. Thus, any increase in the nominal over-

pressure expected from a potential explosive source can

significantly increase the area of potential damage zones.

For this reason, care must always be taken in reviewing

predicted blast overpressures to ensure that any probable

focusing effects are included. The potential increase in

blast hazards due to focusing effects may be analyzed in

terms of

• Direction and probability of occurrence of a blast

focusing zone

• Radius from the explosive source to the focusing

zone

• Increase in overpressure within a focus zone.

The method for predicting the occurrence of blast focusing

is the same as described earlier in Section 7°7.8 and in-

volves tracing of sonic ray paths in the atmosphere for a

known sound velocity profile. The direction and proba-

bility of occurrence of blast focusing may be estimated

from analysis of prevailing atmospheric conditions in the

vicinity of a potential blast slte.

To determine the range of a blast focusing zone, a ray

tracing analysis must be carried out for a specific set of

sound velocity profiles. A very helpful guide to this prob-

lem is given in Reference 7.38° This handbook on blast

focusing contains a large number of examples and design

charts relating range of blast focus zones to sound velocity

profile parameters.

7.3.1 .I Magnification of Blast Pressures by Focusing

The increase in blast overpressure within a focus zone is

not as well documented nor as readily predicted as location

of the zone. In the absence of definitive data, two alter-

nate approaches are presented. The first is based on the

magnlfication factors for blast overpressure which are recom-

mended in Reference 7.38. These are shown in Figure 7.37

as a function of the general type of sound velocity profile.

The magnification factors range from 0, for a negative

velocity gradient, to 100 for a negative gradient near the

surface followed by o strong positive gradient above. The

higher factors are very likely conservative and should be

applied with discretion.

Combination of Gradients Multiplication Factor
for Focus Zone
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\

Single Negative Gradient _ Observation

PosHive Gradient Near I 7
Surface with Negative .5 - Origin to Limiting Range
Grad;ent Above

Surface with Positive 10 - Focal Area Only
Gradient Above

Weak Positive Gradient [ X
Near Surface with Strong 25- Focal Area Only
Positive Gradient Above

Negative Gradient Near /

Surface with Strong _ 100- Focal Area OnlyPositive Gradient Above

FIGURE 7.37 Increase in Blast Overpressure at a Focal

Zone as a Function of Type of Sound Velocity
Profile (From Reference 7.38)
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7.3ol .2 Cylindrical Spreading Model for Blast Focusing

As an alternate approach for predicting the increase in

blast overpressure due to focuslng_ the concept of cylin-
drical spreading loss, applied earlier to acoustic focusing_
may also be used to deflne an upper bound to focusing mag-
niflcatlon_ regardless of location. However, since normal
blast overpressure decays more rapidly than dictated by a
spherical spreading loss, it is necessary to utilize blast
scaling laws in order to define the effect of cylindrical
spreading. As discussed in Section 2 of Chapter 6_ free air
blast overpressures scale as a function of the quantity

R/WT I/3

where

R = distance from blast

WT = weight of equivalent TNT explosive - propor-
tional to the explosive energy.

This ratio may be considered to be proportional to the in-
verse of the cube root of explosive energy density within a
sphere of radius R, or

The same principle can be applied to a cylindrical blast
field. Since the energydensitywlthlna cylinder of radius
R and a characteristic altitude H would be

a modified scaling parameter for a cylindrical blast field
would be

(3 H/4R) I/3 • R/WT I/3

Thus_ if the usual scaling parameter R/WT 1/3 is multi-
plied by the factor (3H/4R)l/3, a modified blast over-

pressure can be determined from the same graphs relating

overpressure to R/WT I/3 for a free surface blast (see

Figure 6.26, Chapter 6). This modified overpressure may
be considered a first approximation to the maximum value
that can occur at a focal zone. Based on the experimental
data on acoustic focusing presented earlier in Section
7.2.8, a characteristic height H for which a cylindrical
spreading model can be applied is about 1000 ft. This
would correspond to the effective altitude of a strong tem-
perature inversion layer. With this value of H, thefollow-
ing values for the magnification factor for blast overpres-
sures were computed for a range of TNT equivalent weights

(WT) from 104 to 106 pounds.

TABLE 7.2

ESTIMATED MAGNIFICATION FACTOR FOR BLAST
FOCUSING BASED ON CYt.INDRICAL SPREADING

MODEL (WT = 104- 1061b)

R- Distance from Blast Magnification Factor
(H = 1000 ft)

1,250 ft
2,500
5,000

10,000
20,000
40,000
80,000

1.2
1.7
2.4
3.0
3.9
5.2
6.7

These magnification factors are appreciably lower than the
values suggested in Figure 7.37 and are considered more
realistic for design purposes. It might be added that they
are of the same order of magnitude as observed in sonic
boom measurements where atmospheric focusing and aircraft
maneuvers cause so-called superbooms of the order of 3 to
4 times the nominal values. The increase of the magnifi-
cation factor with range is also consistent with a physical
interpretation of the focusing effect.

As an example of the effect of focusing on modifying a
safe radius from a blast_ consider the case for a TNT

equivalent weight of 106 Ib and a safe unreflected over-

pressure of 0.2 psi. This would correspond approximately
to a criteria for window damage from a maximum credible

explosion of a Saturn V booster (see Chapter 6). Without
blast focusing_ the safe radius would be about 16,000 ft.
With blast focusing_ assuming a magnification factor based

on the cylindrical spreading model_ the "safe radlus"would
increase to about 75_000 ft. The radius based on the mag-
nification factors in Figure 7.37 could be much greater or
less_ depending on the actual location of the focal zone.

To summarize_ blast focusing can significantly increase
hazardous overpressures from an explosion. Reasonable
magnification factors are predicted by a cylindrical spread-
ing model for the blast field. However_ this model only
indicates a possible upper bound to focused blast over-
pressures without regard to location of the focal zone. For
critical structures located in areas where focal zones have

a high probability of occurrence_ possible effects of blast
focusing should receive careful consideration.

7.3.2 SHIELDING EFFECTS ON THE BLAST
LOADING OF STRUCTURES

Substantial reduction in blast loads on buildings can be
achieved by mutual shielding effects. Only experimental
results on the amount of reduction are presentedsince very
little theoretical information is available on this subject.
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Results from tests reported by the Sandia Corporation (Refer-

ence 7.45), on shielding from blast waves by parallel struc-

tures, are shown in Figures 7.38, 7.39 and 7.40. These

figures show the average net overpressure time histories

measured on full scale structures. The average net over-

pressure is the mean difference in pressure between the

front and back walls ofthebuilding. Due to the restricted

number of tests, no attempt to generalize the results would

be justified. However, some approximate concepts about

blast shielding effects of structures can be obtained. Based

on an analysis of these results, the parameters which in-

fluence the blast load on a shielding rectangular building,

are summarized in the following paragraphs.

The Ratio Between the Height of the Shielded Structure

and Its Separation from the Shield

The net peak overpressure will not be reduced if the

building is separated from its blast shield by a distance

greater thanfour times the shield height. If the separation

distance is one to two times the shield height, the reduc-

tion in peak overpressure is approximately 50 percent.

The Depth of the Shield

A reduction of the shield depth from a value equal tothe

height of the shielded structure to one quarter of this value

causes a rise of 30 percent in the net peak overpressure.

The Length of the Shield

The length of the shield has almost the same influence as

the depth of the shield.

The Height of the Shield

The influence of the height of the shield on the net peak

overpressure is comparable with the influence of the depth

and the length of the shield.

Positive Phase Impulse

Due to the interactions between the shield and the shielded

building, the variations of the positive phase impulse are

usually small for a shield height equal to the separation

distance. In some cases, such as illustrated in Figure 7.39,

the positive phase impulsefor the shleldedbuilding is even

larger than that for the same building without shielding.

The limited data indicate that for rectangular buildings,

shielding can provide a reduction of 30 to 40 percent in

peak net overpressure for a shield height, length and depth

comparable to corresponding dimensions for the shielded

building and separated less than twice the building height.

Changes in positive phase impulse due to shielding are not

particularly significant.

7.3.3 SUPPRESSION OF BLAST WAVES BY BURIED

EXPLOSIVES

When an explosive charge is buried, the blast overpressure

is sharply reduced as burial depth is increased. This tech-

nique offers the most effective method for decreasing the

size of a blast hazard area for storage of potentially ex-

plosive rocket fuels or pryotechnic materials.
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7.3.3.1 Suppression of Overpressure Pulse

Design values for the attenuation in the air-coupled blast

overpressure, due to the venting gases from a buried charge,

may be estimated from the experimental data summarized

in Figure 7.41. The curves shown represent smoothed data

from tests conducted with 40,000 Ib charges of high energy

explosive buried in alluvium and basalt (Reference 7.47).

Results are also shown, from Reference 7.47, for a test with

1,000,000 Ib of high energy explosive in alluvium and

from Reference 7.48 for tests with 256 Ib of H .E. in sandy

gravel. The attenuation versus scaled range for these addi-

tional data, covering a wide range of charge weights, are

comparable to the values observed for the 40,000 Ib

charges buried at the same scaled depth.
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olluvlum (Data from Reference 7.47). Data points (o)

for 256 Ib of H.E. in sand-gravel mix at 0.13, 0.5

and 1.0 scaled depth (Data from Reference 7.48).

The reduction in overpressure for a buried charge is greatest

close to the blast center. For example, a surface mounted

fuel storage tank with an explosive potential equivalent to

100,000 Ib of TNT could produce a peak overpressure of

10 psi at a distance of 464 ft. At the same distance,

(R/WT I/3 = 10) burial of the tank by an effective depth

of 46 feet (Depth/WT 1/3 = 1.0) would be expected to

produce peak overpressures less than 0.5 psi according to

Figure 7.41.

Explosion of a buried charge induces a mechanical ground

shock which also generates an overpressure pulse at the

surface. However, this ground-coupled air shock is lower

than the overpressure blast wave from the venting gases

and is attenuated more rapidly by burial at increasing

depth (Reference 7.47). The attenuation of the ground

motion itself associated with both buried and surface blasts

is treated in the following section.

7.3.3.2 Suppression of Positive Phase Impulse

The effect of burial on the positive phase pressure impulse

I_ is roughly independent of scaled distance from the blast,
according to the data given in References 7.47 and 7.48.

The reduction in impulse may be roughly estimated by the

expressi on

I+ _ + o 10-0.87 (Depth/WT 1/3)
p (buried) Ip (surface) (7.40)

7.4 PROPAGATION CHARACTERISTICS OF

SEISMIC GROUND WAVES

Ground vibration or seismic waves are generated by varying

sonic or mechanical pressures on the earth's surface. Some

of the principal characteristics of these waves will be dis-

cussed in the remainder of this chapter with the primary

emphasis being placed on the propagation characteristics of

groundvibration. During an engine firing or an accidental

explosion, the ground vibration generated locally at the

surface by the traveling pressure wave can be expected to

be predominant over any mechanically excited ground

vibration except in the immediate vicinity of the source.

Once the local coupling between this sonic pressure and

the ground motion is defined, the spreading and attenua-

tion losses of the sonic pressure field itself (i .e., engine

noise or blast wave), as discussed earlier in this chapter,

will define the "propagation losses" of this locally gener-

ated ground motion. Thus, the first part of this sectionwill

consider the coupling factor for sonically induced ground

motion. Seismic ground vibration, transmitted mechani-

cally from one fixed source, such as a vibrating thrust

stand, can also be significant for certain situations around

rocket test facilities. In this case, the wave velocity,

spreading andattenuatlon losses of thismechanically trans-
mitted seismic motion are of interest andwill be considered

at the end of this section.

7.4.1 SONICALLY COUPLED GROUND MOTION

Experimental measurements of ground motion from high

energy explosions have demonstrated that the strongest

component of motion coincides approximately with the

arrival of the blast overpressure wave (References 7.49 and

7.50). A typical example of such a measurement is illus-

trated in Figure 7.42. This shows the arrival time for the

air shock and ground wave versus range as measured for a

40,000 Ib TNT surface explosion at the Suffield Experi-

ment Station (Reference 7.49). The time and range scales

have been normalized by the cube root of the charge

weight to allow extrapolation of the data to other TNT

equivalents. The arrival of the ground wave lags slightly

behind the air shock for blast overpressures greater than

10 psi. At lower overpressures, the two arrival times are

essentially identical and the slope of the data rapidly

approaches that of the ambient acoustic velocity line.



7-32 PropagationofSonicPressureWavesandGroundVibraHon
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FIGURE 7.42 Arrival Time of Air Shock Wave and Maximum

Ground Wave Observed for Surface Explosion of

40,000 Ib of High Explosive. Normalized by Cube

Root Scaling Low (Data from Reference 7.49).

Similar observations have been made for the strongest

ground motion associated with rocket noise from launch

and static firings of the Saturn S-I booster (References

7.54 - 7.57). In this case, the observed arrival times for

the strongest ground motion and peak sound pressure cor-

responds to the velocity of the sonic pressure wave.

These results have led to the choice of a simple one-

dimensional theoretical model to explain, to a first ap-

proximation, the observed ground motion. In other words,

the local motion of the ground surface, subjected to a

travelling pressure wave is assumed to be that of a semi-

infinite elastic medium subjected to a stationary but time-

varying pressure load (References 7.51 and 7.52). While

this simple model represents a gross simplification of the

true situation, its application is consistent with the scatter

in experimental data and lack of detailed knowledge of

the seismic properties of the ground in a given location.

The essential result predicted by this analytical model is

that the peak vertical ground velocity Vp at the surface is

given by the equation for the particle velocity of a plane

"acoustic" wave as

_ Pp
Vp

- pc d

where

Pp -- peak sonic pressure (peak side-on overpressure
for blast wave or peak sound pressure for acoustic

wave)

p : mass density of soll

c d = effective seismic velocity for dilatational or
compression waves in ground.

Itcan be anticipated that this expression will underestimate

the true ground velocity. Since the propagation velocity

of the travelling pressure wave will be of the same orderof

magnitude as the velocity of seismic waves near the sur-

face, a dynamic amplification effect may be expected.

Although useful theoretical models have been developed

which include this effect (e.g. - References 7.51 and

7.60), lack of detailed knowledge of seismic character-

istics of local soil structure make it difficult to apply such

theories at this time.

Fortunately, sufficient experimental data are available so

that an empirical expression can be defined which relates

peaksurface velocity to peak sonic pressure. This is given

by

Vp : K • Pp (7.41)

where K is an experimentally determined constant.

This simple method is based on a remarkable consistency

for the available experimental data, References 7.50 and

7.53 - 7.59, which indicates that the average value of K

falls in the range of 0.8 to 1.2 in/sec/psi and has a maxi-

mum value of about 1.5 - 2 in/sec/psi.

7.4.1.1 Experimental Measurement of Sonically-

Coupled Ground Motion

Air-Shock-induced Ground Motion

The typical downward velocity of the surface of the ground

during passage of a blast wave is illustrated in idealized

form in Figure 7.43. Extensive measurements of ground

motion during nuclear and high explosive tests at the

Nevada Test Station have established the correlation be-

tween peak vertical velocity Vp and peak overpressure Pso

illustrated in Figure 7.44(Reference 7.50). The solid line

through the data represents an average correlation and

gives a value for K, in Equation 7.41, of 0.8 for Vp in

in/sec and Pso in psl. An upper bound to the data is de-

scribed by K = 1.5 in/sec/psi. A theoretically predicted

value is also shown based on the expected values for p and

c d in thislocation as given in Reference 7.50. As antici-

pated, this theoretical line is below the average line and

forms an approximate lower bound to the data.

A limited amount of data relating ground velocity to blast

overpressure is also reported in Reference 7.53 and was

obtained during an explosively destructive test of a solid

propellant motor conducted at the Naval Ordnance Test
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Station, China Lake, California. From extrapolation of

the measured overpressures to those locations for which

ground velocities were measured, the observed value of K

was 0.92 :k 0.30 in/sec/psi. In this case, seismic proper-

ties of the soil had also been measured and are tabulated

below (from Reference 7.53).

SEISMIC VELOCITIES

DEPTH Compressional Shear Density Poisson's

ft fps fps Ib/cu-ft Ratio

0-160 1509 607 125 0.4

160-490 5709 2510 131 0.38

490-1475 7005 3379 131 0.35

Using the values for density and compresslonal wave ve-

locity in the first 160 ft layer, a predicted ratio of Vp to

Pso would be 0.29 in/sec/psi which is well below the

average observed value of 0.92.

Acoustic-Pressure-Induced Ground Motion

An extensive series of measurements on ground motl on du rlng

launch of the first four Saturn I vehicles are reported in

References 7.54- 7.56. The data were obtained on several

types of instruments which measured velocity directly, or

displacement, from which velocity could be computed.

Unlike the ground motion for a blast wave, motion during

a rocket vehicle firing has a complex time history charac-

teristic of relatively narrow band random vibration which

corresponds to the random nature of the acoustic excita-

tion. Direct correlation between instantaneous ground

velocity and sound pressure was not possible for this data.

It was possible, however, toestablishacorrelation between

the envelope of the peak velocity, during launch, to the

corresponding envelope of the peak sound pressures. This

was determined in the following manner.

For each launch and measurement location, several values

of the instantaneous peak velocity had been obtained from

the seismograph records and tabulated in References 7.54 -

7.56. These tabulated values, observed at various radii

(R = 200 - 5500 ft) from the launch pad, were normalized

to a common distance of 1000 ft by multiplying each ve-

locity by the factor R/1000. This assumed that spreading

loss of the ground velocity would correspond to the 1/R

spreading loss for the sound pressure (e.g. - inverse square

low spreading loss for sound intensity).

The normalized peak velocities that occurred throughout

the launch were then grouped into octave band frequency

intervals according to the observed frequency or period of

vibration for each peak. An average and upper and lower

bound of velocity was computed for each octave interval.

Similarly, a peak sound pressure for each octave was com-

puted using the methods given in Chapter 6 to establish an

upper envelope for the launch sound pressures at 1000 ft

from the pad. The peak octave band pressure was taken to

be 3 times the maximum rms octave band pressure during

launch.

Finally, it was assumed that the peak velocity within each

octave band, Vp(f) could be predicted from the peak

acoustic pressure in the same octave Pp(f)by the expression

Vp(f) = K Pp(f) - in/sec (7.42)

where Pp(f) = 3 times rms octave band pressure - psi.

As shown in Figure 7.45, the peak velocity predicted by

this expression agrees very well with the avera_g.e.of the

measured peak velocities when K is taken to be I .0

in/sec/psl. Although the data exhibit appreciable scatter,

the correlation between measured and empirically pre-

dicted values is encouraging and indicates that the pa-

rameter K does not vary appreciably with frequency. An
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approximate upper bound to the data would be predicted

by K = 2.0 in/sec/psl. (Valid data at 2 Hz and above

32 Hz are not available due to llmitations in the measuring

systems - References 7.57 and 7.58.)
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FIGURE 7.45 Correlation of Measured and Calculated Peak

Vertical Ground Velocity Vp(f), Normalized to

Distance R = 1000 ft by Factor R/1000, for Saturn

Launch Firings. Calculated values based on 3-

slgma peak octave band pressure Pp(f) at same radius

and frequency (Data from References 7.54 - 7.56).

It is important to recognize that the peak velocities shown

in Figure 7.45 represent an average of a large number of

single peaks read from oscillograms at different times during

the launch of four different Saturn S-I vehicles. They

represent, therefore, an envelope of the maximum velocity

versus frequency at any time during launch. The same

statement can be made for the peak acoustic pressures so

that Figure 7.45 represents a correlation of the maximum

envelopes of ground velocities and acoustic pressures during

launch. The actual variation of ground velocity with time

and frequency would then be expected tofollow the varia-

tion in peak acoustic pressure with time and frequency,

according to Equation 7.42.

One field measurement of seismic velocity on the ground

surface, near the location where the above data were ob-

tained_ is reported in Reference 7.58. A velocity of 650

ft/sec was measured. Assuming this corresponds to the

effective seismic velocity for compressional waves, and

using a density of 115 Ib/cu ft for the soil, a theoretical

prediction of the ratio of peak velocity to peak pressure

would give a value of K = 1/p c d = 0.745 which is signi-

ficantly less than the average values based on the mea-
sured data.

The last set of data were obtained from measurements of

ground vibration during each of five static firings of the

Saturn I at Huntsville, Alabama. The limited data, sum-

marized in Reference 7.59, show that the average ratio K

of peak vertical velocity to peak acoustic pressure was

about 1.2 in/sec/psl with an upper bound equivalent to

K = 2.2. A theoretically predicted value for K =l/p c d

ranged from 0.48 to 0.84 in/sec/psi for a density of 115

Ib/cu ft and a seismic velocity estimated to fall between

600 and 1000 ft/sec.

For both sets of acoustic data, the maximum horizontal

motions were approximately the same as the vertical moti on.

In summary, the experimental data covering both blast-

and acoustlc-induced ground motion shows an average ratio

of peak vertical velocity to peak pressure ranging from

0.80 to 0.92 in/sec/psl for air shock induced motion to

1 o0to 1.2 in/sec/psi for acoustic pressure induced motion.

An upper bound to the measured peak velocity is about

twice the average value. The data bear out the theoretical

expectation that velocity should be directly proportional

to pressure. The theoretical proportionality constant 1/p c d

based on a simple one-dimenslonal model predicts a peak

velocity 25 to 300 percent lower than the average mea-
sured values.

Finally_ it must be emphasized that the simplified treat-

ment of ground motion presented here has omitted the de-

tails of the very complex pattern of seismic waves, both

ai r-coupled and dl rectly transml tted, which are present for

sonic excitation of the ground. The objective has been to

provide a simple means of estimating only the maximum

surface motion.

7.4.2 DIRECTLY COUPLED GROUND MOTION

The transmission of vibration energy directly through the

ground can be of interest for rocket test sites in at least

three situations.

Ground vibration transmitted into a building near

the firing pad when the building and its foundation

are isolated from ground motion induced by the
acoustic noise.

Ground vibration of sensitive equipment by unbal-

anced forces from nearby machinery anchored to the

ground.

Ground motion resulting from accidental explosion

of semiburied or buried explosive materials such as

rocket propellant storage tanks.

Pertinent information on propagation losses associated with

this type of directly transmitted ground vibration is pre-

sented in this final section. For engineering design pur-

poses, only simple theoretical approaches to this complex

vibration transmission process are practical. Just as for

the alr-coupled ground motion, the theory for the directly

transmitted motion must be backed up_ or in many cases,

replaced by empirical results in order to obtain useful

results. For a more thorough discussion of this complex

subject, the reader is referred to References 7.51, 7.61

and 7.62.
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7.4.2.1 General Propagation Characteristics of Seismic
Waves Transmitted Through the Ground

For a localized source of vibratory motion on the surface
of the ground, the propagation of energy away from the
source will take the form of elastic body waves (i.e.-
compressional and shear waves) which radiate energy into
the ground in all directions and surface waves which radi-
ate energy away along the surface of the ground. At some
distant point from the source, the ground motion will be
the summation of all of these waves which travel at dif-

ferent velocities, have different particle motions relative
to the direction of propagation of the wave, and experl-
ence different amounts of energy loss or absorption loss per
unit distance. Added to this complexity is the fact that
the medium itself changes its elastic properties with depth
causing refraction effects. Thus, as illustrated in Figure
7.46, the propagation of directly transmitted ground vibra-
tion becomes very complex.

Receiver

Source
Woves

Overburden

Sublayer

Subloyer

Subloyer

Subsurface Body Waves

FIGURE 7.46 Propagation of Ground Vibration Illustrating

Different Types of Seismic Waves and Vorylng

Propogatlon Paths Between Vibration Source

and Receiver

For any one of these types of seismic waves, an idealized
analytical model for the propagation loss could take the
form

nA(f) = Ao(f) e-a(f) R (7.43)

where

A(f) = amplitude (i.e. - displacement, velocity,

etc .) of wave at distance R and frequency f

Ao(f) : initial amplitude at a reference distance Ro

n = 1/2 for cylindrical waves and ] for spherical
waves, and

(:z(f) : absorption loss coefficient which is a function
of the frequency and type of wave motion.

The velocity of the wave can be specified in terms of the
elastic constants of the medium. For compressional or

dilatational wavest involving particle motion in the same

direction as the wave propagationt this velocity c d is
given by

c d

where

1- 11/2
= CL [(] + v) (]v 2v)J (7.44)

: '_ E/p : velocity of one-dimensionalc L compres-
sion waves

E = modulus of elasticity

p = mass density

v = Poisson's ratio _- 0.4 :k0.1 for soils.

For shear waves, involving particle motion perpendicular

to the direction of propagation, the velocity c s is

r 1 71/2Cs: (7.45)

where G = shear modulus.

The Raylelgh wave generally is the most prominent form of
the surface wave and has a particle motion in an elliptical
path in a vertical plane which is parallel to the direction
of propagation. Its propagation velocity is slightly less
than the shear wave velocity in the upper layer of the
ground.

Specific data are given in the following which can assist

in defining the velocity of compresslonal and shear waves,

c d and Cs, the spreading loss exponent n, the absorption
loss factor c_(f) and the initial amplitude A o.

7.4.2.2 Velocity of Seismic Waves

The elastic modulus of typical surface soils increases with
depth due to the increased confining pressure of the over-
lying soil. A typical example of this increase in one-
dimensional compression wave velocity with confining pres-
sure is shown in Figure 7.47 for two types of sandy soils at
two dlfferentdenslties. The increase in shearwave velocity
with pressure for two types of saturated clay soll is shown
in Figure 7.48 (Reference 7.62). Due to the cohesive

nature of soil, the confining pressure will be less than
the pressure that would exist due solely to the weight of
the overlying soil (Reference 7.51 ).

The effect of pressure on seismic velocity is very important
in the propagation of blast shock waves through soil. In
this case, the dynamic overpressures in the soil are suf-
flcently high to affect the wave velocity, hence causing a
distortion of the shape of the wave front. However_ for
normal dynamic soll pressures encountered for mechanical
or acoustic sources, this nonlinear effect can be neglected.

The soll near the surface may be highly structured with
specific layers of varying density and elastic modulus. The
corresponding velocitlesfor compressional waves can range
widely from about 600-3300 ft/sec for loose and dry soils
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near the surface to 3000-8500 ft/sec for coarse and com-

pact soils on up to 14,000 ft/sec for sandstone and com-

pacted soils. However, the typical range of seismic

velocities illustrated in Figures 7.47 and 7.48 are more

representative of the propagation velocities of the most

slgn_flcant ground vibration waves near the surface.
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7.4.2.3 Spreading Loss for Seismic Waves

Within a given layer of uniform mixture of soil, the in-

creasing velocity of compressional and shear waves with

depth will tend to refract the ray paths of the wave front

causing them to bend back towards the surface of the

earth. The effect is identical to that discussed earlier in

Section 7.2.8.2 for focusing of acoustic waves. It would

be expected, therefore, that the minimum spreading losses

for ground vibration would tend to be cylindrical (n = 0.5)

instead of spherical (n = 1). (Note that n = 1 for ampli-

tude spreading loss corresponds to n = 2 or inverse square

law for intensity spreading loss.) However, no data are

available which substantiate such a trend. In fact, it will

be shown that for blast-lnduced dl rectly transmitted ground

motion, the spreading loss exponent is about 1.5 for peak

displacement, 2.5 for peak velocity and 3.5 for accelera-

tion (References 7.51 and 7.63). These values for the

spreading loss exponent exceed the expected maximum

value of 1 for spherical spreading. The higher values for

the spreading loss exponent can be attributed to additional

energy loss by viscous effects and transmission of energy

into lower layers of the soil.

7.4.2.4 Absorption Losses for Seismic Waves

Viscous effects in the transmission of elastic wavesthrough

soil act to remove energy just as for acoustic waves. How-

ever, the loss coefficient a(f) varies approximately lin-

earily with frequency. For longitudinal waves (one-

dimensional compression waves), the attenuation coeffi-

cient, expressed in units of dB/ft, is given by (Reference

7.61)

a = 8.68 ct(f) - 8.68 _ q f _ dB/ft (7.46)

c L

where

c((f) = exponential loss factor in Equation 7.43

q = damping loss factor of the soil - the ratio of

the imaginary to real part of the elastic

modulus, and

c L = _ the speed of longitudinal waves in
in the soil.
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FIGURE 7.49 Attenuation Coefficient Versus Frequency for
Longitudinal and Shear Waves in Shale (Reference
7.61)
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MeasuredvaluesfortheattenuaHoncoefficienta fora
typicalsedimentaryrock(PierreShale)areshown in Figure

7.49 for both longitudinal and shear waves (Reference

7.61). An approximate linear dependence on frequency

is evident. For other earth materials, values of a have

been obtained from measured data (Reference 7.63), or

have been computed from published values for r I and c L by

Equation 7.46 (References 7.61 and 7.62). These are

listed in Table 7.3. For soils, the attenuation coefficient

varies from 0.32 f to 3.44 f - dB/1000 ft with a typical

value of 1.5f- dB/1000 ft. Thus, for a frequencyof20Hz,

an attenuation loss of approximately 3 dB, in excess of the

spreading loss, would occur in a distance of 100 ft.

TABLE 7.3

ATTENUATION COEFFICIENTS FOR SOIL AND ROCK
MATERIALS FOR LONGITUDINAL WAVES

Frequency a - Attenuation
Range c L Coefficient

Material Hz ft/sec dB/1000 ft

(2) Beach Sand -- 800-]800 0.76 f - 1.7 f (I)

(2) Dry Sand -- _ l]00 0.37 f

(2) Saturated Sand -- 2040 0.82 f

(2) Sandy Gravel -- 1200-2000 0.68 f - 1.13 f

(2) Saturated Clay -- 1000-1470 1.8 f - 3.44 f

(3) Sandstone 10-40 7200 0.042 f
40-120 0.182 f

(3) Limestone (Shelly) 10-40 ]3,000 0.0063 f
40-]20 13,000 0.0335 f

(3) Granite (Quincy) 40-120 ]3,800 0.0335 f

(3) Rock 40-5000 0.053 f - 0.82 f

(4) Earth Crust ~ ! 9850 0.019 f

(1) f - frequency in Hz.

(2) Reference 7.62 - calculated values from measureddamping loss
factor.

(3) Reference 7.61.

(4) Reference 7.63.

In general, the data indicate negligible losses for vibra-

tion frequencies below 20 Hz transmitted through soils over

distances less than 100 ft. However, the attenuation

coefficients in soil are roughly 2 orders of magnitude higher

than in air thus clearly showing thenegliglble significance

of ground vibration directly transmitted over long distances

compared to alr-coupled ground vlbration.

7.4.2.5 Overall Propagation Losses for Mechanical

Sources

In the absence of experimental data, the following pro-

cedure is recommended to estimate the directly transmitted

vibration from steady-state mechanical sources resting on

the ground surface such as rocket test stands or large ma-

chinery.

(1) Define the size of the source relative to the trans-

mitted wavelength ;k in the ground by

Ro/X = Ro f/c s (7.47)

(2)

(3)

where

Ro = equivalent radius at the base of the me-
chanical source - ft

f = frequency of vibration - Hz

c s = shear wave velocity in top 5 feet -

ft/sec.

For Ro/X>> 1, the ground may be assumed to be

resistive and the peak velocity of the ground at

the source Vo(f ) can be estimated by

Vo(f) : 2 Po(f) - in/sec (7.48)

where

Po(f) : Peak dynamic pressure in psi on the

ground generated by the mechanical

source at the frequency f.

Assume the spreading loss is given by an exponent

n = I/2 and the absorption loss by

A : 1.5 f (R/IO00) dB

Thus, the ground velocity at a distance R may be

roughly estimated by an expression in decibel form

10 log V(f) = 10 log [2 Po(f)] - 10 log (_Ro)

- 1.5f R/]O00, dB re: ] in/sec

(7.49)

where V(f), Po(f) and R are in in/sec, psi and ft,

respectively. Ground displacements or accelera-

tions maybe estimated by the usual expressions for

simple harmonic motion.

For Ro/X<< 1, the ground may be assumed to be

stiffness controlled and the peak displacement at

the source Xo(f ) may be estimated by (Reference
7.64)

Xo(f ) : (I- v)F(f)
4 G Ro - in. (7.50)

where

v : Polsson_s ratio for soil _0.4

F(f) = peak dynamic force in Ib driving soil at

the frequency f

G = shear modulus of soil - psi

= E/2(I+v)

(For typical surface soils, G ~ 6000-

10,000 psi)

Apply the same spreading and attenuation loss as

in the previous case.
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(4) For Ro/X ~ 1, use both of the previous methods
and fair the results together.

7.4.2.6 Overall Propagation Losses for Aerodynamic
Sources

For ground vibration generated by aerodynamic pressures
from the exhaust of a rocket engine impinging directly on
the ground, proceed as in step (2) of 7.4.2.5 using the
methods given in Section 6.1.10 of Chapter 6 to estimate
the peak pressures on the ground.

7°4°2.7 Overall Propagation Losses for Buried
Explosive Sources

Considerable experimental data on directly transmitted
ground motion are available from tests with buried high
explosives. The data have been correlated into empirical

expressl ons for the directly transmitted ground moil on (Refer-
ence 7.51). A typical wave form of this ground motion
from a blast is shown in Figure 7.50.
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FIGURE 7.50 Idealized Pulse Shapes of Directly Transmitted

Ground Motion from Buried Explosive Charges

(Reference 7.51 )

The rise time t r of the acceleration pulse has been found
to be approximately equal to (Reference 7.51)

I R (7.51)
tr- 6 cd

where

R = slant range from center of blast

cd = velocity of compressional waves.

Based on this observation and the idealized models, for the

velocity and displacement pulse shapes shown in Figure
7.50, the following expressions have been derived from

the data in Reference 7.51. They are based on a one-
dimensional model for the wave propagation, thusallowing

extrapolation of measured ground acceleration to estimates
of ground velocity and displacement. The maximum ve-

locity, Vrmax, in a radial direction from the source, can

be estimated by

VELOCITY

-2.5

2000 ""(R/WTI/3) -in/sec (7.52)Vrmax
\ !

where

R = radius in ft

W T = equivalent TNT weight - lb.

The constant of 2000 represents an average proportionality
factor from experimental data in Reference 7.51 for explo-

sions in dry clay, dry sand, and sandstone.

The maximum tangential velocity was estimated in Refer-
ence 7.51 to be

2
Vtmax = _- Vrmax - in/see

From Equations 7.51 and 7.52, and the relationship be-
tween peak velocity, acceleration and displacement shown
in Figure 7.50, the expressions for the maximum radial and

tangential acceleration armax and at max and correspond-

ing displacements x r max and xt max are

ACCELERATION

armax .WT1/3 _ 2000 cd FR,W 1/3-1-3.532.2 k / T ] -g's • IbI/3

(7.53)

atmax __ armax - g's

The compressional wave velocity c d, in ft/sec, may be

estimated from Equation 7.44 and Figure 7.47 for typical
sandy soils.

DISPLACEMENT

Xmax_ 20O0kjrR/WT1/31-1"5
WTI/3 3 cd - in/Ibl/3

(7.54)

1
Xtmax -_--_- Xrmax - in.

The use of the cube root of the charge weight W T in the
equations above is consistent with the normal method for
scaling blast phenomena. Since these expressions were
developed from data with high explosives, they should give
conservative results when applied to explosions of buried
liquid propellants.
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CHAPTER 8 • Reflected Sound Field

ACOUSTIC AND BLAST LOADS

ON BUILDINGS

Varies primarily with the ratio of acoustic wavelength

X to characteristic dimension k c of the structure and

secondarily with the incidence angle of the impinging

sound wave.

Three types of sonic loads on buildings are considered in

this manual: acoustic noise from rocket engines, blast

loads from propellant explosions, and overpressures from

sonic booms. Therefore, this chapter is divided into three

sections which treat the loading and primary structural re-

sponse characteristics for each of these forms of sonic ex-

citation. Chapter 3 discusses, in detail, the common

analytical methods which are utilized for the various types

of dynamic loads considered in this chapter. However, the

practical design approaches are distinctly different for each

form of dynamic loading. To emphasize these differences,

a convenient separate numbering sequence is employed for

figures, equations, and references throughout this chapter.

Thus, Section 8.1 refers to acoustic loads, 8.2 refers to

blast loads, 8.3 to sonic boom loads. The figures, equa-

tions and references are numberedaccordlngly in each sub-

section.

8.1 ACOUSTIC EXCITATION AND RESPONSE

OF BUILDING STRUCTURES

The basic concepts involved in the analysis of acoustic

loads on building structures may be illustrated as shown in

Figure 8.1.1 .

Effective Driving _7_

Force : /

• incident Pressure/

• Reflected Pressure

• Structurai-Acoustlc

Coupling f

/\

_ I Responseof
External Walls :

_I_// e Vibr°t°ryM°ti°n

• Structural Damage

• Viblo-Acoustic
Transmission

/////////

l

• Structural-Acoustic Coupling

Depends on thecoupllng between bending waves in the

wall and the effectlve acoustic wavelength of the sound

field. This coupling isdeflned by the jolnt acceptance

or ratioofeffectlve (generalized) force to the incident

force on a rigid wall.

• Response of External Walls

• Vibratory Motion

Proportional to the effective acoustic force and in-

versely proportional to the structural "impedance"

(i .e., mass, damping or stiffness) of the wall.

• Structural Damage

Varies with the peak structural displacement, velocity

or acceleration, depending on the type of potential
damage involved.

• Vlbro-Acoustic Transmission

Proportional to the vibratory motion of the wall, and

dependent on the internal acoustic and vibration trans-

mission paths inside the building (see Chapter 9).

It isassumed that methods such as those covered in Chapters

6 and 7 have been applied to define the incident sound

field. It is also assumed that this pressure field is charac-

terized by the type of wlde-band random acoustic noise

generated by a rocket engine exhaust. However, the

design methods presented in this section can be applied to

any form of acoustic excitation of ground structure.

8.1 .I NET ACOUSTIC PRESSURE ON EXTERNAL

WALLS

FIGURE 8.1.1 General Aspects of Acoustlc Loadson
External Walls of Buildings.

The problem breaks down into the essential elements illus-

trated, namely: (1) the determination of the effective

acoustic driving force on the walls of the building, and

(2) an evaluation of the resultant vibratory response and

potential structural damage. A further breakdown of the

primary variables involved in this problem may be outlined
as follows:

• Effective Acoustic Force

• Incident Sound Field

Varies with source and transmission path, including

effect of nearby reflecting surfaces such as a ground

plane (see Chapters 6 and 7).

The first step in defining the effective acoustic force is to

determine the net acoustic pressure on the external wall.

This net pressure is the resultant of the incident pressure

field and the reflected pressure field. If the wall is as-

sumed to be perfectly rigid and to extend to infinity in

both directions, the reflected pressure is just twice the

incident pressure regardless of the angle of incidence of

the sound wave . This is accounted for byadding6decibles

(dB) to the estimated incident sound pressure level. (See

Section4.2.1 of Chapter4 for definitions of sound pres-

sure level and the decibel scale.) This simple rule is often

adequate for preliminary design purposes. However, the

resulting net acoustic pressure maybe overly conservative.

For problems requiring a more careful analysis, the re-

flected pressure field on a wall of finite flexibility and
size needs to be considered . Examine first the net acoustic

pressure on a wall of infinite extent but finite flexibility.
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8.1.1.1 Effective Sound Pressure on an Infinite

Flexible Wall

Consider the case illustrated in Figure 8.1.2 of a plane

wave sound field impinging at normal incidence on a thin

flexible wall extending to infinity in both directions. The

following simple analysis shows that the acoustically in-

duced motion of any surface is determined by defining the

net excitation pressure as that whichwouldexist if the sur-

face were rigid.

Pi

po c

u i

Source po c _ Pr

Side u r

Pt z t

t

Receiver

Side

FIGURE 8.1.2 Plane Wave Sound Field

Impinging on an Infinite

FlexibJe Wall.

This principle can be demonstrated by analyzing the ve-

locity of an infinite wall in terms of the incident acoustic

pressure. The analysis utilizes some of the basic principles

of acoustics which are developed in Chapters 4 and 9. If

the wall is impervious, then the following boundary condi-

tions can be defined.

• The arithmetic sum of the incident pressure (pi) and the

reflected pressure (pr) equals the total pressure (p) on the

source side of the wall, or

P = Pi + Pr (8.1.1)

• The vector sum of the particle velocities of the incident

wave (ui) and the reflected wave (Ur) must equal the

velocity of the wall. This is also the initial particle

velocity u t of the transmitted sound wave with a pressure

Pt on the opposite side of the wall, or

ut = u i + u r (8.1.2)

The following additional parameters can be defined:

• Specific acoustic impedance (po c) of the incident plane

wave is the ratio of the pressure to particle velocity, or

Pi

u. - PoC (8.1.3)
I

• Specific acoustic impedance (-po c) of the reflected

plane wave

Pr (8.1.4)
: _poc

r

(The minus sign stems from the fact that the particle ve-

locity of the reflected plane wave is opposite to the

direction of the incident wave.)

• Specific acoustic impedance (z t) of the transmitted sound

wove

Pt

ut z t (8.1.5)

• Specific transmission impedance (Zw)of the flexible wall

(the ratio of the net pressure differential across the wall

to the wall velocity)

P- Pt
= z (8. I .6)

ut w

By combining Equations 8.1.2 - 8.1.4 to solve for the

velocity ut of the wall, and applying Equations 8.1 .1 and

8.1.6 to eliminate Pr and p, ut can be expressed as

2 Pi - Pt- Zw ut

u t =
Po c

Finally, using Equation 8.1.S to elimlnate Ptands°lving

for the wall velocity ut in terms of the incident pressure

gives

2 Pi
(8.1.7)

U t + z t +Zw Po c

The result obtained verifies the statement made earlier that

the motion of the infinite flexible wall can be defined in

terms of the net pressure 2 Pi that would be measured at the

surface of a rigid infinite wall. The influence of the pres-

sure radiated by the moving wall is accounted for by two

impedance terms in the denominator of Equation 8.1.7 --

po c, which accounts for the reradiation by the moving wall

on the source side; and zt, which accounts for the radiation

by the wall on the receiver side. Stated differently, the

pressure on the surface of any flexible obstacle in a sound

field is the sum of three components:

• The incident pressure,

• The pressure reflected by the obstacle when it is

rigid, and

• The pressure radiated by the motion of the obstacle.

The effective pressure used to define this motion is the sum

of the first two components. The last component is ac-

counted for, as necessary, by adding radiation impedance

terms to the structural impedance of the wall.
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Theeffectofacousticradiationloadingontheacoustic
responseofawallwillbeconsideredindetaillater.

Measured Sound Pressures Near a Large Flexible Wall

The influence of wall motion on sound pressures measured

near an acoustically driven flexible wall should be con-

sidered briefly since such measurements are frequently

utilized for environmental prediction or testing. The ratio

of the actual pressure (p) at the wall to the net pressure

(2 pi ) that would be observed for a perfectly rigid wall can

be determined from the preceding equations. This ratio is:

2 Pi w + zt + Po cJ

(8.1.8)

Assume that the specific acoustic impedance on the receiver

side (zt) is equal to po c. Furthermore, let the specific

transmission impedance of the wall be given by thecomplex

form for a single degree of freedom system.

: (k)z w r+ j ,.,m -

where

Qn'+ jum 1-

_n = _ 7_'- the natural frequency for the nth

normal mode of the wall

Qn = _o m/r - the resonance amplification factor
for this natural mode

m

k

.-- effective surface mass density of the wall

=_2m
n

- effective stiffness of the wall per
unit area

j =¢:T

r = resistance of wall.

Equation 8.1.8 can then be expressed as

] + _Unm + jUmpo--'_- [l_(un/U)2 ]

2 Pi _n m

2+p_ + jUmpoc [1-(_n/U)2]

At resonance, u = Un, and the reactive terms drop out. If

Unm/Q is much greater than 1 (i .e., heavy well-damped

wall), then the ratio of the observed to rigid-wall pressure

will be nearly equal to I. On the other hand, for light-

weight walls with low damping, for the lower order reso-

nant modes, unrn/Q may be much less than po c. In the

limit, the observed pressure at the wall could be 1/2 or 6

dB less than the effective value for a rigid wall.

Example

As an example, consider the change in observed sound

pressure from the rigid wall value that would be measured

at the surface of a 1/4" slmply-supported steel plate with

a fundamental resonance frequency of 20 Hz. The effec-

tive surface mass m can be assumed to be approximately

1/4 the actual surface mass density. The factor of 1/4

represents the generalized mass fraction for a simply-

supported plate (see Chapter 3, Section 3.3.5.6). Fora

Qn of 25, and weight density for steel of 0.3 Ib/in 3, the

quantity _nm/Qn would be (2_)(20) (I/4)(.3)(1/4)/(386) =

0.000244 Ib-sec/in 3 . The specific acoustic impedance of

air (po c) is normally 0.00153 Ib-sec/in 3 at 59°F. At

resonance, the ratio of the observed pressure to the rigid
wall value would be

P 1 + .000244/.00153

2 Pi 2 + .000244/.00153 0.536

This corresponds to a decrease of 5.4 dB below the rigid

wall value of 1.0. For excitation frequencies of reso-

nance, the ratio p/2 Pl will be very nearly equal to 1 .

Thus, sound levels measured very near a large acoustlcally

driven flexlblewallwill deviate from the rigid wall values

by 0 to 6 dB in the manner illustrated in Figure8.1.3.

Therefore, an improved estimate of the effective driving

pressure on a surface, obtained from measured sound levels

in a wide-band random noise field, wouldcorrespond to an

upper envelope of the observed frequency spectrum. Sharp

"valleys" in the spectrum at the resonance frequencies of

the wall would be ignored.

-6

_ _ /__Rigid

Wall

Resonant Frequencies of Wall

Frequency

FIGURE 8.1.3 Illustration of Deviation of Sound Pressure Level Mea-

sured at Surface of ]nflnite Flexible Wall from Rigid-

Wall Values. Maximum deviation is 6dB for Lower

Resonance Frequencies of Light Weight Walls with Low

Damping.

8.1.1.2 Effective Sound Pressure on Finite Size

Rectangular Walls

So far, the wall has been assumed to be infinite in extent.

Consider now, the effective pressure on a rigid wall of

finite size located on one side of a building and immersed

in a plane wave sound field. Due to diffraction effects,

the total incident plus reflected pressure would no longer

be just twice the incident pressure. Instead, the total

pressure would exhibit the following general trend as a

function of the ratio of a characteristic wall dimension Lc
to the acoustic wavelength X.
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• ForL c/X<0.2

Total pressure --_ incident pressure on all sides.

• For 0.2 < Lc/_, < 1.0

Total pressure varies from 0.25 to 3 times incident pres-

sure on all sides. This corresponds to a variation of-14

to +9.5 dB.

• For 1.0< Lc/X < 4.0

Average total pressure _2 ---_ 2.5 times incident pres-

sure on wall facing sound field (+6 to +8 dB).

Average total pressure ~0.25 _ 1.0 times incident pres-

sure on opposite wall (-14 to 0 dB).

Average total pressure ~0.5 _I .5 times incident pres-

sure on walls and roof at grazing incidence tosound field

(-6 to +3.5 dB).

These approximate trends are based on detailed experi-

mental results reported in Reference 8.1.1. They clearly

indicate the wide range of variation that can occur on the

surfaces of a three-dlmenslonal obstacle due to the effects

of diffraction. Therefore, a more detailed examination of

these data is desirable.

Diffraction for Rectangular Obstacles

As reported in Reference 8.1.1, measurements were made

of the sound pressure level relative to free field levels on

the face of a 25 cm (0.82 ft) rigid cube and a rectangular

paralleleplped resting on a ground plane. The rectangular

paralleleplped consisted of two 25 cm cubes stacked ver-

tically. The sound levels measured on the surface of these

rigid obstacles were then compared to the pressure in the

incident planesound wave todefine the total incident plus

reflected pressure on a typical three-dimenslonal rectan-

gular obstacle. Similar data from earlier theoretical and

experimental studies on diffraction of cubes did not ade-

quately define the diffracted sound field over exposed faces

of rectangular obstacles on the ground (References 8.1.2

and 8.1.3). Results from a recent theoretical study of the

diffraction for a free cube, reported in Reference 8.1.4,

provided more detailed theoretical support forexperlmental

data in Reference 8.1.1 on the variation in sound pressure

over the surface of a cubical obstacle. The theoretical

approach to the problem is the classical one which estab-

lishes thesound field reflected from an obstacle by requir-

ing that the sum of the particle Velocities for the incident

and reflected fields be zero at the rigid surface of the

obstacle (Reference 8.1.2).

The more significant results from these studies are sum-

marized in Figures 8.1.4- 8.1.6. The relative change in

sound pressure level due to diffraction is shown as a func-

tion of the ratloof thehelght (a) of the cube to the acous-

tic wavelength k. This is equivalent to a normalized fre-

quency f a/c where c is the velocity of sound.

Figure 8.1.4 shows this diffraction correction at three

typical locations on the front face of a cubical obstacle

for normal incidence of a plane incident sound wave. Both

experimental results from Reference 8.1.1 and theoretical

results from Reference 8.1 .4 are illustrated.

12

o
0.1
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o i lo a/41_ - _ i...,k

_. [_1_ a/_

?._ 5

0,1
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I .0 I0
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0
0.1

Measure_
/ ,,, : ,_ Theory -J

i I I i I

1.0 10
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Wavelength

FIGURE 8.1.4 Experimental and Theoretical Diffraction Effect onFront

Face of Cubical Obstacle (Measured with Cube on

Ground, Theory for Cube in Free Space, e = 0 °, Data

from Reference 8.1.1 and 8.1.9).

The experlmental resuhsshow a general trend in agreement

with the theory. However, there are significant differ-

ences due to reflection from the ground plane and from the

other faces of the cube. This was neglected in the theo-
retical calculations. Note that diffraction causes the

observed pressure to be as much as 10 dB above the incident

pressure at the center. Contours of constant values of the

measured diffraction correction are shown in Figure 8.1.5

for the front, side and back of the cube for an incidence

angle _ of 0 ° in the front face (i.e., normal incidence).

Simi Jar diffractl on correctl on contours for the stacked cubes

are shown in Figure 8.1.6. Note that for the cubical

obstacle, the sound pressure on the rear face, for a/X =

0.5, reaches a maximum of 6 dB above the incident sound

level. This is analogous to the optical "bright spot" on

the back of a disk, illuminated by a light beam (Reference

8.1.2).

Reference 8.1.1 reports additional diffraction measure-

ments for incidence angles other than normal (i .e., ¢ = 0°)

on the front wall. The general trend of this data is similar

to that shown in Figures 8.1.4- 8.1.6.
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Phase Variation of Total Pressure on Obstacle

The phase angle between the sound pressures at various

points on the fronb side, and rear face of the cubical ob-

stacle were also reported in Reference 8.1.1. For normal

incidence on the front facet the phase angle varied sig-

nificantly above the normal 0 ° phase shift that would be

observed in an ideal incident plane wave front. This

variation, illustrated in Figure8.1.7a for two typical pairs

of points, is attributed to the combined effects of ground
reflection and diffraction. However, at an incidence

angle of 45 ° in the front facet the observed phase angle,

0_ between various points agreed closely with the expected

value 9 = 2_ A/'c due to the propagation delay over a path

length A in the direction of the incident wave which travels

with the velocity c. A typical result for this case is illus-

trated in Figure 8.1.7b.

r_

==
.<

0)

a.

"6

i

aD

9

6

3

o

6

3

o
0.2 1.0 6.0

Side of Cube
a/X -

Wavelength

a) Phase Shift on Front Face for Normal Incidence

The effect of a varying phase across any one wall of the

obstacle will tend to reduce the effective acoustic driving

force for the lowest vibration motion of this wall. The

effect on higher modes will be complex. For some modes,

the change in phase could increase the effective driving

force, and for others decrease it. This suggests that in

defining the effective or generalized acoustic force at the

higher modes of a building wall, it would be reasonable to

assume that the phase varies randomly over the surface.

The implications of this concept will be considered ina

later section.
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b) Phase Shift on Front Face per 45 ° Incidence

FIGURE 8.1.7 Phase Shift Between Total Pressure at Pairs of Points on

Front Face of Cubical Obstacle on Ground in Plane

Wave Sound Field (Data from Reference 8.1.1)

For incidence angles of 90 ° or greater_ the phase shift in

the total pressure across the surface of an obstacle varied

widely due to the marked effects of diffraction and ground

reflection. Generalizations are not practical in this case.

Characteristic Diffraction Length

Figure 8.1.8 shows the average diffraction effect observed

at thecenter of one face of a slnglecube and at the center

of the upper and lower halves of the stacked cubes. The

strong similarity in all three curves indicates that, toa

first approximation, the characteristic diffraction length

k c for any rectangular wall can be taken as the minimum
dimension (width or height) of the wall. It will I_e shown

later in Section 8.2 that this same rule applies to the dif-

fraction of blast waves striking a wall face-on. In this

case, the so-called "clearing time" required for a reflected

overpressure wave to reduce to the incident blast wave is

also determined by the minimum dimension of the wall.

The results illustrated in Figures8.1.4- 8.1.6 and8.1.8,

may be used to estimate the net pressure on closed rectan-

gular surface. In particular, for the worst case of a wall

facing the incident sound wave, an average diffraction

correction may be estimated based on the preceding con-

clusion about a characteristic length and the diffraction

effect for rectangular structure. A recommended design

value for theaverage diffraction effect on rectangular ob-

stacles is shown in Figure 8.1.9. Ignoring phase, devia-

tions from this average correction at particular locations

on the wall will generally be less than _3 dB.
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FIGURE 8.1.9 Average Diffraction Correction to be Added to

incident Sound Pressure Level on Front Face of Enclosed

Rectangular Walls to Determine Effective Sound Pressure

Level for Normally Incident Plane Waves.

8.1 .1.3 Net Acoustic Force on Rigid Unbaffled

Obstac Ies

The configuration treated in the last section assumed that
the wall was baffled so that no sound waves reached its

back side. It is also necessary to consider the net acoustic

forceacting on open-type structures or obstacles which are

not baffled. One example of such a configuration would

be the type of open frame structure employed forservice

towers, or arming towers, near launch sites. Such primary

structures are not ordinarily subject to sonic fatigue dam-

age. However, acoustically induced vibration can be sig-

nificant for environmental design of frame-mounted equip-

ment.

An approximate analytical approach to the problem is

possible by treating the unbaffled shapes as infinite cylln-

ders or spheres. The theory for the net acoustic force

acting on these rigid obstacles in a plane wave sound field

is well documented in the literature (References 8.1.5 -

8.1.7). The essential details of this theory are reviewed

in Chapter 4. Theanalysls is carried out in essentially the

same classical manner as for the rigid plate, the essential

difference being the coordinate system used to define the

sound pressure reflected from a cylindrical or spherical

surface. For either case, the total instantaneous pressure

at any point y on the surface is the sum of the instantaneous

incident Pressure pi(Y,t) and the reflected pressure pr(y, t)-

The net force P(t) is the integral over the obstacle surface

of the product [pi(Y,t) + pr(Y,t)] x [local area normal to

the direction of incident wave]. This may be represented

by the integral

P(t)= /[pi(Y,t)+ pr(Yrt)] " d_ n (8.1.10)

A

where

d_ n = normal component of differential element of

surface area at point y.

Total Force on Cylinder in a Plane Wave Sound Field

The ratio of the amplitude P of the total net force per unit

length to the amplitude of the "incident force" per unit

length (d pl) is shown in Figure 8.1.10 tara cylinder of

diameter d in a plane wave sound field. This net force

variesas a function of the dimensionless frequency parame-

ter fd/c = d/X where f is the frequency, d is the cylinder

diameter, c is the speed of sound in air, and X is the

acoustic wavelength. The ratio P/d Pl reaches a value of

2.15 for fd/c = 1/_ or _d/X = 1 (Reference 8.1.5). Thus,

when the wavelength is equal to the circumference of the

c_.yllnderr the net force is slightly greater than twice the

product of the incident pressure times the normal area per

unit length (d).

I I I I I I High Freq .... y
_ --Limit

_' I I I I I I (Eq. 8.1.11b)
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i i/i i i
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_" - Wavelength

FIGURE 8.1.10 Net Acoustic Force Per Unit Length on

Rigid Cylinder Relative to Incident

Force of Plane Wave at Normal Incidence.

(From Reference 8.1.5).

• Low Frequency Limit

At low frequencies, where _fd/c << 1_ the net force is

approximately equal to

p__,_2 " Pi _fd/c<< 1

where f d/c = d/X

• HI_th Frequency Limit

At high frequencies, where _fd/c >> 1, the net force is

approximately equal to

Pl 'nfd/c >> 1
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Each of these limiting approximations is shown in Figure
8.1.10.

A simple approximation for the low frequency limit of this
net force can also be developed for application to any
two-dimenslonal obstacle. Let the pressure of an incident
sinusoidal sound wave at the point on the cylinder nearest

to the source be given by

Pi(0't) = Pi cos g t

The circumferential distance between this point and the

opposite side of the cylinder is _d/2. If this is considered
to be an effective difference in path length between the
incident pressures at these points, then the pressure at the
back side will be

Pi (_2"_'t) = Pi cos(ut-_ud/2c)

where c = speed of sound in air.

Assume the net force per unit length P(t) on the cylinder is
equal to the difference between these two pressures times
the normal area per unit length which is

P(t) = dPi [cos (u t - =_ d/2c) - cosu t]

P(t) =2dPi sin \-4_'c/ cos ut 4c /

For low frequencies where _d/2c = _fd/c << 1, then
sin (_,.,d/4c) _ _d/4c so that the amplitude of this
force is approximately equal to

p ... 2 IF d/c] Pi it f d/c << 1

This is the same net force found for the low-frequency
limit by the exact solution (Equation 8.1.11a). Thus, a
simple estimate for the amplitude of the net acoustic force
per unit length on any two-dimenslonal unbaffled obstacle
in a plane wave sound field could be given by

_ [-_] [A ] (8.1.13a)P _ n Pl fS/c<< 1

where

S = circumference of obstacle

A n = frontal area per unit length.

Cast in a different form, the ratio of the net pressure P/A n
to the incident pressure is

Pl _fS/c << I
(8.1.13b)

The quantity in brackets shows that the net force on un-
baffled obstacles in a normally incident sound field varies

directly with frequency when the acoustic wavelength ex-
ceeds the circumference of the obstacle. Based on a

detailed analysis in Reference 8.1.8 of the diffraction of

sound for infinite cylinders, the effect of an incidence

angle other than 90 ° to the cylinder axis may be accounted
for by multiplying the circumferential path length S by
(cos [3). J3is the angle between the normal to the cylinder
axis and the direction of an incident plane wave.

Total Force on Sphere in a Plane Wave Sound Field

Three-dimensional obstacles can be simulated by a rigid

sphere. The absolute amplitude ofthenet force per unit
area on a sphere, relative to the incident pressure Pl in a

plane wave sound field, can be given in closed form by
the expression

P = 2"n fd/c

Pl ('_d2/4) _/1 + 4 (=fd/2c) 4

(8.1.14)

where

P = total acoustic force on sphere

d = diameter of sphere

f = frequency

c = speed of sound.

This is simplified but exact form of the more complex ex-
pression normally given in the literature for the acoustic
force in rigid spheres (see Section 4.5.1.2 in Chapter 4).
This expression is compared in Figure 8.1 .11 on a decibel
scale with the result given earlier for the cylinder. The
basic similarity of the diffraction effect for the two ob-
stacles is clear. For the sphere, the low and high fre-
quency limits are readily determined from Equation 8.1.14.

f x d - Frequency x Diameter - Hz x ft

20 102 103

' _ I Unit Length) ./ / I I _4

0.01 0.l I .0

d Diameter

° Wavelength

FIGURE 8.1.11 Net Acoustic Force P in Rigid Sphere, Relative to

Incident Pressure Pi times Area A n Normal to Plane

Wave Compared to Same Ratio for Cylinder. (From

Figure 8.1.10).
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• Low Frequency Limit, for _d/X << 1,

P
2_ If d/c'l

Pi (7 d2/4)

• High Frequency Limit, for _d/X>> 1,

P ~

P,Ud2/4/ /rfd/c 

8.1.1.4 Summary of Corrections for Reflection and

Diffraction

The followlng simplified rules summarize the average cor-

rectlons to be applied to incident sound pressure levels on
structures toaccount for reflection and diffraction effects.

The corrections are defined according to the product of the

frequency f in Hz and a characteristic length in feet.

• Enclosed building walls with shortest dimension, Lc in ft

• For f • Lc < 700, add correction specified by Figure

8.1.9 to incident sound pressure level.

• For f • Lc > 700, add 6 dB to incident sound pressure

level.

• See Figures 8.1.4 - 8.1.6 for detailed estimates of

variations in sound pressure levels over walls.

• Unbaffled two-dlmenslonal structural members with cir-

cumference S, in feet, in plane wave sound field at

normal incidence.

• For f • S < 700, multiply incident pressure by fS/350

to define effective acoustic pressure, or add

[201OglO (f " S) - 51 dB]

to incident sound pressure level (SPL).

• For 700 < f - S < 1750, multiply incident pressure by

2.0 to deflneacoustlc pressure, or add 6 dB to incident

SPL.

• For f • S > 1750, multiply incident pressure by 85/_/_

to define effective acoustic pressure, or add

[38.5- 10 log (f" S)] dB

to incident SPL.

• Unbaffled three-dimensional obstacles with average cir-

cumference S_ in feet_ in plane wave sound field.

• For f • S < 1100, multiply incident pressure by f S/550

to define effective acoustic pressure, or add

[20 Iog(f • S) - 56dB]

to incident SPL.

• For 1100 < f • S < 2250, multiply incident pressure by

2 to define effective pressure, or add 6 dB to incident

SPL.

• For f • S > 2250_ multiply incident pressure by 4500/f S

to define effective pressure, or add

[73 - 20 log (f" S)] dB

to incident SPL.

It is important to recognize that the simplified treatment of

diffraction discussed in this section has taken little or no

account of the phase of the total pressure acting on the

structure. Only the changes in amplitude of the incident

pressure due to reflection or diffraction have been con-

sidered. One example of the validity of this simplified

approach is given in Figure 11.9 _ page 11-12of Chapter

11 . This shows how the change in the measured acoustic

vibration response of a simple structural panel, with and

without a baffle, is predicted on the basis of diffraction

theory for a rigid cylinder. Without a baffle, the panel

response decreases due to the decrease in net pressure or

force per unit area when the panel span (d) is much less

than the acoustic wavelength (see Figure 8.1.10). Addi-

tional experimental data will be considered later in this

chapter to illustrate the diffraction correction applicable

tara finite panel ina rectangular building. The effect of

phase or correlation of the net pressure on a panel surface

must now be considered in more detail in order to define

the acoustic vibration response of flexible structure.

8.1.2 STRUCTURAL ACOUSTIC COUPLING

A simple analysis of the response of an infinite flexible

wall to a normally incident planewave, derived in Section

8.1.1.1, defined the effective driving pressure on an

infinite flexible wall. However, a more general approach

is now required todetermlne the vlbro-acoustic response of

finite walls. Specifically, it is necessary to employ the

concepts developed in detail in Chapter 3, Section 3.3,

on the normal mode response of complex structures to dis-

tributed sinusoidal and random loads.

8.1.2.1 Modal Response of Structure to Acoustic

Excitation

To illustrate the application of these concepts to acoustic

excitation_ consider the case shown in Figure 8.1.12 of a

beam of length L Ioaded by a uniformly distributed acoustic

pressure p(y,t) =pcos(2_ft). The beam is mounted in an

infinite baffle so that no diffraction effects are present.

(It will be assumed throughout the remainder of this section

that the amplitude p of the pressure acting on the structure

is actually 2 times the amplitude Pi of the incident pres-

sure.) The displacement response x(y,t) at any point y

along the beam can be described by the summation of the

displacements in its infinite number of normal modes by

CO

x(y,t) : _ qn(t) Cn(y )

n

(8.1.16)

where

qn(t) = instantaneous displacement of the normal co-
ordinate for the nth normal mode

_n(y) : relative mode shape for nth mode at point y.
(Throughout this manual, mode shapes are nor-

malized to a maximum value of unity.)
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The equation of motion for the forced response of the nth
normal mode is specified by (see Equation 3.222, page
3-64)

F (t)
n

_]n(t) + 2 8n _n Cln(t) + g 2n qn (t) = M
n

where

(8.1.17)

6 n = 1/2 Qn, critical damping ratio for nth
mode

Un = 2_fn = natural frequency of nth mode

L

Fn(t) = b/p(y,t)q_n(y) dy-the generallzed force
for the nth mode

0

bp(y,t)dy = differential force on the beam over the
length dy where p(y,t) is the pressure and
b is the beam width

p(y,t) = p cos (2_ ft)

y x(y,t) L

FIGURE 8.1.12 Unlformiy Distributed Acoustic Pressure

Acting on Beam Mounted in an Infinite
Baffle.

Sinusoidal Excitation

For a steady state sinusoidal excitation, the solution to
this equation of motion for one mode was shown to be
(Section 3.3.3.5)

PoJn(f) lHn(f)Jcos. (2".fnt- en)
(8.1.18)

qn(t) = 2 MnUn

where L

=b /p(y) dy=amplitude of totalPo
J
0

slnusoldal

force on beam (without regard to
phase of pressures along beam)

L

Jn(f)= JP(Y) n(Y)dy- joint acceptance or
o 0 amplitude of the gen-

eralized force Fn to the

total force Po

IHn(f)J = I/[(I- (f/fn)2)2 + (2 8n f/fn)2] I/2

= the dynamic magnification factor for the nth
mode

en = tan-1 26nf/fn
1-(f/fn)2

the phase angle for the re-
sponse in the nth mode.

For the case of a simply supported beam, illustrated in

Figure 8.1.12, the mode shape Cpn(y) = sin (_n y/k) where

n=1,2,3, etc. If the pressure acts uniformly and in phase

at all points on the beam, then Po = pbL and the joint
acceptance is

L

Jn(r,= --fsln (',,nY)dr
0

-, n = odd
=-L [cos ,n- 1] = _n

_n , n = even

Note that the convention is adopted in this chapter of
using the frequency argument (f) for the joint acceptance

parameter Jn(f). In Chapter 3, this notation was reserved

for joint acceptance with random excitation. However, it
has been pointed out in Section 3.3.3.10 of Chapter 3 that,
for analysis purposes, the jointacceptance parameter is the
same for either sinusoidal or stationary random excitation.

The total instantaneous displacement at y is obtained by

inserting Equation 8.1.18 back into Equation 8.1.16 and
carrying out the summation over all modes. However, a
more convenient measure of the total response is given by

the mean square value which is

+ T/2

x2(y,t)= lira -_-f x2(y,t) dt (8.1

T--.,,-oo--./_T/2

This mean square sinusoidal responseat the excitation fre-
quency f is made up of two parts; the sum of the mean
square response in each mode, and the sum of the cross-
mode responses. It has been shown that cross mode response
terms are generally negligible for excitation at the natural
frequencies of a multi-mode system (see Section 3.3.3.6,
Chapter 3). Thus, for practical purposes, the mean square
displacement at point y on the beam is given, to a close
approximation, by just the summation of the mean square
responses in each mode (see Equation 3.249, page 3-78)

~ 12 IHnlfll2
2

x2(y't) =712X (Y) - "2" Po _n u4 Mn2 _n(y)

(8.1.20_)
where

X(y) = amplitude of total sinusoldal displacement at
y.

The correspondlng mean square acceleration at this point is

• 1 1 p2 Qo (f/fn)4
o 2

n M n

(8.1.20b)



Structural Acoustic Coupling 8-11

The joint acceptance squared j2(f) is now equal to the

mean square generalized force _ to the mean square

1 2
total sinusoidal force _- Po

According to the definition given with Equation 8.1.17,

the generalized force Fn(t) may be considered as the sum-

mation of all the elemental generalized Forces

bp(y,t) q_n(y) Ay

acting on each beam segment having an area bAy. The

mean square value of this summation will then consist of

the tlme-averaged product of two such summationsand may

be expressed as

F2(t) = b2 [p(yl,t)CPn(Y 1) +P(Y2 ,t) (1)n(Y2)+ ---]

×[P(Yl ,t) q)n(Yl ) + p(y2,t) _n(Y2 ) + ---] Ay 2

As noted earlier, the bar signifies a long time average.

The product of these Force "summations" (which become

integrals in the limit as Ay----_0) must include all possible

cross product tem_sfor different points on the beam, such as

p(y,t) _n(y ) • p(y',t) _n(y') where y 7' Y'

Thus, when expressed in integral Form, the mean square

value of this generalized Force, normalized by the mean

square value of the total value2P2o becomes the joint ac-

ceptance squared JnZ(f) given by

L L

b2 /" /"
j2(f) = _ I I p(y,t)p(y ,t) q)n(y ) q)n(y' ) dy dy'

_pZ J J
2_ o 0 0

where

p(y,t) p(y',t) = long time average of the product of the

pressures at two general positions y and

y' along the beam.

For all cases to be considered, the amplitude of the pres-

sure p(y) at each point will be assumed to be a constant

(p). Thus, the mean square value of the total force2Po 2

.12
on thebeam is_p (bk) 2 and the joint acceptance squared

can be expressed in the simpler form

L L

Jn2(f) = L-_-SS %(y'y''f) _)n(y) (1)n(y') dy dy'

0 0 (8.] .21)

The term R'p(y,y',f) is the (narrow band) space correlatlon

coefficient for the points y and y' of a Frequency f. For a

sinusoldal acoustic wave with a constant pressure amplltude

p traveling over the beam, this is defined by

- ' f p(y,t) p(y',t)
Rp(y,y , ) - 1 p2

(8. ] .22)

Random Excitation

When the acoustic excitation consists of random noise, the

mean square response forsinusoidal excitation ata single

Frequency is replaced by its equivalent for random loads,

the power spectral density Wx(Y,f ). This defines, in

effect, the mean square value of the response at point y

with a 1 Hz bandwidth centered about the Frequency f.

1 2 is also replacedThe total mean square slnusoidal force _- Po

by the corresponding power spectral density of the random

force Wo(f ) = Wp(f) • (bL) 2. In this case, Wp(f) is the

constant power spectral density of the pressure on the beam

at the Frequencyf. When these changes are incorporated

into Equation 8.1.20a or 8.2.20b, the response to random

excitation is readily defined. For example, the power

spectral density of the acceleration response at y for adls-

tributed random load (neglecting cross-mode coupling

terms) is:

j2(f) 4 2
= (f/fn) IHn(f)l _(y)

2
W_(y,F) Wo(f) n_ Mn

(8.1.23)

Note that the expression for joint acceptance squared for

sinusoldal excitation (Equation 8.1.21) can still be used

to predict the response to random excitation. An alternate

and more general method for defining joint acceptance for
random excitation is discussed in detail in Section 3.3.3.11

of Chapter 3. This method is applied when the spatial

correlation of the pressure field is determined by measuring

its cross-power spectral density. This method is not utilized

in this chapter.

In this brief review of the basic modal response equations

the principal objective has been to focus attention on the

joint acceptance parameter. This is the key Factor which

defines thestructural acoustic coupling characteristics be-

tween acoustic excitation and the structural response

(Reference 8.1.9). The Following section gives a detailed

analysisof jointacceptance for a variety of structural ele-

ments under acoustic loading. For convenience, the term

joint acceptance squared will be abbreviated as simply

joint acceptance from here on.

8.1.2.2 Joint Acceptance For Beams Under Acoustic

Excitation by Plane Progressive Waves

The instantaneous pressure p(y,t) in a plane progressive

wave traveling in the y positive direction over a beam

lying along the same axis may be described by

p(y:t) = p cos [2_ft - 2_y/;k] (8.1.24)
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where

p = amplitude of the pressure wave

f = frequency- Hz

X = c/f - the acoustic wavelength

c = speed of sound.

For a more general situation, consider the case illustrated

in Figure 8.1.13 where a plane wave impinges on the beam

at an angle _ from the vertical. It is assumed that the
latter is mounted in an infinite baffle. As indlcatedby the

figure, the effective or trace wavelength h" along the beam

is now stretched out and is defined by

X t = X/sln qs

Thus, replacing _, in Equation 8.1.23 by X t, the pressure

along the beam is simply

p(y, t) = p cos [2_ f t - 2_ y/X t] (8.1.25)

0 L

FIGURE 8.1.13 Acoustic Excitation of a Beam by o Plane

Progressive Wave with a Wavelength

), = c/f Traveling ot an Angle _ to the

Verti cal.

Applying Equation 8.1.22, the space correlation coeffi-

cient for this constant amplitude traveling wave is the time

averaged product of p(y,t) and p(y',t) normalized by the

product of their rms values. This can be expressed as

_p(y,y',t) = cos [27 (y-y')/X t] (8.1.26)

where

X t : X/sin _ : c/f sin _ , and

c/sln _ :-_, trace or propagation velocity of wave
across beam.

The joint acceptance can now be determined for any beam

configuration by substituting this expression for the space
correlation coefficient back into Equation 8.1.21.

Rigid Beam

For a rigid beam which moves vertically up and down llke

a piston, the mode shape corresponds to a rigid body or

zero-frequency mode and is equal to 1. Thus, the joint

acceptance for the rigid beam is

L L

1 ff 2_(y-y') dydy'jo2/f): cos xt
0 0

(8.1.27)

This is plotted in Figure 8.1.14asa function of the ratio

of beam length to trace wavelength L/X t =(fLsing)/c.

The ordlnatescale is given numerically as j2 or in decibel

form as 10 log j2. The upper envelope of this curve is

defined by

L/X t << 1/_ , j2(f) = 1.0

2 2

L/X t>> I/_, j2(f)= [___tl = [_]

1.0

o_ 0.1&2

u
u

_. 0.01

i

0.001

0.04 0.1

L Length of Beam

Oloi

1,0 10

X Trace Wavelength
t

FIGURE 8.1.14 Joint Acceptance Squared for Plane

Progressive Wave Traveling Over Rigid

Beam with Trace Wavelength X t.

Whenever the number of trace wavelengths on the beam is

equal to an integer n or L/;_,t = 1, 2, 3, etc., the average

pressure over the beam is zero so that the joint acceptance

or relative generalized force is zero.
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Simply-Supported Beam

The mode shape for the simply-supportedbeamcan beex-
pressed in the form

Cpn(y)= sin n_ y/L

or as

Cn(y ) = sin 27 y/XBn

where

XBn = 2L/n = cB/f n - the bending wavelength in the
nth mode of a simply-supported
beam (see Section 3.3.5.4 of
Chapter 3), and

c B = bending wave velocity in beam.

Substituting the first form into Equation 8.1.21 and using
Equation 8.1.26 for the space correlation coefficient, it
can be shown that the joint acceptance for simply-supported
beams is given by (Reference 8.1.9)

I, {, cosn.oos,_/f/:_? ,-
(8.1.28)

Thisexpression is plotted in Figure 8.1.15 as a function of
the beam length to trace wavelength ratio L/X t with mode
numbers n = ] to 10as a parameter. In this figure, part a
shows the joint acceptance for the odd modes of the simply
supported beam and part b shows the even modes. Full
curves are shown for modes 1, 2, 9 and 10; while only
prominent peaks are indicated for the other 6 modes. En-
velopes for the upper bounds of these complex curves may
be approximated as follows:

Odd Modes

• L/Xt =fLsin_ < 0.2, J2(f)ma x =
C

= n j2,f, 1• L/X t 2 n t/max = _-

• L/X t > > "_-
n 2 L 4

Even Modes

• L/X t < 0.2

=n 2 1
• L/X t 2 Jn (f)max -- "4"

• -.-n/_t>> n2

n 2 L 4

1 , i ' I'' rl I r I i l,,r,r , r i -0

. Mode nNumber /2_/

!,II .o
u_ 2.3 I I I'/

_- _ 15, 7' 9 1 '

I°-2 _\ _ li7/ _9_; -20 8_

>', '\', l I/_,All
-_ "_\,\', :// '1_
_- \,,,l,17 t_!_o, .0

0.1 I ,0 10 100

L Length of Beam

Xy Trace Wavelength

(o) Odd Modes

1.0 ' ' I'"' l ' ' I .... _ , , 0

Mode Number /_/
n

2 4 6 810 &-'_--')_'_'_'_'_'¢::::_:_

"AA_ _L_

\,'vvll I
10-1 -10

{i111
' ,i/zl '°'

'_ 10-_

'
10-3 ' -30

10-4 , , I .... _ _ ,

0.1 1.0 10 50

L Lengthof Beam
X t Trace Wavelength

(b) Even Modes

FIGURE 8.1.15 Joint Acceptance for Simply Supported Beam

in a Plane Progressive Wave Field
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When the incidence angle qj approaches 0° (i .e., normal

incidence)the trace wavelength X t approaches inflnityand

pressure over the panel is uniformly in-phase at all points.

The joint acceptance then approaches the expected value

for this type of normal loading (see Section 3 3.6.2). In

this case, for k/Xt'-_'0, even modes are not excited so that

j2(f) : 0 for n = even, while j2(f) = (2/n_)2

Coincidence Effect for Simply Supported Beams

For all modes except the fundamental mode, the joint

acceptance approaches a maximum value at coincidence.

For a given angle of incidence qs, coincidence occurs when

the tracewavelength X t = c/f sin q, of the acoustic excita-

tion is just equal to the bending wavelength XB in the

beam. For the nth mode of a simply-supported beam, the

bending wavelength, XBn is equal to 2L/n so that, at co-

incidence for this boundary condition,

L = n (8.1.29)
X t 2

An examination of Figure 8.1.15 will show that the maxi-

mum joint acceptance for all modes above the fundamental

occurs very near this value of L/X t • (Both the denominator

and numerator of Equation8.1.18 for the joint acceptance

approach zero for L/X t --- n/2. However, in the limit, a

finite value of 1/4 is obtained. The true maximum value

of Jn2(f) for n>_2 is slightly greater than 1/4and occurs

for L/X t slightly less than n/2 .)

Todevelop a better understanding of the physical concepts

involved in acoustic excitation of structure, it is useful to

view the joint acceptance curves in Figure 8.1.15a as

representing weighting functions for wavelength filters.

The effective (or generalized) acoustic force acting on

each normal of the beam is attenuated by this "fihering

effect" at frequencies for which the acoustic and structural

bending wavelengths do not coincide. This effect is em-

phasized by replotting some of the joint acceptance curves

of Figure 8.1.15 as a function of the ratio of structural

bending wavelength XBn = 2L/n to acoustic trace wave-

length X t. This form, shown in Figure 8.1.16, illustrates

more dramatically the major influence of the coincidence

or wave matching effect on the relative acoustic force

acting on each mode.

Practical aspects of the effect of coincidence on the re-

sponse of structure to noise will be considered later in this

chapter and in Chapter 9. Consider, now, joint accept-

ance values for other types of structural elements.

Clamped-Clamped Beams "y_'_- _ / "_'-0 I

The mode shape for the clamped-clamped beam can be

specified in a general form by

_n(_7) = A n [_(K n L)]

1.o

10-1

<C

"a

o

___ 10 -2

10-3

0.1

XBn = 2L,'n

i 1 [\ Mode

I _ \ Number

/\ n

lO

IJ:

II ,Ill

.0 10 100

kBn Structural Bending Wavelength

Xt Trace Wavelength

FIGURE 8.1.16 Joint Acceptance for Simply Supported Beam

in Progressive Wave Field. (Plotted in terms

of structural/acoustlc wavelength ratio to

emphasize wave filtering effect.)

where

¢_ = A general mode shape function of the fre-

quency parameter which is defined inSec-

tion 3.3.5.4 of Chapter 3.

_n = natural frequency for nth mode of beam

= velocity of bending waves and bending
CB' XBn wavelength, respectively, for nth mode of

the beam

A n = normalizing constant which reduces the

general mode shape function to unit value

at the point of maximum deflection, defined

in Section 3.3.5.4 of Chapter 3.

The joint acceptance for this case has been evaluated

analytically and numerically in Reference 8.1.10. The
solution is carried out in thesame manner as for the simply

supported beam using Equation 8.1.21.

Due to the complexity of the final result for this case, only

the approximate envelope for frequencies near or below

coincidence is considered. Values for this envelope are

specified below in terms of the ratio of beam length L to

trace wavelength and the normalizing constant A n for the

mode shape of clamped-clamped beams.

Odd Modes

fL sin_ ----_0
• L/X t - c

J12 = 0,275• First Mode (f)max

• Higher Modes (1) J2(f)max-"= [ 64 A2 ]
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• L/Xt"2 4' n>l J (f)max"0.21
(Coincidence)

Even Modes

32 A 2 L 2

• k/;kt--_0(1) J2(f)ma x- [2n+112 I_']/n=2,4,6. "

• L/Xt_- + 4-- Jn (t-)max "" 0.21

(Col ncldence)

(1) For n > 2, normalizing constant A n "" 0.661

Partially Clamped Beams "/

0 L

A general evaluation of the natural frequencies of beams

resting on rigidly mounted pinned supports but with varying

rotational and fixity was covered in Section 3.3.5. of

Chapter 3. These results were taken for a study reported

in Reference 8.1.11 which also included a numerical

evaluation of the joint acceptance for such beams. The

rotational end fixity ranged from zero restraint at both ends

through fully clamped at one end only to fully clamped at

both ends. The envelope of the resulting joint acceptances

are given in Figure 8.1.17a, b and c.
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FIGURE 8.1.17 Envelope of Joint Acceptance for First
Three Modes of a Beam on Simple Supports
but with Rotational End Fixity Ranging
from Free at Both Ends to Fully Clamped
at Both Ends.(Data from Reference 8.1.1 I)

Comparing the values shown in these figures with those for

the simply supported beam (Figure 8.1.15), it is apparent

that the latter form an approximate upper bound for these

envelopes which include the case for the fully clamped

beam. The maximum values for joint acceptance in Figure

8.1.15 are therefore recommended for frequencies at or

below coincidence for any beam element with partial fixity

at either end. It will be shown later that above coinci-

dence, a higher value of joint acceptance than shown in

Figures 8.1.15 - 8.1.17 should be used. However, for

most of the practical problems of interest for this manual,

the frequency range of interest is generally below coinci-

dence.

L Length of Beam

X t Trace Wavelength
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Beams with One End Free or Guided

The joint acceptance for the special case of a beam with

one free or guided end provides an estimate of the struc-

tural acoustic coupling to the fundamental mode of a

building. The following expressions for joint acceptance

are shown graphically in Figure 8.1.18. The results will

be applied in a later section in this chapter.

H/H Xt_
Clamped Free Beam F

_"Y k

The fundamental mode shape was approximated by

#pl(y ) "" 1 - cos -_

Using this expression for the mode shape in Equation

8.1.21, and applying Equation 8.1.26 for the space cor-

relation for a plane wave, the joint acceptance can be
shown to be

j2/fI lye/__ I1-8_2 21-16_2L_ +1-_ _2

sin 27 cz 7

2c_(1- 16 _2) J
(8.1 .30)

where c_ = L/X t = fL sin _/c, the ratio of beam length to

trace wavelength.

The limiting values for this expression are

2

• L/Xt_fLcsin__._,0, J12(f) ---*[1 _2] =0.132

• L/X t >> 1
J12{f) _ 4=2/ [Xt]

Following the same method, the following additional cases

can be defined.

Clamped-Guided Beam

• Approximate Shape of Fundamental Mode

1 [I - cos = y/1.]_l(y) = _-

• Joint Acceptance

where c_ = L/X t

• Limiting Values

• L/Xt--0 ,

• L/Xt--co,

c_2(1 +cos 2= c_!l

+ ]

1
J12(f) 4

(8.1.31)

Pinned-Free Beam

y=O L

• Mode Shape

<p1(y ) = y/1. (Rigid Body Mode)

• Joint Acceptance

where cz : L/X t

1

-- +ITOZ('nOz-sln 2_cZ)l

(8.1 .32)
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• Limiting Values

J12(f) 1A L/Xt-- 0 , --_-

• L/X t _co,
j 2(f) I /[ L 12

The limiting values for long trace wavelengths (approach-

ing normal incidence) are somewhat less than For the fun-

damental mode of a plnned-plnned beam for which J12(f):

0.4. For short trace wavelengths (or high frequencies),

the joint acceptance for these beam configurations de-

creases inversely as the square of the ratio L/X t instead of

the fourth power as for the simply-supported beam.

8.1.2.3 Joint Acceptance for Beams in a Reverberant
Sound Field

Structure exposed to a reverberant sound field is subjected

toa very large number of pressure waves arriving at random

from many directions, such as illustrated conceptually in

Figure 8.1.19. If each wave hasa constant amplitude, or

more precisely, if the energy incident on the structure
from each direction is constant and the correlation between

the waves arriving from any two directions is zero, then

the space correlation of the pressure acting on the structure

can be defined analytically. This makes it possible to

compute the joint acceptance for a structure exposed to

such a sound field. This ideal type of reverberant sound

field is called a diffuse field and serves as a reasonable

approximation for many practical cases of sound fields in-

side enclosures with low sound absorption (see Chapter 9).

As suggested earlier in Section 8.1.1.2, it mayalso be

considered as a conservative approximation for external

sound field on a building at high frequencies where the

building dimensions are much greater than the acoustic

wavelength. At these frequencies, diffraction and ground
reflection effects tend to cause a random vibration in the

phase of the total incident plus reflected pressure on the

external walls of the buildings.

FIGURE 8.1.19 Reverberant Sound Field Consisting of an
Infinite Number of Plane Waves Arriving at
All Possible Angles.

Narrow Band Space Correlation for a Random Diffuse Field

Consider the case illustrated in Figure 8.1.20 for just one

out of all possible waves in a diffuse sound field. The

wave is assumed to be slnusoldal with a frequency f and to

arrive at a given point y on a surface with an angle of in-

cidence 7relatlve to the llne y- y'. If the incident plus

reflected pressures at y for any two of these sinusoidal

waves are identified as pl(Y,t) and p2(Y,t), the total in-

stantaneous pressure at y for these two waves is the sum

pl(Y,t ) + p2(Y,t). The space correlation function

Rp(y,y',f) along the line y - y' will be the time-averaged

product

Rp(y,y',f)= [pl(Y,t)+p2(Y,t)] [pl(Y',t ) +p2(Y't) ]

If the phase coherence or correlation between these two

waves is a random variable, then on the average, the

cross-product terms in this correlation function will be

zero. The space correlation function for the randomly

phased waves will simply be the sum of the space correla-
tion functions for each wave or

Rp(y,y',f) : pl(Y,t) P1(Y',t) ÷p2(Y,t) P2(Y',t)

Since the amplitude of each wave in a diffuse sound field

is constant, then the space correlation coefficient for one

wave arriving at an angle /' will be (See Equation 8.1.26)

f "1
(y,y',f) = cos /2_ f(y - y')(cos 1')/cl

P L J

FIGURE 8.1.20 Illustration of One Out of on Infinite Number of

Plane Waves in o Diffuse Sound Field Arriving at
onAngle y Relative toa Liney-y'. Space
correlation coefficient along y-y' for this wave
is cos [2_f (y- y')l:os y)/c]

The space correlation for all the waves can then be de-

termined as follows. All waves which pass through point

y must also pass through an imaginary unit hemisphere

centered on y which has an area A = 2_t(1) 2. The total

number of waves through ywhich arrive atanincidence

angle 1', must be proportional to the area of the surface

element dA = Tt sin 1' d1' which is intersected by these

waves. (See Figure 8.1.10). Therefore, the spacecorre-

lation coefficient for the waves at an angle 1' isweighted

dA 1
by the ratio _= -_- sin 1'd1'. Thus, summing up overall

values of 1' from 0 to _ the overall space correlation

is given by the integral

_- (y,y. f) = 1 SP -_- cos [2_f(y-y') (cos y)/c] sin I' d/'

0



8-18 AcousticandBlastLoads on Buildings

Carrying out this integration provides the following simple

form for the space correlation coefficient tara diffuse

field.

(y,y,,f) = sin [2_Ay/X] (8.1.33)
p 2_ Ay/X

where
Ay = (y- y') - the separation distance

between y and y'

X = the acoustic wavelength.

An equivalent form of this expression has been illustrated

in Figure 3.73a page 3-94.

JolntAcceptance for Simply-Supported Beams in a Diffuse
Sound Field

j2 (f)
n

The joint acceptance for simply-supported beams in a

diffuse sound field has been evaluated in detail in Refer-

ence 8.1.12. The closed expression for Jn2(f) wascle-

rived from Equation 8.1.21 using the above expression for

the space correlation coefficient. Details of the deriva-

tion, which employed a special coordinate transformation

are omitted here. The final expression, tara simply sup-

ported beam of length L, is

+

+
(md L- 7 J (8.,.34)

where V

Cin(V) = _0 1 -zC°S z dz (cosine integral)

V

S., (v) = _0 Slnz z dz (sine integral)

;k = c/f - acoustic wavelength
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FIGURE 8.1.21 Jolnt-Acceptance for a Simply-Supported

Beam Subjected to a Reverberant Acoustic

Field.

Values of the cosine and sine integral functions, Cin(Y)

andSi(v),aretabulatedln Reference 8.1.13. The result-

ing valuesfor joint acceptance for the odd and even modes

are shown in Figure 8.1.21a and b, respectively.

Comparison of Joint Acceptance for a Progressive Wave
and Diffuse Field

For purposes of comparison, the joint acceptance for the

first three modes of a slmply-supported beam for both a

progressive wave and a diffuse field are shown in Figure

8.1.22.

It is important to recognize that joint acceptance for the

case of a plane progressive wave is specified in terms of

_ Lslng
the ratio of beam length to trace wavelength L/A t X

while the ratio of beam length to acoustic wavelength is

used for a diffuse field. Note that a coincidence peak

shows up in the joint acceptance curves for a diffuse field

for all modes above the fundamental. This peak occurs at

a value of L/'A "" (n + I)/2. This corresponds to a coinci-

dence peak that would occur for a plane progressive wave

at an incidence angle g of about 48 °. Thus, an effective

angle of incidence for a diffuse field, as far as coinci-

dence is concerned, would be 48 ° .
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The limiting values of j2 (f) for a slmply-supported beam
n

for the two types of sound fields are compared in Table

8.1.1. Based on these expressions for the limiting enve-

lopes for the two types of fields, the following general

conclusions can be drawn:

• Below Coincidence (Low Frequencies)

• Odd Modes

J_(f) is the same for normal incidence for pro-

gressive waves and for low frequencies for dif-
fuse fields.

• Even Modes

For the same acoustic wc _elength (same fre-

quency of excitation) J' (f) for progressive
i

waves can range from 0 to 3 times (+4.7riB) the

J_(f) for diffuse fields, depending on the angle

of incidence.

• At coincidence; Approx. Maximum Value for j2(f)
n

• Odd and Even Modes

n > 1, J_(f)max for diffuse field is 2/(n + 1)For

less than the max:mum for progressive waves.

• Above Coincidence (High Frequencies)

• Odd and Even Modes

Maximum value for j2(f) for diffuse fields de-

n -1
creases smoothly as (L/X) in contrast to the

upper envelope for plane progressive waves

which decreases as (L/X) _4 in the limit.

TABLE 8.1.1

COMPARISON OF LIMITING VALUES OF

JOINT ACCEPTANCE FOR A SIMPLY-SUPPORTED

BEAM FOR A PROGRESSIVE WAVE

AND A DIFFUSE SOUND FIELD

j2(f)

Progressl ve Diffuse

L/X (1) Waves Field

JOdd Modesl

L/X_ 0

k/k = n/2

L/X = (n + I)/2

L/X >> n/2

JEven ModesJ

L/X_O

L/X = n/2

L/X = (n+l)/2

L/X >> n/2

(2/n._) 2

I/4

n 2 L 4

(2 L/n X t) 2

1/4

n 2 L 4

(2/n-_) 2

1/2(n + 1)

1 L

(2 L/nX )2

1/2 (n+ I)

(1) X = X t, Trace Wavelength for a Progressive Wave

Perhaps the single most important feature of this compari-

son, as far as structural loads on buildings are concerned,

is that the joint acceptance for the fundamental mode, well

below coincidence, is the same for either progressive or

dlffusesound fields. This simplifies design calculations for

the dynamic response, in thefirst mode, of a typical struc-

ture exposed to a wide variety of sound fields. Examples

of such calculations will be given later. First, however,

it is necessary to define the joint acceptance for plates.

8.1.2.4 Joint Acceptance for Plates for Plane

Progressive Waves

The mode shape for bending vibrations of plates is nor-

mally specified as the product of beam mode shapes with

boundary conditions corresponding to those for the plate

in each direction. As pointed out in Section 3.3.5.6,

Chapter 3, this is an exact method for a slmply-supported

plate and provides a very close approximation to the mode

shape for plates with other boundary conditions.
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Simply-Supported Plates

Figure 8.1.23 illustrates a simply-supported plate under

acoustic excitation by a plane progressive sinusoidal acous-

tic wave impinging at an angle qj to a normal through the

plate and at an angle 13(in the plane of the plate) relative

to the yaxls. The acoustic pressure p(y,z,t) atanypoint

y,z on the plate can bedefined in termsof thetracewave-

lengths Xy and X z along the y and z of the plate. The

slnusoidal pressure along a reference wave front through

the origin (y,z = 0) can be conveniently specified as

p(0,0,t) = p cos 27 ft. At any point y,z on the plate, the

instantaneous pressure is then given by

p(y,z,t) = p cos ['2_ (ft - A/Xt) ]

where A = y(cos 13)- z(sin 13),the path length (along the

trace of the incident waveon the plate)between the refer-

ence wave front and the point y,z.

F

/

,,z

Y

a) Top View b) Side View

FIGURE 8.1.23 Plane Progressive Wove Impinging on Plate at an Angle

_to a Normal and at on Angle 13 to the y Axis.

The space correlation coefficient Rp(y,y',z,z',f) for this

general case for a plate can be written down directly by

comparison with the equation for the space correlation for

a plane wave on a beam (Equations 8.1.25 and 8.1.26).

The result is

Rp(y,y',z,z',f) = cos [2_ (A - A')/Xt] (8.1.35)

where

(A- A')= (y - y') cos [3 - (z - z') sin 13, and

X t = h/sin _ .

Since this space correlation coefficient for the plate is still

just a cosine function, it can never exceed the correspond-

ing value for a beam (i .e., cos [2_(y- y')/Xt]). The only

difference will be a more complex variation in the corre-

lation (and hence the resulting joint acceptance) as the

compound incidence angles qj and I3 vary from-7/2 to

+7/2 and 0 to 2"_, respectively.

The joint acceptance for this general case of a plane pro-

gressive wave in a simply-supported plate may be expressed

as

a a b b

,f/f/= Rp(y,y,z, , ) _mn(Y,Z)

Jmn() (a-'a_)2 0 0 0 0

where

_mn(Y, z)

x Cmn(Y',Z ') dy dy' dz dz'

(8. I .36)

= _m(y ) x Cn(Z), the product of the

mode shapes at y,z for two simply-

supported beams

Cm(y ) = sin (m_ y/a)

_n(Z) = sin (n_ z/b), and

"R'p(y,y',z,z') = the space correlation coefficient
given by Equation 8.1.35.

This has been evaluated in Reference 8.1.14 to show the

variation in J2n(f) for a simply-supported plate as a func-

tion of the incidence angles _ and 13. Typical results are

shown in Figure 8.1.24 in the form of contours of

log JZn(f) relative to its maximum value for a given10

mn mode.
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to Maximum Value, as a Function of Angles

of Incidence ¢_ and 13 for Plane Wave

Excitation of a Rectangular Panel Vibrating

in its 1,2 mode (Data From Reference

8.1.14)
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For convenience in analysis, it is customary to assume

that the incident wave is traveling ina direction parallel

to one edge, say the y axis, so that 13= 0. Applying this

condition to Equation 8.1.35, the space correlation coef-

ficient at any point on the panel becomes

R'p(y,y',z,z',f) = cos [2"n (y- y')/Xt] (8.1 .37)
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This is the same value obtained for a beam along the y
axis. In other words, the instantaneous pressure along the
wave front is in-phase at all points along a llne parallel
to the z axis so that the space correlation is unity in the z
direction. Inserting this expression for the space correla-
tion coefficient in Equation 8.1.36, the joint acceptance
for the slmply-supported plate in a plane progressive wave
field traveling parallel to one edge reduces to the product
of the joint acceptances for beams along the y and z axis,
or

where

J lf) 1-2a/m2

(8.1.38)

2

[1 -cos m_ cos (2-_a/;kt) ]

is the joint acceptance along the y axis (side a)
(8.1.39a)

is the joint acceptance along the z axis
(side b), and

(8.1.39b)

_'t = trace wavelength.

Except for the change in notation for a two-dlmenslonal

structure, the first term JmZ(f) is identical to the joint ac-

ceptance for a plane progressive wave driving the mth
mode of a slmply-supported beam of length a (see Equation
8.1.28). The second term is the joint acceptance for a
unlform acoustic pressure (i .e., normally incident wave)
driving the nth mode of a slmply-supported beam of length
b.

Specific values of joint acceptance for the mnth mode of a

slmply-supported plate, for I_ = O, can be obtained by
multiplying the values shown in Figure 8.1.15 for the mth
mode along side a by the factor (2/n_) 2 for the nth mode

along side b. The maximum value for the joint acceptance

JZmn(f) for the first mode (m,n = 1) of a simply-supported

plate occurs for the case of a uniform load or normally
incident wave. This maximum value is

I, l(f)max = = O. 164

This is also the value for the maximum joint acceptance
for a slmply-supported plate for any angle of incidence
providing the ratio of the longest side b to the acoustic
wavelength is less than 0.2. This can be reduced to the
following simple rule for the fundamental mode of a simply-
supported plate. For (Frequency) x (Long Side in ft)<
220 Hz - ft,

j21,1 -- (2/_')4

A more detailed consideration of specific values for the
joint acceptance of simply-supported plates is not practical
at this point. This is best considered later by examples

which include re__ponse characteristics of the plate.

Other Boundary Conditions

The same approach used for the simply-supported plate can
be applied for any boundary conditions, where the plane
wove travels parallel to sidea. The joint acceptance for
the mnth mode is given by the product form in Equation

8.1.38. The joint acceptance JmZ(f) for side a is defined

by the corresponding value for a plane wave traveling
over a beam with the appropriate boundary conditions at

y =0,a. JnZ(f) for the other direction is the iointaccept-

ancefor a uniform pressure on a beam with the appropriate
boundary conditions at z = 0_b. Thus, the previous ex-
presslonsdeveloped for Beams in a plane wavefield can be
applied directly to plates.

The maximum value of the joint acceptance for the funda-
mental mode of plates with a variety of boundary conditions
is summarized in Table 8.1.2. Thesevaluesareapplicable

for a uniform load (normal incidence) or for excitation by
a progressive wave with a wavelength which is large rela-
tive to a typical panel dimension. As indicated by the

table, the range of j21,1(f) for the extreme range of

boundary conditions is about 23:1 (13.7db range). How-
ever, it will be shown later that the range in maximum ac-
celeration response for the various boundary conditions
noted in Table 8.1.2 will be much less.

TABLE 8.1.2

MAXIMUM VALUE OF MAXIMUM JOINT
ACCEPTANCE SQUARED FOR FUNDAMENTAL MODE

OF UNIFORM PLATES WITH VARIOUS BOUNDARY

CONDITIONS (1) UNDER UNIFORM ACOUSTIC LOADS

o
j2

1,1 (f)max

Boundary
Condition

aty=0, a

FF

SS

SC

CC

CF

Boundary Condition at z = 0, b

SS SC CC CF

0.405 0.325 0.2755 0.132

0.164 0.132 0.111 0.0535

0.106 0.0895 0.0429

0.0760 0.0364

0.0174

(1) F = Free
S = Simple or Pinned Edge
C = Clamped or Fixed Edge

In all cases, mounting in an infinite baffle is assumed.
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8.1.2.5 Joint Acceptance for Plates ina Diffuse

Sound Field

The space correlation coefficient Rp(y,y',f)fora diffuse

sound field was defined earlier by Equation 8.1.33 for

application to the joint acceptance for a beam. Theo-

retically, the same basic expression could be used to de-

termine the joint acceptance for a plate in a diffuse sound

field. The space correlation coefficient will become

sin 2"_ A/X

R'p(y,y',z,z',f) = 27 A/'X

where

A = V/(y- y') 2 (z-z,) 2+

X = c/f- acoustic wavelength.

The coefficient is equal to zero for A = X/2 or when

(y- y')2 + (z- z')2 = (2)2

This is the equation for a circle wltha center at y =y',

z = z' and a radius = X/2. Thus, as illustrated by the

three-dimensional plot in Figure 8.1.25a, this true value

for the space correlation of a diffuse field has circular

symmetry about the origin. Unfortunately, the joint ac-

ceptance for a plate based on this exact expression for the

space correlation has not been evaluated so that it is

necessary to assume a simplified separable form given by

R'p(y,y',z,z',f) : sin 27 (X-y')/X sin 27 (z-z')/X2_ (y- y')/X 27 (z- z')/X

(8. I. 4O)

In this form, the space correlation coefficient has square

symmetry, as illustrated in Figure 8.1.25b, with its first

zero value along the lines

y- y' : ±X/z and z - z' : :l:X/z

_(y,y',z,z',f) [Rp(y,y',f)]x[Rp(z,z',f)]

z • z

,,,_;;' _,, /_

(a) True Correlation (b) Approximate Correlation

(Circular Symmetry) (Square Symmetry)

FIGURE 8.1.25 True (a) and Approximate (b) Forms for the

Space Correlation Coefficient for Diffuse

Sound Fields. The latter is used for

analysis purposes.

Applying this approximate form for the space correlation

coefficient for a plate in a diffuse field, the joint accept-

ance can again be given in the product form of Equation

8.1.38 where each term corresponds to the joint accept-

ance for a beam.

Thus, to a first approximation, the joint acceptance

(squared)for the mnth mode of a slmply-supported plate in

a diffuse field will be the product of the values shown in

Figure 8.1.21 for the corresponding ruth and nth modes of

beams. The resulting approximate joint acceptances for

the m = 1 and n = 1,2,3 modes of a simply-supported

square plate in a diffuse field are shown in Figure 8.1.26

as a function of the length (a) of one side to the true

acoustic wavelength X = c/f. Due to the approximation in

the space correlation coefficient, the joint acceptances

shown will be slightly higher than the true values. For

a/X less than 0.5, the error will be approximately equal

to the square of the ratioof the two volumes deplctedin

Figure 8.1.25. This will amount to an overestimate of

JZn(f/_m-- of the order of (4/7) 2 or + 2 dB.
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FIGURE 8.1.26 The Joint Acceptance of Three Vibration Modes

(I-1, 1-2, and ]-3) of a Simply-Supported Square

Panel in a Diffuse Sound Field

8.1.2.6 Joint Acceptance for Cylindrical Structure

A number of studies on the response of cylindrical struc-

ture to acoustic excitation have been reported in the

literature including References 8.1.8, 8.1.12, 8.1.15

and8.1.16. These studies were concerned primarily with

the vlbro-acoustic response of aerospace flight vehicles

and ore, therefore, not considered in this manual. How-

ever, the methods of analysis are essentially the same as

those applied for ground structure. For example, the joint

acceptance for any cyllndrlcal-type ground structure to

plane progressive waves or a diffuse field could utilize the

extensive results reported in Reference 8.1 .12. Space

correlation of the pressure on infinite cylinders in a diffuse

field, including the effects of diffraction, is treated in

Reference 8.1 .8.
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Anotherapproachfor predictingthevibro-acousticre-
sponseof all typesof structure,particularlyincluding
cylindricalstructure,hasbeenunderdevelopmentforthe
lasteightyears.Thismethod,reviewedmostrecentlyin
Reference8.1.16,appliesconceptsofenergyflowthrough
statisticallydefinedstructure.However,thispotentially
powerfultechniqueforpredictingenvironmentalvibration
instructureisnotsuitable at this time for analyzing sonic

loads on ground structure. In this case, practical analysis

methods must necessarily emphasize the lower modes of

vibration which are not conveniently described statisti-

cally.

8.1.3 VIBRO-ACOUSTIC RESPONSE OF

BUILDI NG WALLS

The basic elements of the normal mode method for pre-

dicting the response of beams to slnusoidal and random

acoustic excitation was briefly reviewed in Section

8.1.2.1. The following sections utilize these concepts,

along with the preceding results for joint acceptance for

plates, to predict the vibration response of building walls

to acoustic excitation. Other general concepts of vibra-

tion and acoustics reviewed in Chapters 3 and 4 are also

utilized.

These analytical methods for predicting vibro-acoustic

response will necessarily include certain simplifying as-

sumptions. It is essential, therefore, to back them up by

experimental verification. This is covered in subsequent

sections and will include the development of a semi-

empirical prediction method based on the correlation of

theory with measured vibro-acoustlc response data.

8.1.3.1 Specification of Excitation and Response
Variables

The time-varying quantities used for analyzing the vibro-

acoustic response of walls may be summarized as follows:

VARIABLE USED TO DEFINE:

Acoustic Pressure

Deflection

Velocity

Acceleration

Stress

Reaction Loads

Excitation Variable

Excitation

Dynamic Stress in Wall

Sound Transmission or Dynamic

Stress (see Section 3.3.6.6)

Inertial Loads and Environmental

Vibration

Fatigue Damage Analysis

Structural Loads and Vibration

Input to Building

Assuming the excitation consists of random acoustic noise,

the acoustic pressure may be specified, in units of psi, in

one of the following forms.

• Pressure Spectral Density, Wp(f) - the mean square pres-

sure in (psi)2/Hz within a unit bandwidth centered

about the frequency f.

• One-Thlrd Octave Band Pressure, p(f) - the rms pressure

in (psi) in a constant percentage frequency band Af =

0.232 f where f is the center frequency of the band.

For a smoothly varying pressure spectrum,

p(f) = [0.232 f Wp(f)] 1/2 (8.1 .41)

• Octave Band Pressure - the rms pressure in (psi) in a

constant percentage frequency band Af = f/_/-2- where
f is the center frequency of the band.

Each of these three methods for specifying the acoustic

pressure can be expressed in decibel form as the pressure

spectrum (or pressure spectral density)level, one-thlrd

octave band level and octave band level, respectively.

(See Charts 12.3 and 12.4, Chapter 12 for conversion

between pressure units to level in decibels and Chapter

4 for discussion of decibel scale.) A typical acoustic

spectrum for rocket noise is shown in Figure 8.1.27 to

illustrate these various forms for specifying the excita-

tion.
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FIGURE 8.1.27 Typical Acoustic Spectra for Rocket Noise Shown

in Three Different Forms

It is assumed for now that the effective pressure on the

wall has been defined, including any effects of diffrac-

tion discussed earlier in this chapter.

Response Variables

It will be convenient to analyze the basic response of a
wall to random acoustic excitation in terms of the accel-

eration power spectral density at an arbitrary point y,z on

this wall. The quantity will be specified in the commonly

used units of g2/Hz as defined by the symbol Wa(y,z,f )

where the subscript (a)denotesacceleratlon in g's in place

of the absolute units previously denoted by _. The re-

lationship between this quantity and the other response

variables indicated earlier will be illustrated later.
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Forpracticaldesignpurposes,thewallresponsemayalso
bespecifiedinsuchformsas

• OverallMeanSquareDeflection

x2(y,z,t)-(inches)2

• RootMeanSquare(rms)Deflection

X(y,z)= _/rx-_-y,z,t)- inches

• PeakDeflection

X(y,Z)max-inches

• rmsVelocityattheFrequencyf

_(y,z,f)- in/sec

• PeakVelocity

)_(y,Z)max-in/see
• SpaceAverageAccelerationPSD

W--a(f)-g2/Hz

• SpaceAveragermsVelocityataFrequencyf

_(f)- in2/Hz

Theappllcationofthesevariousformsfortheresponsewill
alsobeillustratedbysubsequentexamples.

8.1.3.2 Response of a Simply-Supported Wall toa

Plane Progressive Wave

An expression was given in Section 8.1.2.1 for the re-

sponse of a beam to a random acoustic load (Equation

8.1.23). For the simply-supported wall illustrated in

Figure 8.1.28 under excitation by a plane progressive wave

traveling parallel to side a, the comparable expression for

theacceleratlon spectral density at a point y,z, in g2/Hz,

is

co co J2n(f )(f/fmn )4 2 2IHmn(f)l _mn(Y, z)

We (Y' z' f) = We(flY'S" _": 2 2
m n g Mmn

(8.1 .42)

/z

0 o

FIGURE 8.1.28 Simply Supported Panel Under Excitation

by a Plane Progressive Wave with a Trace

Wavelength X t Traveling Parallel to

Side a

where

Wo(f)

Wp(f)

J2n(f)

g2 M 2
mn

Hmn(f) =

= Wp(f) • (a b) 2, PSD of total acoustic force
on plate

= PSD in (psl)2/Hz for acoustic pressure on

the panelata frequencyf. (This is assumed

to be constant over the panel .)

= [j2(f)] [jn2(f)]= product of joint accept-

ances far simply-supported

beams parallel to sides a

and b, respectively

= [lpabhg]2 = [ 1- Welght of Plate]2 - Ib 2

1/[(1- (f/fmn)2)2 + (2 8mn f/fmn)2] 1/2

the dynamic magnification factor for the

mnth mode

f =
mn

_mn(Y, z) =

#Jim/ /;]-- + - mnth natural

2 frequency

sin (m_y/a) • sin (n_z/b) -

mode shape for simply-supported plate at

yrz

ph : surface mass density of plate

= plate stiffnes - in-lb.

The trace wavelength along side (a), in Figure 8.1 .28, is

given by X t = c/f sin q_ where qj is the incidence angle and

c is the speed of sound. Thus, JmZ(f) in this expression is

given by Figure 8.1.16 or Equation 8.1.28where sidea

replaces the beam length L. For side b, the trace wave-

length is infinite and J[(f) = (2/n_) 2 at all frequencies.

It will be useful to consider the ratio of an acceleration

response in g's to an acoustic pressure in psi, all multiplied

by the structural surface weight density w in psi, as an

acoustic mobility. The nondimensional ratio

Wa(f ) • w2/Wp(f)

will then be referred to as the square of the acoustic

mobility. This convenient dimensionless quantity is es-

sentially an expression of the familial" F = ma cast in an

appropriate form for acoustic excitation of structure.

It is also convenient to consider only the space average of

the acceleration response. Thus, a simplified form for the

preceding expression is obtained by dividing both sides by

the PSD of the acoustic field Wp(f) and multiplying both

sides by the squareof the surface welghtw. This gives the
dimensionless ratio

2
W_a(f ) • w 2

co _mn jm2(f)jn2(f)(f/fmn) 4 i%n(f)12Wp(f/- E7
m n mn

(8.1.43)
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where

Wa(f)=spaceaverageoftheaccelerationPSD

Wp(f)=PSDoftheuniformrandompressurefieldpropa-
gatingoverthewall

W

2

_mn

= pabhg/ab = phg - thesurface weightdensity

for the wall - psi

= meansquare mode shape [= (1/2) 2 for a simply-

supported plate]

C
mn

= generalized mass fraction or ratioof generalized

mass to actual mass [= 1/4 for simply-supported

plate]

This expression provides a simply nondimensional form for

the space-average acceleration spectral density response

on a uniform plate with any boundary condition. It will

only be necessary to change the parameters _mn' j2(f),

j2(f), fmn' and _mn for the particular boundary conditions

involved. As shown in Section 3.3.6.2 of Chapter 3, the

space average response for a uniform structure cancels out

the cross mode coupling terms so that Equation 8.1.43 is

exact. To determine the approximate response of a par-

ticular point (y,z), neglectingcross-mode terms, the equa-

tion is divided by the mean square mode shape _2 n and

multiplied by the actual mode shape squared _2n(y,z ) at
this point.

For this case of a wave traveling parallel to one side of

the wall, only two terms in Equatlon8.1.43 vary with fre-

quency, j2(f) and (f/finn)4 IHmn(f)l. The jolntacceptance

term depends on mode number m but is independent of the

natural frequency fmn - The dynamic magnification factor

(for acceleration)(f/finn )4 IHmn(f)l depends on the natural

frequency fmn but has the same relative form for all modes.

Clearly, the maximum acceleration response will occur for

any mode when these two functions are a maximum. This

interaction between the joint acceptance and the dynamic

magnification factor is best visual ized by considering a few

of the lower modes of a wall, one mode at a time.

8.1.3.3 Maximum Fundamental Mode Response of a

Panel for Grazing Incidence

The variation in the two frequency varying terms in Equa-

tion 8.1.43 is shown conceptually in Figure 8.1.29a for

grazing incidence excitation of a panel. When these two

terms are combined, the acoustic mobility for thlscase will

vary with frequency as shown in Figure 8.1.29b. This

illustrates the decrease in the acceleration response for a

grazingincldence sound waveas a function of the parame-

ter f1,1 a/c where (a) is the side parallel to the direction

of thelncident waveand c is thespeed of sound.. Although

this parameter could be generalized for other angles of in-

cidence by replacing c by the trace velocity c/sln _, the

most conservative case for an influence of joint acceptance

on panel response occurs for a grazing incidence sound

wove.

2
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(a) Acceleration Response
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(b) Joint Acceptance
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Wa(f) - Space Average

Acceleration PSD

w - Surface Weight

of Panel

\\ f,,:=_
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fl,1 - Fundamental Frequency

(c) Combined Effect of Acceleration Response and

Joi nt Acceptance

FIGURE 8.1.29 [Acoustic Mobility] 2 for the Fundamental Mode of a

Panel Subjected to a Grazing Incidence Plane Wave

of Random Noise. The parameter ft,1 a/c represents

the ratio of the length of side a to the acoustic wave-

length c/f 1,1 of the fundamental natural frequency of

the panel.

Therefore, the following criteria can be established for a

limiting value for the parameter f1,1 a/c where a is in
inches and c = 13,400 in/sec.

• For fl 1 a < 1340 in/sec, the maximum response at
r

resonance, for a wall subjected to a .qrazlng incidence

sound wave, is not significantl X changed by thede-

crease in joint acceptance for short wavelengths.

This criteria can be related to the panel dimensions through

the expression for the fundamental frequency f1,1 of the

panel. The result is a criteria for the maximum ratio of

wall thickness h to side (a), above which, the decrease in

joint acceptance for short wavelengths must be accounted

for when computing the maximum fundamental mode re-

sponse for a grazing incidence sound wave. Values for this
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criticalratioofh/aarespecifiedinTable8.1.3forafew
commonbuildingmaterialsandforslmply-supportedand
clamped-clampedsquareplates.Asshownbythefollowing
example,thissimplecriteriafortheratioofthicknesstoa
sidedimensioncanberelatedto generalbuildingcode
requirements.

TABLE8.1.3

CRITICALRATIOOFPANELTHICKNESSTOLENGTH
OFSIDE(a)FORSQUAREPANELSUBJECTEDTO

GRAZING INCIDENCE SOUND WAVES

(For h/a greater than this value, the maximum response

of the panel in its fundamental mode will be less due to

a decrease in joint acceptance .)

Panel

Material

h/_

Simply-Supported Clamped-Clampec

Steel, Aluminum 1/140 1/260

Concrete 1/75 1/135

Plywood 1/93 1/150

Example

A common building requirement for masonry walls requires
a standard thickness of 8 inches and a maximum area be-

tween supporting tie columns of 256 sq ft (Reference

8.1.17). For a 16-ft height, a 16-ft width would be

allowable. The thlckness-to-wall-width ratio would be

8/(16) (12) : 1/24. This is greater than the critical ratio

of 1/75 for concrete. In general, therefore, the funda-

mental mode of such walls to a grazing incidence sound

wave along the width will be significantly less than for

normal incidence due to the decrease in joint acceptance

at the fundamental frequency of the wall.

A general expression for this critical value of h/o for the

fundamental mode of any uniform panel is given by

2_c _/12(I- v2) If']h < (8.1.44)
a -- (K1, 1 a)2 CL LTJcr

where

= speed of sound in air

c L

V

(K1, la) 2

= speed of longitudinal waves in panel ma-

terial ( = _1_)

= Poisson's ratio

= dimensionless frequency constant in the

general expression for the fundamental fre-

quency of the panel (See Section 3.3.5.6,

Chapter 3)

19.74 for a square simply-supported

plate

35.98 for a square clamped-clamped

plate

The critical value for h/a increases rapidly as the inci-

dence angle decreases until finally, for normal incidence,

the joint acceptance becomes constant for all values of the

incident wavelength and is independent of the value of

h/a.

8.1.3.4 Maximum Fundamental Mode Response of a

Panel for Normal Incidence

For excitation by a normally incident plane wave of ran-

dom noise, the maximum value for the acoustic mobility in

the fundamental mode can be defined from Equation 8.1.43

setting m,n = 1. The joint acceptances j2(f) and Jn(f)

for this case have been defined earlier in Table 8.1.2.

The maximum value for the acceleration response function

(f/fmn)4 IHmn(f)l for f = finn is simply Q1,1 which is the

resonant ampllficatlon_._ffactor for the fundamental mode.

2 and E1 are defined in SectionThe other parameters (Pl, 1 ,1

3.3.5of Chapter3. The resulting maximum values for the

space average acoustic mobility and maximum acoustic

mobility of the point of maximum panel deflection are

specified in Table 8.1.4 for several panel boundary condi-

tions. The maximum mobility is obtained from Equation

8.1.43 (for m,n = 1) by replacing the mean square mode

¢2 n by unity. For convenience, the actual tableshape

entries correspond to the linear value of acoustic mobility

for a unit value for Q1,1 as defined by

acoustlc/l

mobi__l i_tYl/ =

al,1 lf=fl,l

[acce___l.-___g'j x [surface wt "]1

[acoustic pressure] x Qn Jr=f1 ,1

_a(f) .w 2 ]1/2

- - space average

Q2
kWp(f)" 1,1

or

wo(f) ' w2 ] 1/2 - maximum: 2 deflection

kWp(f) • Q1,1 max

The entries in Table 8.1.4 represent the acceleration in

g's for a single frequency or a narrow band of random noise

centered at the panel fundamental frequency fl, 1 for a unit

value of surface weight in psi, a unit value of acoustic

pressure in psi at the same frequency (measured or computed
for the same bandwidth)and for a unit value of the resonant

amplification factor Q1,1 "

Perhaps the most significant result to be obtained from

Table 8.1.4 is that the range for the maximum acoustic

mobility (or relative acceleration response) of the funda-

mental mode does not vary by more than a factor of 1.7 for

a variety of boundary conditions. This corresponds to a

variation in mean square response levels of (1.7) 2 = 2.9 or

4.7 dB which is comparable to the accuracy of a predicted
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acoustic environment. It is reasonable, therefore, to as-

sume slmply-supported edges when making initial estimates

of the acceleration response in the fundamental mode re-
sponse of any panel to a normal incidence acoustic wave.
Deviations in the predictions for other boundary conditions

will be small. A much greater variation will occur in the

panel displacement response due to large differences in
natural frequencies for various boundary conditions.

TALBE 8.1.4

MAXIMUM VALUE OF THE ACOUSTIC MOBILITY IN
THE FUNDAMENTAL MODE FOR UNIFORM PANELS

WITH VARIOUS BOUNDARY CONDITIONS SUBJECTED
TO A NORMALLY INCIDENT PLANE WAVE

[First entry for each boundary condition is space average

acoustic mobility. Second entry is acoustic mobility at
point of maximum deflection. See text for definition of

acoustic mobility (c).]

/z

b / /,,

O O

[_,a(f).w 2 ] I/2• 'L"'"P(f) " Q 2 or1,1
1 I/2

Wa(f ) • w2

(_)' Q2
Wp(f) • 1,1Jmax

Boundary
Condition

at y = 0, a

Boundary Condition at z = 0,b

SS SC CC CF

FF

SS

SC

CC

CF

0.90
1.27

0.81(a)
1.62(b)

0.86
1.30

0.77
1.65

0.74
1.68

0.83 0.72
1.33 1.45

0.75 0.65
1.69 1.85

0.71 0.62
1.72 I .89

0.69 0.60
1.75 1.92

0.53
2.11

F = Free Edge; S = Simple or Pinned Edge;
C = Clamped or Fixed Edge

(o) 8/_,2

(b) 16/'_ 2

(c) All values are for single frequency or narrow
band of noise at fundamental frequency of
panel. They also apply to the fundamental
mode response for a diffuse field when the

quantity f1,1 a/c is less than 0.5.

Application of this table and methods for computing other
response parameters for the fundamental mode of a panel
are illustrated in the following example.

Example

Assume the followlng conditions:

• Panel

Square steel panel - a = 87.5 in., h = 1 in.
Simple supports on four sides
Surface weight, w = 0.3 psi

Fundamental frequency, fl, 1 = 25 Hz

Resonant amplification factor, Q1,1 = 20

• Acoustic Excitation

Normal Incidence Acoustic Field
One-thlrd octave band level at 25 Hz = 159 dB

From Chart 12.3, Chapter 12, rms pressure = 0.261 psl
Filter bandwidth Af = 0.233 f = 5.83 Hz

(0"261)2 0.011
Pressure spectral density Wp(f) - 5.83 -

(psl)2/Hz

• Space Average Acoustic Mobility - (From Table 8.1.4)

1,/2

[w_a(f) , =o.81

w 2 ]

p(f). Q 2 J1,1

• __Find:__SpaceAverage Acceleration Spectral Density,
Wa(f)

Q2

%(f)=(0.81)2 .WP(f) • 1,12
w

= (0.81)2(0.011)(20) 2 = 32.0 g2/Hz

(0.3) 2

• Find: Power Spectral Density of Maximum Displacement

at Center of Panel - Wx(a/2,b/2 , f)

First, find the maximum acceleration APSD. From Table

8.1.4, the maximum acoustic mobility at the point of
maximum deflection is

%(0 • w2
Wp(f) max = (1.62) 2 • Q21,I

and

Wa(f)ma x = Wa (a/2, b/2,f) = (I .62)2(0.01 I)(20) 2
(0.3) 2

= 128 g2/Hz

From Section 3.2.3.11, page 3-42,

= 95.6 Wa<f)max/f14 1Wx(f)ma x

= (95.6)(128)/(25) 4 = 0.0315 in2/Hz
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• Find: Maximum rms Displacement in Fundamental

Mode - Xma x

From SecHon 3.2.3.11, page 3-42,

Xmax-- Wx(f)max " QI

1/2

= [(I .57)(0.0315)(25)/2011/2_-0.25 in., rms

• Find: Peak Displacement in Fundamental Mode - Xma x

From Section 3.2.3.11, page 3.42,

Xma x-_ 3 • X'mox = 0.75 in.

• Find: Peak Stress in Fundamental Mode - a
max

(Based on Peak Deflection)

From Section 3.3.6.1, page 3-145, stress in fundamental

mode for a peak deflection in this mode of 0.75 in. is

h Xmax
e =13 "E--max a a

where

L3 = 7.05 forsquare platewith Polsson's ratio = 0.3

E = 3 x 107 psi for steel

a = 87.5 in.

h = I .0 in.

Xma x = 0.75 in.

(7.05)(3x 107)(I)(0.75) 20,700 psi. . (7 _

max (87.5) 2

• Find: Peak Stress in Fundamental Mode - a
max

(Based on Peak Velocity)

From Section 3.3.6.6, page 3-156, peak dynamic stress

for structure vibrating in a sinusoidal mode is

max

a =K s "E "_
max cL

where

K s

c L

= dynamic stress constant

= 1 . 18 for square plate with Poisson's ratio = 0.3

= 2 x 105 in/sec - longitudinal (bar)velocity of

sound in steel

)(max = peak velocity of panel in a fundamental mode.

Since mode is harmonic,

Xma x = 2_ f Xma x

= (6.28)(25)(0.75) : 117.5 in/sec

• • O
max

_ (1.18)(3x 107)(117.5) _ 20,800 psi

(2x 105)

Correction for Other Angles of Incidence

The previous section pointed out the decrease in maximum

response of a panel for a grazing incidence wave due to

the decrease in the joint acceptance. This effect may be

accounted for by first carrying out the type of analysis in-

dicated above and then applying the correction indicated

in Figure 8.1.30. This is simply the joint acceptance

(squared) for a "beam" of length(a) relative to its maxi-
mum value for normal incidence. The beam, in this case,

corresponds at the side of the panel in the direction of

travel of the incident wave. The correction to be applied

to the fundamental mode response is plotted at a function

of the ratio a/Xto where

Xto -

fl,1 sin_
the trace wavelength at the funda-

mental frequency of the panel for

an incidence angle _ .

The correction to be applied to the fundamental mode re-

sponse for a diffuse field can be obtained from Figure

8.1.26.

0.1 .-- , ' I I /_'_ _'_1 i 1i I I '

_.o --

_ -

2 °0.01

0.001 ' ,,- J

0.02 0. I I .0

o Length of Side

Xto - Trace Wavelength for Progressive Wave

FIGURE 8.1.30 Relative Joint Acceptance for Fundamental Mode

of a Simply Supported Panel Under ExcHation by a

Plane Wave Traveling Parallel to Side a.

8.1.3.5 Response of Higher Modes to Plane

Progressive Waves and Diffuse Sound Fields

0

I
i-

I ,

- 10_

.__

- 20_.

I.

3O
10

Simple theoretical generalizations for the vlbro-acoustic

response of higher order modes are difficult. This is due

to the wide range of possible conditions for the effective

trace wavelength and the complex variation of the joint

acceptance for the higher modes whose frequencies can

vary appreciably from one structure to the next. This

complexity is indicated in Figure 8.1.31 by the variation

in the peak modal response of a simply-supported panel

subjected tograzing and normal incidence acoustic waves.

Only the peak responses at each natural frequency are

indicated by this bar chart. Although similar trends exist

in the overall envelope for all modes, variations in the

individual modes is appreciable.
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1.C

o
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0.001
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m=l
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II,
1000
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FIGURE 8.1.31 Relative Mean Square Acceleration Response

in the First 10 Modes (m = 1, n = 1-,'10) of a

Simply Supported Panel for Excitation by

Grazing and Normal Incidence Plane Waves

Although hand calculations can be made for higher modes,

using plots for the joint acceptance such as given earlier

in Figures 8.1.15 to 8.1.17, the process is tedious and

subject to considerable error. However, calculations can

be readily carried out by a digital computer to define the

overall response of a structure to higher order modes. One

example of such a computation is shown in Figure 8.1.32

for thecaseof an 8 ft by 10 ft concrete block wall exposed

to a diffuse sound field. The space average acceleration

spectral densities are computed values for a constant pres-

sure spectral density for the acoustic excitation. The cal-

culations are carried out digltally using Equation 8.1.43.

1000

100

i

a.

i

i0_1

,<,

i i , I i , ,, i i I I , ,,_

w = 0.28 psi

t i i I i i i i i i i i i i i i

10 100 1000

Frequency- Hz

FIGURE 8.1.32 Normalized Space Average Acceleration Spectral

Density Response Computed for an 8' x 10' x 8"

Concrete Block Wall Exposed to a Diffuse Sound

Field with Constant Pressure Spectral Density

Region of High Modal Density

For excitation of a panel by wide band random noise, a

very large number of normal modes will be excited. At

frequent ies well above the lowest disc rete structu ral modes,

the frequency interval between modes will eventually be-

come comparable to the resonant bandwidth of each indi-

vidual resonant mode. The modal density for plates or

number of resonant modes per unit bandwidth, Np, can be
shown to be

Np= 3_-v 2) A/c L h

where

A = area of panel

c L = longitudinal "bar" velocity in panel

material = _

h = panel thickness.

From this relationship, it can be shown that for simply-

supported plates, the frequency fn at which interval be-

tween adjacent modes is equal to the resonant bandwidth

fn/Q, is

r 2a/b -I
fn= Ll+CoZo/2J' fl,

where

a/b = the panel aspect ratio

fl, 1 = the fundamental panel frequency

Q =average resonant amplification factor for each

mode.

In general, it is found that for panels with some fixity on

all four edges and an aspect ratio of 0.5 to 1, this thresh-

old frequency for the high modal density region varies from

about 0.22 Q to 0.63 Q times the fundamental frequency,

f1,1" At frequencies above this threshold value, the con-

tribution of any one mode to the mean square response

wlthina finite band is small. The influence of damping of

any one mode is decreased and the effective resonant am-

plification factor Qeff at the frequency f approaches a
value given by

Qeff : [2 f Q Npl 1/2

where

Q = average resonant amplification factor for each

mode

Np = modal density for plates defined above.

Thus, in this frequency range, an upperbound for the space

average acoustic mobility for a simply-supported plate

approaches a value given by

f_a( 2 ._w2 1 1/2

Wp(F) J -_'_[2fQ" Npj2(f'] 1/2

(8.1 .45a)
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where

j2(f)=theRELATIVEvalueof"theenvelopeofj2(f)
at thefrequencyf forthehigherordermodes
withrespecttoitsvalue(4/-_2)2forthefunda-
mentalmodeatnormalincidence.

Thisrelativevalueof theenvelopeof jointacceptance
j2(f) can be estimated for a plate in a diffuse field ac-

cording to the values specified in Table 8.1.1 for a beam

in a diffuse field. The approximate value for square

simply-supported plates with side (a) would be

t 1 , f__.a <1/2

C

j 2(f)

1 /(fa) 2 fa_ 7- 'T >>1/2

(8.1.45b)

While absolute values for the acoustic mobility might be

predicted from these two preceding expressions, they are

developed only to suggest trends in the acceleration re-

sponse of structure in the region of high modal density.

In essence, then, the trend indicated for excitation bya

diffuse field is

(accel. - g's) (surface wt • psi) oc

(acoustic pressure - psi)

if. Q. Np]l/2, fa < 1c 2

Thus, when there are a large number of modes within the

resonant bandwidth fmn/Q of any one mode, or when

Np f/Q>> 1, the acceleration amplitude response in a

diffuse field would be proportional to the square root of

Q instead of the first power. The variation with frequency

would range from being proportional to the square root of

frequency, to being inversely proportional to the square

root of frequency, depending on the ratio of the length of

the panel (o) to the acoustic wavelength ;k = c/f.

A different trend in acoustic mobility can be expected for

progressive waves at high frequencies where the upper

envelope of the joint acceptance varies in a more complex
fashion with mode number.

Infinite Plate Region

At still higher frequencies, normal modes will be so se-

verely damped by the losses in the plate that they will not

be evident and the plate will tend to behave (except near

the edges) as if there were no boundaries. The average

impedance of the plate no longer acts like a pure mass at

these frequencies and, instead, tends to act like a pure

resistance. This is indicated by the resistive impedance R

presented to a point force applied to an infinite plate
which is

R=8 D_/-_

where

R = ratio of applied force to panel velocity at this

point

D = panel stiffness

= E h3/12(1 - v 2) for uniform plates

ph = surface mass density of plate of thickness h.

Applying this same trend for a distributed pressure load,

the ratio of acceleration response to acoustic pressure

would tend to vary as

acceleration oc frequency x velocity cc f/R
pressu re pressu re

This would indicate an increasing trend in acoustic mobility

directly proportional to frequency. The frequency where

this region begins can be roughly estimated by considering

the attenuation rate of bending waves in the plate. Since

it is the reflection of these waves which generate the

standing waves of the normal modes of vibration, when

these bending waves are attenuated sufflcientl y in traveling

one span of the plate, standing waves and hence normal

modes of vibration will become insignificant.

The attenuation rate of lateral bending waves in plates per

unit wavelength is given by (see Section 3.3.7, Chapter3)

p=4.34_ q riB/wavelength

where

q = the material loss factor _ I/Q.

I

The bending wavelength, ;_B' of plates of thickness h is
given by

i

x B: Vi .9 cL h/f

Thus, in traveling a distance a equal to an average span

of the plate, the attenuation in the amplitude of free

bending waves would be

M b" _ 4.34_" ./r f

A = ;k--_" Q V'I .9 c L h -dB

Choosing a dB loss (or decrease in amplltude by 50 percent)

as a minimum criteria for the lower frequency of this

"infinite plate" region, the response characteristics of the

panel would tend to behave like a resistance for

c L h Q2
f> 0.36 --

-2
O
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By superimposing the loss due toattenuatlon of these bend-

ing waves on top of the trend for a linear increase in ac-

celeration response due to the resistive behavior of the

panel, the acceleration response will tend to be more

nearly constant.

Coincidence Frequency

The coincidence effect, discussed earlier in Section

8.1.2.2, is one significant feature of the vlbro-acoustic

response of structure at higher frequencies which can be

predicted more accurately than the trends indicated above.

While the effect is generally not significant from the

standpoint of structural loads, it has an effect at excita-

tion frequencies which are important for equipment vibra-

tion problems and for sound transmission. The latter aspect

is discussed in more detail in Chapter 9.

The followlng conditions exist at coincidence for acoustic

excitation of any structure.

• Acoustic trace wavelength = structural bending wave-

length

X t = X B

or

c CB

f sin ¢ f

• Acoustic trace velocity = bending wave velocity

C

sin _ - CB

where c B is the bending wave velocity in the structure.

The lowest frequency for which thiscoincldence effect can

occur is called the critical frequency fc and is defined by

2

f = c Hz (8.1.45)
c 1.9 c L h

where

c = speed of sound in air

c L = longitudinal wave velocity in a bar of the same

material as the wall (see Table 3.39, Chapter 3)

h = wall thickness.

For concrete walls, where c L __ 1.1 x 105 in-sec, the

critical frequency is approximately equal to

fc _ 860,/h

where h = wall thickness in inches.

Typical thicknesses of concrete walls used near rocket test

facilities may range from 8 to 24 inches so that the critical

frequency for such walls ranges from about 35 to 110 Hz.

The maximum response of the structure will occur when the

minimum coincidence frequency also coincides with a

natural frequency of the structure. For this condition, the

response is limited only by the internal or external damping

of the structure.

8.1.3.6 Damping of Wall Vibration Response

A basic limitation in any analytical approach for pre-

dicting the vibration response of structure to noise is the

uncertainty about the damping of the structure. The

various significant forms for this damping are shown in

Figure 8.1.33.

Damping at Boundary

-- Internal Damping in

Wall Material

-- Damping of Externally

Appl led Treatment

FIGURE 8.1.33 Various Significant Forms of Damping of

Wall Vibration

Internal damping of structure has been discussed more fully

in Section 3.3.7 of Chapter 3. Practical details of ex-

ternally applied damping treatment and damping of laml-

nated panel structure is discussed in Chapter 9.

Damping at joints of structural walls is frequently respon-

sible for a major part of the energy loss in the structure.

While improved methods are being developed to enhance

the damping characteristics of joints, there is relatively

little application of this technique for ground structure

(Reference 8.1 . 18).

Some of the more significant aspects of acoustic radiation

damping are briefly considered here.

Acoustic Radiation Damping of Walls

For the lower vibration modes of walls, energy is radiated

away in the form of acoustic waves. If all other sources of

damping are ignored, the approximate value for the re-

sonant amplification factor of a square wall vibrating in

its fundamental frequency f1,1 can be determined by the

acoustic radiation resistance on both sides of a square

plate (Reference 8.1 .19). The resulting value forQis

2_ f1,1 " w/g

Q1,1 -_ rA (8.1.46)

where

w = surface weight of the wall with side (a)
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rA =mechanicalresistanceperunltareaforacous-
tic radiationfrombothsidesofasquareplate.
(SeeChapter4forexactexpressionforcircular
piston.)

t 2

poc , -_-< 1/27

fa > 1/27Poc , -_'

: characteristic impedance of air
P°C : 0.00153 Ib-sec/in 3 at 59°F

c : speed of sound in air : 13,400 in/sec.

For the case of the square steel panel considered in the

previous example, the required parameters are

f1,1 :25Hz

w = 0.3 Ib/in 2

g : 386 in/sec 2

a : 85 in.

f1,1 a_(25)(85) -0.1< 1/27
c 13,400

rA -_ 0.00015 Ib-sec/in 3

Thus, the Q due to acoustic damping alone would be

_ (6.28)(25)(.3) _ 810
Q1,1 (386)(.00015)

This is a much higher value for the resonant amplification

factor than normally observed for actual structure and

simply represents an example of the general result that

acoustic radiation damping of walls radiatlnq into free

space is negligible. Ageneral form for the overall Qfor

a square plate vibrating at its fundamental frequency f1,1'

relative to the resonant amplification factor Qm due to

mechanical losses only, can be shown to be, for

(2"_ fl, 1 a/c) < 1,

Q 1
m =

Qm 72 Po c/
1+----_

2 p c _(I- v 2)

where

Po' p = mass densities of air and plate material

c L = velocity of longitudinal waves in the plate
material

v = Polsson's ratio.

This is a constant for a given material and has the value

1/1.0032 for steel and 1/1.0096 for aluminum. Clearly,

the affect of" acoustic radiation damping can normally be

neglected. Quite the opposite result is obtained, how-

ever, for wall panels which radiate into a closed duct. In

this case, the radlationdamplng can drastically reduce the

maximum response of the fundamental mode of the wall.

This can be a significant factor, for example, in sonic

fatigue tests of panels conducted in a plane wave test

facility when the panel area is of the same order as the

cross section of the plane wave test section (Reference

8.1.20).

8.1.4 EMPIRICAL METHOD FOR PREDICTING

VIBRO-ACOUSTIC RESPONSE

From the preceding discussion on theoretical approaches

for predicting vlbro-acousfic response of structure, it may

be concluded that

• Response of the fundamental mode response should be

predictable providing the modal damping can be
defined.

• Effects of diffraction for finite size walls in buildings

can be accounted for approximately for the lowest

mode of the panel.

• Trends in the response of higher modes can be roughly

estimated by simple expressions usable for design

purposes. However, significant variations in these

trends may be expected for different types of acoustic

fields and for different panel configurations.

It is convenient to define the vibro-acoustic response

of structure in terms of a nondlmenslonal "acoustic

mobility" parameter equal to the product of the ac-

celeration in g's times the surface weight density in

psi divided by the acoustic pressure in psi.

In order to verify these theoretical predictions and provide

necessary additional details of the response which are not

readily predictable, experimental data are required. This

section summarizes the available experimental results on

acoustic vibration response of ground structure. The data

are taken primarily from results reported in Reference

8.1 .I and are presented in the form of acoustic mobility

curves as a function of frequency relative to the funda-

mental frequency of the structure.

The data are then applied, along with the theory in the

previous section, to define a simplified semi-emplrical

method for predicting vibro-acoustic response of ground

structure.

The analyzer bandwidth for all of the vibro-acoustic re-

sponse data reported in Reference 8.1.1 was 16 Hz for

part of the tests and one-thlrd octave bands for the re-

mainder. The results obtained with the fixed 16 Hz band-

width filter have been adjusted to correspond to those

measured with the one-thlrd octave band filters. Thus,

empirical values of acoustical mobility defined in this
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section areequal to the ratio of the rms acceleration [A(f)]

in g's to rms pressure[p(f)] in psi in one-thlrd octave

bands, all multiplied by thesurfaceweight [w] in psi. This

modified form for acoustic mobility is chosen for practical

convenience to be consistent with simple methods for ex-

perimental analysis and design calculations. The symbol

M A will be used to identify this dimensionless ratio

A(f).w/p(f). The acoustic mobility defined in this form

differs from the ideal narrow band value specified in the

previous section. The two are related as follows:

For the Fundamental Frequency f1,1

[A(f)'w--12 2Wa(f)(f/Q)'w2 f flMA2=L (o232f)Wp(f) = ,

or

Lo.232QJ

Wa(f • w 2]

L if=f1
,1

(8. I. 47)

(The constant 0.232 represents the relative bandwidth of a

one-thlrd octave band filter.)

For the High Modal Denslt X Region

At frequencies where there are many resonant modes within

the resonant bandwidth of any one mode, the narrow band

acceleration spectrum will vary relatively slowly so that

the idealacoustic mobility will besimilar to that measured

with a one-third octave band filter(see Equation 8.1.45a).

These subtle differences between practical values for

acoustic mobility, based on measured data and the theo-

retical " narrow-band" value, must be clearlyrecognlzed

when comparing various empirical vibro-acoustic predic-

tion methods.

8.1.4.1 Vibro-Acoustlc Response of Full-Scale
Structure

Experimental results from acoustic tests of various types of

full scale structural specimens are summarized in this sec-

tion. The test results were obtained from the detailed

measurements reported in Reference 8.1.1.

Corrugated Steel Industrial Walls

Four 20 ft by 18 ft industrial walls employing 26-gauge

corrugated wall panels were evaluated for vlbro-acoustic

response in a wlde-band noise field. The four wall speci-

mens differed in detail in terms of the following parameters:

• Design Wind Load, 10-25 Ib/ft 2

• Average Surface Weight, 1.59-1.80 Ib/ft 2

(including supporting steel girts)

• Fasteners- Rangingfrom No. 14A Self-Tapping Screws
to Blind Lock Rivets

• Insulation - Three walls without insulations; one wall

lined with 1-1/2 inch vinyl-backed fiberglass bats.

A photograph of two of the walls in-place, viewed from

inside the 100,000 cuft acoustically reverberant test

chamber, is shown in Figure 8.1.34. The acoustic exci-

tation consisted of wlde-band random noise covering the

frequency range from 20 to 3000 Hz. Overall acoustic

test levels ranged from 130 to 156 dB. The normalized

acceleration response measurements made on these walls

are summarized inFigure 8.1.35 byvalues for the acoustic

mobility plotted on a decibel scale.

FIGURE 8.1.34 Exterior Side of Industrial Building Wall A (Upper
Half), Industrial Steel Building Wall B (Lower Half)
Viewed from Within 100,000 Cubic Foot
Reverberation Facility

Due to the large size of the test chamber, radiation damp-

ing effects on the wall were absent so that the results

shown are representative of the vibro-acoustic response in

free space for excitation by a randomly incident sound
field.
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Figure 8.1.35a shows the normalized acceleration response

as measured at IocaHons between the lateral stiffeners (or

girts) which were used tosupport the panel secHons. Figure

8.1.35b shows similar data obtained directly on the

stiffeners. Data reported for the wall lined with insulation

indicated a damping effect which resulted in slightly lower

response levels.

4°1L_-_-----_' v'l'_'l ' L'L'II
k II If- Supporting Girt I I I -I

/
20'

-

Ill
II _ I I t I_WthlosoI,otion I I
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(a) Acceleration Measured on Panel Between Girts
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-: 2F
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(b) Acceleration Measured on Panel Support Girts

FIGURE 8.1.35 Measured Acoustic Mobility For 20 ft by 18 ft,
26-Gauge Corrugated Steel Walls

Residential Structure

Results from acoustic tests of several different types of

residential structure, defined in detail in Reference 8.1.1,

are summarized in the following figures. The data have

been normalized to the acoustic mobility for the types of

residential structure listed below.

• 8 ft by 10 ft section of a standard wood frame wall

with and without insulation (see Figures 8.1.36a,b)

• 8 ft by 10 ft section of insulated wood frame walls

with wood or aluminum windows (see Figure 8.1.36c)

• 8 ft by 10ftsectionofastandard81n. hollow con-

crete block wall (see Figure 8.1.36d)

14 ft by 10 ft section of a wood frame roof with and

without a finished ceiling (see Figure 8.1.36e)

40 'l'l t ' I ' I'l'l I i ' I'i'
A(f) - Acceleration, g's - in 1/3rd Octave Band:

pIf) - Sound Pressure, psi - in 1/3rd Octave Band
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f Frequency
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a) Wood-Frame Wall, Acceleration Measured an Studs

40 "-r"

30--

' 20--

0_
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f Freciuency

f1,1 Fundamental Frequency

b) Wood-Frame Wali_ Acceleration Measured between Studs
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FIGURE 8.1.36 Envelope of Measured Acoustic Mobility for Residential

Waits. (Reference 8. I. 1)

These envelopes of acoustic mobility exhibited the general
trends indicated below.

The acceleration response was usually reduced very

significantly by the addition of insulating materials

such as fiberglass blankets.

Response measurements made at locations between the

the wood studs generally exhibited a marked increase

in the frequency range from 60 to 200 Hz relative to

the response of the wood frame.

• The presence of a window tended to reduce the maxi-

mum response in the fundamental mode.

Results from these two sets of full scale test data will be

incorporated into design charts in Section 8.1.4.3.
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8.1.4.2 Vibro-Acoustic Response ofaModel Scale

Building

The results analyzed above provide a basis for defining the

acoustic mobility of isolated wall specimens mounted in a

rigid "infinite" baffle, that is, effects of diffraction and

sound transmission through adjacent wall areas were not

represented. A comprehensive model test is also reported

in Reference 8.1.1, which provides basic data on the

vibro-acoustlc response of a three-story, four-bay building

structure. Results from this test provide basic data on these

additional effects on theacoustlc response of ground struc-

ture. As discussed in detail in Reference 8.1.1, the model

was constructed on a 1:16 scale to closely simulate the

bending stiffnesses and weight distributions of a typical

steel framecurtain-wall structure. Some of the details of

this model are illustrated in Figure 8.1.37 and 8.1.38.

Additional scaling details not shown included:

• Simulation of moment- and shear-carrying connec-

tions between beams and girlers as used in typical

building construction.

• Simulation of different bending stiffnesses in each

direction for the scale model wall and roof panels to

correspond, dynamically, to similar characteristics of

full scale corrugated steel and concrete structure.

N

FIGURE 8.1.37 Model Building Wall and Floor Installation Details

The scale model was excited acoustically by a single source

of wide band random noise located at an equivalent full

scale distance of 640 feet from the building. Acceleration

measurements made at various wall, floor and roof locations

on the building are summarized in the form of acoustic

mobility curves in Figure 8.1.39a. Part (a) shows the

lateral (normal to surface) responses measured on side walls

and on the second floor and roof. The data are segregated

into two groups - one referring to measurements at the

center of the wall or ceiling panel in a given bay; the

other group representing responses near a column. The

FIGURE 8.1,38 Model Building Structural Frame

narrow range of the latter data is due to thesmaller number

of measurements available for these locations. Near the

fundamental panel frequency, the acoustic mobility ob-

served at the center of the wall and roof panels is, of

course, much greater than the values near column supports.

Part (b) of Figure 8.1.39 summarizes the maximum envelope

of "acoustic mobility" for the in-plane responses measured

at 22 locations on the model. The values are well below

those for lateral motion near the fundamental panel fre-

quency but increase rapidly at higher modes to become

comparable to the latter motion inabilities. This can be

considered to be the frequency range corresponding to a
reverberant vibration field.

Diffraction Effects on Model

The shortest dimension at the front face of the model was

30 inches. According toFigure 8.1.9 in Section 8.1 .I .2,

the effective sound pressure on the model building would

gradually increase to twice the incident sound pressure

over a frequency range from 67 to 370 Hz. The natural

frequencies of the wall and roof panels for the model

building varied from 125 to 315 Hz. Thus, the effective

total pressure acting on the walls near the fundamental

modewould be from 0 to 3 dB below the ideal value for an

infinite baffle, and mobilities observed near these modes

would be slightly less than expected from the previously

described panel tests.

Additional details on vibration transmission measurements

on this model building are discussed in Chapter 9.
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FIGURE 8.1.39 Acoustic Mobility for Model Scale Buildlng

Structure (Data from Reference g.I .I)

8.1.4.3 Empirical Prediction Procedures

The experimental data reviewed in the previous section

can be used to develop an empirical method for predicting

vibro-acousfic response of structure. First, consider the

results obtained near the fundamental mode of the panels

or walls.

Estimated Acoustic Mobility for Fundamental Mode

The estimated average value and standard deviation for the

acoustic mobility of industrial and residential structure in

the fundamental mode are listed in Table 8.1.5. These

may be compared with predicted values based on the theory

developed in Section 8.1.3. From Table 8.1.4, the space

average acoustic mobility A(f)' w/p(f) for a simply-

supported panel under excitation by a normal incidence

wave would be, according to Equation 8.1.47

[A(f)'wl F "_/2 1 I/2 8 Q]r
P(F) J L0.232 QJ L'_

f:fl,l

= 2.12

TABLE 8.1 .5

TYPICAL MEAN VALUES AND STANDARD DEVIATION

FOR MEASURED ACOUSTIC MOBILITY FOR THE

FUNDAMENTAL MODE OF VARIOUS STRUCTURES

Mean value specified as the dimensionless quantity

M'--A = _(f) • w/p(f) where A(F) TM space average

acceleration in g's at the fundamental frequency, p(f)

is the pressure in psi at this pressure and w is the surface

weight in psi. Mean and standard deviation also given

in decibel form as 10 log (MA)2.

Acoustic Mobility

M--A 10 log [MA ]2

Type of Structure (Mean) (Mean) (Std. Dev.)

Corrugated Steel Walls (1) 5.6 15.0 4.5

Wood Residential Walls (1) 8.0 18.0 4.0

Scale Model Building (1) 4.5 13.0 4.2

Average for Ground 6.0 15.5 4.2
Structu,'e

Average for Rocket 8.0 18.0 6.0
Vehicle Structure (2)

(1) Data from Reference 8.1 .1

(2) Data from Reference 8.1.21

Lacking any statistically reliable data on the resonant

amplification factor Q for ground structure, values from

evaluation of space vehicle vibration data are used to pro-

vide a theoretical prediction for the acoustic mobility.

The distribution for measured values of Q for flight

vehicle structure, from Reference 8.1.20, is shown in

Figure 8.1.40, in the form of a probability density plot for

the damping factor q = 1/Q. Based on these data, the

approximate mean value for Q is 18.5 which gives a pre-

dicted mean value for the ideal space average acoustic

mobility of 2.12 Ii_.5 = 9.1 foraslngle panel. As ex-

pected, this is similar to the average values shown in

Table 8.1.5 of 6.0 for ground structure and 8.0 for rocket

vehicle structure.
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(Data from Reference 8.1.20)

Empirically Derived Design Values for Acoustic Mobility

for Ground Structure

Estimated values for the average and standard deviation for

acoustic mobility at the fundamental frequency are speci-

fied in Table 8.1.5. These can be used as a foundation

for empirically derived values for the acoustic mobility

for typical ground structure at all frequencies. These are

shown in Figures 8.1.41 and 8.1.42 for industrial-type

walls and residential wails, respectively. These figures

are developed in the following manner.

i
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FIGURE 8.1.41 Design Envelope for Acoustic Mobility of
Concrete and Corrugated Steel Industrial
Wails, With and Without Insulation
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FIGURE 8.1.42 Design Envelope for Acoustic Mobility of Wood
Residential Walls

The maximum value of acoustic mobility at the funda-

mental frequency (f=fl.1) of the wall corresponds

to an approximate upper bound of the measured data

illustrated in Figures 8.1.35-8.1.39 for the corre-

sponding type of building structure.

Below the fundamental natural frequency mode, the

acoustic mobility is assumed to be proportional to

f2 based on the decrease in the sinusoidal transfer

function (f/finn)2 IHmn(f)Ifor acceleration response.

• Above the fundamental frequency, the acoustic mo-

bility, shown in Figure8.1.41 or 8.1.42, is extended

ata constant value to an upper limiting frequency fu

and then decreased at a rate oc 1/f. The upper limit-

ing frequency is assumed to be at least 5 times the

fundamental frequency f1,1' or higher, as indicated

by the experimental data.

Application of these design curves is illustrated for the

fol lowing case.

• Given an acoustic environment in terms of one-third

octave band sound pressure levels, or 1/30BL, find

the rms acceleration in g's at the fundamental fre-

quency of asteel wall with a surface weight w of 0.1

psi.

• Find the rms pressure p(f) in the one-third octave

band at the fundamental frequency of the panel

using the conversion chart in Chapter 12. If the

one-thlrd OBL is 160 dB, the rms pressure is0.3psi.
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• For the steel plate, use the value of acoustic mo-

bility [A(f) w/p(f)] given in Figure 8.1.41 for cor-

rugated steel. At f/fl_l = 1, this is 25.

• Compute the rms acceleration A(f) at the funda-

mental frequency by the expression

fA(f) w7 [-_ (rms)A(f) "=- Lp- -J -- - g's

(8.1.48)

From the values given

A(f) = (25) (.3) = 75 g's (rms)
(.I)

This would be the rms acceleration measured at the

fundamental frequency by a system with a band-

width greater than the resonant bandwidth of the

panel (i .e., one-thlrd octave band).

Statistical Variation in Acoustic Mobility

To provide some degree of statistical confidence for a

result computed by the preceding methods_ the statistical

variation in acoustic mobility of structure should be con-

sidered.

The statistical distribution in theacoustlc mobility observed

for the full scale and model scale tests reviewed in the

preceding sections is illustrated in Figure 8.t .43. Com-

parable values for the acoustic mobility observed for other

types of structure are also indicated in this figure for the

sake of comparison (Reference 8.1.21). Due to the greater

quantity of data available, the latter tend to illustrate

more clearly the systematic statistical distribution that is

apparent in this vlbro-acoustic response parameter. It

should be recognized that a number of sources of variation

are involved.

• Variation in the type of acoustic field (i .e., plane

progressive to diffuse)

• Diffraction effects not accounted for in the definition

of the acoustic pressure spectrum.

• Structural configuration and boundary conditions.

• Degree of damping, both internal and external.

The general similarity of these statistical distributions is

surprising considering the number of possible sources of

variatlon. The significance of these data may be illus-

trated by indicating the approximate probability of ex-

ceedance for any given acoustic mobility factor, M A,

relatlve to its mean value. This is illustrated in Figure

8.1.44 by a plot of the cumulative distribution of relative

acoustic mobillty from an extensive collectlon of measure-

ments on rocket vehicles. The data show that approxi-

mately 95 percent of the time, the acoustic mobility will

be less than four times the mean value.
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8.1.5.1 Dynamic Stresses in Structure Subjected to
Acoustic Loads

In theexample worked out inSection 8.1.3.4, page 8-26,

approaches for predicting dynamic stresses were utilized.

Thefirst was based on the classical method which is simply

an extension of basic static stress analysis techniques. This

technique is discussed in more detail in Section 3.3.6 of

Chapter 3. It will generally involve the prediction of the

peak displacement for at least the fundamental mode of a

wall or roof panel under acoustic loading. The dynamic

deflection can then be used to compute the stress directly

or can be used to define an equivalent static load which

would produce the same peak stress. The latter technique

will often provide the most convenient approach for the

structural analyst since the capability of a given building

design to withstand given static loads is usually well

defined.

The second general approach was based on the relationship

between peak dynamic stress in a structure vibrating in a

harmonic mode definable by sinusoidal mode shapes and

the peak modal velocity (Reference 8.1.25).

Each of these equivalent techniques are considered here

but the principal emphasis will be placed on the second

method. It offers a simpler approach which provides a

practical approach for dynamic stress analysis of building

8.1.5.2 Classical Method for Dynamic Stress Analysis

The Direct Approach

By combining the basic equations for bending stresses in

plates (see Equation 3.364, page 3-145), with the equa-

tions for the resonance frequency of plates (see Section

3.3.5.6, page 3-130), the expression for the peak dynamic

stress in the mnth mode of a slmply-supported plate with a

modal acceleration amplitude qmn can be shown to be

0[(#+ (b)w
amax = -'2 2 2 2 -2 Fc_mn (8.1.49)

where

m,n = mode numbers for plate along sides a and b

(a < b), respectively

v = Poissongs ratio

w/g = surface mass of plate

F c = stress concentration factor

h = true total thickness of plate.

This maximum fiber stress is at the center of the plate in

a direction parallel to the short side (a).

Combining the theory reviewed earlier in this chapter for

the acceleration response of structure in its normal modes

with the theory for the response of single degree-of-

freedom systems to random excitation (see Section 3.2.3,

Chapter 3), it can be shown that for excitation by a wide

band random noise, the peak modal acceleration is

-- [ _ ]1/2 Fp Jmn Q_mn P(fmn )

kJmn(max) _ 12 L'_J w/g

(8.1.5o)
where

Fp = effective peak to rms ratio for random noise

2.2 to 3

Jmn = joint acceptance (to first power) for mnth
mode

Qmn = resonant amplification factor for mnthmode

P(fmn) = rms pressure in one-third octave band at the

mnth natural frequency.

(The approximation indicated involves only a rounding error

of 1.3 percent in the constants involved in convertinga

random noise pressure spectral density to an rms one-third

octave band pressure.) Combining these two expressions,

the peak dynamic stress in the mnth mode of a simply-

supported plate under a random acoustic load is

a =11.0
max [I+ v(_/_)2! FcFpJmn Q_mn .(h) 2 P(fmn )

i+ 1 m2
_alnI J

(8.i.5])

where the constants involved are defined in the preceding

equations. The important points indicated by this expres-

sion are:

A decrease in stress with mode number m beams evi-

dent indicating that the maximum stress will tend to

be greatest in the fundamental mode.

• The span to thickness ratio a/h pertains to the geo-

metric dimensions so that the expression is still valid

for honeycomb or other nonhomogeneous (but iso-

tropic) plates.

The peak stress for random loads varies as the square

root of Q instead of the first power as for sinusoidal

exc itati on.

For the case of a square steel plate vibrating in its first

mode under a normally incident acoustic wave, then

a = b, v = 0.3, Jmn = 4/_2' m,n = 1 so that, with g = 386

in/sec 2, the simple expression obtained is

2

ama x = 1.45 Fc Fp _ (-_') p(f1,1 ) (8.] .52)
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8.1.4.4 Acoustic Excitation of Bending Vibrations of

Buildings

The vibro-acoustic response of structure considered up to

this point has been concerned only with lateral bending

vibrations of individual building wall or roof panels. One

example of the acoustic excitation of bending vibrations

of an entire building has been noted (Reference 8.1.24).

During static test firings of a large multl-million pound

thrust rocket, displacement amplitudes were measured on

the top of a nearby nine-story building, as illustrated in

Figure 8.1.45. The observed and computed results for this
situation are summaried below.
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FIGURE 8.1.45 Observed Bending Vibration of Nine-Story Building

Due to Acoustic Excitation (Data from Reference

8. 1.24)

Observed Motion (Measured with Seismograph)

• Peak Displacement at Top of Building in Direction of

Source 0.04 to 0.11 in. at 0.8 Hz

0.01 in. at 2.2 Hz

• Peak Velocity 0.14 in/sec at 2.2 Hz

Predicted Motion

• Estimated Octave Band SPL at 0.8 Hz = 76 dB

• Diffraction Correction (Figure 8.1 .11)

Building Width(Approx.) = 100ft

Width/Wavelength Ratio = 0.07

20 log [Effective Force/Incident Force] = -3 dB

• Joint Acceptance Correction (Figure 8.1.18)

Building Helght(Approx.) = 100ft

"Beam" Length/M/avelength Ratio = 0.07

10 log IJc_(f)l =-6 dB
_ d

• Building Mass = 0.84 x 106 Ib-sec2/ft

Generalized Mass Fraction = 1/4

• Displacement Spectral Density - Wx(f)= 0.21 in2/Hz

• Resonant Amplification Factor (Figure 8.1.45) Q = 11

• rms Displacement

• Peak Displacement Amplitude at 0.8 Hz

Xmax "" _ _ : 0.22 in.

The 2 to 1 difference between predicted and observed peak

motion at the fundamental mode of 0.8 Hz is not unreason-

able for this situation due to the difficulty of accurately

predicting the true sound pressure levels at such low fre-

quencies (see Chapters 6 and 7).

This problem is considered here principally to illustrate a

potential hazard that could be encountered at a future

rocket test or launch site involving very high energy at

low frequencies. However, at least an order of magnitude

increase in the vibration observed in this case would prob-

ably be required before any light structural damage would

be expected. However, it should be pointed out that the

observed levels illustrated in Figure 8.1.45were definitely

noticable subjectively.

8.1.5 EVALUATION OF ACOUSTIC FATIGUE OF

BUILDI NG STRUCTURE

A primary application of this section of Chapter 8 on

acoustic loads on buildings is the evaluation of potential

fatigue damage to structure resulting from the imposed

acoustic loads. This evaluation process involves two prin-

clpal steps.

• Prediction of the peak dynamic stress, and

• Prediction of cumulative fatigue damage.

Each of these steps is considered in this section.



8-42 Acoustic and Blast Loads on Building

With these expressions, the critical rms one-thlrd octave
band pressure (or equivalent rms octave band pressure

Pob(f) = 3.04 p(f) , can be determined which will cause

excessive stresses in a vibrating structure whose geometry
and stress capability are known.

The Equivalent Static Load Approach

An alternate form of the classical method simply equates
thestatlc and dynamic loads for a structure which give the
same peak stress. Consider the case of a simply-supported

plate vibrating in its first mode under a normal incidence
wide-band random noise. The result to be given also
applies when theacoustic wavelength is much greater than
two times the largest panel dimension, regardless of the
angle of incidence. Then it canbe shown that theequlva-
lent uniform static pressure on the panel p which produces

S

the same peak stress as the wide band acoustic pressure is
given by

Ps = 1.23 K' Fc Fp _ p(f1,1 ) (8.1.53)

where

K I = a constant dependent on the panel aspect ratio
and Poisson's ratio

Q1,1 = resonant amplification factor for first mode

Fc = stress concentration factor _ 1.5-2

Fp = effective peak/rrns ratio _ 2.2-3

P(fl, 1) = rms pressure in one-thlrd octave band of noise

centered at fundamental frequency f1,1 '

The constant K' has the following values for a Polsson's
ratio of 0.3.

a/b 0 0.2 0.4 0.6 0.8 1.0

K' 4.83 4.60 4.15 3.77 3.91 4.11

8.1.5.3 The Modal Velocity Method for Predicting
Dynamic Stresses

As discussed in detail in Section 3.3.6.6, page 3-156,
the peak dynamic stress in a plate vibrating in a sinusoidal
mode mn can be given by

_mn

amnmax=K s E CL
(8.1.54)

where

_'mn = modal velocity amplitude for mnth mode

K s

E

cL

=shape factor which varies from 1.2 to 1.8 for
sinusoidal-like mode shapes of plates (see Figure
3.110, page 3-158)

= modulus of elasticity of plate material

= longitudinal wave velocity = _/-_.

Note that all the constants involved exceptqm n are de-

pendent only on material properties and shape of the struc-
ture and are independent of size.

A basic reason for employing this convenient form is that
it tends to confirm extensive practical experience with
damaging dynamic stresses in buildi ngs subjected to various
forms of ground motion such as quarry blasts, and earth-
quakes. The criteria for building damage, in this case, is
approximately defined by a critical velocity of the struc-
ture equal to approximately 2 in/sec. This is illustrated
by the extensive summary of data in Figure 8.1.46 on
damaging displacement amplltudes versus frequency of the
building vibration (Reference 8.1.26). Lines sloping down
at 45 degrees through the data correspond to lines of con-
stant velocity. The line for a velocity of 2 in/sec pro-
vides a consistent demarcation between no damage and
damage.
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FIGURE 8.1.46 Correlation of Peak Velocity of Building Structure

with Damage Due to Quarry Blasts and Earthquakes

(Adopted, in part, from Reference 8.1.26)
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With this expression, a critical modal velocity can be
defined for a given critical stress. This velocity response
can then be related to the excitation through Equation
8.1.50. In this way, it can be shown that for simply-
supported plates, the critical one-third octave band pres-

sure P(f)c for a given critical modal velocity qmnc can be
given by



Evaluation of Acoustic Fatlque of Building Structure 8-43

_71/2
3_1_ -_1 f'w

p(f)c "" -_ g I_ -, _mnc
Fc Fp Jmn Q_i/_mn

(8.1.s5)

where the constants are the same as defined earlier.

Forexample, for the first mode of a simply-supported plate,

setting Fc --- 1, Fp = 3, and Jmn = 4/42,

P(f)c -'_ 0.0068

f • w "'_c.

Thus, for a given value for the critical modal velocity

_c and assuming a reasonable value for the resonant am-

plification factor Q1,1 ' the critical one-third octaveband

pressure is readily defined in terms of the product of fre-

quency times surface weight of the wall. This provides a

simple method for developing criteria for acoustic damage

for various types of wall structure. These criteria are

illustrated in more detail in Chapter 5. Values for design

stresses for a wide variety of building materials are speci-

fied in the tables of material properties in Chapter 12.

8.1.5.4 Fatigue Damage for Acoustic Loads on Ground

Structure

Ground facilities located near static test or launch sites

for high energy rocket vehicles will be exposed to a vary-

ing time-history acoustic loading. Thus, as illustrated

conceptually in Figure 8.1.47, for a building located next

to frequently used static test stands, an exterior wall can

accumulate a large numberof fatigue cycles in a relatively

short period of time. In constant, a structure located very

close to a launch site may receive much exposure in terms

of time but the intensity of acoustic loading may be much

greater so that fatigue damage accumulated in either case

may be comparable.

Infrequent
Exposure Near

Launch _j

Stand _

FrNeq:renTtesE;_tsur;

,I°°°Lo
Time

FIGURE 8.1.47 Variation in Duration, Frequency and Level of
Acoustic Fatigue Loads on Ground Facilities
Near Launch and Static Test Sites

If the useful fatigue llfe of the structure exposed to this

type of loading is of the order of 107 cycles or more, it is

ordinarilysufficlent todeslgn the structure sothat the peak

stress ama x defined by Equation 8.1.51,8.1.52 or 8.1.54

will not exceed the so-called endurance limit stress a e.
Ratios of the endurance limit stress to the ultimate tensile

strength for a number of materials are listed in Table

12.13, Chapter 12. Values for the endurance limit stress

may also be estimated from the fatigue curves for a variety

of materials in Figure 12.6, Chapter 12. In the absence

of any data, ae is frequently taken as I/2 the ultimate

stress.

Fatigue of Concrete

A more detailed evaluation of the fatigue of concrete

under random and sinusoidal loading is reported in detail

in Reference 8.1.1. The results reported were obtained

from fatigue tests conducted on a number of model scale

concrete beams. The data provide basic information, pre-

viously unavailable from the literature, on random and

sinusoidal reverse cycle loading of concrete with standard

and light reinforcement. The basic results of the study may

be summarized as follows.

• An endurance limit stress could not be clearly estab-

lished by 106 cycles of vibration.

Theminimum fatiguestrength for reinforcedand lightly

reinforced beams (i .e., roof planks) is comparable to

previously determined values (~ 50 percent of ultimate

strength) for zero-to-maximum cyclic loading (see

Figure 12.6, Chapter 12).

For random loading, the fatigue strengthappears to be

lower by a factor of about 2 at 106 cycles than for

the equivalent fatigue strength with zero to maximum

loading.

The resonant amplification factor and natural fre-

quency for reinforced concrete beams decreases

rapidly for random vibration in excess of 105 cycles

with loads which are comparable to the fatigue

strength. This is attributed to the accumulation of

finite cracks in the concrete.

When the peak stress cannot be limited to less than the

endurance limit, then a more sophisticated method of fa-

tigue design is required. This is based on accounting for

the accumulation of fatigue damage for a varying stress.

There are several theoretical approaches for defining the

accumulation of fatigue damage for such variable cycle

loading. However, the simplest version is commonly

identifiedas the Palmgren-Miner theory(References8.1.27

and 8.1.28). This has been designated the linear law and

defines damage D as

n.
i

i i

(8.1.56)
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where

n I = the number of cycles actually occurring at stress

amplitude Si

N I = the number of cycles necessary to cause failure

in faHgue at a constant stress amplitude Si .

The damage index D is a dimensionless number having the

value 0 < D < 1, where failure is assumed to occur at

D = 1. Actual experimental fatigue data shows that o

mean value of D at failure is, in fact, roughly equal to 1

(Reference 8.1.29). However, appreciable variation exists

for individual cases. This point is considered shortly in

more detail. If an appropriate S-N curve is within the

llmlts of data scatter, a straight llne on a log-log scale,

then

K

Ni-

S i

(8.1.57)

where the constant K is determined from the upper limit of

the straight line, i.e.,

1
K - (8.1.58)

N i Si °_

and 1/c_ is the slope of the llne. This linear damage scale

is indicated in Figure 8.1.48 for random excitation which

shows the spread of random stress peaks.

sf
_1

_ s2

i

//_ Distribution of Log

of Stress Peaks

...... Daoage,nd.

kimlt

I I

N 1 N 2

N - Cycles to Failure (Log Scale)

FIGURE 8.1.48 Illustration of Random Stress S-N Curve for

Linear Accumulation of Damage

Now if the structure under investigation can be approxi-

mated as a linear single degree-of-freedom system with a

natural frequency fn and with Gaussian white noise exci-

tation, then the average value of damage D in time T is

(8.1.59)

where

_" = overall rms stress, and

I" (1 +o_/2) = the standard gamma function of(1 +c_/2).

The rms stress may be found from Equation8.1.51 or8.1.52

by dividing the peak stress ama x by the peak to rms ratio

factorFp. Assuming failure will occur when D=I, then

the time to failure is (from Reference 8.1.59)

1
T = (8. I .60)

fn K (_ Vr2)_ r (I + 2)

A typical value of c_ for most building wall materials is

20 (from Figure 12.6, Chapter 12). Thus,

2.7x10 -10
T - (8.1.61)

f K__'20
n

Due to the random nature of the excitation and variances

between fatigue specimens, experimental fatigue llfe ex-

hibits a scatter of results along the N axis. An illustration

of this scatter is shown in Figure 8.1.49 which indicates

various degrees of scatter for 460 fatigue tests. Also,

Figure 8.1.50 shows actual fatigue data taken from alu-

minum specimens. Figure 8.1.51 indicates observed fa-

tigue damage of various building materials exposed to

acoustic excitation. Other theories of fatigue in struc-

tures are indicated in References 8.1.30-8.1.34.

30 i , , i i

Meon = 0.1

25 Median = 0.12

c
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Standard Deviation of Log10 (Test Time)

FIGURE 8.! .49 Standard Deviations of Fatigue Data Scatter Based on
Fatigue Tests of 460 Test Specimens (Data from
Reference 8.1.29)
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Many structures exhibit somewhat nonlinear trends in

vibration. The stress response in conventionally mounted

windows show these nonlinearities. Figure 8.1.52(from

Reference 8.1.35) indicates this nonlinear stress trend as

the acoustic level is increased.
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8.2 EXTERNAL BLAST LOADS ON BUILDINGS

I NTRO DUCTION

The purpose of this section is to summarize the methods for
predicting the response of a building subject to a shock
wave due to rocket explosions. The methods considered
are based on the extensive literature written on the effects

of nuclear blast waves on structures, (References 8.2.1 ,
8.2.2, 8.2.10, and others). Key elements of this material
(primarily from Reference 8.2.1) are included within this
section for the sake of completeness of the manual.
Accordingly, some repetition cannot be avoided. How-
ever, long theoretical discussions will not be included.
A list of references is presented in which the reader can
find more detailed theory.

The topics to be considered on blast loading will be:

1) Determination ofthe load acting on d lfferent types

of buildings.

2) Idealization of the load in order to simplify the
response calculations.

3) Representation of the actual buildlngby a spring-
mass system having one or more degrees of freedom
according to the number of stories of the building.

4) Methods ofcomputlng the response by the classical
and other approximate techniques.

5) Comparison of the results obtained by the various
response analysis methods.

6) Comparison of the various Ioadlng function simpli-
fications.

7) A method for the rapid verification of the resis-
tance eta building subject to a given overpressure.

At the end of this section, a numerical exampler applied

to a three-story building, will be developed in order to
clarify the analysis procedures presented in the text.

8.2.1 DETERMINATION OF BLAST LOADS

The blast loads on building structure, developed in this
sectionr are based on the air blast parameters covered in
detail in Chapter 6. Since a blast load consists of a dif-
fraction phase and a drag phase_ the computation eta
blast load acting on a structure varies according to the
following types of structures (Reference 8.2.3):

a) Structures with resistant walls but without openings
or with openings less than 5 percent of the area of
the walls.

b) Structures with openings more than 5 percent and
less than 50 percent of the area of the wails.

c) Structures with openings more than 50 percent of
the area of the wails.

Structures to be studied will be oriented with one face

normal to the direction of propagation of the shock wave,
because this is the most severe loading case. Furthermore,
no distinction will be made between structures located in

the region of regular reflection and those located in the
region of Mach reflection (Section 6.2)° The reasons for
this simplification are: a) very few data are available
within the region of regular reflection, b) the Mach stem
results from the fusing of two shock fronts and the single
shock front, so formed, has a higher overpressure and a
greater destructive potential to structures located in its
path; therefore, this simplification leads to conservative
results.

8.2.1.1 Loading on Rectangular Structures Without
Openings

Incident Overpressure and Positive Phase Duration

An illustration of the behavior of a blast wave which
reaches a closed rectangular structure is given inFigure
8.2.1. Assume that the overpressure-versus-fime function
acting on the structure be represented by Figure 8.2.2,

+

where Pso indicates the peak incident overpressure and tp

indicates the duration of the positive phase. The pre-
diction of the later parameter has been covered in Section
6.2.5. However, due to the obvious significance of this
parameter for dynamic analysis, it is desirable, to re-
examine its magnitude and suggest improvements that may
be possible for design. The values for the positive phase
durations of overpressure and dynamic pressure presented
in this manual are based on limited data from propellant
explosions and are not complete or entirely consistent.
For both the overpressure and dynamic pressure, two
questions are therefore pertinent.

• What is the true value of the positive phase dura-
tion for a propellant explosion?

What is a suitable effective value to use for sim-

plified design analysis. (e.g. - a value equal to
the duration of a triangular pulse with the same
positive phase impulse)?

Overpressure Positive Phase Duration

Figure 8.2.3 compares values of positive phase overpres-
sure duration for TNT explosions predicted analytically
(Reference 8.2.7), measured(Reference 8.2.8)and com-
monly used for design (Reference 8.2.1). The most recent

values proposed by the Naval Ordnance Laboratory (Ref-
erence 8.2.8) agree well with previous results and appear
to be the most reliable estimates of the true value of pos-

+ . For blast load analysis, a usefulitive phase duration, tp
simplification is to treat the time history of the pressure as

a triangular pulse with the same peak overpressure Pso '
+ The duration of thls trian-and positive phase impulse lp .
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pellant explosions based on the estimated overpressure and

positive phase impulse shown in Figures 6.26 and 6.29

of Chapter 6.

As expected, the effective duration for propellant explo-

sions exceeds that for TNT at small values of the scaled

distance.

Prefl

j Reflected Overpressure

k

I? Average Front Wall Overpressure, Pfront/A .... ge Back Wall Overp ........ -Pback

_-- tb-_ tp + td+ t b

FIGURE 8.2.2 Front Wall -BackWall - Net Overpressure

versus Time

Vortices

Front

/ / f e)

FIGURE 8.2.1 Behavior of Blast Wave Along Center

Portion of Closed Rectangular Structure

gular pulse can be considered as an effective value tpe
of the duration given in scaled form by the expression:

t ^.1/3 =2_+ 1/_ tpe/VVT p/W T pso (8.2.1)

Three estimates of this effective duration are also shown on

Figure 8.2.3. The first is based on current estimates of

overpressure (see Figure 6.26 in Chapter 6)and positive

phase impulse (Figure 6.39 and Reference 8.2.8)for TNT

explosions. The second is based on a graphical analysis of

the theoretical time histories for overpressure proposed by

Brode (Reference 6.18) for TNT and shown in Figure 6.42.

The third, shown as a shaded area, is an estimate for pro-

.o

10

Scaled Distance, Z =
R tt

FIGURE 8.2.3 Duration of Positive Overpressure Phase - Actual

and Effective Values for TNT and Propellant

Explosions
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Dynamic Pressure Positive Phase Duration

Figure 8.2.4 compares values of the duration of the posi-

tive phase dynamic pressure for TNT explosions predicted

analytically (Reference 8.2.7) and measured (Reference

8.2.15). Values of the effective duration are also shown

for TNT and for propellant explosions. The values for TNT

are based on a modification of Brode's result in Reference

8.2.7. The ratio of his predicted values of dynamic

pressure impulse I+ to overpressure impulse I+ was multi-
q P

+

plied by the recently measured values of I to obtain a
P

better estimate of the dynamic pressure impulse for TNT.

From this corrected value, (20-100 percent higher than

Brode's predicted values in 1956) the effective dynamic

pressure duration was expressed in the form

t e,/W1T/3 = 2_lq,/W,[/: 1q " • qso
(8.2.2)

where qso is the maximum dynamic pressure at the same

scaled distance usedfor the dynamic pressure impulse. The

estimates of effective dynamic pressure duration for pro-

pellants are based on the corrected theoretical values of

impulse for TNT and the estimated dynamic pressures for

propellants shown in Figure 6.35 in Chapter 6. Various

methods are suggested in the literature to estimate the

actual or effective value of dynamic pressure duration.

Their accuracy is limited. The values shown in Figure

8.2.4 obtained from Brode are suggested as suitable for

design. However, additional data are clearly desired for

verlfication.

The use of an effectiveduration is suggested as suitable for

structural analysis; it is also readily computed from the

peak pressure and positive phase impulse. A more detailed

definition of the time history seems unwarranted due to the

inherent uncertainty in the total energy released by a pro-

pellant explosion.

Average Overpressure on Front Wall

As the shock front strikes the wall of the building a re-

flected blast wave is formed and the overpressure on this

wall is raised to a value, Prefl.' called reflected over-

pressure and is given in terms of Pso by

4Ps° (8.2.3)

Prefl. = 2 x Pso x 14.7 + Pso

Figure (8.2.5) illustrates this relationship.

At the instant the reflected shock front is formed,the lower

overpressure existing in the incident blast wave adjacent

to the top edge of the front wall initiates a rarefaction

wave (F_gure 8.2.1 (c)). This rarefaction wave travels

with the speed of sound in the reflected blast wave toward

the bottom of the front wall. Within a short time, called

the clearing time, the rarefaction wave reduces the over-

pressure to the value Ps(L) (Figure 8.2.2). This clear-

ing time is given by the re_'ation:
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3h'
t c - (8.2.4)

Crefl.

where h' = clearing height, taken as the full height
of the front face or half its length which-
ever is the smaller.

Crefl ° = speed of sound in the reflected region
given by the relation (Reference 8.2.1)

h.o88p2 + 70pso + 720'
= ft/sec.

Crefl " 422_ 102.9 + 6pso
(8.2.5)

This is illustrated in Figure 8.2.6.

FIGURE 8.2.6
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Velocity of Sound in Reflected Overpressure

Region versus Peak Incident Overpressure

Therefore theaverage overpressure time history acting on

the front of the building between t=o and t=t cis given

by:

[ I tPfront = Prefl. - Pr_fl. - Ps( c ) t_ (8.2.6)

+

and for t < t < t , = Psc p Pfront

- t/t +

and Ps =pso(1 - t/t_)e P

Average Pressure on Back Wall

(8.2.7)

Consider now the time (td) required for the shock front
to reachthe back wall. The value of td will be given by:

L (8.2.8)
td = _-_

0

where k is the length of the building in the direction of

the shock and Uo is the shock front velocity given by

(Reference 8.2.1)

Figure

U o

8.2.7

I

7_i/ 6pso ft/sec. (8.2.9)= 111 1 + 7x 14.7

illustrates this relationship.

i
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FIGURE 8.2.7 Shock Front Velocity versus Peak Overpressure

When theshock front crosses the rear edge of the structure,
the foot of the shock spills down the back wall. Theover-
pressure on the back wall behind this diffracted wave,
because of the vortices developed at the top and traveling

down the wall, requires a period of time (t b) before
reaching its peak value.

The value of t b is given by the relation:

4h'

t b - Co (8.2.10)

where h' = clearing height of the back wall

c = velocity of sound in undisturbed air
o (= 1117fps.)

Considering the average overpressure on theback wall,

the peak value, reached at time t = td + tb, is given by
(Reference 8.2.1)

Psb [I +(1-_)e-I_] (8.2.11)Pbx- 2

where

and

Psb = Ps (td + tb) istheincldentblastwave over-
pressure at the back wall at

time t = td + tb

0.5 pso (psi)
- 14.7 (8.2.12)
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For times in excess of t = t d + t b , the average overpres-

sure at time t, (Pback(t)),on the back wall is given by

(Reference 8.2.1)

For t+ < t <(t; + td)P- t

= Pso 1 - tp e PPs (8.2.15)

Pback(t)= PslPP-_b + [I - Pbxl[t:itd-+tb)121PsbJtb -J

(8.2.13)

Now, considering all overpressures exerted on the structu re
and directed toward the interior, as positive, the average

net horizontal overpressure is given by the relation

p(t) = Pfront Pback (8.2.14)

Negative Phase

_or(tp+,_)<,<0p+td_'b)

e tp _ tb PNPs(t) = Pso 1 - t -T_" p

(8.2.16)

where

t + + t d + t b+ p

t + td +tb i - t+PN = Pso 1 - P ,/ e pt +
p (8.2.17)

For most structures, it is justifiable to neglect the negative
phase of the blast beyond t + . However, if more accuracy

P
is required by the designer,the net negative overpressure,
given by the following relations, can be included.

Net Pressure Load in Horizontal Direction

The previous conslderatlonscan be summarized into the fol-
lowing relations which define the behavior of the net

average pressure acting on the front wall of the building.
The loading is obtained by multiplying thl s pressure by the
area of the front wall. (See Figure 8.2.2.)

For 0 < t < t d [ itp(t) = Prefl.- Prefl.- Ps(tc )
(8.2.18)

For t d < t < t c p(t) = Prefl.- [Prefl.- Ps(tc) ]

t Pbx (t - t d)

t c t b
(8.2.19)

For tc<t<(td + tb)

( b)For + t <t< t
t d - p

p(t) =

p(t) =

t

t tp
Pso - e

t -7
Pso - e p

Pbx (t - t d)

tb

1 - [/ pb---_x+

LPsb

(8.2.20)

tdttlI- (8.2.
Psb "\ t_:_b b

21)

For t +p<t<(t;+_ td) (t- "[4:" -%-
p(t) = Pso 1 e tp

tp

(8.2.22)

t<_(t;_,_,tb) p(t) = ) t +

t _--%- t-t

pso 1 - e tp _ P
_ tb

p/

- td

PN
(8.2.23)
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In these equations it has been assumed Pso is _ 10 psi

in which case the time variation of the wave overpressure

t

is givenby Ps = Pso - e tp . If Pso will be

10 psi, Figure 6.43 must be used to determine the over-

pressure time history and the expression

Ps = Psa 1 - e tp in the above formulas must be

tp /

corrected accordingly.

Average Roof Overpressure

m

The value of the average roof overpressure, Proof' vary-

ing with the time can be obtained from Figure 8.2.8

where the variation of the ratio of Proof and Ps vs time

is illustrated (Reference 8.2.1)

This behavior is due to the fact that during the passage of

the blast wave across the structure, low pressure areas

develop on the roof and side walls due to vortex formation.

In Figure 8.2.8 the values of p' and p" are given by

the following relationships:

p  Pso
- Ps \ 14.7 +1 (8.2.24)

or

(
p'=0.5+0.125\2- 14.71 (8.2.25)

whichever is smaller; except p' may not be less than zero

_ ( Pso _2p,, Proof _ 0.9+0.1 1.0- 14.7/ (8.2.26)
Ps

A restriction which must be imposed is due to the im-

portance of the lateral variation of overpressures on the

roof. If the width of the structurer normal to the direction

of travel of the shock wave, is greater than twice the

structural length, the average roof overpressures deter-

mined by Figure 8.2.8 are satisfactory. For a structure

whose width is less than its length,the average roof over-

pressure for times greater than time t = (L/U o) is more

correctly given by the relation (Reference 8.2.1)

Proof = Ps (8.2.27)

For the first case, in order to have the expression for Proof

as a function of time, Ps must be computed for various

values of time. After doing this, the Proof vs time curve

is drawn as in Figure 8.2.9. The load is obtained by

multiplying Proof by the area of the roof.

Proof

Ps

I.C

p'

o

time

5L 15h' +' _

Uo tp + 2_o

FIGURE 8.2.8 Average Roof Overpressure, "Proof'

Divided by Ps versus Time

_5
o.

i

L + L
-- t + --

U o P U o

FIGURE 8.2.9 Average Roof Overpressure versus Time

8.2.1.2 Loading on Rectangular Structures with

Openings More than 5 Percent and Less

than 50 Percent of the Area of the Walls.

Structures with openings will be considered asthose struc-

tures having open interiors free of walls and other

obstructions which could hinder the propagation of the

blast wave.

Structures having interior walls and other obstructions can

be studied as closed structures.

Average Exterior Front Wall Overpressure Pex - front

In this case as well as for closed structures,the shock wave,

after reaching the front wall, reflects and rises to the re-

flected overpressure. Rarefaction waves move in from the

edges of the wall and of the openings (it is assumed that
windows and door will be broken under the reflected over-

pressure), clearing the reflected overpressures.
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!
The time required to clear the front face t c , can be

evaluated from the relation

t' = _ (8.2.28)

c Crefl '

where

Crefl is given by Equation (8.2.5) and
• Figure 8.2.6.

A

nnh_ = .8 n h
A F

(8.2.29)

i

In order to obtainthe value of hf, the front wall must be

subdivided, as shown in Figure 8.2.10 into convenient

areas of equal size. The symbols of Equation (8.2.29) can

be evaluated as follows:

A F = Net area of front face (w x h less openings)

A = Area of eachportlon of the subdivldedfront face,
n

except openings

h = For areas 2, the average distance between the

n openings or sides for which clearing occurs

= For areas 1 and 4, the average height or width,

whichever is smaller

= For areas 3, the average distance between the

side from which clearing occurs and the sideop-

posite

8 = 1/2 for areas 2
n

= 1.0 for areas I, 3, 4

I1 w

1 2 3 3 2

3 3 4 2 3

6-.-h n _
3 3 2

2

FIGURE 8.2.10 Subdivision of the Front Wall of a

Structure with Openings

Area 1, All AreasCleared from Two Adjacent Sides

Area 2, All Areas Cleared from Two Opposite Sides

Area 3, All Areas Cleared from One Side

Area 4, All Remaining Areas

The time curve of the average front wall overpressure on

the net wall area can be constructed as it has been done

for closed structures but using the clearing time t' com-
C

putedfrom Equation 8.2.28 (see Figure 8.2.11).

Prefl

t I t +
c

P

time

FIGURE 8.2.11 Average Exterior Front Wall Overpressure,

Pex-front

Average Interior Front Wall Overpressure Pi - front

The behavior of the average interior front wall overpres-

sureisillustrated in Figure 8.2.12 (forasmall rectangular

structure) or 8.2.13 (for a large rectangular structure),

where the new symbols used havethe following meanings:

(Reference 8.2.1 ).

hlf Weighted average build up height of the inte-

rior front computed from Equation (8.2.29)

but with all the quantities interpreted as

applying to the interior surface of the front

wall

Pl-refl t--------/

4h,lf _Jk_ tilkt "_.''

c o

t +

3h'f P

0o+_ -o C'o Co

FIGURE 8.2.12 Average Interior Front Wall Overpressure

versus Time When LI/U ° < 0.1 t+-- p
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k.
I

Psoi

Pi-refl.

= Distance from the outside of the front wall to

the inside rear face

= Peak overpressure of the interior shock wave

is plotted in Figure 8.2.14 and 8.2.15 as

functions of Pso and A°f (where Aof
Agf

area of openings in the front face and Agf =

gross area of the front face).

= RefLected internal overpressure _value given by

7x 14.7+4Psoi.] (8.2.30)
Pi-refl. = 2x Psol 7x 14.7+Psoi

Psoi _,

4h'if .,_._ _. 3 h' f t +

-_-o*" L. t./o P
._ +..JL-- o
U C

o o

FIGURE 8.2.13 Average Interior FrontWall

Overpressure versus Time

When Li/UoZ0.1 t +p

' ........................... \_ I _ " i"" "i ._i-',!! iii ::i i!ii !ii: i!i_ i: !: :: :A A = I 0"-,,,..5: : /'_/"

::..::!:!!!_ :: :::: : 87; ,'i ,'::l:_.-'i. J

: :i:::°._4,..'' !I

i ,,. t :::tI......I ,.,!"'I

•_- :_=.i+_._:..:_:I_:_l:_.• _._. t_ i/::: :-'<: ; ..... 1 _"_ i t __i-_
20 ............... " -' '

= -- " " ._"'" ._i 0.15 . " -

1oTi:r77:.i7!7i71._.v_.Ii ""_"" I

_;..,. ,.,. ........ • _i::......... _.i._:_, __.:::_._,iiil:iiii:! i:I_I l::: :_::I_: :: i:
0 .. : ii! :i!:_ :!!ii!i

0 10 20 30 40 50 60 70

Pso - Peak Incident Overpressure - psi

FIGURE 8.2.14 Peak Interior Overpressure versus Peak Incident Overpressure for Various Percentages

of Front Wall Openings, (Validity of Dashed Portions of Curves Uncertain)

Average Net Front Wall Overpressure Pf-net

The average net front wall overpressure can be obtained

by subtracting the interior front wall overpressure from the

exterior front wall overpressure on a common time basis.

The variation of Pf-net ( = Pex-front- Pi-front ) with

time is illustrated in Figure 8.2.16.
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FIGURE 8.2.15 Peak Interior Overpressure Versus Percentage of Front Face Openings for Various Peak
Incident Overpressures. (Val;dity of Dashed Portions of Curves Uncertain)

Average Exterior Back Wall Overpressure Pex-back

The variation with time of the average exterior back wall
overpressure isillustrated in Figure 8.2.17 where the new
symbols used have the following meanings:

h_ = Weighted average build up height of the rear
face defined by:

I_ /Average Interior Front Wall

f_f Overpressure (From Figure8.2.12)

/Average Exterior Front Wall

"'_ _ _,_ /Overpressure (From Figure 8.2.11)

_,,,_Averoge Net Front Wall

r- Overpressure

_)_8 h A
: n n n

h'b ,_ A R
(8.2.31)

where:

A R = Net area of the back wall

h A = As defined in previous sectionn n n

I_,q'_,hb t"
= t' b P

o

FIGURE 8.2.16 Average Net Front Wall Overpressure FIGURE 8.2.17 Average Exterior Back Wall Overpressure

versus Time fSex_bac k
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lPsb I1 + (1- [3)e -I] (8.2.32)Pbx 2

where:

i :
Psb

t;,=

The incident blast wave overpressure at the

back wall at time t_', where

4h' b

t d + : t d + t_ (8.2.33)C
O

where

td iS given by Equation (8.2.8)

and 0.5 Pso (psi)

[3 - 14.7 (8.2.34)

4h_

For times in excess of t =t d + -- , the average over-C
O

pressure on the external back wall is g_ven by

' p_xl rt - (td+ tl_!

P'ex-back: PstPsb p,sbjk t +p-t_j }

8.2.35)

Pi-tefl

PI'

P_o * 0"8S%o "

_. p • 0.85q
I

I
I
I i
I
i I
I i t '1'

Uo CO C O CO

FIGURE 8.2.18 Average Interior Back Wall OverpressurePi_back
4-

versus TimeLi/Uo< 0.1 t
- p

Average Interior Back Wall Overpressure Pl-back

The variation with time of the average interior back wall

overpressure isillustrated in Figure 8.2.18 (forsmall rec-

tangular structure) or Figure 8.2.19 (for large rectangular

structure) where the new symbols used have the following

meanings:

hlb = Weighted average build up height of the interior
back wall computed from Equation (8o2.31) but

with all quantities interpreted as applying to the

interior surface of the rear wall

Pi - refl .

Pso * 0.85 qso

t_ . _
3h' b p ui i o

u o c o

FIGURE 8.2.19 Average Interior Back Wall Overpressure

Pl-back versus Time (LI/U ° > 0.1 t +)
P

i

Pi 2-Ao- Ag -P4.
(8.2.36)

where Psol and Pl-refl. are obtained from Figure 8.2.14

and equation 8.2.30 respectively.

Average Net Back Wall Overpressure

The average net back wall overpressure is obtained by

subtracting the interior back wall overpressure from the

exterior back wall overpressure on a common time basis.

The variation of Pb-net (: Pex-back - Pl-back ) with

time is illustrated _n Figure 8.2.20.

Total Load Acting on the Structure

The total load acting on the structure is easily found by

means of the following relation

LT = Pf-net x Af Pb-net x A b (8.2.37)

vhere:

Af = Net front wall area

A b = Net back wall area.

_, Average Interior Back Well Overpressure

_\ / \ /(Figure 8.2.18)

\ /
Average Exterior Back Wall Overpressure

\_\b-_/(Figure 8.2.17)

"_'".__l Jim's.,.. Average Net Back Wall Overpressure

FIGURE 8.2.20 Average Net Back Overpressure versus

Time, Pb-net
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8.2.1.3 Loading on Rectangular Structures with
Openings More than 50 Percent of the
Area of the Walls

When the area of the openings is more than about 50 per-
cent of the area of the walls one should consider the

building as a drag type building° The reflected overpres-
sure load is neglected due to the very short clearlngtime.
The areas subject to drag are then the net areas of the
parts of the structure.

The total load on the structure due to the drag forces can

be obtained by computing the load on all the individual
elements of the building, and adding them together on a
common time basis.

The total drag pressure is obtained from the formula:

Drag pressure = Cd q (8.2.38)

where:

Cd = Drag coefficient (see Table 8.2.1)

q= Dynamic pressure due to the air velocity is

given by Figure 6.43. For qso<_ 10 psi, the

following equation (from Reference 8.2 °1) can
be used for q versus time.

t- t d
-3.5

_ t-td_ t+ qso
L

td= -_-
o

L = The distance from the front face of the struc-
ture to the element for which the load is be-

ing computed.

The peak dynamic pressure, qso ' given by

Pso 1 1 (8.2.39)qso--14.7 [_ + _ \ 14.7/J

is plotted in Figure 8.2.21.

The load acting on each element is obtained by multiply-
ing the drag pressure by the projected area of the member
transverse to the direction of travel of the blast wave.

The total load is given by the summation, on a common
time basis, of the loads acting on all the individual
elements.

Figure 8.2.22 a illustrates the computation of loading
acting on the 1st, 2nd, 3rd, and 4th row of columns of an
assumed structure of four rows of columns. Figure 8.2.22b
illustrates the variation with time of the total load active

on the structure. The symbols used have the following

meanings:

L. Loading on the i th= row of columns
I

A. Projected area of the i th= row of columns trans-
I

verse tothe direction of travel of the blast wave.

t. = Time required for the blast wave to reach the
i .th

i row after striking the first row.
--k

t = Duration of the positive phase of the drag pres-
q sure.

loo0 i ! /. i

o 711,rl
1.0

1.0 10 100 1000

qso- Peak Dynamic Pressure- psi

FIGURE 8.2.21 Peak Dynamic Pressure versus Peak

Incident Overpressure

A,Cd " ,Cdqso ":,
17 p

t
e)

F
I
I
I
I I

',J

\

\
Wind _

L T = L ° + L 1 + L2 + L 3

b)
time

FIGURE 8.2.22 Example of a Lc_ding versus Time Function
Due to Drag Pressures Acting an a Structure

Having Four Rows of Columns.
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TABLE 8.2.1

DRAG COEFFICIENTS (Reference 8.2.5)

Flow from Left to Right. For High Reynolds Numbers.

Bodies of Revotutlon

Cd

Sphere O 0.10

Half Sphere t 0.42

Half Sphere D 1.42

C d

Circular Plate I 1.17

60 ° Cone • 0.5

Structural Shapes (Long Members, Without end Effects)

C d CdCd

I-LI 2.o

-_ 1.65

I 2.05

._j 1.8

1.45

2.2

C 1.2

2.3

0 8 1.55

2.0

N 1.05

O 1.2

Protuberances (With end Effects)

C d Cd

0.80 • 1.03

___11___ 1.20

2.0

[, 1.5

U

g' 1.o

-%
U

0.5

0
0

J I .25

1.00

• 1.28

, , IA' I ' ,._

Span Ratio (Height)/(Breadt_
Rectangular Plates

Cylinders Span Ratioj (Length)/(Olameter): _
I

I I J I I I

2 4 6 8 10

Span Ratio

1.0

0.9
u

0.8

u 0.7

o.6

'-a0.5
U

 __II , I
l , I !

(Length)/(Diameter). "..-.4...Lclrcui_r8_e

I _ (Thickness)/(Breaelth)

. ._11_,. R ectangu I ar _

2 4 6 8 10

ThicknessRatio

8.2.1.4 Loading on Structures with Gabled Roofs

Average Roof Overpressure for Structures Having

Ridge Line Perpendicular to Wave Travel Direction

When the shock wave strikes aroafsurface, because of the

reflection, the overpressure rises toan average peak value,
i

Prf' given by the following expression (Figure 8.2.23).

i

Prf = PsL + Ke (Pr-a -PsL ) (8.2.40)

where

PsL

k =

t d =

K e =

Pr-a =

Overpressure in the incident shock wave
L

at time t = t d + 4--0"-"
o

Length of one gabled roof span

Time Displacement Factor (= L/4Uo for

L L
front slope of first bay; = -- +U 4U

O O

2L L

for front slope of 2nd bay; ='_o + 4U °

for 3rd bay and so forth)

Constant fora given angle of inclination

of the roof plotted in Figure 8.2.24

Reflected pressure-functlon of the inci-

dence angle_ a , and of the peak incl-
Pr-a

dent overpressure, Pso" The ratio_
Pso

as a function of a is plotted in Figure

8.2.25.

/
FIGURE 8.2.23 Structure with Gabled Roof Reached by

a Blast Wave

The average overpressure on the fr6nt slope of the roof

L

builds up linearly from zero at time t = t d - _-0"-otO _trf

L

at time t = t d + 4-0"-" The average overpressure then
O

3L

clears at time t = t d +_ to the value Prf glvenby
0

Prf = Ps + Cdq (8.2.41)

where:

Ps = Overpressure in the incident shock wave

q = Dynamic pressuregiven by Equation 8.2.39

Cd = Drag coefficient plotted in Figure 8.2.26
as a function of e.
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9
Ip

o

o

o

?
o

S° 10° 20° 30° 40°

e -inclination of Roof

FIGURE8.2.24 Values of K_ as Function of

.__._..__ _._____+

--_25 _

---*-.-_ _, m, b----

N!
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a - Angle of Incidence

FIGURE 8.2.25 Reflected Overpressure Ratio versus
Angle of Incidence

0.2

0

-0.2
U

-0.4

I. o

U -0.6

-0.8
-45 ° - 30° - 15° 0° 15° 30°

8 - Inclination of Roof

FIGURE 8.2.26 Drag Coefficient for Gabled Roofs
versusSlope Angle of Roof

:--_'-'Windward Roof_:::2'-: ii_-: i:!:_i:Leeward Roofll !ii!ili

45°

p'rf

Pso + Cdqso

Blast Wave-

I " 2.-_L/._

i %

:./"';.\

! i 1 _e

/:' 1 I

', ;+
t d L L

td+t2U P
o

FIGURE 8.2.27 Average Ove_ressure Prf on Windward

Slope of a Gabled Structure versusTime

Figure 8.2.27 and 8.2.28 illustrate graphically the

variation with time of the average overpressure _roof, act-

ing on the windward roof slope of the first and of any

other bay of a gabled structure.

p_ ........ /k Blast Wave Prf

_ \ td = Uo

'l ! !
I I 1
i ! : .

a t d a_L/2 a_Lu tp+_t d
o U o

o

FIGURE 8.2.28 Average OverpressurePrf on Windward

Roof Slope of Any Bay of a Gabled
Structure versus Time

Average Rear Slope Overpressure Prf-R For Structures

Having Ridge Line Perpendicular to Wave Direction

No reflection takes place on the rear roof slope.Thevarl-

ationof Prf-R with time is illustrated in Figure 8.2.29.

The symbols used have been defined above. The time t d

i s equal to the t i me requlred by t he wave to travel from the

front edge of the structure to the point at which it is nec-

essary to determine the local overpressure, (therefore,

td = _4U ° for the first bay, td - Uo for any other

bay)

Blast Wave_

%0+Cd%oi, __ o_/__ _

I \

-- =

a+L/2 t d a+k +

"_" U---_ td + tp

o

FIGURE 8.2.29 Average Overpressure Prf-R on Leeward Roof

Slope of Any Bay of Gabled Structure
versusTime

Total Load Acting on the Roof of a Gabled Roof

Structure

The total load acting on the roof resolved in its horizon-

tal and vertical components, is easily found by multiplying

the overpressures bythe areas of slopes and by adding on a
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common time basis these products multiplied by sin 8 and

cos 0 respectively. The expressions for LTH, total hor-

izontal load, and for LTV, total vertical load, are:

I-1.. n k)

LTH =k k_(P_l - P(k) tAlsineif-R/ kJ (8.2.42)

LT V = (_k) _ Prf-R/

L k

(8.2.43)

where

(k)
Prf = Average overpressure on windward roof

slope of k th bay

_k_) = on leeward roof
R Averageslopeof overpressurekth bay

A k = Area of slope of k th bay

e = Inclination of the roof - (see Figure

8.2.23).

Total Loading Acting on a Gabled Roof Structure

The total blast loading acting on a gabled roof structure

is given by adding the total horizontal load, LTH ,actlng

on the roof to the net load acting on the front and back

wall calculated as in previous sections.

8.2.1.5 Loading on Cylindrical Structures

Structures of thiscategory consist of exposed arch struc-

tures and surface structures of various shapes covered

by anearth Fill.If the arch orearth fill surface is not truly

circular, it is approximated by an arc of a circle.

Cylindrical Arch Overpressure Pc I , Axis Parallel

7o

In the procedures of this section for computlngthe blast

loading as a functlor of time, zero time is the instant at

which the incident shock front first strikes the cylindrical

arch surface at its intersection with the horizontal ground

surfacer along the line defined by e = 8'. (Figure 8.2.30)

W°v"[4/\

e,,/

FIGURE 8.2.30 Sketch for Cylindrical Arch Notation

The clearing time determines two different ranges of e

values and for each of them the overpressures are defined

as follows:

For 0°< e'< 8< 90 ° Figure 8.2.31 isvalid.Theover-

pressure-rlses instantaneously from zero to Pr--G(given in

X

Figure8.2.25putfinga = 8)at time t d ='_'.
o

The clearing time is given by

t
C

4h

Crefl.

(8.2.44)

where Crefl " is given by Equatlon(8.2.5) andFigure

8.2.6. The local overpressure at any point after the clear-

ing of reflection effects is given by:

Pcyl. = Cdq + Ps (8.2.45)

where

q is the dynamic pressure given by Equation

(8.2.39) (for qso <-- 10 psi) or by Figure
6.43.

ps = Overpressure in the incident blast wave at
anytime.

Cd= The local drag coefficient which is a
function of 8 and is obtained from Figure

8.2.32, 8.2.34, 8.2.35, 8.2.36, and

8.2.37 as discussed hereafter.

Pr -8

PSO + Cd%o

m

x

t d :
o

4h
t = --

c Crefl

,,,_C d_:

t t _"
+ t dc P

FIGURE 8,2.31 Local Overpressureon Front Surface

of Cylindrical Arch versus Time

The distribution of dynamic pressure about an arch is a

function of both the Reynolds Numberr Re, and the Mach

number r M, of the hlgh-velocity wind in the blast wave.

The Mach number is given by:

I 1 ]I .89 I -

po(P IL 14.'-'-'7" + 1

M : [ 6 ]1/2 (8.2.46/
1+ PS° [Ps /

and it is plotted in Figure 8.2.32.
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The Reynolds number can be obtained from Figure 8.2.33.
Figures 8.2.34 and 8.2.35 give the dynamic pressureco-

efficient, Cd as a function of 0 for M> 1 and

and .4 < M < 1.

Figure 8.2.36 gives the dynamic pressure coefficient Cd,
for M < .4 and Re > 5 • 105 .

For M < .4 and Re < 5 • 105 Cd is given by
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where

C3 is given by Figure 8.2.37 as a function of e

D is the diameter of the arch

L is the length of the axis of the arch.

For 90 ° < 8 < 180°FigureS.2.38givesthevarlationwlth

time of Pcyl. foragiven value of e. In this figure, the

overpressure rlsesat time td instantaneously from zero to
a value given by

Pcyl. = Pso (1"5- 1--_0) (8.2.48)
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x

td = -0_'-°

C t 4h [ e°'_

/ i ._ rerl

Pso

0 td td * tc tp ÷ t d

FIGURE 8.2.38 Local Overpressure on Leeward Surface

of Cylindrical Arch versus Time for

90< # < 180

After this, the initial overpressure clears to the value

given by Equation 8.2.45 at time t = t d + tc, where

(8.2.49)

Average End Wall Overpressure Pend ' Axis Parallel
to Shock Front

Figure 8.2.39 illustrates the time variation of the average

end wall overpressure Pend" It is assumed that the vari-

ation of incident overpressure, in the time required for the

shock wave to travel across the cylinder, is linear and

that the average overpressure on the ends is equal to the

overpressure in the incident blast wave with the time dis-

placement factor t d given by

D cos e'
td - 2 U (8.2.50)

O

• t O cos 9'

d= 2__0__o
PsoF---t'.

/ /
t d 2t d t + . t d

p

FIGURE 8.2.39 Average Overpressure on Closed Ends

of Cylindrical Arch versus Time

Local Cylindrical Arch Overpressure, Axis Perpendic"

ular to Shock Front.

The local overpressure at any point on the structure is the

overpressure in the incident blast wave Ps with a time

displacement factor t d = L'/U o where L' is the dis-

tance from the front end to the point at which the

overpressure is desired.

As far as the average overpressure is concerned, it can be

computed as outlined in Section 8.2.1.1.

Computation of the Total Load on Arches with Axis

Parallel to Wave Front

After having predicted the overpressures acting on the

structure, the next step is to construct the total load vs

time curve. This can be done, in an approximate way, as

follows: (see Figure 8.2.40)

a) Divide the arch into a certain number ofn sec-

tions (for instance, 10 ° wide).

b) Compute the overpressure, vs time curve,accord-

ing to the above mentioned procedures, for the

middle point, x of each section
m

c) Assume overpressure to be equal on every point

of each section and construct the curves of

overpressure muhlpliedby cos B (horizontal com-

ponent)and by sin 0 (vertical component) versus
time for each section

d) Add, on a common time basis, the various over-

pressure curves multiplied by the area of each

section.

The two resulting curves will represent the time variation

of the horizontal and vertical total load acting on the

stru ctu re.

X m

Blast

Wave _,

FIGURE 8.2.40 Example of Subdivision for Computation

of Total Horizontal and Vertical Load

on Arches

8.2.1.6 Loading on Domes

Figure 8.2.41 illustrates the notation convention used to

designate a point on the surface of a dome. (Reference

8.2.1). With that notation, any point ono spherical dome

is located by the two angles 8 and _o Denoting by p any

point on the sphere, e is the angle between the horizontal

diameter parallel to the direction of travel of the shock

and the radius Op joining the surface point to the geo-

metrical center of the sphere. The elevation of the point

p above a horizontal plane through the center of the

sphere is R sin 8 sin _, where _ is the an.qle between

the horizontal plane through the center of the sphere and

the inclined plane containing points 0, 0', and po
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FIGURE 8.2.41 Definition Sketch for Spherlcal

Dome Notation

The variation with time of the local overpressure Pdome

normal to the surface of the dome is similar to that for a

cylinder as shown in Figures 8.2.31 and 8.2.38. The

overpressure at a given point rises instantaneously from

zero to Pr- e given on Figure 8.2.25 (for B< 90 ° ) or

by (for e > 900):

e ) (8.2.51)Pdome = 1.5- 1_ Pso"

Furthermore:

d
-- - R cos e

x 2 (8.2.52)
td U° Uo

where

x = Distance shown in Figure (8.2.41)

d = Distance across the dome at its base (Figure

8.2.41)

R = Radlusof the sphere

U -- Shock front velocity Equation (8.2.9).
o

The clearing time is given by:

3h
t = (for e < 90 ° ) (8.2.53)

c Crefl.

t = (forBy-90 ° )
C

(8.2.54)

where

h is the height of the dome above its base (Figure

8.2.41)

Crefl " is given by Equation (8.2.5).

The local overpressure at any point after the clearing of

reflected overpressure is given by:

Pdome = Cdq + Ps (8.2.55)

where

q = Drag pressure given by Figure 6.43 or, for

qso < 10 psi, by Equation (8.2.39).

C d = Local Drag Coefficient plotted as a func-
tion of e in Figures 8.2.42 and 8.2.43.

The ratio of the Reynolds number of the air

blast wind to the diameter of the sphere is

plotted in Figure 8.2.33.

To predict the total load, the procedure indicated for cy-

lindrical structures can be used.

8.2.1.7 Loading on Buried Structures

An air blast wave implngingupon thesurface of the ground

induces an underground pressure wave which is propagated

at the seismic velocity C s given in Table 8.2.2.

If the ground surface above the structure is in theregular

reflection region, the inducedground pressure wave is as-

sumed tobe horizontal and moving downward through the

soil with a vertical velocity C s .

TABLE 8.2.2

TYPICAL SEISMIC VELOCITIES FOR SOILS

AND ROCKS (REFERENCE 8.2.6)

Material Seismic Velocity, C s
Hz

Loose and Dry Soils 600 - 3,300

Clay and Wet Soils 2,500- 6,300

Coarse and Compact Soils 3,000 - 8,500

Sandstone and Cemented Sol Is 3,000 - 14,000

Shale and Marl 6,000 - 17,500

Limestone - Chalk 7,000 - 21,000

Metamorphic Rocks 10,000 - 21,700

Volcanic Rocks 10,000 - 22,600

Sound Plutonic Rocks 13,000 - 25,000

Jointed Granite 8,000 - 15,000

Weathered Rocks 2,000 - 10,000
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If the structure is under the region of Mach reflection, the

induced ground pressure wave is assumed to behave as il-

lustrated in Figure 8.2.44.

The local overpressure on the roof is approximately equal

to the overpressure of the air blast wave on the ground

surface Ps"

The lateral overpressure varies according to soll charac-

teristics. The ratios of lateral to vertical pressure for

several typesofsoitareglven in Table 8.2.3.

Air Blast Wave .__ Uo

/Ps

l/1/1/1// _ IIIIIIIII
I' = sin-1Cs/U ° Ground Pressure Wave Front

/A....dNot,o I t ! c
Exceed 90 ° ) , _ ,J Roof

_C j j" Buried StructureL Pressure on Underside

Same as on Roof

s

FIGURE 8.2.44 Ground Pressure Wave Induced by Air Blast

Wave in Region of Mach Reflection

Local Roof Overpressure PB-roof

Figure 8.2.45 gives the time variation of the local roof

overpressure PB-roof for the buried structures located in

regions of regular and Mach reflection. In that figure,

L' is the distance from the point on the roof where the

pressure is desi red to the upper front corner of the structure

and U is given by Equation (8.2.9).
O

TABLE 8.2.3

RECOMMENDED COEFFICIENT OF LATERAL TO

VERTICAL SOIL PRESSURE (STRESS ON VERTICAL

SURFACES OF STRUCTURES) (REFERENCE 8.2.14)

Soll Type

Cohesionless Soll r Damp or Dry

Unsaturated Cohesive Soils of

Stiff Consistency

Unsaturated Cohesive Soils of

Medium Consistency

Unsaturated Cohesive Soils of

Soft Consistency

All Saturated Soils With the

Water Table at the Surface

Stress Coefficient K

1/4

1/3

1/2

3/4

P
so

FIGURE 8 2 45

Note:

t d = O (Regular Refl. Region)

L'

t d = _- (Mach Refl. Region)

__
td t + . t d

P

Local Roof Overpressure versus Time

for Buried Structures Located in

Regions of Regular and Math Reflection

Average Roof Overpressure PB-rooF

Regular reflection region: PB-rooF is identical with the

local roof overpressure.

Mach reflection region: Figure 8.2.46 gives the time

variation of the average roof overpressure; in this Figure,

L is the length of roof in the direction of travel of the

air shock wave.

Overpressure on Underside of Buried Structure

The overpressures exerted on the underside of buried

structures with an integral Floor are approximately the

same as on the roof and the above mentioned procedure

for predicting them can be used.

L

t d = ___2U
o

\\

i ,,
t d L t;+ t d

U
o

FIGURE B.2.46 Average Roof Overpressure versus Time

For Buried Structure Located in

Region of Moch Reflection
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Average Front Wall Overpressure _B-front

Figure 8.2.47 illustratesthe time varlatlonof the average

front wall overpressure, PB-front for buried structures

located in regions of regular or Machreflectlon. In this

figure, t d is given by:

h
(8.2.56)

td 2U o tan 7

where

h

L

is the height of the front wall of the structure

is the length of roof in direction of travel of

air shock wave

U is the shock front velocity given by Equation
O

(8.2.9)

1' is the angle whose sine is C/U O ( see Figure
8.2.44)

K is given in Table 8.2,3

Average Back Wall Overpressure PB-back

Regular reflection region: The average back walt over°

pressure is identical with the average front face

ave rpre ssure.

Mach reflection region: The average back wall overpres-

sure isillustratedin Figure 8.2.48 where the symbols used

have the same meaning as for Figure 8.2.47.

KPso

/
L

o

L h

td : U + 2U tany
o o

L h

* lp t dU U tan ¥
o o

FIGURE 8.2.48 Average Back Wall Overpressure

versus Time for Buried Structure

Located in Region of Moch

Reflection

Average Side Wall Overpressure PB-side

Regular reflection region: The average side wall overpres-

sure is identical with the average front face overpressure.

Mach reflection region: The average side wall overpressure

is illustrated in Figure 8.2.49 where the symbols used

have the same meaning as for Figure 8.2.47.

Total Load on Buried Structure

Once the average overpressures have been predicted, the

total load due to a shock wave, acting on a buried struc-

ture can be calculated as previously shown in this section
for surface structures.

KPso

h

-- td = 2U tanl,

b O

tcl 2t d +

t + tclP

FIGURE 8.2.47 Average Front Wall Overpressure

versus Time for Buried Structure

Located in Regions of Regular ancl

Math Reflection

'el=7° " ,oo;
K Pso

t d 2 tel *t " t
p d

FIGURE 8.2.49 Average SideWall Overpressu_e

versus Time for Buried Shuctu_e

Locatecl in Region of Mach

Reflection
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8.2.2 COMPUTATION OF DYNAMIC STRUCTURAL

RESPONSE

The steps required for predicting the response of a struc-

ture are the following: (Reference 8.2.4)

a) Substitution of the actual building with an ana-

lytical model as a spring-mass system (having

one or more degrees of freedom according to the

number of stories of the real building).

b) Replacing of the actual load vs time function

with either a triangular or bilinear load to sim-

plifycalculations(it will be shownthat verysmall

errors result from this simplification).

c) Computation of mass-displacement vs time func-

tion by using rigorous or approximate methods.

8.2.2.1 Substitution of the Actual Building with a

Spring-Mass System

The objective of the analysis would be to predict the dis-

placement of each point of the structure during the duration

of the blastr but such analytical prediction would involve

lengthy and difficult calculations so that certain simpli-

fications would be required.

One way of approaching the problem is by replacing the

actual building with a sprlng-mass system having one or

more degrees of freedom according to the number of the

building stories. Essentially, a distributed mass-load-

spring system is replaced by a lumped mass-load-sprlng.

In other words, the masses are assumed to be lumped at the

top of the columns of each floor and the loads are con-

sidered to be acting on the lumped masses.

The next step is to simulate the actual building_ by apply-

ing the principles of dynamic similarity, with a spring-

mass system.

Computation of the Resistance Function and

Equivalent Spring Constant

The simulation of the structure with a mass-sprlng system

requires the computation of the reslstancefunction and

consequently of the spring constant to be applied to the

analytical model.

Because of the importance of the resistance function and

of the spring constant, it is necessary to clarify here the

way to predict them.

The resistance of an element is defined as the internal force

tending to restore the deflected element to its equilibrium

condition; at a given deflection, the restoring force (or

resistance) is defined as numerically equal to the static

load required to produce the same deflection.

In order to simplify the calculations, the resistance-dls-

placement function is always idealized to the elasto-

plastic shape as shown in Figure 8,2.50. The criteria to be

used for such a replacement are:

I)

2)

The energy absorbed by the element subject to a

deflection following the elasto-plastic resistance

function must be equal to the energy absorbed in

the case of strain-hardening or decaying re-

sistance functions for a given value of the maxi-

mum response. This implies that the area under

the elasto-plastic function must be equal to the
area under the real resistance function fora

given value of the maximum response (see Figure

8.2.50 where Area "A" is equal to Area "B").

The initial slope_ K_ of the elasto-plastic resis-

tance must be equal to the initial slope of the
real function.

Now, it is known that the distortion of structural elements

when subjected to dynamic loads depends on the stiffness

of the element; on spatial distribution of the loads; on the

time variation of the loads and on the support conditions

of the element. Any impulslvely-loaded element having

distributed masses vibrates in an infinite number of modes

of vibration. It is hard to predict the exact behavior of

such an element and, for all practical purposes_ the pro-

blem can be simplified by utilizing a spring-mass system

and assuming a deflected shape for the element. The de-

flected shape assumed for the element under the dynamic

load is identical to the deflected shape due to a static

load with the same distribution. An example will clarify

this.

Strain Hardening

FIosto-Plostic Shape

Xmax Olsplac.

ecaylng Shape

r

r

Xmax Displac.

FIGURE 8.2.50 Simpllflcotion of the Resistance Function
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Consider now, simultaneously, the beam of Figure 8.2.51a
and the spring--mass system of Figure 8.2.51b which will
substitute for the beam. The displacement, y, for the beam
shown in Figure 8.2.51ar is given as a function of the
load per unit of length (p) and as a function of the dis-
tance h from the end B, by the familiar expression

Y = "-_- + 24 - 12 /
(8.2.57)

where

E =

I

load plane

p Loading per unit of length

P Total load.

YB

'iP=pL

(al

Young's Modulus

Moment of inertia of the beam section with

respect to the centroidal axis normal to the

Re : K e YB

Ye Pe

(b)

FIGURE 8.2.51 Uniformly loaded Clamped Sliding Beam (o) and the

Equivalent Single Degree System (b).

It will be assumed that the displacement Ye of the mass

mte of Figure 8.2.51b represents the displacement of the

beam at the point B. In the following discussion, YB will

represent the displacement of floor B of the building as
shown by:

= pL 4 PL3

and the true stiffness of the beam K will be

P 24 El
K - - (8.2.59)

Y8 L3

Note that the boundary conditions used in this example are

commonly employed to represent end-fixityofbuildlng
columns. The last column of Table 8.2.4 gives the equiva-
lent spring constant for other boundary conditions.

In order to define correctly the equivalent spring constant

K r it is necessary to equate the strain energy of the
e

structural element, as computed from the assumed deflec-
tion shaper and the strain energy of the equivalent spring-

mass system.

Consider, now a resistance factor, K R, defined by the
equati on

R
e (8.2.60)KR : -E-

where

R = Computed resistance of the structural ele-
ment

R = Resistance of the equivalent system.
e

The strain energy, SE, of the real beam is given by:

where M

L

M2(SE)beam _ dh

0

is the bending moment at any point.

(8.2.61)

Since M : pL2 P h2
6 2 (8.2.62)

: -- +(S E)beam 2 El _ 36 4
0

p2L5 1
: 2 El 4"-_ (8.2.63)

which may also be written in the following form, where

p L3
YB = deflection of the point B - 24EI

1 2 242 E I

(S E)beam = _ YB 45 L3 (8.2.64)

Equating (SE)beam : (Sk-')spring : _" Ke

I 2 I 2 242 E I

_" K e Ye = 2" YB 45 L3
gives

242 El
K : (8.2.65)

e 45 L3

Therefore, with Equation (8.2.59), the resistance factor is

K
e 24

KR - K - 45 = 0.53 (8.2.66)
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In the plastic range, a different way must be used to find

the resistance factor. This is due to the development of

plastic hinges at the fixed end. In this case, assume that

the beam is initially supported as in Figure 8.2.52, to

avoid an unstable condition.

!lllllllill i

FIGURE 8.2.52 Uniformly Loaded Fixed-End Beam.

After the moment has reached the value at which the

plastic range starts, the moment restraint at the ends is
lost.

In this range, called elasto-plastic, the resistance factor

is equal to that of a simply supported beam and can be

shown to be equal to 0.64.

In the plastic range, which is reached after the deflection

has exceeded the point Y2m of Figure 8.2.53; the resis-

tance factor is calculated as follows.

The strain energy absorbed in the actual beam during the

distortion indicated in Figure 8.2 °54 may be written:

=
(SE) a 2M 8 (8.2.67)C C

where M is the bending moment at the plastic "hinge" in
c

the center of the beam and 8 is the slope of the beam of

this point, c

Elastic Eiasto-Plastic Plastic Range

Range Range

g

Rm ban

-- v I - v,-Rebound Rebound Rebound

Elastic Elasto-Plastic Plastic Range

Range Range

FIGURE 8.2.53 Idealized Resistance Function for Fixed-End Beams.

P = pL

_J ttttttttttVt[_
Yc

FIGURE 8.2.54 Uniformly Loaded Fixed-End Beam; Plastic Range.

The strain energy stored in the equivalent plastic system is

(SE)e = RmeY e (8.2.68)

In other words, it is equal to the work clone by the resis-

tance R of the equivalent system over the deflection
me

Ye" Equating the strain energies of the equivalent and

actual systems,

Rmey e = 2Mc ce (8.2.69)

But M = Rm L/8 (8.2.70)C

and 8c = 2Yc/L. (8.2.71)

Thus, setting Yc = Ye

R m
R = -- (8.2.72)
me 2

and
R

K R = Rme = 0.5 (8.2.73)
m

For any other [oadlng or support conditions in the plastic

range, the procedure for determining K R is the same.

Resistance factors for other cases are shown in Table 8.2.4.

Load Factor

In order to obtain an equivalent system which could re-

place the actual beam, the actual load and mass must be

reduced by means of two factors called the load factor and
the mass factor.

The load factor K L is defined as the ratio between the

equivalent load P (t) and the actual load P(t)
e

Pe (t)

K L = _ (8.2.74)

It can be derived by equating the external work clone by

the equivalent load on the equivalent system and the ex-

ternal work done by the actual load on the actual beam to

the assumed deflected shape (Figure 8.2°55).
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Assume that the space and time variations of the deflec-

tion, y -- f (h_ t) are separable into two functions as:

Y = fl(h) • f2(t) (8.2.75)

p = pkk _ hi

Y(h)

YB

(b)

FIGURE 8.2.55 Uniformly Loaded Clamped Sliding Beam(a)

and the Equivalent Single Degree System (b)

The work done for a unit length of the beam by the actual
load in time dt is:

d f2 (t)dW = p(t) dt = Pfl(h)_dt (8.2.76)

and the work done up to time t is:

/t o_L O_t df2(t)P "_'-
dW = fl (h) dh dt

0

(8.2.77)

The displacement of the spring-mass system represents the

displacement of the point B of the actual beam:

Ye = YB = fl(O)f2 (t) (8.2.78)

The work done on the equivalent system by the equivalent

load, Pe(t) up to any time, t_ must be:

oft df2(t )
W (8.2.79)= fl (0) Pe _ dte dt

Equatingthe work done for each system and differentiating

with respect to time gives

L

p Of fl (h)dh

= ..__e= (8.2.8o)
KL p L f1(O)

In this example, K L is given by:

KL=

E1\24 + 24- 12 /dh
0

L . p L4
24EI

= _ = 0..53 (8.2.81)
15

The load factor for the plastic range is computed in the

same manner as was done previously for the resistance

factor, but equating the work done.

From this example, it can be seen that K k is equal to KRO

Mass Factor

The mass factor, K M, is defined as the ratio between the

mass of the equivalent system_ mte, and the mass of the

actual element, mt.

The mass factor can be obtained by equating the kinetic

energies of the beam and the equivalent system for any
time.

Referring to the Figures8.2.55, a, b, the kinetic energies

are given by:

/'1 fdy]2(KE)actual : --_ m _-_/ dh

m
t

where m =
L

(8.2.82)

1 {dYe/2

(KE)equlv. = T mte _-_'-/ (8.2.83)

Equating the energy expressions as shown above, gives:

KM rote 1 {dye2_ _ dt / dh (8.2.84)
mt L

But, as shown previously,

Y = fl(h)f2(t)an d dy df2(t) (8.2.85)dt = fl (h) dt

d Ye d f2(t)

Ye = fl(O)f2 (t) and d-T "= fl (0) dt (8.2.86)
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TABLE 8.2.4

Loading
Diagram

P=pL

_ L _1

L1/2_!1/2j

P/2 P/2

11

Strain

Range

Elastic

Plastic

Elastic

Plastic

Elastic

DYNAMIC DESIGN FACTOR (Reference 8.2.1)

L oad Mass Max im um

Factor KL Factor Resistance
or KM Rm

Resistance

Factor K R

0.64

0.50

Concen-

trated

Mass*

1.0

1.0

0.76

Uniform
Mass

0.50

0.33

0.49

0.33

0.52

8M
_.mE_

L

8M
P

L

4M
P

L

4M
P

L

6M
P

L

6M
P

L

0.87

Spring
Constant

K

384EI

5L 3

0

48 El

L3

56.4 El

L3

_/3,W3,L/_

P=pL

JLL

V1 L _:
F-

P

I ;

1 1 i

Plastic

Elastic

Elasto-
Plastic

Plastic

Elastic

Elasto-
Plastic

Plastic

0.58

0.64

0.50

1.0

1.0

1.0

1.0

1.0

0.56

0.45

0.50

0.33

0.43

0.49

0.33

8M
ps

L

4(M +2M )

L ps pm

(M s+2M )
p pm

16M
ps

3L

--_-2(M +2M )

L lOS pm

_ (Mps+ 2Mpm)

185EI

L3

384 EI

5L 3

0

107EI

L3

48 El

L3

P/2 P/2

L/aL/aL/: ;
l i r

Elastic

Elasto-
Plastic

Plastic

0.81

0.87

0.67

0.76

1.0

0.45

0.52

0.56

6M
ps

L

2 +3Mpm)Y (MPs

---_-_(Mps+ 3 Mpm)

132 El

L3

56 El

L3
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TABLE 8.2.4 (CONTINUED)

P=pL

:k , , ,!

P

P=pL

' t

Elastic

Elasto-
Plastic

Plastic

Elastic

Plastic

Elastic

Plastic

0.53

0.64

0.50

0.53

0.50

1.0

1.0

0.41

0.50

0.33

0.37

0.33

0.41

0.35

12M
ps

L

_88 (Mps + Mpm)
L

-_-_ (Mps+ Mpm)

---4 (M +M )
L 10s pm

4L (Mps+ Mpm )

3M
ps

8 )
(Mps+ Mpm

384E1

i.3

384 EI

5L3

192 El

L3

0

24 El

L3

*Concentrated mass is lumped at the concentrated load.

So that equation 8.2.84 gives

L

o \f'%/ dh

24,,pL4
= 0.41

2

dh

(8.2.87)

The procedure would be the same for beams with different
support and load conditions.

As far as the plastic range is concerned, the procedure is
the same as for the resistance factor except that kinetic
energies are equated. In this case, a value of 0.35 will
be found.

The dynamic design factors derived above are summarized
in Table 8.2.4 for a variety of typical beam configura-
tlons. Corresponding values for the maximum resistance in
the elastic, elasto-plastlc, and plastic range are also

given. With these factors, an equivalent mass-spring model
can be defined for each type of beam and utilized in a
lumped mass model of building response to a blast. A
specific example of this application is given at the end of
this section. All these factors are defined as follows:

KL = Load Factor - Load on Equivalent SystemTotal Load on Beam

K R = Resistance Factor =

Sprin_l Constant of Equivalent System
Actual Stiffness of the Beam

KM = Mass Factor - Mass of Equivalent System
Mass of the Beam

R m = Maximum resistance in terms of:

Mp = plastic resisting moment
(elastic range);

Mps = plastic support moment, and

= platic hinge moment at midspan
Mpm (elasto-plastic and plastic range).

= Stiffness of the Beam

Ke = Equivalent Spring Constant = K • K R .
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8.2°2°2 Idealization of the Load Acting on Structures

In the previous section the computation of the load acting

on structures due to blast waves has been analyzed and

theoretical expresslonshave been found applicable to var-

ious types of structures° These expressions are rather com-

plicated and a simplification would be very desirable in

order to reduce the time required for predicting the be-

havior of structures subject to blast waves. To indicate

the convenience of using approximate expressions of load

instead of exact ones, the results of a numerical example

are presented in this section.

Figure 8.2.56 illustrates how a typical load function can

be simplified:

a) The continuous curve represents a close approxi-

marion of the actual loading.

b) The two dashed lines represent a first approxima-

tion of loading, that is the complicated curve is

approximated by two lines giving more severe

conditions of loading and the negative phase is

not considered.

c) In this cas% the load is a triangular pulse (dash

dot line) having the same impulse as the positive

phase of line a) (Area A is equal to Area B.)

y a) Close Approximation to Actual Load

_ c) 2nd Approximation of the Load

\ b) 1st Approximation of the Load

P

FIGURE 8.2.56 Idealizations of a Typical Blast Load
Acting on the Building

To obtain an idea of the accuracy achieved by using the

simplified loading, a numerical example has been carried

out. (see Section 8.2.3). In this example a rigorous

method of calculation has been applied to a three-story

building subject to a blast wave.

The displacement of each floor, called Xl,X 2,x 3, has

been plotted in Figures 8.2.57, 8.2.58 and 8.2.59
where:

I) The dashed curve represents the floor displace-

ment vs time according to the first approxima-

tion of loading.

2) The dash-dotcurve representsthe floor displace-

ment vs time according to the triangular impu Ise.

The maximum positive and negative displacements comput-

ed for each floor in the example worked out in Section

8.2.4, using the two idealizations of the load, differed

by the percentages indicated in Table 8.2.5.

TABLE 8.2.5

PER CENT DIFFERENCE BETWEEN RESPONSE WITH BI-

LINEAR LOAD APPROXIMATION AND TRIANGULAR

PULSE APPROXIMATION

1st Floor 2nd Floor 3rd Floor

+10.8% +1 1% +12%Maximum Positive

Displacement

Maximum Negative + 5.0% + 4.8% +7.5%

Displacement

The triangular pulse has the same impulse but a shorter

duration, while the billnear loading has a larger impulse

but the same duration. The results shown in Table 8.2.5

indicate that the maximum difference between the response

for the two types of Ioadings is 12 percent. The exact

value of the response would, in fact, be expected to fall
between the two results.

Since there are so many other approximations made in

blast analysis, these differences are not considered sig-

nificant and the simpler triangular pulse is justified for

general response calculations.

A more detailed comparison of the computed responses for

the two different types of load idealization will be made

in Section 8.2.3 along with a comparison of the responses

computed by the various analysis methods covered in the

next section.

8.2.2.3 Methods of Analyzing Dynamic System

Response to Blast Loads

Once the structure has been replaced with an analytical

model, that is with a spring-mass system, the response of

this model can be predicted by several means. In this sec-

tion, one classical and two approximate methods will be

presented and applied to a general N-degree of freedom

system. Therefore, the following parameters will be in-

volved:

- N masses: ml; m2; ....................... ;m N

- N absolute displacements: Xl; x2; ......... ;x N

- N external forcing functions: fl(t); f2(t); .... ;fN(t)

- N resisting forces: R1(t); R2(t); ........... ;RN(t )

Depending on the type of construction,two cases are con-

sidered for the determination of the reslstlngforces,that is

the shear wall building case and the frame building case.
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FIGURE 8.2.57 First Floor Absolute Displacement, xl, vs TimeCurve

2.0
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FIGURE 8.2.58 Second Floor Absolute Displacement, x2, vs Time Curve
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FIGURE 8.2.59 Third Floor Absolute Displacement, x3, vs Time Curve

Shear Wall Buildings. In this case the resisting

forcesacting on any floor depend on the displace-

ment of all floors. (See Figure 8.2.60). The re-

sisting force, due to their relative displacement

(Xg - xl), is given by:

Rg I = Kg i (Xg - xi) (8.2.88)

where K . is the coupling spring constant.
gl

The expression for the total resisting force, R ,

acting on the g-th floor is: g

N

Rg = _ Rg i (8.2.89)

i=0

ort

N

Rg = _ Kgi(Xg - x i)

i=0

(8.2.90)
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b)

FIGURE 8.2.60

_Xg_

EZk--Rgl

/
Rgi_

x I Xg - x i

Any Two Floors of a Multi-Story Building

Frame Buildings. In thls case, most of the resis-

tances, Rgl, in Equation (8.2.89) are negligible

except for the resistances Rg,g+l and Rg,g_l

which are the resistances developed between ad-
jacent masses. Therefore R is given by (using

g

the simplified notations Kg,g_l = Kg)

g Kg(xg Xg_1) -Kg+l(Xg+l-Xg ) (8.2.91)

Alg2m 1 - AI(K 1 + K2) + A2K 2 = 0

A2g2ml - A2(K 2+K 3)+A 1K2+A3K 3

A _02m + + Ag_ Kg g-Ag(Kg Kg+l) 1 g

=0

+ Ag+lKg+l = 0 (8.2.96)

2
AN_ m N - ANK N + AN_IKN = 0

The system (8.2.96) has solutions for_ 2, if the determi-

nant of the coefficient A N is equal to zero. From thls

condition, the values of the square of" natural frequencies
2 2 2

_1; _2; ""_N can be found and accordingly the values of

the coefficients, A1, A 2 ... A N as a function ofg can be
determined

The normal mode method consists of defining each of the

displacements Xg(t) of the system as the sum of its responses

in its N normal modes as given by:

N

Xg(t) = _ Ag n qn(t) (8.2.97)
n=l

Classical Normal Mode Method

The equation of motion of mass, rag, is given by the

equation:

m _ + = (8.2.92)g g Rg(t) Fg(t)

For an N-th degree dynamic system, there are N separate
equations of the same type as Equation (8.2.92) which can
be written (for the frame building case), for the g-th mass,
in the form,

m _ + + Xgg g (Kg Kg+l) - Kg Xg_1 - Kg+iXg+l

= f (t) (8.2.93)
g

Setting the external forces to zero,

fl (t) = f2(t) .... fN(t) = 0 (8.2.94)

and assuming solutions for the free vibration of the form

x 1 = A lsln(ut+8)

x 2 = A 2 sin (ut + e) (8.2.95)

x N = A N sin(ut+8)

and substituting into Equation (8.2.93), the following set
of equations are obtained

where A is the n-th modal amplitude of the g-th mass
gn

and qn(t) is the amplitude of the n-th normal mode. The

magnitudes of the modal coefficients A are found by
gn

Equation (8.2.96) and may be tabulated according to the
following table:

Table of Modal Coefficients - A
gn

A 1

i

I

A
g

I

I

A N

All

I

I

A
gl

I

I

AN1

-- -- b) - _
n

_ _ A1n - _

I

I

- - A - -
gn

I

I

-- AN--

#1 N

I

i

Ag N
I

i

AN N

The various amplitudes, A , must be normalized to the
gn

largest amplitude for each mode.

Now, the following steps are carried out to define the

response:
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i) Determine the generalized mass for each

mode using the following expression:

N

A2M = m (8.2.98)
n g gn

g:l

il) Determine the generalized force for each

mode by means of the following expression:

N

Fn(t ) = _ fg(t) Ag n (8.2.99)

g=l

Hi) Solve the following characteristicequation

for the one degree of freedom system for

each mode: (Damping is neglected)

Fn(t)

_n(t ) + (a2nqn (t) =
n

(8.2.100)

where:

qn(t) = contribution of the n-th mode

F (t) = genera lizedforce for the n-thmode
n

M (t) = generalized mass for the n-thmode.
n

Comparison of these last three equations with the equa-

tions for the single degree of freedom system in Chapter 3

shows that they have the same form, except for the use of

generalized or effective values of force and mass. This is

also essentially the same form as was shown for the re-

sponse of a distributed system such as a plate. The only

difference now is that the present system consists of

lumped elements instead of a continuous system so that the

generalized forces and masses are found by summations

over the N lumps instead of integration over the system.

Equation (8.2.100) for loading by a trlangularpulse of

duration Tand peak value For simulating a blast, has been

shown to have the solution, for forced response during the

pulser equal to: (See Chapter 3)

Fn(0) [ t + _/1 +(1/(anT)2 sin(,.,nt_tan- l(anT _qn(t) = _'-_- 1- 7

Un Mn t<T

(8.2.101)

After the pulse, the residual or free motion solution is

qn(t-T) = qn(t=T) cos (an(t-T) + _n(t=T)

sin (an(t-T)

(a
n

where 61n(t=T) is the velocity at the end of the pulse, so

that the solution can be written as:

Fn(0) f 2sinunT --sin2(anT/2-qn(t-T) =--_M - Un T -I ((an T/2)2
(an n

1/2

sin((ant-8 n)

-1 (anT - sin gn T

8n = tan 1 - cos(anT (8.2.102)

Evaluate the total displacement of the g-th mass by sum-

ming over all the normal modes to give,

_-'_ Agn qn (t)' t <Tn=l

qn(t-T) t > TAg n '

n = ]

Approximate Methods

One of the best approximate methods for computing the

dynamic response of a multi-degree of freedom system has

has been presented by Newmark (Reference 8.2.10) and

it is called the 13-method. This method defines the dis-

placement and the velocity of a mass, m, at time tn+ I
as follows:

X(tn+l): X(tn)+_(tn)At+ (l_.{3)_(tn)At 2

+ 13_(tn+ 1) At 2 (8.2.104)

X(tn+l )= x(t n) + [. _(tn+l) +" X(tn)]At (8.2. 105)

where

X(tn) = displacement of the mass at time t n

X(tn+l) : displacement of the mass at time tn+ 1

_(tn) = velocity of the mass at time tn

:_(tn) : acceleration of the mass at time t n

At : interval time between t and
n tn+l

13 : a parameter which can have the following

values: 1/4; 1/6; 1/8 and smaller.

The three values of 13 correspond to three assumptions

made for the time history of the acceleration and are

categorized as follows: (see Figure 8.2.61).

13 : 1/4- the acceleration during the time interval At

is constant but has a value which isthe aver-

age of the values at the beginning and the
end of the interval.

13 = 1/6 - the acceleration varies linearly during the

time interval from the initial tothe flnal value.
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13= i/8- the acceleration has a constant valueequal

to the initial value for the first half of the

time interval and a constant value equal to

the final value for the second half of the time

interval.

_x I _=I/4 (3 = 1/8 13 = 1/6

J _(tn) j_(tn + 1) i....iX(tn + 1 ) _(t n

r-'-- so °°

_ Jc017 *Ctn)r-J(blJX(tn) r (c) J

| I I I ,I I
t t n t n tn tn+ 1 tn+ 1 n+ 1

Time, t

+1)

FIGURE 8.2.61 Variation in Acceleration During Interval,

Conslstant With Particular Values of 13

The recurrence formulas(8.2.104) and (8.2.105) can be

used to predict the displacements and the velocities of an

N-degree of freedom system. The expression for the ac-

celeration is given, in general, by

_(t) _ f(t) - R (8.2.106)
m

where: f(t) is the forcing function

m is the mass to which f(t) is applied

R is the resistance function given by Equations

(8.2.90) and (8.2.91).

Equations (8.2. 104) and (8.2.105) for the g-th mass can

now be written, using the expression (8.2.106) for _(t) ,

as follows:

Xg(tn+ 1) = Xg(tn) + _g(tn) At

+I( 1-13)[fg(tn)- Rg(tn) ] At__

+ 13[fg(tn+l)- R (t +,)'1! At2
g nIjjm

(8.2. ] 07)

Y,g(tn+l )= Xg(t n)

+ [fg(tn)-Rg(tn)+ fg(tn+l)-Rg(tn+l)] 2"2"2_-
g

(8.2.108)

Equations (8.2.107) and (8.2.108) can now be used for

predicting the response of a spring-mass model of a shear

wall or frame building using Equations (8.2.90) or

(8.2.91), respectively,to define the reslstance terms Rg(t n )

(_nd Rg(tn+l). In either case, Rg(tn+ 1) will involve

knowing Xg(tn+1), the quantity to be determined. Hence,

a trial and error procedure has to be adopted. As a first

trial, for example, Xg(tn+ 1) can be assumed to be

X(tn) + ::C(tn) At. Using this in Equation (8.2.107),a new

value Xg(tn+l) can be computed and compared wit'n the

assumed value. This procedure is repeated until the as-

sumed and computed values of Xg(tn+l) converge. In the

plastic region the resistant is a constant and the trial and

error procedure is subject to some problems which are:

I) Divergence,or increasing difference between the

assumed and computed values of Xg(tn+l)

2) Instability that isdue to an accumulation of errors

causing the response to become infinitely large.

In order to prevent these possibilities,thefollowlng values

of 13 and At/q" (from Reference 8.2.10) should be used,

where T is the period of the highest mode to be analyzed.

l3 = 1/4 13= I/6 iS = I/8

A..jt< inf. .551 .450 _ Stability
T - Limit

At
--< .318 .389 .450 -.---Convergence
T - Limit

As far as the choice of I_ is concerned, the values of

13= 1/6 should give the best results, due to the fact that

the external loading is almost always assumed to vary

linearly.

If stability problems arlse,the use of 13 = 1/4 is more con-
venient.

If convergence problems arise,a value of 13 = 1/8 or less
must be used.

Acceleration Impulse Extrapolation Method

(Reference 8.2.1)

In this method, the actual acceleration curve is replaced

by a train of equally spaced impulses having a magnitude

of:

Ig(tn) = _g(tn) At (8.2.109)

where

is the acceleration impulse magnitude of time t
Ig(tn) (see Figure 8.2.62). n

If t- and t + are the times immediately before and after
n n

the application of the impulse, the velocities at these

times are _elated by:
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FIGURE 8.2.62
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Acceleration Impulse Extrapolation Method

Xg(t+n ) Xg(tn) + Xg(tn) A t (8.2.110)

The relationships between Xg(tn_l) and Xg(tn), and

between Xg(tn) and Xg(tn+l) aregiven by:

Xg(tn+ 1): 2Xg(t n)-xg(tn_ 1)+_g(t n) At 2

(8.2.112)

Equation (8.2.112) can be expanded as follows:

Xg(tn+ 1) = 2Xg(t n) - Xg(tn_ 1)

mAt2 [fg(tn ) - Rg(tn) 1
g

(8.2.113)

where the term Rg(tn) may be replaced by Equation

(8.2.90) or (8.2.91) according to the type of structure

to be studied.

Equation (8.2.113) is the basic recurrence formula for

the impulse acceleration method which does not require a

trial and error procedure. As will be shown by an example

for relatively simple systems, this simple method provides

good accuracy.

Computation of the Maximum Response from a

Design Chart.

Single-Degree-of-Freedom System

In Reference 8.2.11 a design chart (Figure 8.2.63) has

been developed for rapid computation of the maximum re-

sponse of an elasto-plastic spring-mass system subjected

to a triangular blast load. The symbols used in this chart

are the following:

Pso = peak pressure

e = yield resistance pressure = maximum

Y resistance divided by the loading area

Xy = yield deflection

T = load duration (= tpe or tqe)

f = natural frequency of vibration

Xma x = maximum displacement reached by the mass

at time tma x.

Xg(tn) = Xg(tn_l) + _g(tn" ) At

Xg(tn+l) = Xg(tn) + _g(t +) At

(8.2.111)

Combining Equations (8.2.110) and (8.2.111 ), Xg(tn+ 1)
is given by:

Knowing these values, the use of Figure 8.2.63 is very

simple and is self-explanatory. However, it must be no-

ticed that this chart gives values of Xmax/Xy greater than

1.0. Thus, it is good for predicting maximum response in

the plastic range or for checking that the maximum dis-

placement falls in the elastic or in the plastic range. This

can be useful in many design cases because, in general,

structures located near rocket test facilities are designed

to avoid permanent deformation under blast loads.
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FIGURE 8.2.63 Maximum Response of Simple Spring-Mass System to Initially Peaked
Triangular Force Pulse (Reference 8.2.11 )

Multi-Degree-of-Freedom Systems

To predict the maximum displacement of each mass of a
multi-degree-of-freedom system, Figure 8.2.63 can be
used with the following modified notations:

e. = yield strength factor of the i-th mass given by
ly maximum resistance R . divided by the loading

ml
area above the i-th story.

I
- pseudo period corresponding to a static collapse

f' configuration and obtained as follows:

A uniform lateral static load is placed on the
structure such that the weakest story yields, ac-
cording to its a.. Under thls load, the relative

ly
displacement of each mass is computed with the
exception of the "yielded" story. This "yielded"
story is displaced, with the static load constant,
to a collapse displacement. Then using this re-
suiting configuration, the pseudo period 1/P is
determined using the followlng equation:

I/2

m. x.
! I

i

o..n

i

(8.2.114)

where:

x.
i

is the absolute displacement resulting from the
"col lapse configuration" explained above.

Yi = x i -xi_ 1 is the corresponding relative

placement.

m. = the i-th mass.

K. = the stiffness of the i th story
I

dls-

An example in Section 8.2.3 will clarify the computation.
Thls procedure for predicting the response of multl-degree
of freedom systems is not as accurate as the other methods
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and its reliability is about +30% (Reference 8.2.11).
For very small relative displacements, the error can reach

very high values (up to 100%).

However, this method is very useful to rapidly evaluate
the damage pressure level for a given structure and can be
used for a rapid verification of the resistance of a designed
bul Iding.

Note that the intersection of the parameter lines, labeled

Ps/ay, with the abscicca axis (Xmax/Xy= 1),defines the

peak value of the triangular load which will just cause a
maximum deflection equal to the yield deflection. The re-

sulting ratio of Pso/ay as a function of fT, corresponds

to the shock spectrum defined in Chapter 3 for the elastic
response of a single degree of freedom system to a triangular
pulse.

8.2.3. NUMERICAL EXAMPLE

The procedures for predicting the dynamic response of
structures are applied in this section to the building shown
in Figure 8.2.64° This numerical example, besides clari-
fying the theory, will evaluate the approximations in the
simplified analysis methods.

Given:

Find:

Solution:

The frame building of Figure 8.2.64 is located
at a distance of 5800 feet from 5 x 106 IbTNT

Equivalent Rocket Explosion. Assume the build-

ing has no openings and the external walls
are made of bricks.

The response of the building to the blast wave
in terms of the time variation of the displace-
ment of the tops of the three stories.

Calculations made in Section 6.2.6 furnish the

time variations of overpressure and dynamic

pressure which are illustrated in Figure 6.44.
Since the building is without openings, the dy-
namic pressure can be neglected. To be
conservatlve,assume the time variation of over-
pressure be represented by the upper curve

having a peak value, Pso' of 1.6 psi and a

positive phase duration, t+ of 0.865 sec.
p'

As Pso is smaller than 10 psi, Equation 8.2.15

can be used to express the time variation of

overpressure, Ps(t), that is:

Ps(t) = 1.6 /1- t / -t/0"8650.865 e (8.2.115)

All Beam on Roof

V_-27

14 B 26 Beams Run

On Second and Third Floors

FIGURE 8.2.64 Frame Three-Story Building Used for Numerical Example



Numerical Example 8-81

The reflected peak pressure is given by (Equation 8.2.3)

r7x14.7 + 4xl.6 7
Preflo = 2xl.6 7x-"_.7_'_.6" j=3.14psi

The velocity of sound, Crefl., is found(from Figure 8.2.6

or Equation 8.2.5) to be

Crefl" = 1130 Hz

Therefore,the value of the clearing time, t c, is (Equation
8.2.4)

3x40
t = -- = .106 sec.

c 1130

The value of shock velocity, Uo, is (Equation 8.2.9 or
Figure 8.2.7)

U° = 1150 Hz.

The displacementfactor, t d, is given by (Equation 8.2.8)

81
t_ = - .054 sec.

I1150d

The time required by the pressure to build up on the back
wall is given by (Equation 8.2.10)

4 x40
.139 _c.

tb 1115

The peak value of the average overpressure on the back
wall is given by (Equation 8.2.11).

Psb (1+(1__)e-_) .915Pbx = T =

where Psb and I3 are obtained from (Equation 8.2.12) as
.193

.193 \ 0.865Psb = 1.6 1 - 0"_'5) e = 1.02 psi

.5 x 1.6
= 14.7 = .055

The time variation of the back wall overpressure is given

by (Equation 8.2.13) (for t>t d+t b = .193 sec.)

Pback(t) = Ps(t) [.9 +.172 (t-.193) 2 ]

The net pressure acting on the building is

p(t) = -_front(t) - _'back(t)

(8.2.116)

(8.2.117)

and the net total loads are given by:

I =

LT I SI p(t)

L' =T 2 S_ p(t)

k' =T 3 S_ p(t)

(8.2.118)

where

= Total load acting on the Ist floor
I/

= Total load acting on the 2nd floorL'
T2

L! = Total load acting on the 3 rd floor
T3

SI = Loaded area of the Ist floor = 105900 inch2

S_ = Loaded area of the 2 nd floor = 79480 inch 2

S_ = Loaded area of the 3rdfloor = 79480 inch 2

The total masses lumped at each floor are:

m I = 4640 Ib sec2/in for the Ist floor

m'2 = 3750 Ib sec2/in for the 2nd floor

m_ = 4160 Ib sec2/in for the 3rd floor

The resistance functions, plotted in Figure 8.2.65, are
calculated as follows:

Ist Floor Consider the column supported asshown in

Figure 8.2.6. The maximum bending moment M is
given by: max

9_LM =
max 3

The stress due to this moment, a, is given by

Q1 L1 y
= .041 Q

e = 311n

where:

I1

y

L 1

Q1

n

= Area moment of inertia of each column of the
first floor = 928 in4

= 7.09 (see Figure 8.2.65)

= Height of the first floor = 192 in.

= Loading on the first floor

= Number of columns = 12.

Assuming a yield stress, ¢'y, of 3800 psi,the maximum

resistance is given by:

(_front(t) can be calculated by using Equation 8.2.6) RIm = ay Q/a = 38,000.041- 930,000 Ibs
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984

930

_---_ 662

i

.R2m co'8/

0_ zz'N'N

J

2 nd Floor

0.492

X3y

1 st Floor

\.o_I '_C'_" 3 rd Floor

I Beam

0.822 0°948 Displacement (inches)

Xly X2y

FIGURE 8.2.65 Resistance Functions for a Three Story

Frame Building

The corresponding yield displacement is given by:

R1 m 930,000

Y K 1 1130.103

.822 in.

!

where K 1 is the spring constant given by (Table 8.2.4).

K;
24xE1(11 x12) 24 x 30 x106 x 928 x12

3 1923
L1

= 1130 • 103
Ib

inch

The maximum resistance, spring constant and yield dis-

placement of the 2 nd and 3 rd floor are the following:

(Figure 8.2.65)

R2m = 984 • 103 Ib

!

K 2 = 2000 • 103 Ib/in.

X2y = .948 in.

R3m = 663 • 103 Ib

= 7ooIb/in.

X3y = .492 in.

At this point the building must be replaced with a spring-

mass model having the equivalent parameters. These are

given by the following values according to Table 8.2.4.

m 1 = m_ K M = 4640x . 41 = 1900 Ibsec2/in.

m2= m_K M = 3750x . 41 = 1540 Ibsec2/in.

m 3= m_K M = 4160x . 41 = 1710 Ibsec2/in.

K 1 = K_ K R = 1130"103x .53 = 600.103 Ib/in.

K2= K_ K R = 2000"103x .53 = 1060"103 Ib/in.

K3= K_K R = 700"103x .53 = 371.103 Ib/in.

Figures 8.2.66 and 8.2.67 illustrate the equivalent

loading functions (the negative phase has been neglected)

to be applied to the spring-mass model ,obtained by multi-

plying Equation (8.2.118)by the load factor K L from
Table 8.2.4 as follows:

I !

LT1 = LTI KL. = SI p(t) K L = 56170 p(t) Ibso

i i

LT2 = LT2 K k = S2 p(t) K L = 42120 p(t) Ibs.

LT 3 = LT3 K L S3 p(t) KI. = 42120 p(t) Ibs.

Ibs 1 175000 (= 56170 • Prefl.)

m

_ Close Approximation to ActuoJ Load

_ I\_ 2nd Approximation of the Load

Time (see)

FIGURE 8.2.66 Equlvolent load Versus Time Curve

for the First Floor

Ibs

o

131000 (: 42120 • Prefl.)

i

_ Close Approximation to Actual Load

.1 T1 .2 .3 .4 .5 .6 .7 .8
Time (see)

FIGURE 8.2.67 Equivalent Load Versus Time Curve
for the Secondand Third Floor

!
.9
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Now, the various methods from Section 8.2.2.3 can be

used to predict the response.

a) Classical Method.

The equations of motion are:

m1_ 1 +(K 1 +K 2) x 1 -K2x 2 = LT1

m2:_2 +(K 2+K 3) x 2-K2x 1 - K3x 3 = LT2

m3_3 + K3x 3-K3x 2 = LT3

(8.2.119)

From Equation (8.2.9(_, replacing the symbols with their
values, the following relationships are obtained:

1900A1_2 - 1660"103A 1 + I060"103A 2 -- 0

1540A23- 1431.103A 2+ 1060.103A I

+ 371.103A 3 = 0

1710A33- 371.103A3+ 371.103A 2 = 0

(8.2.120)

Setting the determinant of the coefficients, A 1, A 2, A 3

equal to zero, the followlng values of g (rad/sec)are found

2 2 2
gl = 73.05 g2 = 382.2 _3 = 1461.34

_1 = 8.53 g2 = 19.55 _3 = 38.3

Putting these values into Equation (8.2.120),the follow-
ing table of modal coefficients con be written:

gl = 8.55 g2 =19.55 _2 = 38.3

A 1 All = .453 A12 = 1.0 A13= .875

A 2 A21 = .65 A22-- .844 A23=-1.0

A 3 A31 = 1.0 I A32= -.995 A33= .166

From Equation (8.2.98), the generalized masses can be
eva luated as fol lows:

M 1 = 1900 (.453) 2 + 1540 (.65) 2 + 1710 (1.0) 2

= 2711 Ib sec2/in.

M 2 = 1900 (I .0) 2 + 1540 (.844) 2 + 1710 (-.995) 2

= 4669 Ib sec2/in.

M 3 = 1900(.875) 2 + 1540 (-1.0) 2 + 1710(.166) 2

= 3043 Ib sec2/in.

From Equation (8.2.99) the generalized force for each
mode can be found.

Fl(t) = .453LT1 + .65LT2+LT3

F2(t ) = LT1 + .844 LT2 - .995 LT3

F3(t ) = .875LT1 - LT2+ .166LT3

For the triangular load (dash - dot llne of Figures 8.2.66
andS.2.67), which has the same impulse as the exact load

for 0 < t < .2, LT1 = 175,000 - 875,000 t

for t > .2, LT1 = 0

for0<t< .2, LT2 =LT3 = 131,000-655,000t

for t > .2, LT2 = LT3 = 0

Now, using Equations, 8.2.1011 8.2.102 and 8.2.103,

the displacements x 1, x2, x3 of the three masses, that is

of the three stories of the building, can be computed.
These values have been plotted vs time in Figures 8.2.57-
58- 59 (dash- dot curve). The same values have been
tabulated in Table 8.2.6 along with the relative displace-
ments which must be known for design purposes.

Response of the building was also computed based on a bi-
linear model of the blast load. The results, plotted as
dashed lines in Figures 8.2.57- 58 - 59, show that the
different shape of the bilinear load has only a small effect
on the response.

The values of x 11 x2, x 3, x2 - x 1 and x 3 - x 2 calculated

for this kind of load are also tabulated on Table 8.2.6.

b) !3 - Method

Equations 8.2.107t 8.2.108 and 8.2.91 can be used to

calculate the value of x 1, x21 and X3o

To avoid stability problems, values of [3 = 1/4 and At =
.005 seconds were used.

The results obtained by applying this method to the three
story frame building (Figure 8.2.64) subject to a triangu-
lar load are also tabulated on Table 8.2.6. The calcu-

lations have been made by means of a high speed Digital
Computer requiring 0.5 hours of machlne time.

c) Impulse Acceleration Extrapolation Method

Equations 8.2.113 and8o2.91 must beused. The results
obtained by applying this method to the example of this
section, have been tabulated on Table 8.2.6.

These calculations were also made on the same high speed
Digital Computerand required 0.12 hours of machine time.
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Someusefulconclusions can be drawn from the example

made in this section using various methods and approxi-
matlons.

As indicated earlier, a triangular load can be used to
simulate a blast load on a conventional building structure.

Furthermore, the impulseacceleration extrapolation method
is recommended to analyze the response to this load. This
method avoids long calculations and gave sufficiently
accurate results for the example selected. This can be

seen by comparing results tabulated in Table 8.2.6 and by
examination of Figure 8.2.57 - 58 - 59 where the dotted
curves illustrate the results obtained using thlsslmple
method.

Rapid Verification of Critical Blast Loads for the

Three Story Building

Given: The building of Figure 8.2.64 and the triangu-
lar loads of Figures 8.2.66 and 8.2.67.

Find: Damage pressure level to avoid plastic defor-
mations.

First of all, the building must be replaced with a spring-

mass system as shown in the previous example.The yield
shear strengths are:

Rml _ 930r000 x . 53

ely S1 + S2 + S3 140,410
- 3.4 psi

Rm2 = 9841000 x .53 = 6.1 psi
a2y = S2+S 3 84,240

Rm3 = 66r300 x . 53 = 8.3 psi
e3y S3 42,120

The static displacement produced by a uniform load of
3.4 psi is as shown in Figure 8.2.68.

The pseudo period corresponding to this configuration is
Equation (8.2.114).

_L: 2_ [1900(.822) 2 + 1540/1.107) 2+ 1710/1.514) 2 -_
f' .53 [1130(.822)2+ 2000(.285) 2 + 700(.407)2]]

= . 825

FIGURE 8.2.68 Displacement Produced by

a Uniform Load of 3.4 psi

Therefore, the ratio of load duration to pseudo period is

.865f' T - - 1.04

.825

From Figure 8.2.63, it can be seen that this corresponds

to a value of Pso/Oy = 0.6 for a response within the

limit (Xmax/Xy = 1).

For the weakest story, (,y is given by (Figure 8.2.65).

= 930t000x .53 = 8.75 psi
ey 56, 170

Therefore, the damage pressure level is given by

= x .60 = 5.2 psi
Pso ey
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TABLE 8•2.6

ABSOLUTE AND RELATIVE DISPLACEMENTS PREDICTED BY MEANS OF VARIOUS METHODS

Time
Sec.

.1

.2

.3

.4

i

Maximum
Value

Analysis
Method

x 1

.300
.309
.295
•295

.531

.589

.529

.530

•370
•470
•373
•272

•194
•283
•188
.189

•532 (.205)*
.597 (.220)*
.529 (.205)*
•530 (.200)*

x2

.346

.357
•344
•345

•736
•809
.732
.732

.607

.748

.605
•605

•238
•372
.235
•234

.740 (.210)*

.832 (.230)*

.738 (.215)*

.737 (.215)*

x 3

.330
•340
.330
.330

1•024

1•104
1.020
1.022

1.177
1.379
I•172
1•172

.301

.529

.297

.295

1.247 (.265)*
1.417 (•275)*
1•241 (.265)*

1.241 (.265)*

x 2 - x 1

.O46

.068

.049

.05

.205

.220

.203
•202

.237
•278
.232
•233

.O44

.089

.047

.045

.238 (.290_

.278 (.300)*

.234 (.285)*

.235 (.290)*

x 3 - x 2

- .016

-.012
- .014
-.015

.288
•295
.288
.290

.570
•631
.567
.567

•063
•147
.062
.061

.581 (.285)*

.635 (.290)*

.578 (.290)*

.578 (.280)*

Triangular load, classical method

Bi-linear load, classical method

Triangular Ioad_ B-Method

Triangular Ioadt impulse acceleration method

Time of occurrence (sec.)
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8.3 RESPONSE OF GROUND STRUCTURE TO

SONIC BOOM LOADS

Aircraft traveling at supersonic speeds generate an over-

pressure wave called a sonic boom. It propagates away

from the aircraft at sonic velocity and, upon reaching the

ground, results in an N shaped transient pressure load

on ground structures. Section 1.3 of Chapter 1 gives a

detailed outline of the general characteristics of this

sonic source of dynamic loading. The dynamic load im-

posed on buildings by this overpressure wave is illustrated

in Figure 8.3.1. The incident overpressure wave will be

modified by diffraction effects in the same manner as for

the loads developed by blast waves. Thus, the methods

outlined in the preceding section of this chapter could be

applied if it were necessary to make a detailed investiga-

tion of the dynamic loading on a building. Such anap-

roach has been reported in Reference 8.3.2, and includes

both the positive and negative phases of the transient

load. This complex loading will consist, initially, of a

pressure loading on the wall facing the shock wave, and

will have an initial value of approximately twice the

free-field overpressure. Then the entire building will be

loaded, first by a positive pressure, then by a negative

pressure. Finally, a negative pressure Ioadwill appear on

the back wall of the building.

Applied Forces

FIGURE 8.3.1 Basic Characteristics of Load Imposed on Buildings
bya Sonic Boom (from Reference 8.3.1)

The sonic boom load on gound structures differs from

blast overpressure loads in three important aspects

The sonic boom wave travels along the ground with

an approximately constant intensity,coverlnga path,

as wide as 10 to 40 miles. (See Figure 6.48, page

6-40.) This contrasts with the relatively rapid reduc-

tion in overpressure as a function of distance from a

fixed explosion source.

The maximum overpressure in a sonic boom wove can

be controlled, within a factor of approximately 2,

by imposing specific operational procedures for fllght

speed and altitude on the aircraft. For example,

proposed regulations to be placed on the SST com-

mercial jet transport would limit sonic boom over-

pressures to a nominal value of 2.5 ib/ft 2 during

transition to cruise conditlons.(Reference 8.3.3).

For the same positive phase duration and peak over-

pressure, in an ideal sonic boom or blast wave

striking a wall face on, the maximum dynamic

displacement of the structure in anysingle mode will

be greater for the sonic boom N-wave than for the

blast wave. This is illustrated in Figure 8.3.2 by

the displacement shock spectrum for the N-wave

and a triangular pulse simulating the blast waves.

(The effects of reflected overpressure are assumed to

be the same in each case.) The displacement shock

spectrum represents the peak dynamic response of a

single mode relative to its static displacement for the

same peak overpressure. This relative response varies

with the product of the natural frequency of the mode

f and the duration T of the positive phase.
n

3.0

_2.0

l0

o

/

Sonic
Boom

"%_ t,.
o T
Blast
Wave

0 0.5 1 1.5 2 2.5

fn T - Natural Frequency x Positive Phase Duratlor_

FIGURE 8.3.2 Displacement Shock Spectrum for Sonic Boom
N-Wave and Triangular Blast Wave (See
Figures 3.10 and 3.34 in Chapter 3)

8.3.1 TYPE OF BUILDING DAMAGE CAUSED BY

SONIC BOOMS

The sonic boom exposure from normal operations of super-

sonic aircraft must necessarily be controlled in order to

prevent widespread building damage.

8.3.1.1 Primary Structure for Industrial Buildings

It will not be necessary to consider a sonic boom as a

sourceof significant design loads on primary load-carrying

members of industrial-type structures, in one reported

case, for example, an accidental exposure of an aircraft

terminal building to a high intensity sonic boom from a

close fly-by of a fighter aircraft did not cause any mea-

surable permanent damage to the primary structure of the

building. (Reference 8.3.4.) However, very extensive

damage resulting in repair costs of about $ 3,00,000was

incurred on the secondary structure. This secondary type

of damage included:

• Shattering of all glass panes facing the on-coming

aircraft.

• Dislodging of curtain wall panels and distortion of
attachment brackets.



Correlation of Measured and Predicted Dynamic Stresses in Residential Structure 8-87

• Dislodging of various components of the built-up

roofing.

• Permanent distortion of doorways and transoms.

• Extensive cracking and dislodging of sections of

plaster in external soffits.

• Permanent distortion of aluminum grid-work in a

large part of the conventional suspended-ceillng

system.

This extreme example illustrates the principal concern for

sonic boom loads on buildings- the potential damage to

structural elements, particularly those of a brittle nature.

Normally this type of damage is more likely to occur in
residential structure. The conclusions developed in the

following sections relative to residential structure will

apply, in general, to industrial type structure. One

exception occurs for acceleration loads imposed on roof-

mounted equipment in industrial buildings with large flat

roof structure. This problem is treated in Section 11.7.5,

page 11-28.

8.3.1.2 Residential Structure

Because of the less stringent design requirements for later-

al loads on residential walls, and the corresponding

methods of construction, this type of structure is more

susceptible to damage from sonic booms. However, min-

imum wind load design requirements generally exceed 10

Ib/ft 2, corresponding to a nominal 55 mile per hour

wind. (Reference 8.3.5.) Thus, except for uncontrolled

exposure to a sonic boom, major sonic boom damage to a

residential building in .qood repair, is not expected.

However, the type of wood frame construction which is so

widely used for residences is susceptible to deterioration

over a long period of time due to:

• Foundation setting

• Swelling or warping due to humidity changes

• Frame distortion due to changing temperature.

Thus, as suggested in Figure 8.3.3, there will be a cer-

tain percentage of residences in such a condition that

any significant, dynamic load (even a thunderclap) would

be sufficient to cause at least minor damage. Such struc-

ture would, therefore_ be subject to damage by sonic

booms of almost any measurable intensity. However, this

type of damage is generally uncontrollable and, as sug-

gested_ inevitable.

The most common type of damage claimedto be caused by

sonic booms is shown by the data in Figure 8.3.4 based

on experience by the U.S. Air Force. (Reference 8.3.1).

The ability to validate such damage claims, however, is

severely limited without more basic and objective infor-

mation on dynamic response characteristics of buildings to

sonic booms.

Time

(a) Hypothetlcal Increased Damage Rate of
Residences Due to Aging

Skewed //_

| Distribution _" _ Ideal
" / Due to Older _ff J \ Distribution

Threshold of Damaging Stress

(b) Hypothetical Distribution, Due to Aging, of
Threshold Levels for Damaging Stress

FIGURE 8.3.3 Illustration of Susceptibility of
Older Residential Structure to

Damage by Any Significant Stress

Plaster
Cracks

Broken
Windows

Masonry
C racks

Broken Tile
and Mirrors

Broken
Bric-a-Brac

Damaged
Appliances

Miscel laneous

////

0 10 20 30 40 50

Percent of Total Cases

FIGURE 8.3.4 Classification of about 3000 complaints
Due to Sonic Boomsas Recorded in Air

Force Files. (The damage reported in
the complaints was not necessarily vail-
dated). (Data from Reference 8.3.1)

8.3.2 CORRELATION OF MEASURED AND

PREDICTED DYNAMIC STRESSES IN

RESIDENTIAL STRUCTURE

Results from measurements of structural response to normal

sonic booms have been reported in References 8.3.1 and

8.3.7. These included stress measurements in residential

frame structures exposed to sonic boom overpressures (from

about 0.7 to about 4.8 Ib/sq.ft) generated by a super-

sonic aircraft. The duration T of the N-wave for these

tests ranged from about 0.06 to 0.10 seconds.
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Typical strain time-histories measured at various locations
on a wood-frame structure, as reported in Reference 8.3.1,

are illustrated in Figure 8.3.5. The strain measurements
rafter and vertical stud, indicated in the figure have the

approximate appearance of a slngle-degree-of-freedom
system response to excitation by a transient N-wave.
Additional complexity in the time history is due to re-
sponse in higher modes.

P (t)

_'_......_..f Sonic Boom Pressure

_ Rafter

Vertical Stud

Small Window

Time

FIGURE 8.3.5 Typical Strain Time-Historles Measured in

Residential Structure Exposed to a Sonic Boom

froma Bomber Aircraft. (T-_0.1 second).

(Data from Reference 8.3.1)

The multl-modal response is even more apparent for the
strain record measured on a small window. A thorough
analytical study of the multl-modal response of panels to
a sonic boom N-wave has been reported in Reference
8.3.8.

8.3.2.1 Correlation of Measured Strain With Theoretlcal

Shock Spectrum

Assuming a single degree-of-freedom model can be ap-
plied, the following method is used to provide a rough
estimate of the peak dynamic strain in structures exposed
to sonic booms. The method is based on the peak dynamic
response of a single degree-of-freedom system to a tran-
sient N-wave.

• As shown in Table 12.15, Chapter 12, the ul-
timate static load for failure of a typical wood
frame wall is about 1.5 psi. Identify this failure
as P

SC"

• From this same table, two additional parameters
are obtained for typical wood framing materials:

- Fiber strength in Bending, a 26000 psi
U

- Youngs Modulus (minimum) E = 1.2xl06psi

Assume a stress concentration factor F of 2 for
C

static failure of such a wall by a uniform lateral
load.

Assume the strain e for ultimate static failure, is
SC

given by
O

Ue = _ = C p (8.3.1)
sc FcE sc

where C

where

= the proportionality constant relating
strain to pressure load.

(7
u 6000

IcE Psc (2) (1.2 x 106) (1.5)

= 0.0017/psi

Thus for a transient N-wave load with a peak side

on pressure (including reflection) Po' assume the

peak dynamic stress a is given by (neglectingmax

Poisson coupling effects)

emax -_S (fl t) • C E Po (8.3.2)

S(flt) = the displacement shock spectrum for
the N-wave illustrated in Figure
8.3.2. This defines the peak dynamic
response for a single degree--of-freedom
system relative to its static response for

the same peak pressure Po (See Figure
8.3.2)

Thus, the ratio of peak stress a to peak pres-max

sure Po in the reflected N-wave is estimated to be

(7

max _ S (f T) C E=
Po n

2x 103 • S(flT)

(8.3.3)

The measured peak strain data reported in Reference 8.3.7
were converted to a peak stress by multiplying by an E of

1.2 x 106 psi. The resulting values are shown in Figure

8.3.6 by the non-dimensional ratio amax/P ° as a function

of the product fl T. The predicted value fOr amax/Po,

based on equation 8.3.3, is also shown in this figure and
forms an approximate upper bound for the measured data.
Thus, this semi empirical method appears to offer a rea-
sonable basis for initial estimates of the maximum peak
stress in residential structure for sonic boom loads. The

proportionality constant C can be estimated from equation
8.3.1 for other types of wall or roof structure using ap-

propriate values for the ultimate failure load Psc' max-

imum bending stress asf,modulus of elasticity E, and stress

concentration factor F . Values for the first three para-c

meters are given for a wide variety of building wall con-
figurations in Table 12.13, Chapter 12.

For typical wood frame structure, the maximum dynamic
stressfor sonic boom loads is estimated from equation 8.3.3
as fol lows:

For C = 2000/psi

and S(fnT)ma x "_ 2 for(fnT)> 0.4
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then a - 4000 p -psl (8.3.4)
max o

for Po in units of Ib/ft 2, this is

ama x = 28Po(ib/ft 2) -PSi (8.3.5)

It must be recognized that this can only be considered a

rough estimate of the upper bound for bending stresses in

the structural frame. Nevertheless, this estimated maxi-

mum value indicates that the stresses induced by con-

trolled sonic boom loads will be well below normal llve-

load design stresses of approximately 1000 psi for framing

members. It will be shown later that light damage can

occur to ceiling and wall panels for sonic booms only

slightly higher than the expected maximum operational
limits for an SST aircraft.

8_
i

x

r_

/Z-

O O

10 3

102_

0.5 0.1

,, _w_!Stod
_ la J- J O Ceiling Joist

1.0 5.0

fn T - Natural Frequency x Duration of Positive Phase

FIGURE 8.3.6 Correlation of Measured and Predicted Value for

Stress Observed in Residential Structure When

Exposed to a Sonic Boom N-Wave (Data from

References 8.3.1 and 8.3.7)

8.3.2.2 Correlation of Measured Strain and Pseudo-

Velocity

As shown earlier in this Chapter and in Section 3.3.6.6

of Chapter 3, the peak modal strain in a structure vibra-

ting harmonically with a sinusoidal-like mode shape is

qn

en (max) = K --
s c L

(8.3.6)

where
q_'n = modal velocity amplitude

K = shape factor varying from 1.2 to

s 1.8 for plates

c L = longitudinal wave velocity.

This expression might also be used to provide a rough es-

timate of the peak dynamic stress for a transient load in

terms of a pseudo-veioclty _n(mox)/2 _ fn where q"_n(max) =

peak transient acceleration amplitude of the rig mode

with a natural frequency f . This is not an exact expres-
n

slon for velcoity since the motion is not a steady state

harmonic motion, hence the term pseudo-velocity. Ex-

perimental data were available from Reference 8.3.7to

chech this hypothesis. Values of peaks from strain and

peak acceleration increased at five locations in a resl-

dental structure under a sonic boom load are shown in

Figure 8.3.7. For a typical value of c L in wood of

1 5 x 105 in/sec, the proportionality constant K rela-
" S

ing strain and pseudo-velocity varied from 0.55 to

0.88, which is approximately 1/2 the theoretical value

for slnusoidal vibration of a plate (see Section 3.3.6.6.)

Considering the many simplifying assumptions made in this

case, this order of agreement is reasonable. Without

additional supporting data, the results shown in Figure

8.3.7 are considered as indicating only approximate

trends in the relationship between peak stress and pseudo-

velocity of structure.

$

.u

i

E

10
I I I I

// Ck_ 1"5 X.]05 i n/sec

/ / O Ceiling Joist

/_/" A Wall Stud

/_ 0 Rafter

I I I I
0 0.5 I .0 1.5 2.0 2.5

Xmox

Xrnax = _ - Pseudo-Velocity- in/sec

FIGURE 8.3.7 Correlation of Maximum Strain and Pseudo-

Velocity Measured for Three Sonic Boom

Tests at Five Locations on a Residential

Structure (Data from Reference 8.3.7}

8.3.2.3 Correlation of Predicted and Observed Damage
In Residential Structure For Sonic Boom Loads

Test data are reported in Reference 8.3.9on light damage

thresholds for sonic boom overpressures for residential

structure. These are summarized in Table 8.3.1. The

tests were conducted with a supersonic bomber aircraft

generating sonic boom pressures up to 30 Ib/ft 2 with a

typical positive phase duration T of about 0.16seconds.
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TABLE8.3.1

THRESHOLDLEVELSOF SONIC BOOM OVERPRESSURES

FOR MINOR DAMAGE TO RESIDENTIAL STRUCTURAL

WALLS AND CEILINGS(I)

Overpressure

Type of Damage lb/ft2

6.5- 10Cracks in Plaster on Wood Lathe

(Poor Quality Construction)

Nail Popping - 1/2 inch

Gypsumboard

Paint Flecks on Old GypsumBoard

Falling Bric-a-Brac and Rattling

Dishes

10.3

9.0

6-11

(1) Data from Reference 8.3.9

Sonic Boom Positive Phase Duration

Based on typical frequencies for residential walls and

ceilings of 8 to 15 Hz(Reference 8.3.1),the charac-

teristic parameter f T would range from about 1.3 to

2.4, well abovea nvalueof 0.4. Thus, a dynamic re-

sponse factor [S(fnT ] of 1.5 to 2 times the static re-

sponse is expected. Assuming a minimum reflected

pressure of 6.5 Ib/ft 2 (i.e., grazing incidence across a

roof), applying Equation 8.3.5, an estimated peak stress

a in the wood frame structure would be
max

a "-- (28)(6.5) = 180 psi
max

For a modulus of elasticity of 1.2x106psi, this would

correspond to a strain on the frame members of

max ,-- amax/E = 150 x 10 -6 P in/in

Data are available on static failure stress in gypsum plas-

ters and cement mortars from a series of carefully con-

trol led tests on laboratory samples,as reported in Reference

8.3.10. These data are summarized in Table 8.3.2. As-

suming the same magnitude of strain estimated above is

applicable to the cement or mortar---"_n plaster or gypsum

board,the estimated peak stresses would be given by a
max

"" _max (Eplaster). In this way, the following values of

stress are estimated.

• For ordinary Portland Cement Mortar - ama x = 740 psi

• For early high strength Portland -a -,- 810 psi
max

Cement Mortar

• For Uhracal 60 gypsum plaster - amax,,- 290 psi

• For Hydrostone gypsum plaster -ama x = 360 psi

TABLE 8.3.2

STATIC AND DYNAMIC PROPERTIES OF GYPSUM

PLASTERS AND CEMENT MORTARS. (1)

Material

Modulus of

Density Elasticity (2)

Ib/in 3 10-61b/in 2

Ordinary Portland I
Cement Mortar

High Early 0.0830

Strength Portland

Cement Mortar

Uhracal 60 0.0570

Gypsum Plaster

Hydrostone 0. 0609

Gypsum Plaster

0.0813

Static

Tensile

Strength (3)

Ib/in 2

4.93 546

5.41 654

1.90 602

2.40 981

(i)

(2)

(3)

Data from Reference 8.3.10

Calculated from dynamic tests of pulses transmitted

2
through Bar of Material, E = pc L

Based on 42 to 60 test specimens per material.

Deviation of results was 18.5 - 23% of mean

values . Dynamic strength for a load duration of

0.2 milliseconds was approximately the same as

static strength for Portland Cement mortars and 63

to 70% greater than the static value for Ultracal

and Hydrostone.

Comparing these numbers with the measured static failure

stresses noted in the last column of Table 8.3.2, it

appears that failure would be expected in 2 out of the

4 materials. At best, these order of magnituderesuhs

indicate that estimated values for a predicted damage

stress for plaster and gypsum board fall in a range where

the type of damage noted in Table 8.3.1 is feasible. The

actual failure stress for such materials, in-place, is known

to vary widely due to a large number of factors involving

construction methods, states of repair, temperature, hu-

midity, etc. (Reference 8.3.1.)

To conclude this section on wall damage by sonic booms,

Available experimental data on dynamic stresses are

roughly predictable by simple theory

The combined experimental evidence and theoretical

predictions indicate that for houses in good construc-

tion, sonic boom overpressures within the proposed

limit, would not cause dynamic stresses in excess of

failure stresses for residential wall and ceiling
materials

A certain percentage of homes of low quality con-

struction or in disrepair may be expected to suffer

noticable damage from any significant sonic boom

exposure.
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8.3.3 WINDOWDAMAGEBYSONICBOOMS

Thefailureofwindowsbyasonicboomrepresentsthemost
criticalformof probabledamagedueto thedangerof
secondaryinjuryeffectsbyfallingglass.(SeeSection
10.6.3,page10-20for a discussionof injurycriteria
forglassmissiles.Theprincipalresultsfromthesestudies
arebrieflysummarizedinthissection.

8.3.3.1 Static Failure Strength of Glass Windows

Glass is classified as a brittle material with a yield

strength very nearly equal to its ultimate strength. The

term, breaking strength, is commonly used to identify the

failure stress on glass. This breaking strength varies over

a range of about 3000 to 30,000 psi depending on the

type of glass, age surface condition, and load duration.

Typical values are listed in Table 8.3.3 for large panes

with normal surface quality for several types of loads.

TABLE 8.3.3

TYPICAL BREAKING STRENGTH OF LARGE PANES OF

GLASS WITH NORMAL (AS GLAZED) SURFACE

QUALITY AS A FUNCTION OF THE TYPE OF

LOADING. (103psi)

Type of

Loading

Sonic Boom

Wind Gusts

Fastest Mile

Wind (1)

Long Term

Load

Duration

0.1 sec

5-10 secs

1 rain

2 hrs-Indef.

Regular Heat Fully

Plate Window Strength- Tem-

ened pered

6.0 6.6 15.0 30.0

5.5 6.05 13.75 27.5

4 4.4 10 20

3 3.3 7.5 15

1) Fastest mile wind is average wind velocity aver

1 minute period.

2) Data from Reference 8.3.5

The important point brought out by this table is that glass

will tend to break at a lower stress for longer duration

loads with the same intensity. The net result is that

"fastest mile" wind loads (i.e.- the steady dynamic pres-

sure for the average wind velocity over a 1 minute period)

will generally represent the design load condition for

large windows. Minimum design wind loads normally

exceed 10 Ib/ft 2. Assuming a maximum probable sonic

overpressure of 5 Ib/ft 2 and a 2 to 1 dynamic magni-

fication factor, an approximate upper bound for the

equivalent static load would be 10 Ib/ft 2. However,

according to Table 8.3.3 the breaking strength of glass

for this type of load will normally exceed that for a 10

Ib/ft 2 wlnd load.

Under laboratory conditions, the breaking strength of the

same type of glass having the same surface quality will

vary in the manner shown in Figure 8.3.8. The actual

breaking strength for window panes, as installed, will be

lower than indicated by Figure 8.3.8 due to effects of

superimposed in-plane loads or stress concentrations

around surface defects. In fact, the location, number,

and nature of surface defects is generally the controlling

factor which, limits the breaking strength of windows.

(Reference 8.3.5.)

_ 4O

30

E

,_.2O

E

i i I i

Mean = 8400 psi

Std. Deviation ±1865psi

10 15

Breaking Stress x 103 psi

2O

FIGURE 8.3.8 DistributlonofBreaklng Strength of 1/4"

Polished Plate Glass Revealed by Concentric

Ring Bending Tests Carried to Destruction

(Data from Reference 8.3.5)

8.3.3.2 Failure Strength of Windows for Sonic Boom

Loads

The inherent variability of the breaking strength of glass,

coupled with random variations inthe sonic boom N-wave

for a given aircraft, result in an appreciable variation

in sonic boom damage for a given type of window design.

This is illustrated by Figure 8.3.9 by the data from one

series of controlled tests of sonic boom damage for con-

ventional 3ft x 3ft window panes employing double

strength (1/8th in.) and single strength _ 0.09 in.) .

No failures were observed for overpressures less than 20

Ib/sq.ft. Even at overpressures in the range of 80-100

Ib/sq.ft., approximately 35% of the windows survived

without failure. On the other hand, results from other

tests have shown that windows which were intentionally

Number of
APo' Windows

Ib/sq ft Exposed

0
O-20

24

41
20-40

41

22
40.-60

35

16
60-80

11

12
80-100

12

Airplane A _'/7777_ B I_

_///////////]

//////////////////////J

C///////////////////////A

I I 1 I 810 I0 20 40 60 I00

Window Failures - Percent of Number Exposed

FIGURE 8.3.9 Summary of Results from Window Breakage

Tests (Data from Reference 8.3.10)
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cracked before exposure to a sonic boom would fail at

overpressures as low as 7.6 Ib/sq.ft. (Reference 8.3.9).

Correlation of Sonic Boom Window Damage With Theory

Results from a number of different test programs on sonic

boom damage of windows have been summarized in Refer-

ence 8.3.11. The results are shown in Figure8.3.10by
2

a plot of a normalized loading parameter Po(a/h) as a

function of the product f1.1 T where a/h is the panel

span to thickness ratio, f1.1 is the fundamental natural

frequency, and T is the duration of the positive phase.

A theoretically predicted value for the boundary between

damage and no damage, derived in Reference 8.3.2, is

also shown. This is similar to the inverse of the shock

spectrum curve for the N-wave, shown in Figure 8.3°2,

with the one variation that the curve in Figure 8.3.101s

derived for an unsymmetrical N-wave with a positive

phase equal to 1/6 th total duration. (Reference 8.3.11).

A critical examination of the data and test procedures for

the results shown in Figure 8.3.10 indicate that a more

conservative value is desired for this damage criteria llne.

This is derived as follows.
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FIGURE 8.3.10 Summary of Window-Glass Breakage Experienced

Due to Sonic Booms. Load Specified by the Nor-

malized Parameter Po (a/h)2 where a/h is the

Ratio of a Side Length (a) to Thickness (h).

(Data from a Summary in Reference 8.3.11)

Revised Criteria For Sonic Boom Damage For Windows

For the tests involving failure by sonic boom, identified

in Figure 8.3.10 by the filled data points, a static load

test was also reported in Reference 8.3.11. The resulting

non-llnear load-deflection curve is shown in Figure 8.3.11

where failure is again identified by the filled data points.

1.c

, 0._

0.6,

041

E

'_ 0.2

_ o

o

I - Failure

I
50 100 t50 20O

Static Pressure - Ib/sq ft

FIGURE8.3.11 Static Load - Deflection Cul_e for 3ft x 3ft x 1/8 in

Window Pane (Data From Reference 8.3.11)

According to the procedures outlined in Reference 8.3.12,

the stress at failure for this non-linear static response is

estimated to be about 8000 psi. The recommended design

value for breaking strength for regular window and plate

glass for sonic boom loads is about 6300 psi, according

to Table 8.3.3. Thus, one reduction factor to be applied

will involve reducing the criteria to allow for a more

conservative breaking strength.

Further examination of the procedures employed for the

sonic boom tests reveals that a 16 cu.ft, sealed cavity

was placed behind the panel to insure a positive pressure

differential across the window pane. However,this has

the effect of increasing effective stiffness of the panel

due to the added "acoustic stiffness" of the back-up

panel. The computed relative change in effective panel

stiffness is 1.77 with the cavity. A similar stiffening

effect was experimentally in Reference 8.3.13. The net

effect of this added stiffness would have been to require a

correspondingly higher overpressure to achieve the ex-

pected failure stress. This_ then, provides a second cor-

rection factor which would tend to reduce the damage

criteria level indicated in Figure 8.3.10.

Combining these two corrections_ the original criteria for

the parameter Po(a,/h)2 at 1.8 x 10 6 Ib/sq .ft. (for values

of fl.lT > 0.6) is reduced to the following.

No Sonic Boom Damage For Windows Expected For

Po(h )2 <_ 0.8x 10 6 Ib/sq.ft.

and T > 0.6

where

f1.1

Po = sonic boom overpressure - Ib/sq.ft.

a = characteristic side of approximately

square window

h = glass thickness

f1.1 = fundamental frequency - Hz

T = duration of positive phase.
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For values of sonic boom overpressure within the proposed
linits for the SST and for windows whose length to thick-

ness ratio meets standard building code requirements. This
criteria indicates that normal quality windows should not

be damaged.

8.3.4 VALID DAMAGE CLAIMS FOR SONIC BOOM
DAMAGE

So far, the conclusion would be that sonic boom damage
would not be expected to occur, either for residential

structure or windows_ in good repair.

This last qualification, however, can notalways be met so
that, in fact, some claims for sonic boom damage have

been judged valid by the United States Air Force. This
experience is summarized in Table 8.3.4 and shows that
every sonic boom generated approximately one valid
claim per 300,000 houses exposed. This is a small per-
centage indeed in terms of the usual engineering accuracy
for estimating the probability of damage and tends to val-
idate the conclusion stated above.

TABLE 8.3.4

DAMAGE CLAIMS RESULTING FROM

SONIC BOOMS (I)

Test Areas: Chicago, Pittsburgh, Milwaukee
St. Louis, Oklahoma City
St. Louis (2nd Exposure)

Number of Claims Directly Proportional to Number
of People Hearing Boom and Number of Booms

a. Average claim per 100,000 people per boom
varied from 1.2 in Pittsburgh to 0.77 in
Oklahoma City.

b. Census shows three people per resldence;therefor_
there was about one claim per 30,000 houses.

c. Personal investigation of claims by engineers
indicates that 5% to 10% of claims reflect

true "trigger" effects from sonic booms; there-

fore, one sonic boom caused one valid damage
claim per 300,000 houses.

d. For each 100 valid claims the damages were as
fol lows:

Struatural damage 0
Wallboard and nail popping 1
Plaster cracking and crack aggravation 5
Fallen sectians of plaster ceiling 10
Bric-a-brac damage 34
Glass window damage 50

(I) From Reference (8.3.14). Based on information

furnished by Engineering Services, Air Force
Logistics Command, Wrlght-Patterson Air Force
Base, Ohio. These results are primarily for B-58
Overfllghts with mean peak overpressures of about
1.7 psf (altitude 42,500 feet).
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CHAPTER 9

ARCHITECTURAL ACOUSTICS AND

VIBRATION CONTROL FOR

GROUND FACILITIES

9.1 INTRODUCTION

An essential step in the design of buildings to be located

near high intensity noise sources is to provide adequate

protection for both personnel and delicate equipment

against excessive noise levels. It is a well known fact

that high levels of noise can be harmful to people, but

even if the harmful level is not exceeded, the proper func-

tion of the building can often not be realized. This is

certainly the case where speech communication between

personnel is concerned and, more seriously, where audi-

ble working systems are in operation. In addition, there

are some tasks which involve concentration that require

low levels of noise in order to obtain high efficiency. To

satisfy these requirements, it is necessary to incorporate

acoustical treatments in the design of building. If this is

not done from the outset, remedial treatments may be

needed which are frequently ineffective and costly.

The same problems are encountered if a noise source, such

as a launch site, is placed in the vicinity of residential

housing where the major problem is one of annoyance to

a community. It is not safe to assume that if the houses
are far removed from the source there will be no noise

problems, because climatic effects can radically alter the

sltuation. Therefore, noise intrusion into homes must also

be considered when evaluating a site location for rocket

test facilities.

Another important consideration concerns the housing of

equipment near to a launch site. It is often the case that

delicate and essential components are situated in very

intense noise fields, where the resulting high level of

vibration can easily cause damage and jeopardize the

Noise k
Source

complete launch procedure. This equipment has therefore

to be carefully mounted on antlvibratlon supports and
shielded from direct acoustical fields.

The System Approach

A noise control problem can essentially be divided into

three sections:

(a) The source of the noise where all airborne and

structureborne vibrations are initiated_

(b) The path of noise propagation from the source, and

(c) The receiver, which includes personnel and any

other objects that are affected by the noise.

Sections (a) and (b) have been discussed elsewhere in this

manual; this particular chapter concentrates on the local

transmission of sound and vibration within a receiver. The

receiver system can be most analyzed by means of the

schematic diagram as shown in Figure 9.1 .

Here, the source, paths and receivers are designated as

impedances, the flow of acoustical power being analogous

to electrical power. The direction of power flow is shown

by arrows. With such a diagram, it is posslbleto eliminate

some of the transmission paths by inspection.For example,

if the effective impedance offered by the walls

is increased, less power may reach the receiver. However,

since this is in parallel with the flanking paths, which

may have a lower effective impedance, the net result may

be negligible. If the approach is continued in this manner,

the important sections may be pln-pointed prior to any

practical alterations.

The following sections in this Chapter are concerned with

the above importances and include an investigation into

the effects of absorbent materials on sound levels, the

transmission loss of structures, the attenuation of ducts

and the isolation of vibrations. To complete the subjecb

sections on noise and vibration control are included, in

which the results from previous sections are combined in

the analysis of some practical situations.

._ Airborne I
Sound

IPropagation - w

kTransmission

Airborne Via k
Walls and

Ceiling

Floor

Vibration
_1

l

Personnel

Equipment

FIGURE 9.1 Schematic Diagram of the Transmission of Sound to a

Receiver by Various Paths
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9.2 ABSORPTION

In order to determine the sound levels produced in build-

ings, it is necessary to have a knowledge of the mechan-

ism of sound transmission through structures together with

the effects of absorption. Both factors must be considered

together in design optimization for noise control; sound

absorption determining the level of sound in the room for

a given sound power input, and transmission loss control-

ling the fraction of external sound which enters the room.

This section develops thebasic factors related to the

sound absorption properties of various material configu-

rations, and their utilization in controlling the sound

level in a room.

9.2. I ROOM ABSORPTION

The main action of an absorbent material is to reduce the

sound energy that is reflected by a surface. The applica-
tion of such a material to the surfaces of an enclosure

will reduce the sound energy inside the enclosure, but

the magnitude of the reduction depends on the typeand

quantity of material used together with the mannerand

position of mounting. Thus, for a given sound energy

source, either inside or outside the enclosure, the noise

level and hence the interference with personnel activi-

ties is reduced by room absorption. This can result in

improved safety levels for personnel, reduced noise levels

in equipment rooms, and an improved work environment

for speech communication.

in practice, all materials used in buildings absorb a cer-

tain proportion of the incldent-energy, but to obtain the

optimum acoustic conditions requlresaknowledgeof the

absorption mechanism so that the correct material can be

chosen.

The absorbing material is usually placed on the surfaces

of the enclosure, although this is not mandatory nor is it

always the best solution. For example, in an extremely

large enclosure with an abundance of wall fittings, or

where a suspended ceiling is impractical, it is often

better to use suspended absorbers closer to the source of

sound. They are also extensively used in ventilating and

heating ducts for attenuation purposes, and in certain

wall constructions to increase the transmisslon loss. These

two appllcations will be discussed more fully later in this

Chapter.

9.2.1.1 Reflection and Absorption

At a sufficient distance away from a noise source situated

in free space (i.e., beyond the near field) the sound

waves propagate radially. |f an obstacle of infinite lat-

eral dimensions is placed in the path of these waves then

a part of the energy incident will be reflected, the object

acting as an acoustic mirror and the waves obeying the

same laws as met in optics. It is simpler for the analysis

at this point to place the obstacle at a distance from the

source such that the radiated waves can be assumed to be

plane waves. The principle of the conservation of energy

can then be applied at the obstacle resulting in the fol-

lowing expression:

E. = E + Et + EA (9.1), r

where E represents the energy in the incident (1), re-

Flected (r) and transmitted (t) waves and EA represents

the energy lost in transit through the obstacle. This can

be re-written as

Er Et EA

- E. +-C. +-C.
I I I

With the definitions

E
2 = __Lr

r E.
I

where r is the amplitude reflection coefficient, for

normal incidence,

E
f

1"
E.

I

where 1" is the energy transmission coefficient(the trans-

mlttivity), for normal incidence

and
EA

OL = --
E.

I

2
then 1 = r + 1" + c_ (9.2)

a_ is then termed the normal incidence absorption coeffi-
cient for the obstacle and is defined as the ratio of ab-

sorbed to incident energy. Equation (9.2) can be applied

to any absorbent material. In most cases the absorbent is

placed inthe vicinityof a fairlyrigld structure so that the

transmission coefficient is very small. Under these condi-

tions,
2

c_ = 1 -r (9.3)

It is obvious from the definition of c_ that it can never be

greater than unity. This is a general expression since the

mechanism of absorption is immaterial.

From the above expressions, it can be seen that

E = (I-4 E.
r i

In an enclosure, the reverberant sound energy is dependent

on the strength of the reflections from the surfaces. Thus,

the energy, and hence the sound level, can be reduced by

placing an absorbent materia l on the surfaces; the reduc-

tion in level being dependent on the value of ac
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9.2.2 ABSORPTION MECHANISMS

What actually happens when a sound wave is incident on

an absorbing surface depends on the mechanism of absorp-

tion. However, all absorbents have one thing in common

in that they convert the sound energy into heat. It is now

necessary to see how this transformation is obtained for

various types of treatment.

9.2.2.1 The Porous Absorber

The porous type of absorber is a material which has a mul-

titude of small interconnecting pores. In passing through

these poresr the kinetlc energy of the sound wave is partly

transformed into heat due to frictional and viscous resis-

tance. As the particle velocity increases with frequencyr

the energy lost due to friction also increases, together with

the absorption. The general character of the absorption

curve is shown inFigure 9.2 where it can be seen that low

values are obtained at the lower frequencies.

1.0

0.g
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.<
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FIGURE 9.2 Absorption Characteristic of 2" Fiberglass with

Rigid Backing

Flow Resistance

One of the important factors determining the amount of

absorption available is the so-called "flow resistance" of

the material to a direct alr-flow, defined as the ratio of

the pressure drop across the sample to the velocltyof the

air passing through it, and measured in rayls.The relation-

ship between flow resistance and absorption coefficient

is shown in Figure 9.3. If the flow resistance is too high,

energy will not flow through the material, if too IOWr the

absorption in the interior will be reduced_ necessitating a

thick layer. There is thus an optimum value of the flow

resistance for each thickness of the material, as shown in

Figure 9.3. If a thick layer of porous absorbent is placed

in contact with a rigid wall then the absorptloncoeffi-

aient is determined mainly by the amount of energy re-

flected at the front surface, since all other energy is

absorbed in the material. In the case of athin layer,

howeverr the coefficient is reduced by the reflection of

energy from the rigid surface. Thus_ to obtain high

absorption at the low frequencies requires a thick material

having low flow resistance. This is demonstrated in

Figure 9.4where the influence of thickness on the absorp-

tion coefficient can be seen. In order to minimize reflec-

tions at the front surface of the absarbent_ it is preferable

to choose the flow resistance to be the same as the

impedance of the sound field present (see Chapter 4).
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FIGURE 9.3
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The Dependence of the Measured Absorption Coefficient

at 500 Hz of a Porous Material on the Flow Resistance.

(From Reference 9.1)
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Effect of Spacing

The absorption coefficient of a porous material can be in-

creased in the low frequency range by spacing it away

from the surface to which it is attached.Since the absorp-

tion depends on the partlcle velocity, the maximum

effectiveness will be obtained at a distance a quarter

wavelength from the wall_ as at this point, the particle

velocities of the incident and reflected waves are a

maximum. Thus_ if the material is assumed to be thin_ the

absorption coefflcientat a particular frequency as a func-

tion of the separation from the walbwill be as shown in

Figure 9.5. Conversely, if the material is placed a

distance d from the wall_ the frequency at which the

maximum absorption is obtained is given by

c 28O
f -- --
m 4d d

where c is the velocity of sound in ft./sec, and d is

measured in feet. In the usual applicationtthe material

of thickness tr is placed in contact with the wall. Thust

at frequencies given by

28O
f >

t

there is absorbent material at a position of maximum par-

ticle velocity. The thickness therefore determines the

lower frequency limit at which a high absorption coeffi-

cient is obtained. Figure 9.6 shows measured results of

the absorption coefficient of rock-wool spaced away from

a rigid surface.

1.0_

yI.)e-
6

0

I
I

I
)_/4 _,/2 distance d'

FIGURE 9.5 The Effect of an Air Space on the Absorption

Coefficient of a Porous Material at Low

Frequencies

One important point to remember in the use of porous

materials is that great care or advice should be taken prior

to treating or covering the exposed surface in any manner.

Any interference with the system of pores may adversely

affect the flow resistance and hence the absorption.
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FIGURE 9.6 The Effect of Spacing on the Absorption ofo Typical

Porous Mate,iol (Data from Reference 9.2)

Porous Absorbers at low Frequencies

The impedance of a layer of porous material, having a

a flow resistance greater than about 5 x 103 mks rayls,

can, in the low frequency region_ be expressed approxi-

mately as (Reference 9.3)

z = _ 1 + + j 4wt Po
9c _tPoC

where R is the flow resistance (inks rayls/m)

t is the material thickness (m)

Po is the atmospheric pressure (newtons/m 2)

It can be seen that a resonance occurs when the imaginary

part is zero, or when

For a sample of fiberglas 3" thick, this leads to a reso-

nant frequency of 900 Hz which agrees well with the

maximum in the corresponding curve of Figure 9.4. At

this frequency
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The maximum of the normal incidence absorption coeffi-
cient can thus be calculated using

_/z-pc)2

provided the flow resistance of the material is known.

Below the resonant frequency, the capacltative part of the
impedance z becomes dominant, and the reactive part
approaches

volume displacement _ dVC =
pressure p

Cross Sectional

(a) Resonator Panel Absorber

Po

J 0_t poc

Denoting z = r +]x

it follows that
4 poc r

c_ = 2
o (r + poc) 2 + x

At low frequencies, x >> (r + poc) and thus in
region

4 poc r
O_ --

o 2
X

this

(9.4)

The theoretical absorption coefflcientat normal incidence
2

is thus proportional to ,., , since r is independent of

frequency. However, in practice, this proportionality is

not obeyed and the coefficient is approximately propor-

tional to 3/'2 .

Using the above expressions, the absorption coefficient
can be calculated at low frequencies, the value being
slightly smaller than that averaged over all angles. How-
ever, if it is required to calculate _ at the highero

frequencies, recourse should be made to the general ex-
pression for impedance given in Reference 9.3.

9.2.2.2 Panel Absorbers

The second type of absorber depends for its action on the
resonance between the mass of a thin panel and the stiff-
ness of an enclosed amount of air (Figure 9.7).

The definition of acoustic capacitance is

(Io) Electrical Analogue

(a) Resonator Panel Absorber

(b) Electrical Analogue

FIGURE 9,7 Configuration and Equivalent Analog of Resonant Panel

Absorber

From the results of Chapter 4, this can be written as

V
C -

2
Po c

where V is the enclosed volume, Po is the equilibrium

density of air and c is the velocity of sound in air. This
can also be expressed as

V
C = m

K

2
where K = po c - is the Bulk Modulus of air, and is equal

to 292"3 Ibs./ft. z Thus, if the cross-sectional area is A
and the depth of the resonator d,

dA
C _ --

K

If the panellssufficientlythin for the stiffness to be neg-
ligible, the resonant frequency is
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res 2

f ] . ._-_..(9.5)
res 2

(9.6)

where m is the mass of the panel per unit area. Thus any

incident sound wave having a frequency of, or in the vi-

cinity of f will excite the system resonance. The
res

bandwidth of resonance and the energy absorbed will de-

pend on the losses in the system and can both be increased

by the addition of a porous material in the cavity. The

analogous electrical circuit, as discussed in Chapter 4,

can be drawn as shown in Figure 9.7, where m is the

mass of the panel_ C is the capacitance, and R2 rep-

resents the losses in the absorbent placed in the air-

space. A practical example in the absorption spectrum

obtained from a freely vibrating panel mounted on bat-

tens is shown in Figure 9.8.

1.0
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FIGURE 9.8 Absorption Characteristic ofaResonatlng Panel

(from Reference 9.1)

This type of absorber can be extremely useful since it takes

up little room, can be treated and painted, andglvesa

high absorption at the low frequencies where porous mate-

rial gives poor results. The range of operation can also

easily be altered.

9.2.2.3 Resonant Absorbers

An absorbing system similar to that discussed in the previ-

ous section but having a much narrower bandwidth of useful

absorption is known as the Helmholtz resonator. This con-

sists of a chamber of air in the room via a neck;a good

example being a jug or bottle. In operation, themass of

air in the neck together with the stiffness of the enclosed

air in the chamber forms a resonant system. At resonance,

the frictional drag experienced in the neck provides the

absorption and this can be usefully increased by placing a

porous material across the mouth. In a manner similar to

Section 9.2.2.2_ it can be shown that the resonant fre-

quency of such a system is given by

where A =

L =

V =

Po =

the cross-sectlonal area of the neck.

the effective length of the neck .

the volume of the chamber.

the density of air.

It is not essential for the chamber to be spherical; indeed,

more often than not, thls is not the case in practice since

other shapes are usually more convenient. The analogous

electrical circuit in this case is as shown in Figure 9.9a

where

m = Po/S

V
C -

K

and R represents the total losses in the circuit including

the energy radiated by the resonator. As in the previous

case the bandwidth ofthe absorption curve depends on the

internal losses. (Figure 9.9b.)

This type of absorber is very useful when onlya few dis-

crete frequencies must be damped.

jwm R

T
I

i_c

(a) Electrical Analog

'G

U

_z

.8
<

i

- undamped

_o) Absorption vs Frequency

FIGURE 9.9 Typical Wide and Norrow Band Characteristics of a

Hetmholtz Resonator and Electric Analog
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At very low frequencies, it is possible for a room having

an opening or a connecting corridor to behave as a

Helmhohz resonator. Under these conditions, a very high

sound level that extends over a narrow frequency range

will be produced in the room inthe absence of absorption.

This is particularly true if the room is subject to rocket

noise which contains some very low frequency components.

Alternative Types of Absorber

The previous three sections have dealt with the basic types

of absorbing mechanisms. There are other types in common

use which are combinations of these, which will now be

described.

Resonator-panels

The basis of the resonator panel type of absorber is a per-

forated panel mounted a certain distance away from a rigid

surface, as illustrated in Figure 9.10.

FIGURE 9.10 Resonator Pane[ Absorbe,

This in effect produces a series of Helmhohz resonators,

the resonant frequency of which can easily be altered by

varying either the separation d or the size of the perfo-

rations. In most cases the perforations are circular and

regularly spaced, but they can be randomly spaced or in

the form of slits.

The absorption characteristics can be made to cover a

wider frequency range by incorporating a porous material

in the cavity, in this manner the porous material is pro-

tected from contamlnation,yet the passage of sound waves

into the interlor is not unduly affected. Figure 9.11

shows the type of characteristic obtained.

The absorptlon decreases at higher frequencies cluepartly

to increased flow resistance,but the turnover point can be

varied by choosing the appropriate percentage of

perforation. (T.he greater the exposed area, the higher

will be the frequency at which the absorption begins to

fall.) This procedure however, also affects the low fre-

quency absorption, so a compromise has to be made. The

design of such absorbers is complicated by many factors,

but design charts have been published (Reference 9.3) to

facilitate the procedure.

In order to design a panel absorber to specification,

consider a perforated panel spaced a dlstance d from a

rigid wall, the intervening space being filled with a

porous material.

1.g

0.cj

0.6

0.4
i

02

0
125 250 500 1000

F_equency-Hz

FIGURE 9.11

I
1/2" Fiberglas with

Perforated Masonite

2000 4000

Typical Abso_ptlon Characte, lstlc of PoFousMaterial

with PerfoFoted Facing (Data from Refe,ence 9.2i

Let V be the volume per perforation

n the number of perforations per unlt surface area

G the conductivity of one hole

R the flow resistance of one hole (includingthat

of the porous material insert).

If the specific acoustical impedance of the surface per unit

area is z, then the absorption at normal incidence is

a = 1- Iz-P°Cl 2

o \z + PoC /

The impedance z is comprised of resistance, mass and

capacitance where

Po

m = -_-

V
C = --

K

where K is the bulk modulus of air.

Hence

z = -- R+j_ +
n _

since the volume displacement is n times that per unit

hole.

The frequency of resonance is given

f 1 p_ c 1_--'nres 2 _ 2
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at which the impedance is

R
z- = f -

t res n

Thus at resonance

a = 4_
o (1 + p)2

where

R
J.l =

pcn

The resonance curve has a bandwidth (defined in this case

only as the frequency difference between the 50 percent
absorption points) whose upper and lower frequencies are

given by the equation

It can be shown (Reference 9.3) that the number of octaves

between these two frequencies (fl and f2 ) is given by

0 = -_" 1.44 (l+p) g

where

nG
g - X

res

The chart in Figure 9.12 enables the values of

nV R and nGX
' npc res

res

to be determined. Thus, if one parameter is set (either n,

V, R or G) the others can be determined.

If the perforations are cylindrical holes with diameter d

and length L, then

L+ 0.8d

where S is the cross-sectional area.

For small diameters

S
G -

L

1
I
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FIGURE 9.12
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Octaves

Design Chart for Perforated Panels.

(From Reference 9.3)

R

nW
o

As an example, assume that an absorber is required to
provide an absorption coefficient of 0.6 ranging over a
one octave frequency band from 50 to 100 Hz (center
frequency 70 Hz).

From the design chart,

nV = 0.094 (= air space in meters)

R
-- = 1750
n

and n G = 0.17

[t is now necessary to set one of the parameters, say,

n = 200 permeter 2.

Thus R = 3.5x 105 rayls

and G= 0.9 ram.
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If the thickness of the perforated panel is 1 cm, the

diameter of the perforations is thus 3.5 mm_ and the

percentage of open area is 0.2 percent. It is often more

convenient however, to start the calculation by setting

the flow resistance R and calculating the hole dimen-

sions.

It is recommended that tests be performed to evaluate any

unique absorber configurations, although in practice it is

found that the results from these calculations agree rea-

sonably well with those measured, the absorption band-

width being wider in the latter case due to extra damping

of the system. If the bandwidth must be increased

yet further, it is passible to combine two resonators in

series (Reference 9.3).

Acoustic Tiles

The acoustic tile consists of a slab of compressed wood or

mineral fibers having perforations extendlngfrom the front

surface to a distance of perhaps three-quarters of the slab

thickness. This is an example of the way that materials

having a high flow resistance can be used as absorbers

by the introduction of openings in the surface. The char-

acteristics of such tiles are shown in Figure 9.13 with

and without an air gap and the peaked nature of the

latter is clear. These are probably the most commonly

used absorbents today, partly because they can be in-

stalled easily by non-skilled persons without fear of poor
results.
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FIGURE 9.13 Absorption Characteristics of a Typical Acoustic

Tile with and without an Air-Gap (Data from

Reference 9.4)

Suspended Absorbers

As mentioned previously, there are some occasions when

it is undesirable to mount the absorbent at a surface of an

enclosure. In these cases it is usual to suspend the absor-

bent in the vicinity of the noise source(if it is also in the

enclosure). The characteristics of such an absorber show

extremely high efficiencies due to diffraction effects at

the edges and the fact that sound energy is incident on

both sides. This is shown in Figure 9.14 for a perforated

absorber.

0.7
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FIGURE 9.14 Absorption Characteristic for Perforated Sheet Metal

with Muslin Covering (a) with Both Sides Exposed to

the Sound, and (b) Mounted 2" from a Rigid Wall

(From Reference 9.8)

Sometimes the suspended absorber is made in the shape of

a cone out of a material such as shredded wood, and can

have absorption coefficients of up to 1.8. From what has

been said, a figure, such as this, appears to violate the

basic laws of physics, but this paint will be discussed in a

later section.

9.2.3 RATING OF ABSORPTION COEFFICIENTS

In order that engineers can design acoustical systems,

tables of the absorption coefficients of building materials

should be readily available in a compact and yet compre-

hensive form. Accomplishment of this requirement is com-

plicated by the fact that the coefficients vary greatly

with both frequency and angle of the incident sound

energy. A complete statement of the coefficients of any

one material would be exceedingly complex and difficult

to understand, and thus various standard methodsof mea-

surement and presentation have had to be put forward.

Variation With Angle of Incidence

There are two methods by which the absorption coefficient

can be measured: (i) using an impedance tube, in which

case only the coefficient at normal incidence is obtained ;

(il) the reverberation chamber method which results in a

coefficient averaged over all angles of incidence (see

Section 9.2.5).
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in this section and in Chapter 12, all values quoted have
been measured using method (ii), and these averaged

results are usually greater then the normal incidence
values, sometimes by a factor of two

Variation With Frequency

The absorption coefficients are averaged over a band of
frequencies one-third octave in width, with center fre-
quencies of 125, 250, 500, 1000, 2000 and 4000 Hz.
Thus six numbers are stated to define the coefficient under

a particular condltion . in some cases the values are given
at center frequencies spaced one-third of an octave apart,
i.e., 100, 125, 160, 200 Hz et cetera, so that more
detailed information can be obtained. This information is

necessary for materials where the absorption varies rap-
idly with frequency. However, there are some designs
(e.g., the resonator type) that have usable absorption
over such a narrow frequency range that even this detail
is not sufficient, and a continuous curve of performance

vs frequency should be given in this case.

Single Figure Rating

However, with the above method of stating the absorbing
properties of a given material it is still difficult to com-
pare the effectiveness with that of a different material -
one may have less absorption at the low frequencies and
higher absorption at high frequencies. Therefore, for
noise reduction purposes, a single figure is often given,
this being the mean of the values at 250, 500r 1000 and
2000 Hz. This figure is known as the noise reduction
coefficient (NRC). However, since the NRC does not
include values of the absorption coefficient at frequencies
below 250 Hz, care must be taken in the selection of ma-

terials on this basis, especlally if low-frequency absorp-
tion is required. Table 9.1 shows values of _ for various
common materials - a more comprehensive table can be

found in Chapter 12.

TABLE 9.1

A LIST OF THE ABSORPTION COEFFICIENTS FOR

A FEW COMMON MATERIALS

125 250 500 1000 2000 4000

Brick Wall1 Unpainted .02 .02 .03 .04 .05 .07

Brick Wall, Painted .01 .01 .02 .02 .02 .02

Concrete, Unpainted .01 .01 .02 .02 .02 .03

Carpet on Concrete .09 .08 .21 .26 .27 .37

Wooden Floor .04 .04 .03 .03 .03 .02

Glass Pane 1/8" .03 .03 .03 .03 .02 .02

Plasterboard1 Plastered .02 .05 .06 .08 .04 .06

9.2.4 WAVE ACOUSTICS APPROACH

The previous section has been devoted to the mechanism
of various absorbing systems. It is now necessary to inves-
tigate the effect that absorbent systems have on the sound
field in an enclosure. The type of absorbent will not be

defined as it is immaterial for this section.

9.2.4.1 One-Dimensional Enclosure

The type of enclosure to be considered at first is one-
dimensional, in other words, a tube of length L termi-
nated at both ends. It is assumed that the diameterof the
tube is smaller than the wavelength at all frequencies
considered. The equation for the propagation of plane

waves along the tube is

2 2
8 p _ 1 8p

8x 2 c 2 8t 2
(9.7)

If the harmonic time dependence of frequency '., is as-
sumed, a solution to (9.7) can be written

P = Po ¢(x) sin _t (9.8)

where ¢(x) is given by

and Po is a constant.

In the absence of dissipation, the particle velocity u will
be zero at the boundaries x = 0 and L. Introducing the

first of these conditions, Equation 9.8 can be written

:  o OS( X) oo 
An extra boundary condition is that the pressure p is a
maximum at x=0 and L.

Thus

L n_ n =0r 1, 2 .....
C

or
nc

f = -- (9.11)
n 2L
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Thus cos(kxL x) cos(k L ) cos(kzL z) = 1 .YY

The maximum values are obtained when x=L
X

and z = L . Hence
x

,y=L
Y

kxLx = nX_ny_l nx = 0,1,2 ....
kyLy ny = 0,1,2 ....

n = 0,1,2
kzLz nz_J z ....

(9._2)

If these values are then substituted in (9.22) it is found

that the characteristic frequencies of a rectangular room

are given by

f = + tL ! (9.:3)

For example, the first few modes of two rooms of size 30'

x 20'x 15' and 15'x 13' x 10' are:

n n n f Hz f Hz
x y z n n

0 0 0 0 0

1 0 0 18.3 37.3

0 1 0 27.5 43.1

0 0 1 37.3 56.0

1 1 0 33.0 57.0

1 0 1 41.7 67.3

0 t 1 46.6 70.7

1 1 1 50.3 80.0

There are thus three types of modes, (jr. 0, 0), (j, k, 0)

and (j, k, J_) where j, k, and ,_ are any integers,

called respectively the axial, tangential and oblique

modes. In some cases, the dimensions of an enclosure are

such that standing waves having different values of

(j, k, ,_) give rise to the same frequency. These are

called degenerate modes and at these frequencies the

room responds strongly to excitation. The situation is

worst in a cubical room where even sixfold degeneracies

can be obtained at the low frequencies. This mustobvi-

ously be avoided, if an even distribution of modes is

required, by correctly proportioning the sidesof the en-

closure. This can be achieved by making the enclosure

L

with sides of length Lx, q Lx and _ where qq

is a number such as _ or even better 3%F_. This

technique is employed in the design of reverberant test

chambers for acoustic tests of structures and equipment.

Modal Density

One of the most important quantities that can be calcu-

lated using wave acoustics isthe spacing of the character-

istic frequencies or the modal density (defined as the

number of modes per cycle). This can be achieved by

examination of Equation 9°23 where it can be seen that

k can be considered as a vector having components k ,
X

k and k . Transforming from k to frequency space
y z

gives the components as

n c n c n c

Y and z
2L ' 2L ' 2L

x y z

the length of the vector being the frequency of the mode

and the direction being that required to sustain the mode.

A lattice can therefore be constructed in frequency space

with lattice spacings of

c _ and
2L ' 2L 2L

x y z

as shown in Figure 9.15. The volume of frequency space

3
C

occupied by one mode is therefore _ where V = Lx.

L • L is the total volume of the enclosure (in real
y z

space), and the number of modes having frequencies less

than f is given by

N
volume of 1/'8 of a sphere of radius f

'= volume occupied by one mode

- ._f3 8V - 4".V f3 (9.24)
6 3c 3c 3
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The result of a standing wave in the form given by Equation

9.10 is to limit the values of (_) and hence fie-
c

quency. Equation 9.11 thus gives the characteristic fre-
quencies corresponding to the allowed normal modes of
vibration. These frequencies, as can be seen, are equally

spaced, the fundamental (n = 1) being determined by the
length of the tube. If the tube is short, then the spacing

between the modes (i.e., 2--_) is large; if it is long, the

fundamental frequency is low and the spacing small. The
next step is to replace the rigid terminations with an
absorbent material, thus dampir_g the standing wave. This

can be incorporated by assuming a time variation of
(g - ] J3)t, where J3 is the damping constant,showing that
the amplitude decreased with time. In this case, the pres-

sure maximum may not lie at x =0 and Lx, soa phase

constant _ has also to be included. With these modlfi-
cations, Equation 9.10 becomes

(9.12)

However, no mention has yet been made of the absorp-
tion coefficient of the terminations, only of the decay
constant J3. It is found, in fact, that it is more conve-
nient to consider the energy lost in terms of the acoustic
impedance of the surfaces, defined as the complex ratio
of sound pressure to the normal velocity into the surface.

1 d/_--_,x d t, it can be shown that theSince u = - p--_-

normal acoustical impedance z is given by

z (9.13)

which may have both real and imaginary parts.

In the one-dimensional case being considered, the term
absorption coefficient has little meaning (as will be seen
later in this chapter). It is also not a suitable property to
use because it is a value averaged over all angles of inci-
dence. For the one-dimenslonal model the energy im-

pinges only normal ly onthe surfaces at the end of the tube.

If the real part of the impedance ismuchgreaterthan the
imaginary part, then the characteristic frequency will be
the same as in the undamped case. If it is not, they will
differ slightly.

The one-dlmenslonal standing wave case, considered above,
leads to a method of measuring the normal acoustic im-

pedance and the absorption coefficient of a material. If
the incident and reflected sound pressure at the surface of

the sample placed in a tube are denoted by Pi and Pr'

and the respective normal velocities u. and u then theI r

following relationships can be written:

Pi + Pr = p = total pressure at the surface
of the sample

u. - u = u = the resultant particle velocity
i r at the surface

(9.14)

(9.1s)

Pi Pr
u. = -- and u -

, poc r poc
(9.16)

and

z = p= impedance at the surface
U

then

Pr z - poc
r -

Pi z + poc

(9.17)

(9.18)

The ratio of maximum and minimum values of pressure in

the standing wave is

Pi + Pr 1 + r
- SWR -

Pi - Pr 1 - r
(9.19)

Thus, if the SWR in the tube is measured, z can be cal-

culated. Also, since _ = 1 - r2, the absorption coeffi-
cient can also be obtained. However, the value is for

normal incidence only, and should be used with reserva-
tion in any design.

9.2.4.2 Three-Dimenslonal Enclosure

In order that the basic knowledge from the previous sec-
tion can be applied, it is now necessary to extend the
treatment to three-dimensions. In this case, the solution

of the general wave equation has the form

P = Po ¢(x) ¢p(y) ¢p(z) sin cot (9.20)

where ¢(x), ¢(y) and ¢(z) are the mode shapes in the
x, y and z directions, and the boundaries are assumed
to be rigid. Inserting the boundary conditions,as before,
produces the standing wave equation.

P = Po cos (kxX) cos (kyy) cos (kzz)sin gt (9.21)

where kx, k and k are the components of (_)c in they z
x, y and z directions. As before, p is a maximum at

the boundaries x=0 and Lx, y=0 and L ,z--0 and
L Y

Z
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This result is not strictly correct because a part of the

volume occupied by the lattice points in the x-y, y-z

_f3

and x-z planes lies outside the octant T which has

not been included. A more exact expression is (Reference

9.6/.

N =
4_V_ f3 + (_4_..__)f2 +(8._i f
3c 3 ,/

(9.251
where

V=L L L
x y z

A = 2(L xLy + L Ly z

k = 4(Lx+L. +y kz)

+ L L ) -thetotal surface area
x Z

- the sum of the length of the sides

The number of modes d N in a frequency band of width

df is given by

dN = _ +

or dN = G(f) df

where G(f) is the modal denslty of the enclosure. It can

be seen from Equation 9.26 that G(f) increases approx-

imately with the square of the frequency as opposed to the

one-dimensional case where it remains constant.

in amplitude (e -[3t) of the standing wave. From the fun-

damentals of vibration (Reference 9.6) it can be shown

that the energy damping constant 2[3 (since [3 is the

amplitude damping constant) is given by

2[3 = power dissipated per cycle
power stored

The power can only be dissipated at the surfaces, so if the

resistive port of the specific wall impedance is r, and the

sound pressure p,

2[3-

2
P

overage -- over the surfaces
r

2
average p over the volume

2
where p is taken from Equation 9.21 .

2

Thus if the average of P---- over the surfaces is large, the
r

damping constant will be large, corresponding to a high

absorption. In order to obtain a large average value,lt is

necessary to place the absorption material, of resistance r

2
at positions where p is large i.e., in the corners, in

order to obtain a high damping constant. It can also be

seen, that it is inadvisable to place an absorbent material

only at positions where the pressure is maximum for one

particular mode,slnce it will be less effective indamplng

other modes. In order to obtain adequate damping of all

modes, it is necessary to scatter the absorption material

over all the surfaces.

Modal Response

It can be shown (Reference 9.6) that the expression for

the mean square pressure in an enclosure can be written

2 4,-,2

2 Po c _o _ En (S)

Prms = " -- Z.,2V 2 2 2

- + _ [3n
W

(9.27)

is the strength of the s_rce, V is the volumewhere Q

o th

of the enclosure, [3n the damping constant for the n

mode, and E (S) is a function of the position of the
n

source of sound.

If [3n is small, it can be seen that only when w is very

close to w is the coefficient of any importance. Inn

other words, the only allowed frequencies are those lying

close to the normal modes. The situation is changed when

k n is not small, and a larger range of frequencies is

allowed.

At low frequencies where the spacing between normal

modes (w - w ) is large,there will be large regionsn+l n

where no coefficient is large. For high frequencies, there

are several modes close together so that they can all be

excited by a single frequency source. In this case, the

pressure will be more or less constant throughout the room.

It can be shown (Reference 9.6) that the bandwidth

(defined as the frequency range between points 3 dB be-

low the maximum value)of the resonance curve for the

sound pressure is

Examination of Equation 9.13 shows that the introduction

of a resistive term into the impedance z of a material

results in energy being dissipated and a gradual decrease

ca
Z_f = _ Hz

8_V
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where a is the absorption constant for the mode consid-
ered. If the condition for a uniform room response (and
hence a diffuse sound field) is that neighboring modes in-

tersect at the - 3 dB point, then the frequency at which
this occurs is given by

ca 1

8_V G(f)

where G(f) is the modal denslty. Using the approximate
form for G(f) gives the resdlt that above a frequency

given by

flim = c _ Hz (9.28)

the roam response can be considered to be uniform and
the behavior can be treated by using statistical methods.
if two rooms of different volumes are considered, each

having concrete floors, brlck walls and tiled ceiling, this
frequency turns out to be

Room 1 (30'x 20'x 15') film = 86 Hz

Room 2 (15'x 13'x 10') flim = 158 Hz

Below this limiting frequency, the sound level in anen-
closure has to be determined using Equations 9.12, 9.13
and 9.27. If the impedance of the walls are known, to-
gether with the phase constant _, then the decay constant

[3 can be determined. The sound pressure p can then be
determined.

To summarize, the statistical approach can only be em-
ployed when the sound energy dlstrlbution is uniform and
independent of the boundary conditions. These conditions
are approximately obeyed at high frequencies and in ir-
regularly shaped rooms. In all other situations, the wave
analysis approach should be employed.

9.2.5 STATISTICAL APPROACH

A statistical approach to the problem of sound waves in
enclosures is posslble if the sound field can be considered
to be diffuse. The definition of a diffuse field is that the

sound pressure, and hence the energy density, is constant
throughout the volume and that all directions of propaga-

tion are equally probable. The lower frequency limit for
the application of this method has been dlscussed in the
last section, it is of course necessary to assume that the
source of sound consists of a band of frequencies; other-
wise standlng wave patterns will predominate. Under
these conditions, the relationship between the intenslty !

at any point in the room and the energy density E is

] = 1--cE (9.29)
4

At the surfaces therefore, the energy absorbed is a_l per

unit area, where _ is the random incidence absorption
coefficient and

_/2

Of _(e) sin 28d8

OE ----

_/2sin 2ede

o

or

i,/2= 0_(e) sin 2ede (9.30)

0

where a_([) is the absorption coefficient for angle of in-
cidence e.

The total energy absorbed per unit time is therefore

I H c_(s)dS
S

If _(S) is constant, this reduces to la_S where S is the

total surface area of the enclosure. This is usually written
as l a where a = _S is the total amount of absorp-
tion present. The quantity a has the dimensions of an
area, and if the area is in square feet, the unit of a is
called a "sabin."

9.2.5.1 Sabine Equations

With these facts, an equation for the energy in the enclo-
sure having a source of power W canbe set up as follows:

W(t) = al(t) + _ (VE(t))

or, using 9.29

W(t) = al(t) + 4V dl(t) (9.31)
c dt

!ntroducing conditions that

W(t) = W t < 0 /

= 0 t>0
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resultsin the expression for the decay of the steady-state
sound field

actI(t) = 1° exp - 4V / (9.32)

W
where I =

O a

The steady-state intensity is thus dependent on the room
absorption, as would be expected, but not on thevolume
or shape of the enclosure.

2

Since E = P--_-_- for a diffuse sound field as well as a
pc

plane wave, and using 9.29, the steady-state mean square
2

pressure Pr can be written

2 4W poc
= (9.33)Pr a

This then is a simple expression for the mean square sound
pressure (constant throughout the enclosure) at any point.

9.2.5.2 Reverberation Time

Equation 9.32 shows one method of measuring the amount
of absorption in a room, as long asthe power output of the
source is known. A much more convenient method, how-

ever, is to use Equation 9.30, which can be written

or

act
I(t) 4V

-- e
"T_ -

o

4.34act
4V

A measure of the decay rate is taken as the time for the

intensity to decrease by 60 dB from the initial steady-
state value. This time is called the reverberation time

and is given by

27.7 V
T - seconds

ac

If the lengths are measured in feet, then the familiar

Sabine equation is obtained

T = 0.049V (9.34)
a

For example, if the same enclosures as before (Section
9.2.3.2) are considered with absorption coefficients

given as

100 Hz 1000 Hz

Concrete floor 0.01 0.02

Brick walls 0.02 0.04

Tiled ceiling 0.50 0.80

the reverberation times of two rooms are

Room 1 (30'x20'x 15')

Room 2 (15'x 13'x 10')

100 Hz 1000 Hz

1.3secs 0.79secs

0.86secs 0.52secs

The absorption a(= a_S) can be calculated by measuring
the slope of the decay curve and using 9.34. If the walls
are covered with different amounts of absorption then

a = _ a_.lS.i (9.35)

Thus, if the sound source level fluctuates slowly,the sound
pressure level will follow closely; if it changes rapidly
(i.e., in a time less than the reverberation time), the
pressure level will remain reasonably constant and not
follow the fluctuations. This is of importance in speech
communication where the fluctuations are rapid, and sup-
ports the everyday experience that one has to speak more
slowly and distinctly in a reverberant space. A method of
improving the intelllgibility is to reduce the reverberation
time by adding extra absorption to the enclosure, the re-
sult of which is also to reduce thesound pressure produced
by a given sound source level.

In the case of a conference room where good speech com-
munication is essential, the reverberation time should not

be greater than 1 second at the low frequencies, and
preferably slightly less at high frequencies. However, T

should not be too low, since this implies high absorption
and hence a low sound level in the enclosure, making
communication difficult over large distances.

Sound Pressure Distribution

If a source of sound is inside an enclosure, it has been

shown that the reverberant sound pressure is given by
Equation 9.33. However, in the vicinity of the source,
but beyond the near field, the intensity decreases accord-
ing to the inverse-square law,

2
W Px

I =

x 47 x 2
Poc
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Hence

2 WPoC (9.36)
Px = "4_x2

At some distance r this pressure, in what is termed the

direct fleld, will equal that in the reverberant field.

In other words t

W poc 4W po c

4_r 2 a

This equality occurs at a distance given by

r = _ (9.37)

which increases with the absorption a and thus with fre-

quency.

For example, inthe rooms considered in Section 9.2.3.2,
the values of r at which the direct and reverberant sound

intensities are equal are given by

100 Hz 1000 Hz

Room 1 (30'x 20'x 15')

Room 2 (15'x 10'x 13')

2.6 ft 3.3 ft

1.5 ft 1.9 ft

In order to compute the pressure at any positionr it should
first be ascertained whether the position is in the direct
or reverberant field before using the appropriate expres-
sion 9.33 or 9.36.

Eyring's Expression

Examination of Equation 9.34 shows that the correct
result is obtained when a-_O, i.e., T---_ao_ but that
the reverberation time is finite when the absorption
coefficient for all the surfaces is unity. This is because
the sound field in an enclosure having highly absorbent
surfaces is not diffuse as was assumed in the derivation of

Equation 9.34. An approach to the theory of highly ab-
sorbent enclosures has been made by Eyring (Reference
9.7 by considering the image sources instead of the sur-
face reflections. The resultant expression is identlcalto

the previous one except for the value of a, which is then
given by

a = - Slog e (1 -_) (9.38)

where S is the total surface area of the enclosure and

is the average absorption coefficient

_ _'_'_i Si (9.39)

I t can be shown that 9.38 reduces to the same value as

9.35 when _ is small, and gives the correct valueofT
when _ = 1. However, the treatment only gives the
correct result when the absorption coefficients of the sur-
faces are of similar magnitude.

This expression has the same limitations as the previous

one1 that is only strictly true for low absorption, since
the sound field becomes less diffuse as the absorption is
increased.

9.2.5.3 Air Absorption

So far, only absorption at the boundaries of an enclosure
have been discussed. While this is sufficient in small

spaces, in large volumes, atmospheric absorption must be
accounted for. This absorption loss is due primarily to
molecular relaxation in moist air and is thoroughly treated

in Chapter 7.

The intensity of a plane wave will decrease during its
passage through the atmosphere by an amount given by

-mx
I(x) = I(O)e (9.40)

where m is the attenuation constant of the medium and

depends mainly on the humidity and the frequency. Values
of this constant are shown in Figure 7.11 in dB perl000ft.
In order to convert these figures to the units for m (1/ft)_

multiply dB/1000 ft. by 2.3x 10-4 , (See Table 12.10).

Incorporating this attenuation in Equation 9.3 gives

oeX [ ]
and the reverberation time is

(9.41)

0.049 V
T - (9.42)a+4mV

It can be seen that the effect of air absorption in an en-
closure is only of importance when the volume is large.

Relationship Between Impedance and Absorption
Coefficient

If the damped standing wave Equation 9.12 is extended
to three-dimensions, then it can be shown (Reference 9.6)
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that the decay constantr in

is approximately for r >> 1n

2c
J3x - r L

n x

say the x-directlon, !3x is

where r is the real part of the normal acoustic impedance.
Thus, the decay of intensity in an enclosure can be
written

= I e -2_t
O

4ct

r Li

= | e n x
o

(9.43)

the factor of 2 belngintroducedslnce J3istheamplitude

decay constant. Comparing this with Equation 9.30 shows
that

4c ac
r L 4V

n x

or

16V
r =
n ak

X

16L L
yz

or since a = 2o_S = 2e_ L L
yz yz

8
r = -- Ly._)n o_

which is the relationship between the normal acoustic im-

pedance and the equivalent absorption coefficient. How-
ever, the same conditions apply to 9.44 as to Sabine's

equation; that they are only correct for low absorption,
i.e., high values of r

n

9.3 TRANSMISSION LOSS

The preceding section has dealt with the methods of re-
ducing the level of noise inside an enclosure, but in noise
control it is also necessary to prevent external noise from
entering the enclosure. In this section, the emphasis is
wholly on the transmission of sound through walls. First
of all, it must be appreciated that there are several dlf-
ferentpaths by which sound waves are transmitted from the
outside to the interior of a structure, some of which are
shown in Figure 9.16.

External

Nois_'*"

Source

1
A

1

FIGURE 9.16 Paths by which Transmission of Sound Occurs Between

Two Rooms

The sound level in the rooms is usually made up of con-
tributions from all these paths, the relative amounts de-
pending on the structure, and the frequency. Paths of
sound between rooms A and B other than the direct one

through the common wall are termed flankingpathsr
which will be discussed later in the chapter.

Basically, the mechanism of sound transmission is that the
incident waves excite the wall into vibration, causing

energy to be radiated on the other side. To a certain ex-
tent_ the amount of radiation depends on the mass of the

walt except under the special circumstances to be dis-
cussed. Some of the incident energy is reflected (in most
cases the majority), some absorbed and the remainder
transmitted, therefore, Equation (9.1) is still appllcable.

E. = E +E +E Ai r t

or

2
•r = I - r - _ (9.45)

9.3.2 DEFINITIONS

Before beginning the discussion on methods of achieving
high transmission loss, terms used and definitions must be
explained. The factor "r in Equation (9.45) is the fraction
of the incident energy that is transmitted, where -r is
called the transmission coefficient or tronsmissivity.

(9.46)

Since this is always less than unity, it is usual to use the
term 1/r in the expression for transmissionloss, defined
as transmission loss or insulation =

TL = 10 log 1 (9.47)
'1"

The value of "r in this expression is of course a function of
e. To account for random incidence, the value of'r used
must be averaged over all angles of incidence as for the

absorption coefficient (see Equation 9.30).
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_/2
"r = /" "r (8) sin 28 d8 (9.48)

av J
0

Also, as laboratory measurements of TL are usually carried
out using bands of random noise one-thlrd of an octave
wide, then (Equation 9.48) must be averaged over fre-

quency,

< "r > - 1 [" "r (0) sin 28 d8 • du
av u 2 - u 1 J

u 1 0 (9.49)

where

u2 = 1.12 u°

u = 0.89 u
1 o

and
o

band.

is the center of the appropriate one-thlrd octave

9.3.3 MEASUREMENT OF TRANSMISSION LOSS

In the standard laboratory procedure for measurlng the
transmission loss, the panel or structure of interest is sit-
uated in the common wall between two reverberant cham-
bers, as shown in Figure 9.17. The source of sound is then

placed in one chamber and the measuring system in the
other. In terms of the energy density thereforer the inten-

sity 11 in room 1

E1 c
11 = _ (See 9.29)

Thus, the power flowing through the panel is

W ='rl S
1

E1cS
= "r _ (9.50)

4

where S is the area of the panel. The intensity in room 2
due to this influx of energy is

W "r ElCS

12=-- =a 4a (see 9.32)

E2 c

4

where a is the total amount of absorption in room 2.

Hen ce,

E2 a

LJ
£

1 2 .o

q

Yl

FIGURE 9.17 Transmission Loss Measurement Set-Up

The transmission loss according to (Equation 9.47) is

TL:,0,og + ,0,og (9.52)

Since the energy density is proportional to the square of

the sound pressure p,

TL = 20 log p--_

= SPL1 -SPL2+ 10 log (aS-.) (9.53)

where SPL1 and SPL2 are the respective sound pressure

levels in roam 1 and 2. These levels, together with the
receiving room absorption and the panel area, are thus

required to measure the transmission loss.

The measurements are made using one-third octave bands
of random noise having center frequencies from 125 Hz to
4000 Hz. In some cases the 100 Hz band is also included.

There is also a single figure rating called the sound trans-
mission class (STC) that can be used in comparing differ-
ent structures in a similar manner to the NRC figure.

However, this rating is only used for internal walls be-
causeit is basedon the subjective impressions of the sound

insulation provided against the normal sounds experienced
internally. For external walls, where the sound is due to
such sources as rockets and airplanes, it is necessary to
make use of the more detailed information. The determi-
nation of the STC figure is more complicated than for the
NRC and is fully described in Reference 9.9. A compre-
hensive list of transmission loss charts for common mate-
rials is given in Chapter 12.
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9.3.4 TRANSMISSION LOSS FOR A STRUCTURE

To determine a general expression for the transmission loss

of a panel, it is assumed that a plane wave is incident

normally on an infinite panel as shown in Figure 9.18. If

the normal impedance z of the panel is defined as the

ratio of net pressure acting on the panel to the panel ve-

locity u, the equation of motion for the panel is then

(assumlng x = 0 at the panel and the thickness is negll-

glble)

FIGURE 9.18

//" ,/I

///1
.//'/1

.//'/1

///3

/'/'/1

i / A

/ / A

I/'/I Pt

/'//i

///1

Transmission of Sound through a Single Panel

I zmsP7 (9.58)TLE) = 20 log 1 + 2Po c j

remembering that z possibly is a function of e.

This expression shows that the transmission loss is zero for

grazing incidence (8 = 90o). However, at thisangle,

there is no normal component of the plate velocity and

hence no transmission. It is also found in a reverberation

room that there is little sound energy incident at grazing

angles above approximately 78 ° . Therefore, the expres-

sion (9.48) for the mean transmlssl vlty should read

78 °

S "r (e) sin 20 de

0
"r : (9.59)

av 78 °

S sin 28 dE)
0

9.3.5 INFINITE LIMP WALL

If the panel mentioned in the previous section has a low

bending stiffness, i.e., it is llmp, then the impedance is

due entirely to its inertia or mass, assuming it to be a loss-

free structure. Thus, for a panel having a mass m per unit

area,

z Pt

(Pl + Pr ) - Pr = zu = Po c
(9.54)

Since

P = Po cu for a plane wave

or

= Pt

Since the medium always remains in contact with the panel

where

z = j g m (9.60)
m

m = ph

p = density of the panel

h = thickness of the panel

and (9.50) becomes (with the angular dependence)

-re [I + Jum_--°sE].] -2
= _Po c

U. --U _--'U
I r

or

'°,-Pr:P,.: ':'o <9.551
Combining (9.54) and (9.55) results in

and

\Pl / . 2-_oc
(9.56)

TL = 20log ['I+_ 2--_oc] (9.57)

This is then the general expression for a single, infinite

panel of impedance z. If the sound wave is incident at

an angle e with the normal, (9.57) becomes

Thus for high values of mass and/or frequency

(TL)e = 20 log 2 Po c j

The transmission loss (TL) can now be calculated under

various limitations of angle O.

(o) For 00 < E)< 90 ° (random incidence)

(Tk)rando m _ (TL) 0 - 10 Jog [0.23 (TL)o]

(9.6])
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where

(TL)o'_' 20 Jog w_2-_o c I

= normal incidence

transmission loss.

(b)

(c)

For 0 ° < 8 < 78° (field incidence)

(TL)field = (TL) 0 - 5 dB (9.62)

For 0 = 45°

_- 20 log uI2-_o cl - 3 dB(TL)45o

= (TL)o - 3 dB (9.63)

For limp constructions, it is found that the field incidence
curve (b) produces results that are in reasonable agree-
ment with measurements and is recommended for initial

approximation of TL.

Thus, the transmission loss increases linearly with fre-
quency if plotted on a logarithmic scale, the slope being
6 dB per octave. Figure 9.19 shows this graphically for
normal and random incidence and also for what is known

as field incidence (0 to 780). If the mass is increased the
TL rises also, the rate being 6 dB per doubling of the
mass. The latter curve is known as the "mass law", a term

which is often mistakenly used for the increase with fre-

quency.

7o
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-_ 5O

4o
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FIGURE 9.19
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However, for practical constructions that are finite and
not limp, this simple theory predicts incorrect values at
low and high frequencies.

Transmission Lossfor Finite Panels

If the panel considered in the previous section is reduced
to a finite size, and the boundaries are supported in some
way, it will exhibit stiffness characteristics at the lower
frequencies. First of all, the case of a stiff panel having
negligible mass is considered. The impedance will be a
pure reactance (in the absence of damping) given by

k (9.64)Z ---- -_

s j_

where k is the stiffness of the panel defined as the ratio of

applied (static) pressure to average deflection. In this
case, the transmission loss will be

[ +/kcos0 _2]TLs : 10 log 1 \2-'-_po c] j

which for high stiffness or low frequencies approximates to

TL "" 20 log [k cos O 1 (9.65)
s _2_ Poc/

Thus the TL due to stiffness alone, decreases with increas-

ing frequency, the rate being 6 dB per octave. Combin-
ing (9.60) and (9.64) given an expression for theimped-
ance over a wider range of frequencies

k
Z = j_ m + _ (9.66)

j_

As with other systems having both mass and stiffness, a
resonance occurs at a frequency given by

o _-_ (9.67)

At this frequency, the impedance and hence the trans-
mission loss of the panel is zero, assuming that there are
no internal losses. The form of the curve is shown in Fig-
ure 9.20. The ordinate of the graph at the point where
the two slopes meet is given by

i

3

i

Stl ffness Mass

Region Region

j / Per Octave

J-"7 " l.... osed

Damping

1
I
fo

FIGURE 9.20

Frequency - Hz

Showing the Form of the Transmission Loss Curve

in the Stiffness and Mass Controlled Regions in

Absence of Panel Resonances. The effect of In-

creased Damping is also Demonstrated.
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20 log _c°se
2po c

In practice, however, very few materials in the form of a
plate exhibit a transmission loss controlled by stiffness in
the audible frequency range, but the effect can be ex-

tremely important and useful at frequencies below 50 Hz.

The Natural Frequencies of Finite Panels

If the panel is of finite size,then, the boundary conditions
will produce a series of normal modes occurring at the
characteristic frequencies o'f the plate in a similar manner
to the tube and the enclosure. These frequencies for a
simply supported panel are given by

i/n/ f = 0.45 c L h + (9.68)
ntm

where c L is the velocity of longitudinal waves in the

panel, h is the panel thickness, a andb the lateral di-
mensions and m,n = 0, 1, 2, 3...

In terms of the longitudinal wave velocity in a bar c L,

c L

cL=
where v is Poisson's ratio for the material of the plate.

The lowest such frequency, other than n or m = 0, is

in which all parts of the panel vibrate in phase,but with
different ampli tudes.

In this case, the transmission loss is low as the radiated
energy is high. Keeping m constant, the next highest

mode is f2,0 in which the panel is effectively split into

two halves, each half vibrating in anti-phasewith the
other, as shown in Figure 9.21(a). The result is to merely

push the air from a high to a low pressure area and little
radiation takes place, i.e., the radiation load is re-

active. Figure 9.21(b), shows the modal system for f3,0

and it can be seen that the panel is now effectively split
into three sections, the only radiation coming from the

points on the panel near the edges. This effect is re-
peated for all modes, even numbers of either m or n can-
¢eling completely out, odd numbers of both m and n only

partially canceling. If the panel is damped, then the
modal shapes and the characteristic frequencleswill be
altered, the new values being quoted in Section 3.3.5.6.

From the above qualitative treatment, it follows that for
m or n even, the radiation will be minimal and the trans-
mission loss high. Conversely, for m and n odd, the trans-
mission loss will be lower. The total effect therefore is

as shown in Figure 9.22.

2

(a)

1 2 3

(b)

FIGURE 9.21 Modal Shapes of a Vibrating Plate. (a) the Two Halves

of the Plate Vibrate _n Antiphase and Cancellation is

Complete ( in Theory). Here the Plate is Divided into
Three Sections, hence the only Radiated Energy is from

the Edges.
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FIGURE 9.22 The Form of the Transmission Loss Curve for a Panel

Exhibiting Natural Resonances

If there is any form of damping present, then the curve
will move closer to the 6 riB/octave mass law line. In

practice, there is always a certain degree of damping
present in all building materials and only the first few
resonances are of importance, except with small panels.
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The Coincidence Effect

There is still one more effect of apparent stiffness which

must be considered_ known as the coincidence effect.

This effect is due to the coincidence of the bending wave

vibration and the airborne vibration in space and time.

This effect is not associated with the normal modes of a

panel .

Figure 9.23 shows an airborne wave incident at an angle

B to the normal of a panel. The velocity of the wave in

the direction of propagation is of course c. However, the

velocity at whlch the wave normal travels along the panel

(the trace velocity) is c/slne. This wave traveling at

this speed produces a forced wave on the panel. The ve-

locity c_ of free bending waves on a panel is given by

where D is the bending stiffness ofthepanel, m is the

mass per unit area, and '.' = 2_f. Thus at low frequencies

c_ < c, at high frequencies c_> c. At some intermediate

frequency, there will be a situation where c_ = c/sine.

or

sin e

i.eo, 2 F-----

c _/m__ (9.69)f

2_ sin 2 B tu
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FIGURE 9.23 Schematic Diagram of a Plane Wave Incident at

Angle ¢ onto a Panel, Indicating the "Trace

c
Velocity" sin

At this frequency, a wave incident at an angle e will

have a trace velocity equal to the free bending wave ve-

Ioclty on the panel. Energy is thus easily transferred from

the wave to the panel and radiated on the other side, re-

sulting in a low transmission loss. From (9.69), it can be

seen that the lowest frequency at which this occurs is

when 0 = 90 ° i.e., grazing incidence, and is given by

2

f = f = c _/___ (9.70)
c 2_ tu

This frequency is known as the "critical frequenc)," being

the result of the coincidence effect.

Since, m = ph )

and D E h3 t

t

12 (1 -v 2) !

(9.71)

where p = density of panel,

h = thickness of panel,

E = Young's modulus of the material

constituting the panel,

v = Poisson's ratio

Figure 9.24 shows the critical frequency of various mate-

rials as a function of the thickness.
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F!GURE 9.24 Graph Showing the Critical Frequency of Various

Materials as a Function of Thickness. (a) Steel,

(b) Concrete, (c) Plywood, (d) Porous Concrete

(Data from Reference 9.15)

(9.70) can be written as

fc = 6.9hX10_____s i//p(1E-2)

when the parameters are measured in f.p.s., units. The

critical frequency therefore depends on h-1, pl/2 and

E-1/2, the factor (1 - cr2) being approximately equal to

unity for most materials.
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Infinite Panels

It can be shown (Reference 9.10), or can be deduced from
(9.69), that the impedance of an infinite panel under-
going bending vibrations in response to a plane wave inci-
dent at angle e is given by

where K = u/c

in the absence of internal losses. This has to be used in

conjunction with (9.58) and (9.49) to obtain a value for
the mean transmission loss. The form of the result which

holds for any solid material is shown in Figure 9.25.
Above the critical frequency, the term in (9.72) relating
to the bending stiffness rapidly assumesmaximum impor-

tance and the mass term can be ignored. In practice, the
slope in this region is approximately 9-10dB per octave.

Increased

/Damping

Bending ///_//_/I

I Stiffness / ///

Moss Rego°,'.'2"
R°g,on ,''7"

/ I II

I

I

FIGURE 9.25

fc

Frequency - Hz

The Form of the Transmission Loss Curve in the

Coincidence Region, with the Effect of Increas-

ing the Internal Losses.

It has so far been assumed that the internal losses in the

panel were negligible, whereas this is certainly not so
with building materials in common use. The effect of

damping can most easily be incorporated by assuming a

complex Young's modulus E given by

E* = E (l+j rl) (9.73)

where rI is the loss factor for the material of the panel if

a time variation of eJutis assumed. This makes the bend-

ing stiffness complex

D* = D (I + Jn) (9.74)

and the bending impedance becomes

u3D 1 u3D4Iz B =q---7 sin 4B+j _m-_sin e
c c 4

(9.75)

At coincidence, the impedance is not zero but given by

3 D
C

ZB(u=Wc) = q c_
sin4 B

where gc = 2_ fc "

The effect of damping is also shown in Figure 9.25 where
it can be seen the importance it assumes at and above the

critical frequency.

The radiation from a panel depends greatly on the coinci-
dence effect and whether the panel is considered to be
infinite or finite. If a plane wave is incident at an angle
e with the normal to an infinite panel, a forced bending

wave will propagate along the panel to infinity. The
radiation from the panel will be directed at an angle e to
the normal on both sides of the panel as shown in Figure
9.26.

/_

FIGURE 9.26 Radiation from an Infinite Panel

The amount of radiation will of course be greatest at the
coincldence frequency corresponding to angle of incidence
6, because the vibration amplitude will be greatest at this

frequency.

Finite Panels

It hasbeen shown (by Westphal) that the power W radiated
by a panel undergoing free bending vibrations is propor-
tional to the mean square velocity and to a term S called
the radiation factor

W_u2S

where

(9.76)
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i

and cB is given by Equation 9.68 at frequencies such that

c_ > c; i.e., above the critical frequency, the value of S

soon becomes unity and W~u 2. Below the critical
i

frequency, CB<Cand Sbecomes imaginary, hence no power

will be radiated. However, if internal damping of the

panel is included, there will beanimaginarypart to the
veloci ty u and some energy will be radiated. This i ncreases
wl th increasing damping but decreases wl th decreasing fre-
quency as can be seen from Equation 9.76.

If the panel is subjected to plane wave excitation at an
angle 8 there will always be radiation on both sides of the
panel also at angle 8. However, above the coincidence
frequency for this angle of incidence the free standing
waves that are produced by reflection of the forced waves
at the boundaries will radiate at an angle q_given by

= sin_ 1 c
c B

as shown in Figure 9.27.

Radiation from

f Forced Wave

Radiation fromI

--_ _ jreeSto ogW....

N

FIGURE 9.27 Radiation from a Finite Panel at a Frequency Less

Than the Critical Frequency. For Clearness, only

the Radiation on One Side of the Panel has been

Shown.

The radiated waves coincide when B =cp or sin e = c/c_

from which the frequency can be calculated. In any case,
however, a typical curve of transmission loss versus fre-
quency for a solid, thin panel is shown in Figure 9.28.
This curve is expanded and shifted along the frequency
axis by an amount depe_dl ng on the elastic parameters and
dimensions of the panel. It is obviously a disadvantage

for the coincidence effect to lie in the particular fre-

quency range of interest in any practical application, so
it should be arranged that i t lies either above or below this
range. In the former case, thin, dense and limp materials

are required so that the mass law isobeyed, whereas, the
reverse is required for the bending stiffness region to be

applicable.

Figure 9.29 shows the transmission loss characteristics of
three materials having different elastic parameters but the
same lateral dimensions and weight. It can be seen that
the resonance and coincidence effects vary considerably
between the materials.
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FIGURE 9.28 The Form of the Transmission Loss Curve for a Solid, Thin

Panel Clamped at the Edges

i

w i II I i i li I i i iij i 7 Ii [ I i i

/ ,'

lO dB _b)

\'\'_1

10 IO0 lO00 10,000

Frequency- Hz

FIGURE 9.29 Theoretical Curves of Transmission Loss for

SteeJ (1 .8"), Concrete (6"), and Lead (1 .2").

The mass/unit area is the same in each case,

and the area is 10 ft by 20 ft. The natural

resonances are excluded from this diagram.

Double Walls

One of the most common ways of increasing the transmission
loss is to add another single panel a certain distance away

.from the original. The total mass of thecomblned structure
is thus doubled if the panels are identical, so an increase
of 6 dB in the insulation would be expected in the mass-
law region. However, the problem is complicated wlth
the introduction of an air gap and extra resonances occur
resulting in a lower TL than would at first be realized.
This type of structure does have one big advantage in that
thecritical frequency is as for one of the individual leaves,
and not half of this (see Equation 9.70) as would be the
case if the two panels were fixed firmly together. If an
analysis is made on an infinite double wall construction in
a similar manner to that of Section 9.3.4, the expression
for the transmittivlty can be found to be

1 1+ zl+_ z2 Zl z2 c°s2 8 (1- e -jl'\)--= -- cos8+ 2
•'r Poc 4 p2 C

(9.77)
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where z 1 and z 2 are the impedances of the two panels, 0

is the angle of incidence of a plane wave, and 1' is given
as

2gdcos8
1' c

where d is the separation of the panels. If d = 0, then
Equation 9.77 is identical to that for a single panel,

Equation 9.56. The value of the impedances z 1 and z2 are

given by Equation 9.60, 9.64 or 9.72, whichever fre-
quency range it is desired to investigate. If the two panels

are limp then

z 1 =z2=J_m

for two identical panels. In this case, assuming normal
incidence

1=I1+ J m_/wm _2 (1-e-J1')l 2•"r po c _2PoC /

= 1- (1-cos'/ + um 1- um sin-(
4PoC

(9.78)

In this expression, the second part is zero when

4 p0 c
sin 1' =

W m

If 1' = (2gd/c) is small, which it is at low frequencies,
and normal separation (less than 1 ft) then

2u d 4 poc
sin 1' ~- 1' : c um

or

=t/2 P°-__2 (9.79)
_o _ md

This is thus a resonant frequency of the system and can be

looked upon as a mass-spring-mass resonance, the stiffness

of the air gap being PoC2/d. At this frequency it becan

seen from Equation 9.78 that

1 "_1 or TL = 0dB
T

At higher frequencies, another minimum occurs when

cos y = 1

or

nc n = 1,2,3... (9.80)f =_-_- ,

This occurs when the separation is a multiple of the half

wavelength; therefore, there will be an infinite number of
these resonances having a relative spacing of c/2d Hz.
The form of the transmission loss curve is thus as shown in

Figure 9.30. (It should be pointed out that theTLatthe
high frequency resonances is only equal to the total mass
lawvalueasshown if they lie below thecritlcal frequency.
If this is not the case, the TL may well be zero at these

points .)
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FIGURE 9.30 Theoretlcol Transmission Loss tara DoubleWall

at Normal Incidence, Each Wall Having a Sur-

face Mass of 2 Lb/ft 2, and an Air Gap of 3".

The Oashed Line Represents the Mass-Law

Values at Normal Incidence for a klrnp Wall

of Moss Equal to the Total Mass of" the Double

Wall (; .e. 4 Ib/ft 2)

If the twopanels are of mass m 1 and m2 per unitarea, then

z 1 : j u m1

z2 = j u m2

If these values are inserted into Equation 9.77, the mass-

spring-mass resonance at normal incidence is

I/PoC2(ml +m 2)

mlm2" 
(9.81)

The cavity resonances are the same as before.

Inaddltion to the resonances mentioned above, each indi-

vidual panel responds in the same manner as explained in
the last section. In other words, each panel exhibits the
mass-stlffness resonance, the natural resonances (if it is of

finite size) and the coincidence effect, making the com-
plete characteristic extremely complicated. It is usually
impossible to separate all these resonances, but care should
always be taken to ensure that the most important do not
coincide. To these ends, it is good practice to use indi-
vidual leaves of different thicknesses or elastic parameters.
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Despite these precautions, however, it is common for
double wall constructions to have a lower TL than that pro-
vided by one of the leaves independently at the low fre-

quencies. This situation is reversed at medium and high
frequencies. The variation o£ insulation with separation is
shown in Figure 9.31.

, 21
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/
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FIGURE 9.31 Effect of Separation of Leaves in a Double Wall on the

Transmission Loss (Averaged Over the Frequency

Range 125 Hz to 4000 Hz)

If I is the TL provided by oneof the leaves, then the theo-
retical (mass-law) TL for two leaves is approximately I + 6
dB. The 1"l. then increases with separation eventually

reaching a value 21 when the leaves are several wave-
lengths apart. However, if at a certain separation, the as-
sociated cavity resonance coincides with the critical fre-
quency, then the TL will decrease as shown in the dashed
curve. The introductionof damping into the panels will of
course have the same effects as in the case of the single
panel. However, the effect of the mass-sprlng-mass reso-
nance will be reduced.

Despite these disadvantages, however, the TL that can be
obtained from careful ly designed double wall structures can
far exceed that for a single panel at the high frequencies.
In this region, it can also be advantageous to utilize triple

walls to good effect.

Mechanical Isolation of Double Walls

An important point to remember when designing and con-
structing double walls, is that the twoleaves must be com-
pletely isolated from each other. Any structural ties con-
necting the leaves effectively reduce the structure to a
single panel and hence lower the TL. If ties have to be
provided, .as with the double brick wall, they should be
light and flexible. The addition of an absorbent in the
cavity can have beneficial effects as long as the leaves
are separated. If they are not, this measure has no effect
except when the leaves are light and the absorbent thick,
when an increase in the mass may be apparent. The ab-

sorbent should preferably have a high flow resistance, yet
not be so stiff as to act as a structural tie, when it may
even reduce the insulation. Because of the complexity of

this type of structure, and because the finite panels are,
in practice, usually joined at the edges, calculations of
the TL give results that tend to be rather optimistic.
Hence, the design is usually based on experimental work.

If multiple panels are employed with air-gaps, then it is
essential to have different thicknesses and separations and
to minimize coincidence effects in the frequency range of

interest, otherwise the high TL that could be obtained will
be drastically reduced due to resonances.

Subdivided Partitions

In many practical cases, a wall may be subdivided into
different sections, such as doors and windows. These sub-

sections usually have lower values of TL, hence the com-
plete structure will itself provide less insulation. How-
ever, the new value for the transmissivity can be calculated
providing that the individual values for the sub-sections
are known.

If-r. is the transmissivity of the ith subsection, having areai

Si, then the average tronsmissivity for the complete struc-
ture "r is given by

"Ti SI
=J

"_ _ s; (9.82)

If the transmission loss of the material constituting the ith

section is TLi, then

-ri = ]o-(TLI/10)

and

SI 1o-(TLi/10)

"_- _ s; (9.B3)

and

)

This method is useful in many cases but it should be used

with care if there are any gaps or cracks in the structure.
An example of how damaging to the insulation a door can
be is shown in the following example and in Figure9.32(a_

Consider a wall of size 10 ft by 10 ft having a door 8 ft by
4 ft with insulations of 50 dB and 40 dB, respectively.
Combination of the two using Equation 9.83 results in a T/
of 44dB;i.e.,adropof6dBonthewallalone. Thistype
of calculation can be carried out to show the influence of

air gaps on the TL.of a structure. Assume that the door in
the last example is situated in a wall having an extremely

high transmission loss, and that there is an air gap of 1/16"
between the door and the wall. If the transmission loss of

the door is, say 30 dB, then by using Equation 9.82 it can
be shown that the combined loss is only 24 dB. In other
words, the effect of this small air gap is to reduce the TL
by 6 dB. It should be mentioned, however, that diffraction
and tube effects make this calculation only approximate.
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Transmission Through an Aperture

The case of the transmission of sound through a circular

aperture is complex and has been dealt with fully in Refer'

ences 9.18 and 9.19. In this section, only the more im-

portant results will be quoted, using the following nomen-

c latu re,

a = radius of the aperture

L = length of the aperture

K = 2_f/c, wheref is the frequencyand c is thespeed

of sound.

It is assumed that the circular aperture is situated in a

plane walland is subjected to a plane wave incidentalong

the normal to the wall. Under these conditions it is found

that the curve for transmission loss as a function of fre-

quency is of the form shown in Figure 9.32(b). Experi-

mental verification of the theory is given in Reference

9.19 and shows that the results also apply for a diffuse

incident field. The theoretical curve can be divided into

three sections:

• At very low frequencies, (Ka < 0.1), the transmission

loss is always positive and if L/a > 20, then

TL = 20 log (L/a) - 3 dB

Thus the TL is dependent on the ratio (L/a) 2. In the

case when L/a < 20, the transmission loss is slightly

higher than that calculated using the above expres-

sion.

• At high frequencies (Ka > 4) the transmission loss is

approximately unity.

In the intermediate region (0.1 < Ka < 4) the TL curve

exhibits several maxima and minima, the number and

the sharpness of which are determined by the factor

L/a. If this is large, the resonances are sharp and

numerous. When L/a issmall, the transitlonfrom the

low to high frequency region is smooth as shown in

Figure 9.32(b).

9.4. DUCT__..__S

One of the most important aspects of the acoustics of en-

closures is the acoustic attenuation provided byventilatlng

and heating ducts. In order to provide good sound insula-

tion from external noise, open windows and doors are of

course out of the question. Thus, artificial ventilation

systems have to be incorporated into the structure, provid-

ing an extra path for sound transmission. It is essential •

therefore, not only for ducts to provide high attenuation

of external noise but also of their self-made noise due to

fans etc.

The majorltyof ducts consist of a rectangular tube of metal

sheeting which is lined with an absorbent material. This

material must obviously be fireproof and falrlyseaure so as

not to be damaged by air currents, and must attenuate

sound waves without impeding the direct air flow. Many

different methods have been reported in the literature for

determining the effectiveness of a lined duct, but the most

convenient one is to state the attenuation in decibels per

unit length.
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9.4.1 THEORETICAL ATTENUATION OF A LINED
DUCT

If the duct is rectangular in cross-sectlon with the x-axls

corresponding to the main axis an expression for the sound
pressure traveling in the positive x-dlrectlon can be writ-
en as (see 9.12)

j (K x x - u t)

p = A cash (Kyy) cash (k z) e (9.84)Z

where Kx, Ky and Kz are the components of the propagation

constant Kin the x, y and z directions.

This expression can then be inserted into the three dimen-
sional wave equation, and a relationship between K, Kx,

.Ky and Kz obtained. If the admittance of the duct lining
is introduced, the propagation constants Ky and K z can be
determined and hence Kx,whlch represents the propagatlon
of sound waves along the duct. From this analysis (which
is explained in more detail in Reference 9.6) it turns out
that the wave along the duct has a damping term associ-
ated with it, given by

x]
where L is the length of the duct perimeter, A the duct

area, and e the susceptance of the duct linlng. This demon-
strates that the pressure decreases with distance x along
the duct. The attenuation in dB per unit length is thus

A'= 4.34 L_._ (9.85)
S

Expression 9.85 has been derived, however, assuming plane
wave motion along the duct. Athigherfrequencies, there
will be wave motion perpendicular to the x-axis and in
these cases the attenuation is approximately

A'=8.68_ dBperunit length

where

= - \2Lz! J (9.86 

L. and Lz are the lateral dimensions of the duct,X is the
Y

wavelength and n. , nz = 1,2,3 . . . are the mode num-y
bers for the transverse waves. For a square duct with
L .= L,, it can be seen that'r becomes imaginary for ay --
particular mode number n = nv = nz, and thus no truewave

/
motion can occur.

The radiation from the end of the duct into an enclosure,
depends, to a certain extent, on whether it is flush with
the wall. Figure 9.33 shows that the acoustical radiation

resistance at the end of a tube is (for kz < 1) 3 dB less for
a tube in free space than it is for flush mounting. Thus,
the power radiated will also be approximately 3 dB less,
the remaining energybeing reflected back along the duct.
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FIGURE 9.33 Acoustical Resistance at the Exit of a Duct for Baffled

and Unbaffled Combinations where a is the Effective

Radius

The attenuation at the end of ducts having various cross-
sections is shown in Figure 9.34. The values from this
should be added to the attenuation due to the duct absorp-
tion.
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FIGURE 9.34 Attenuation at End of Ducts of Various Cross-

Sectional Areas when Mounted Flush with a

Wall (from Reference 9.13)

9.4.2 PRACTICAL VALUES OF ATTENUATION IN
DUCTS

A qualitative approach to the attenuation of sound in a
duct shows that it is proportional to the absorption of the
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lining only at frequencies where the distribution of pres-

sure is approximately uniform, i.e., at low frequencies.

Thus, with a porous absorber (see Section 9.2.2.1) the

attenuation at low frequencies increases with the frequen-

cy. At high frequenciest the sound is directed more to-

wards the center of the duct and hence, the attenuation

will be less. Combination of these two effects results in a

band--stop frequency response, the position of the maximum

depending on the duct dimensions and the type of absorbent.

The walls of the duct are usually of thin metal sheeting, as

mentioned previously. Since the transmission loss of such

sheets is low at low frequencies, some of the sound energy

will be transmitted out of the duct. This increases the

effective attenuation, but may prove disadvantageous

unless the duct is insulated from any enclosures.

Since the absorption provided by a porous material depends

partly on the flow resistance (see Section 9.2.2.1), this

will also have an effect on the attenuation. In Figure 9.35

design curves are shown for a duct having only two lined

walls with flow resistance and open-area percentage as

parameters. This clearly demonstrates the maxima occur-

ing when Ly X for all values of flow resistance.
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The Effect of Flow Resistance R] (Expressed by the

DimensionlessParameter R] t/Poe) on the Attenuation
of a Duct with Absorbent Lining on Two Sides Only.

The attenuation is expressed in dB per length of duct
equal to the width (from Reference 9.11).

In practice, the expression for the attenuation given in

Equation 9.85 and 9.86 proves to give optimistic results.

A simpler, emperical formula that can be used for design

purposes under certain circumstances is

attenuation = 12.6 L 1.4 dB/unlt length (9.87)
.)

where _ is the absorption coefficient of the duct lining.

This is found to be correct within 10% for ducts having

height to width ratios of between 1:1 and 1:2, absorption

coefficients in the range 0.25 to o.5 and for frequencies

200 - 1500 Hz. Figure 9.36 shows a comparison between

experimental and calculated results. At the higher fie-

quencies, the attenuation is greater than expected forshort

distances along the duct, but becomes constant at larger

distances, where flanking transmission along the surfaces

is the dominating factor.
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FIGURE 9.36 Comparison of Measured and Calculated Attenuation

in a Duct I Foot Square Lined with 1 Inch Blanket

(Data from Reference 9.13)

The Effect of Bends

Because of the beaming of the high frequencies along

the center of the duct, increases in boundary absorption

have little effect on the attenuation in this range. How-

ever, it can be increased by the introduction of a bend in

the duct, which becomes effective at frequencies above

that where the wavelength is smaller than the duct dimen-

sions. If the bend is unllned,then the action will be one

of pure reflection giving perhaps an attenuation of 3 to 4

dB at the high frequencies. More attenuation can of course

be gained by lining the bend with absorptive material, as

shown in Figure 9.37, which is drown for the lining in

different positions. Only little excess attenuation is no-

ticed at low frequencies where the wavelength is greater
than the duct dimensions and diffraction around the bend

occurs. Thus a compromise has to be made between cost

and low frequency attenuation, since cost is proportional

to the lateral dimensions. It should be pointed out that

these results are only valid strictly when the lining extends

a distance of at least two duct widths after the bend,

otherwise a correction should be subtracted from the total.

At the sudden discontinuity caused by the introduction of

a bend, turbulence and hence, noise is produced, which

will be greater the sharper the bend and the larger the

duct (Figure 9.38). It is inadvisable, however, to use

rounded bends, as the attenuation is extremely low (Figure

9.37). Therefore, a further compromise has to be made

between duct size and noise.
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Resonators

The attenuation of a lined duct is poor at very low fre-

quencies, because of the characteristics of porous absor-

bents, unless the lining is made extremely thick. Since

the effect of bends is also small at these frequencies, tuned

resonators (see Section 9.2.2.3) are sometimes employed to

increase the attenuation. These are placed in the side of

the duct and are useful in the frequency range 20 - 100

Hz.

The positioning of the resonator along the length of the

duct can be important if the duct is small (laterally) and a

substantial amount of energy is reflected at the exit. In

this case, standing waves will be set up, and care should

be taken to ensure that the resonator mouth is at a pressure

antlnode.

Splitters

In some cases, more absorption than that due to a simple

lined duct is required. This can be achieved by increasing

the area of the absorbent material while retalnlngthe same

percentage open area as shown in Figure 9.39.

IUNK
(a) (b)

FIGURE 9.39 Illustration of the Use of "Splitters" to Increase the

Effective Absorbing Area of a Duct. The shaded

portions represent absorbent materials.

Attenuation curves for ducts with splitters are shown in

Figure 9.40, in the case of 50% open area. The high val-

ues at the higher frequencies can only be attained if flank-

transmission is kept under control.
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FIGURE 9.40 Attenuation of a Duct with Splitters of Different
Thicknesses. The percentage open cross-sectlonal
area in each case is 50 percent (from Reference
9.13).

9.5 NOISE REDUCTION

The basic acoustical theory of absorbers, insulators and

ducts have been described in the preceding sections of

this chapter. In this section, the idea is to combine the

knowledge thus gained and apply it to the problem of re-

ducing the noise inside enclosures, the aim being to pro-

vide an environment with the lowest possible annoyance,

and that permits the full utilization of the enclosure as

originally planned.
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To begin with, it is necessary to definethe term "noise re-
duction" (NR). This is simply the reduction in energyden-
slty level or sound pressure level produced by the appli-
cation of a certain acoustical treatment.

Consider two adjacent rooms separated by a wall, one room
containing a source of noise that produces an energy den-

sity of E1 • If the energy density in the second room due to
this source is E2, then the noise reduction is defined as:

which from Equation 9.52 can be written:

NR=TL-101og (-_-)

where TL is the transmission loss of the dividing wall. Thus,
the noise reduction depends on the absorption in thesecond
room, as opposed to the transmission loss which depends
solely on the properties of the dividing wall. It also de-
pends on the area A of the wall, the smaller this is, the

higher the noise reduction.

If a noise source inside an enclosure produces an energy

density El, and acoustical treatment is applied reducing
the density to E2, then the noise reduction is given by:

= SPL1 - SPL2

where SPL1 and SPL2 are the sound pressure levels existing
before and after the treatment respectively.

9.5.1 DETERMINATION OF NOISE LEVELS

External Source

Consider an enclosure which is situated in the sound field
of a noise source such that only one surface is directly ex-

posed. Figure 9.41(a) This case is encountered with a
sunken building where perhaps only the roof is visible.
The incident sound pressure level at the point x on the

exposed surface can be calculated using the results of

Chapters 6 and 7. Let the incident level be SPL1 . The re-

quired maximum level inside the enclosure SPL2 depends

mainly on the purpose for which it is used1 and can be de-
termined from Chapters 10 and 11. Thus, the required TL
of the wall can be calculated in the following manner,

assuming that the energy falls on one wall only. At high
frequenclesl when the wavelength is smaller than the
dimensions of the enclosure1 there will be negligible dif-

fraction at the edges. If the enclosure is, say, 20 ft x 20
ft, this occurs for frequencies above approxffnately 50 Hz.
Common experience tells us that noise will be heard in this
acoustic shadow_ but compared to the level in the direct
field, this will have a negligible effect on the internal
sound level. The situation is different andmuch more com-

plicated, if there are reflecting surfaces_ i.e._ other

buildings in the vicinity. The incident mean square sound

pressure will be

2 2 10SPL/10
Pi = Pref

The mean square pressure transmitted is given by

2 2
Pt = "r Pi

and the power radiated by this wall, having area A, is

2
Pt

W= IA= -- A
pc

Using the fact that themean square sound pressure in a re-
verberant room, having a source of power W, is

2 4W pc
a

where a is the total absorption in theroom, it can be shown

that the TL required is

A
TL=SPL 1 -SPL 2+10 log --a ÷6dB

(9.88)

whereSPL 21sthereverberant level in the enclosure. This
is a useful expression since it contains both the TL for the
wall and the total absorption "a". However, this is only
the case when one wall is subject to impinging sound
waves. If the noise source is situated as in Figure 9.41 (b),
then the transmission through two of the walls has to be
calculated. The incident levels being taken at the cen-
ter of each wall.

Source

L 2

a) Direct Radiation on One Wall Only

Source .._

b) Direct Radiation on Two Surfaces

FIGURE 9.41 External Source Driving One or More Surfaces of an

Enclosure
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9.5.2 INTERNAL SOURCE

If a noise source is situated inside an enclosure and away

from the surfaces of the enclosure, it aroduces a direct

mean square pressure at a distance r given by (Chapter 7)

2 W po c

Pd = ----T
4_r

The reverberant field as shown in Equation 9.33 will be

2 4 W po c

Pr a

If there are N sources each of power W, then

2 4 NW po c

Pr - a

and the SPL is increased by an amount 10 log N. in this

case, p2 has to be calculated for each source.

At any point, therefore1 the mean square pressure will be

2 2 2
P : Pd + Pr

= PoCW [4_._r2 +4]

or

r 41

SPL _- PWL+ 10 IogJA_-__ 2 + a-_ dB
J

(9.89)

10-13where the power level reference is taken as watts
and the distances in feet. Examination of 9.89 shows that

for small values of r, the first term in the bracket assumes

most importance (unless a is also very small) and the SPL

decreases by 6 dB per doubling of r. In this direct field

regiont an operator receives no benefit from any absorp-

tion on the walls of the enclosure. To protect this person,

therefore, the power level has to be reduced, either by

quieting the source or by the introduction of an interven-

ing barrier, although the latter precaution will not offer

protection from the reverberant sound level.

a

When r > 1-_' the sound field is dominated by the re-

verberant field and the SPL can be decreased by quieting

the source or by the addition of absorption. Figure

9.42 shows the actual SPL in the presence of a source in

an enclosure for various amounts of absorption.

if the noise level is too high in an enclosure, then it is

common practice to provide small partition offices for noise

control. These are usually constructed of lightweight

materials and hence if the interior noise level needs to be

predicted, it should be done so at octave or 1/3 octave

intervals. Asingle figure value is not sufficient. If the

original enclosure has a total absorption "a", and a source

of power W watts is producing a reverberant sound pressure
level SPL then

2 /4W po c

SPL= 10 log P - 10 log( - /+74dB2 a

Pref \ / (9.90)

where the reverberant mean square sound pressure is given

by

2 4W po c
p -

a

if the introduction of the partitions having a total area A

increases the absorption by an amount "a 1", then the sound
pressure in the enclosure will decrease to

2

I Pl -

4 W po c

a+a I

and the SPL to SPL I

0

-5

Absorption

a = 10 _q ft

2O

c -- 100

"_-is 'x,,

- 2oo-2o

•,"_'_ _ _ _ 500
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s
200C

-30 "_ 500C

10,00_-35
1 2 4 8 16 32

FIGURE 9.42

Distance - ft

Sound Pressure Level in a Room Relative to the

Sound Power Level at Various Distances from

the Source for Varying Absorption.
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Different parts of the partitions will have different trans-
mission characteristics and so the average transmission co-
efficient-r has to be calculated from Equation 9.82.

Hence• the sound pressure level SPL2 inside the office will
be

= SPL1 - (TL) + 10 log _'_--/ (9.91)SPL2
\°2/

where

and a2 is the total absorption inside the office, assuming

that the sound fields inside and outside the office are
diffuse.

Thus• approximate calculations of noise levels can be car-
ried out simply and quickly by using the few formulae men-
tioned in this and previous sections.

In a building which is subdivided into several parts• such
as laboratories, offices and machine rooms, the above cal-
culations have to be carried out in stages• considering one
part at a time. If a prediction of the noise level in a par-
ticular room is required• then the calculation begins atthe
source. On the other hand• a building may need to be de-
signed acousticallyto provide a certain minimum noise re-
quirement. In this case• the calculation is begun with
thesefinal requirements and worked in reverse todetermine
the required transmission and absorption characteristics.
To specify the acoustic properties fully• it has to be re-
peated at every 1/3 - octave or octave band as required.

9.5.3 SAMPLE CALCULATION

Consider a building that is to be situated in thevicinlty of
a rocket launch site. It will be assumed that it is suffi-

ciently far removed from the site so as not to require any
protection from blast, which• from Chapter 6, fixes the
minimum distance at around 17,000 ft for the Rocket Num-
ber 3 as defined in Table 6.1, page 6-9.

Suppose that it is required to determine the acoustical
properties of the exterior walls and interior materials so as
to meet a certaln nolse level criterion, in this example •
one room of the building will be considered• with one of
its surfaces being the exterior wall. It will be assumed
that this surface is to be of dimensions 20 ft x 10 ft and

will have one window included, 4 ft x 5 ft; the length of
the room being 20 ft.

At the above distance from the site• the approximate sound

pressure levels in octave bands are shown in Table 9.2 .
These figures are taken from data in Chapter 6, the levels
being produced by the rocket 20 seconds after take-off.

In order to set a limit on the noise level inside the room•

it is useful to use the speech interference level (SIL) con-

cept discussed in Chapter 10. The required SIL figure de-
pends on the purpose of the room but assuming that in this
case the room houses equipment and personnel• a conven-
ient figure to take corresponds to the NCA 60 curve (Re-
ference 9.11) which is shown in Table 9.2.

In order to fulfill this noise criterion• it may not be pos-

sible to gain ventilation via the windows, and so a separ-
ate system will be required. The resultant noise level in
the room will therefore be composed of the level transmit-
ted from outside and that from the ventilation system; this
total noise level should not exceed the level set down in

the criterion.

First of all• the ventilation system will be considered. If
this is assumed to consist of a 1/4 h .p. vaneaxlal fan to-

gether with a lined duct of length 15 ft., the SPL produced
in the room can be calculated. The power level produced
by such a fan is given in Table 9.3• and by using Equation
9.89, assuming that all the power is transmitted into a re-
verberant fieldt the attenuation requ!red of the duct can be
determined. Assuming a square duct of side 18", lined on
all sides with 1" absorber with the absorption coefficient
as shown• the attenuation due to a length of 15 ft is shown
according to Equation 9.87. Thus, the required TL of the
wall can be written.

TL = SPL1 - SPL2 + 10 Iog(--_-) + 6 dB (9.92)

where SPL1 is the exterior level• SPL2 is the maximum pos-

sible interior• reverberant level to fulfill the criterion, and

A is the area of the exterior wall. The required transmis-
sion loss as shown in Table 9.4 does not appear excessive,
but it is to be noticed that reasonably high values are re-

quired at extremely low frequencies. Also• there is the
effect of the windows to be considered.

Now that the required transmission loss of the exteriorwall
is known• the requirement for the windows can be calcula-
ted if the TL of the wall is assumed. In this case, if the
wall is 4" of reinforced concrete or 9" brick• the win-

dow requirements are as shown in Table 9.4.

TABLE 9.2

COMPARISON OF THE CALCULATED EXTERNAL SPL DUE TO THE SOURCE
TOGETHER WITH THE REQUIRED SPL INSIDE THE BUILDING

_Octave band

_Frequency -

Description _ Hz

SPL at a Distance of 17,000ft
from o Rocket Source (dB)

NCA - 60 Curve

16 32 64 128 250 500 1000

111 110 108 106 103 98 95

107 97 87 78 71 65 62

200O

9O

59

4OOO

85

58
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TABLE9.3

CALCULATIONOFTHESPLINAROOMDUETOAVENTILATIONSYSTEM

_""_ctaveBand
. ._ Frequencyin 16 32 64 128 250 500 1000 2000 4000

_escrlpfion_,,,,,_ Hz
PowerLevelProduced
byVaneaxlalFan- dB 79 84 86 88 88 87 85 84 81
re10-13watts

10Ioga- whereals
theTotalAbso_'optlonin 15 18 21 23 24 25 27 27 26theRoomin ff_

SPLinRoom 70 72 71 71 70 68 64 63 61
=PWL-10Ioga+6dB

AbsorptionCoefficient
fortheMaterialinthe - - 0.1 0.23 0.48 0.78 0.73 0.71 0.68
Duct !

AttenuationDueto15'
ofL_nedDuct- Calculated - - 3 6 9 23 20 18 17
indBfromEquation9.87

SPLinRoomindB 70 72 68 65 61 45 44 45 44

TABLE9.4

CALCULATIONOFREQUIREDTLOFANEXTERIORWALLWITHWINDOWiNCLUDED

""_,_ctaveBand
.... _ Frequencyin 16 32 64 128 250 500 1000 2000 4000
_escription'_ Hz

A = Area of Wall in ft 2 8 5 2 0 -2 -2 -4 -4 -3

a = Absorption in Room ft 2

Required TL for Wall 18 24 29 34 36 37 35 33 30
from Equation 9.92

TL for 4" Re_nforced 23 29 35 37 37 45 52 60 65
Concrete Wall in dB

Requirement for Window
in 4" Concrete Wall to 10 16 20 27 32 27 26 22 19
Meet NCA 60 in dB

TL for 9" Brick Wall with
30 34 37 41 45 49 56 57 58

1/2" plaster on Both Sides

Requirement for Window
in 9" Brick Wall to 12 15 20 25 27 28 25 23 20

Meet NCA 60

TL of 1/4" Plate Glass 13 17 21 25 28 30 34 25 36

TL of 6" Concrete Wall 30 34 37 40 44 52 56 62 66
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Inside the room it is expected that the walls will bepaint-

ed brick, two of them having half their areas covered with

acoustic tiles mounted in the Standard No. 7 position

(Chapter 12). The floor will be assumed to be concrete

and the cei ling tiles mounted directly onto concrete. Using

the tables in Chapter 12, the total room absorption in each

octave band can be calculated. These values will of

course be lower than the absorption in the completed room,

because of the presence of personnel and equipment. Thus,

using Equation 9.89, the SPL due to the ve_ntilatlon system

can be calculated. This then has to be added (logarith-

mically) to the SPL due to the noise transmittal from out-

side, the resultant level meeting the criterion mentioned

above. This calculation can also determine the maximum

SPL al lowable due totransmisslon throughthe exterior wall.

In this case the SPL due to the ventilation system is negli-

gible compared to the values of the NCA criterion, and

can be ignored, these values having been determined using

Equation 9.82. With the reinforced concrete construction_

a simple window such as a 1/4 in. plate glass, is not suf-

ficient for the requirements. A double window, consisting

of two 1/4 in. plates could be used, but the resonance at

low frequencies might well reduce the TL below that for

the signal plate. This is important since the low frequency

region contains a major part of the sound energy. The

combination of the 9in. brlckwallwlth the 1/4 in. plate

glass provides sufficientTL to satisfy the internal noise re-

quirements. Examination of the TL values for a 6 in. con-

crete wall shows that this is also sufficient for the purpose,

and may well be cheaper and easier to construct.

9.6 APPLICATION OF DAMPING TREATMENT

FOR NOISE AND VIBRATION CONTROL

The minimum sound transmission loss through a wall at its

lower natural frequencies fn and at the coincidence fre-

quency fc, has been shown to be strongly dependent upon

the loss factor q of the wall. Any increase in this loss

factor will obviously be beneficial for maximizing the

sound transmission loss. However, very important addi-

tional benefits are realized when damping of the wall is

increased. All of these effects may be summarized as foi-

l OWS.

• Increased sound transmission loss at lower order wall

resonances and at coincidence.

• Reduction in vibratory stresses in wall. (For walls

subject to sonic fatigue, this can result in very large

increases in fatigue life .)

• Reduction in reaction forces at wall boundaries for

lower order wall resonances and hence a reduction in

structurally transmitted vibration.

Since the beneficial effects are significant for both acous-

tic and vibration environments transmitted into the interior

of buildings, the application of damping treatment to re-

duce the vibration of walls or panels isconsidered indetall

at this point. Other specific methods for the isolation or

control of structurally transmitted vibration will be dis-

cussed later in this chapter.

9.6.1 APPLICATION OF VISCOELASTIC

MATERIALS FOR DAMPING OF PANELS

The stress in a viscoelastic material under a dynamic load

depends on both the average strain and rate of strain. Such

materials are therefore capable of absorbing appreciable

amounts of energy when subjected to vibratory loads. This

energy absorption represents a form of damping called

Dynamic Hysteresis Dampin_ (see Table 3.19, page 3-161).
For harmonic motion, this type of damping can be con-

veniently described in terms of a complex elastic modulus

E* and a material loss factor q. For a continuous struc-

tural element such as a bar, the loss factor q represents the

relative value of the imaginary part of the elastic modulus

of the material. Thus, for a viscoelastic material under-

going a sinusoldal extensional strain, the corresponding

complex elastic modulus is given by

Extensional Strain

E* =E(1 +jq)

where

E = real elastic or storage modulus of elasticity.

For viscoelastic materials under a shear load, the corre-

sponding loss factor is designated by 13 and the complex

modulus of rigidity is given by

Shear Strain

G*:G(I+jl3 )

where

G = storage modulus of rigidity.

Optimum Damping Material

Since the stress-strain characteristics of viscoelastic ma-

terials depend on average strain as well as strain rate,

their stiffness and damping properties exhibit a marked

sensitivity to temperature and the frec_uenc), of vibration.

This is illustrated conceptually in Figure 9.43 to show that

for a constant frequency, the real or storage modulus

changes from a high to low value as temperature is in-

creased. The loss factor passes through a "temperature

resonance" peak at _e temperature where this change in

stiffness ismost rapid. Conversely, for a constant tempera-

ture, the modulus increases as frequency increases and a

"frequency resonance" peak appears in the loss factor.

This "resonance" in the loss factor corresponds to a relaxa-

tion process in the material (Reference 9.34). Roughly

speaking, for vibration at frequencies below the charac-

teristic peak in the loss factor frequency curve, the visco-

elastic material has a rubber-like quality. At frequencies

well above this transition point, the material tends to be-

come brittle or glass-like. Thus, the design of viscoelasti-

cally damped structure involves the choice of a material

which has its optimum or maximum value of loss factor in

the temperature and frequency range for which it is to be

employed. Some practical guidelines covering this point
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will becoveredlater. It issufficient,fornow, to em-

phasize that the temperature-frequency characteristics are

properties of the damping material and that selection of an

optimum viscoelastic material is an important part of the

design of viscoelastlcally damped structure.

D

u

,P

/ \

/ \
/ \ Loss Factor

s

Temperature (Constant Frequency)

FIGURE 9.43 Illustration of Trend in Loss Factor and Real

Modulus of Elasticity (or Rigidity) of Typical

Viscoelastic Materials as o Function of Tempera-

ture and Frequency (From Ref. 9.20)

Optimum Geometry of Damping Configurations

For relatively low values of dynamic strain, the damping
characteristics of viscoelastic materials are linear. This

is illustrated in Figure 9.44 by the change in loss factor of

a typical elastomer (a rubber-llke viscoelastic material) as

a function of the dynamic strain. Therefore, the damping

characteristics of a composite structure, employing part

metal and part viscoelastic materials can be carried out by

a linear theory. The following section reviews this basic

theory for two common geometrical forms of a composite

structure which employ viscoelastic materials to increase

the damping of vibrating plates. Practical design charts

are given for application to a variety of basic configura-

tions of uniform plates. Application of some of these con-

cepts to equipment structure is illustrated in Section

11.8.2.1, pages 11-31 to 11-38.

0.5

0.4 /a_ =_-"e,_,
.._ 0.3 /o / a

,
0.1

0

10-5 10 -4 10 -3 10 -2 10 "1

Amplitude of Dynamic Shear Strain, in/in

1.0

FIGURE 9.44 Illustratlon of the Dynamic Strain Sensitivity of

the Damping Loss Factor of a Typical Elastomeric

Material in Dynamic Shear (Fr_ Ref. 9.21)

It will be convenient to define the damping of a composite

structure in terms of a combined loss factor q which is

equal to 1/Q whereQ is the resonant amplification factor.

9.6.2 DESIGN THEORY FOR SINGLE LAYER AND

TWO LAYER DAMPING TREATMENT

A general analysis of the overall loss factor for a com-

posite structure consisting of elastic and viscoelastic com-

ponents has been reported by Ungar in Reference9.22.

Based on this analysis, the following design methods are

given for the two special cases 1) a two element system

consisting of an unconstrained damping element on an

elastic element and 2) a three element system with a

damping element constrained between two elastic ele-

ments. For the latter case, the theory ln Reference 9 .22

has been used to develop a new and simplified design

method specifically for this manual.

9.6.2.1 Unconstrained (Free) Layer Damping Treatment

Based Ion the usual assumptions that a) the extensional

stiffness of the free damping layer is small relative to the

extensional stiffness of the metal layer, b) the loss factor

of the damping layer does not significantly exceed one,

and c) the elastic element has no material damping,

then the loss factor, q of the composite structure illus-

trated in Figure 9.45is, to averygoodapproximation,

given by

,Iq 2k2 r 2

q = 2

k lr I + k_

where

q2

Jr', o]+ h12

= Extensional loss factor of damping layer

(9.93)

k_ = Elastic stiffness of damping layer

= E2A 2 = Storage Modulus of Elasticity of
Damping Layer x Cross Sectional

Area, (Area per unit width for

plates).

k 1 = Elastic stiffness of metal base

= E1A 1 - Modulus of Elasticity of Undamped
Element x Cross Sectional Area,

(Area per unit width for plates)

h12 = Distance between neutral planes of each
component

r I _r2 = Radius of gyration of respective cross sections
sections

= h 1/_/'_, h2/_/'_ for uniform treatment

of o uniform beam or plate.

_x = kl/(k 1 + kb)

Dam pi n g .j_/_-/7/_" _ "_-h2
h 1

Layer '_,///////_

FIGURE 9.45 Two- Element Damping Configuration
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The approximation is valid providing

n2k_/ik 1+ kb) < 0.3

which will be true for the great majority of cases, parti-

cularly for any uniform damping treatment of a metal

structure with currently available damplngmaterlals.

Simpler formulations have been commonly used in the past

for cases where the stiffness of the damping layer is negli-

gible (a = 1, k_<< kl). However, recent advances in

the development of very stiff damping materials dictate

the need for the above more accurate formulation for the

general case.

For a given plate and damping material, hl, E1, E2, and

q2 are fixed. It is only necessary, then, to define the

thickness h2 to determine the desired damping.

The thickness of the damping layer can be determined

from Figure 9.46 which is a plot of Equation 9.93 for the

case of a uniform unconstrained damping layer on unl-

form plates or beams. In this case, the combined loss

factor, relative to the extensional loss factor of the ma-

terial, may be expressed as

q/q2 =

e2H 2 IH_+3(1 +H2)2/(1 +e2H2)21

1+e2H 2 [H2+3(l+H2)2/(1 +e2H2) ]

(9.94)

where

e2 = E2/E |

H 2 = h2/h I

In practice, the maximum damping indicated in Figure

9.46 is seldom achieved. Practical limitations on damp-

ing materials and application thickness usually limit the

combined loss factor to less than about 0.3. A comparison

of observed loss factors and values calculated from

Equation 9.94 for damping treatment of steel beams and

plates is shown in Figure 9.47. The observed results were

obtained from a manufacturer's published test data. In

general, the theoretical results appear to be conserva-

tive. However, the agreement between theory and obser-

vation for plates is quite good, indicating the validity of

the theory.
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Typlcal loss factors that can be realized at room tempera-

ture with various types of commercially available high

damping unconstrained layer treatment on aluminum

panels are shown in Figure 9.48 as a function of the

weight of the damping layer, W2, divided by the weight

W 1 . A wide variety of other materials are available with

similar or lower loss factors and suitable for temperatures

from about 30 ° to 150°F (See Section 9.6.3 ). As indi-

cated by the figure, the variation of loss factor over the

practical range of weight ratios varies with the first to

second power of this ratio. The lower power law is

characteristic of some recently developed damping ma-

terials with a very high elastic modulus. Due to this wide

variation in damping characteristics, simplified deslgn

equations can not be developed forthegeneralcase.

Rather, it is necessary to determine theextenslonal loss

factor, q2' and storage modulus of elasticity E2, at the

operating temperature for the particulardampingma-

terial being considered and then with Equatlon9.93 or

9.94, construct curves such as in Figure 9.48° Itlslm-

portant to note that the damping achleved is independent

of the densities of the damping or base layer. However,

weight ratio, instead of thickness ratio of treatment, has

been used in Figure 9.48 for convenience in estimating

the cost of representative damping treatment.
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Figure 9.48 Calculated Combined Loss Factors for Three Typical

Commercial Damping Materials Applied, at Room

Temperature, to a Uniform Aluminum Plate in an

Unconstrained Damping Layer. Frequency'=75 Hz

To illustrate the effect this type of damping treatment has

on panel stiffness, the effect of varying the thickness of

the base layer on both combined loss factor and stiffness

for damping treatment of an aluminum base plate is shown

in Figure 9.49. The damping material is a current type

of Aquaplas. As shown, for a constant thickness of the

base element, the overall stlffness increases rapidly for

thickness ratios greater than 1 but for o constant overall

weight, the stiffness is nearly constant.
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Figure 9.49 Combined Loss Factor and Relative Stiffness of

Aluminum Plate Treated with Current Brand of

Aquaplas Unconstrained Damping Layer. Stiffness

Shown for Constant Weight (Varying Thickness of

Base Layer) and Constant Thickness of Base Layer

(From Reference 9.23!

9.6.2.2 Constrained Layer Damping Treatment

Constrained layer damping treatment, which includes

laminated panels with built-ln damping, isa more recent

development which has demonstrated a capability for very

high damping with less added weight than for uncon-

strained layer damping treatment. For _hls reason and

also because of the more complex design procedures re-

qulred, the subject is treated in some detail in this

section for the benefit of equipment and structural de-

si gners.

The theory developed in Reference 9.22 for damping of a

three element configuration is applicable to complex

geometries such as illustrated in Figures 11.38 and

11.39, page 11-33 as well as for uniform laminated

plates or treatment of a solid panel by foil-backed damp-

ing tapes. The basic assumptions made are:

a) The metal elements are perfectly elastic

b) The loss factors of the damplngelement in

tension and in shear are the same.

c) The extensional and flexural stiffnesses of the

damping element are small relative to either of

the metal elements.

d) The thickness of the damping element is es-

sentlally constant and much less than the bend-

ing wavelength.

The resulting general expression for the combined loss

factor of the structure, illustrated in Figure 9.50 is

J3X Y (9.95)

1 +(2+Y) X+(1 +Y)(1 + #2) X2
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FIGURE 9.50 Cross Section of Typical Constrained Damping
Layer

where h 2/(_T. " _)31 1 1
Y = Structural Parameter --_r_-Z'_'_ + __-T-

_'I-_'3_ / \_I _31

X = Shear Parameter = G2b2,/h2K:? [_1 + _2 ]

h31 = Distance between Neutral Planes of the
two metal elements

=_Bendlng_ Stiffness of each metal element

D 1, D3 _Ell, E313

_Extenslonal of each metal elementstiffness

k 1,k 3 =_E1A1, E3A 3

E1,E 3 = Young's Modulus of each metal element

I1,E 3 = Area Moment of Inertia of eachmetal
element (per unit width if element is a

uniform plate)

A1,A 3 = Cross Section of each metal element (per
unit width if element is a uniform plate)

G 2 = Storage Modulus of Rigidity of damping
element (Real part of complex modulus of

rigidity)

b2 = Mean length of cross section of damping
element

h2 = Average Thickness of damping element

t Bending composite systemWavenumber of

Kb =t2v%T[m/D]I/4

m = Mass per unit length for beams or per unit

area for plates

D = Bending stiffness of composite system.

f = frequency of vibration.

Assumptlons (c) and (d), upon which Equati on 9.95 is based,

E2A2 /-_/ +-_'b/ << (Kbh 2)

and

(K b h2)2 < < I

where E2 is the storage modulus of elasticity of the damp-

ing element and A 2 is the cross-sectlonal area of the

damping element (per unit width if the element is a unl-

form plate).

For typical damping materials applied uniformly with an

optimum configuration to aluminum or steel plates, these

EIE2 I-_i +-_31 <<0.01 _h_ <<I

where f is the frequency of v_bratlon in Hz and h I, h3

are the thicknesses of the metal elements in inches.

These criteria are ordinarily satisfied for most practical

cases. If very stiff damping materials were used with a

thin constraining layer (h 3<<hl) , on thick plates(h 1

large), at low frequencies, the criteria may be violated

and a more exact theory_ developed in Reference9.22

would be required. However, the improved accuracy

would seldom justify the additional complexity of the

more exact solution and it is recommended that Equation

9.95beused for design purposes. A simpler formulation

carried out in Reference 9.24 is restricted to the case of

thin damping tapes applied to plates or beams.

Before considering the design process in more detail, the

physical significance of the parameters X and Y should be

clarified. The shear parameter X is a frequency dependent

quantity which defines the basic configuration of the

damping element. The more complex design procedures

required for laminated or constrained layer damping con-

figurations are primarily clue to the importance of this fre-

quency dependent parameter. It has also been shown that

X 1/2 is proportional to the ratio of the bending wave-

length Xb to the distance within which a local shear dis-

turbance decays to l/e, (or 37 percent of its original

value) (Reference 9.24). For the structural parameter, Y,

a more useful physical significance exists. This may be

expressed as

y = .D (coupled) 1 (9.96)
D (uncoupled)

where D (coupled) would be the bending stiffness of the

system if the damping material were infinitely rigid - that

is, the metal elements would be rigidly connected together

as one unit. D (uncoupled) is just the opposite. It is the

bending stiffness of the system if the damping material

were absent entirely so that the stiffness would be just the
sum of the stiffnesses for each metal element.

Typical values of Y are shown in Figure 9.51 for a variety

of structural systems. For uniform layers in a laminated

structure, V can be expressed in a simpler form as

3e3H 3 (1 + 2H 2 + H3 )2
v - (99z)

3
( 1 +e3H3) ( I +e3H 3)

where

H2

H3

h2/h 1 - Damping Layer/Base Plate, Thickness
Ratio

h3/h 1 - Top Plate/Base Plate, Thickness Ratio

e 3 = E3/E 1
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Structure

Plate with thin tape
of same material

Plates with thickness
ratio of 2 to 1

Two identical plates or
thin-coresandwich

Three identical plates
with thin cores

Highly asymmetric
composites

I-beams with equal
flanges and depth
ratio of 2 to ]

Identical I-beams

Thick-coresandwlch

Structural Parameter y
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3.0
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h3

035
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>3

FIGURE 9.51 Typical Values of Structural Damping Parameter Y
for Several Structural Cross Sections (From Ref.
9.25 and 9.26)

This equation is plotted inFigure9.52fora wide range of

values of h2/h 1 and h3/h 1 and for e 3 = 1 . This shows that

for a uniform laminated three element structure with the

same material in the outer layers the maximum value of Y

occurs for a value of h3/h 1 close to 1. Consider now the

variation in the combined loss factor, q, given by

Equation 9.95, with changes in the three parameters, X,

Y, and I_.

The change in q with X is shown inFigure9.53for [3 =1

and for Y=0.2(typical for a thin damping tape treatment )

and Y = 3 (typical for a symmetrical laminated panel).

The important result to note is that there is an optimum

value for the shear parameter, X, for any given [3 and Y,

which maximizes the overall damping. Fortunately, how-

ever, this maximum |s very broad so that a nearly optimum

value of X is not difficult to achieve. A deviation of the

actual shear parameter realized, for a givenconfiguratlon,

by a factor of 2 from the optimum value, will only reduce

the combined loss factor by about 15 percent below its

maximum value.

The required optimum value of X can be readily shown to

be given in terms of Y and 13as:

Xop t = 1/_/(1 +Y) (I+132) (9.98)
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FIGURE 9.52 Variation in Structural Parameter Y as a Function

of Thickness Ratios for Unifonm Constrained Layer
Damping Configuration
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andtheresultingmaximumdampingobtainedis

Themaximumlossfactor,predictedbyEquation9.99,is
plottedinFigure9.54asafunctlonofYandJ3.Notethat
increasingeltherYorJ3increasesthemaximumlossfactor.
Forvaluesof YorJ3below1,thelossfactorisapproxi-
matelyproportionalto theproductofVJ3butforhigher
valuesof eitherquantity,theincreaseinthecombined
lossfactorislessrapid.Ingeneral,however,increasing

Y will be equally or more effecHve than increasing I_

(Reference 9.25).
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Maximum Combined Loss Factor of Three Element

Laminated, Structures Structural Parameter and

Material Shear Loss Factor (from Reference 9,25)

The process of optimizing the design of a laminated or

constrained layer configuration may be carried out in a

number of ways, depending on the constraints on the geo-

metry or choice of damping materials. The current method

discussed in the literature involves selecting a suitable

high loss factor material, i.e., large J3, for the required

temperature range and then selecting a value for the

structural parameter V from Figure 9.54 (to meet the de-

sired combined loss factor) or from Figure9.52for a pre-

determined configuration). The desired optimum value of

the shear parameter, Xopt0 is then computed from Equation

9.98 and the thickness of the damping and constraining

layer adjusted until the actual shear parameter obtained,

as defined for Equation 9.95, is close to the optimum

value. This may involve a trial and error process to

achieve the optimum design.

A simpler and more direct method has been developed for

this manual which reduces the trial and error process to a

minimum. This method, to be explained subsequently, is

based on the use of a modified shear parameter which is

independent of the thickness of the damping layer. First,

however, it is desirable to consider the stiffness and reso-

nance frequency of the Iominatedconfigurationslnce

these parameters may impose additional constraints on the

design. They are also required for both of the design

procedures.

Dynamic Bending Stiffness of Laminated Structure

From Reference 9.22 it can be shown that the real bending

stiffness, D, of a three-element laminated structure is

given by

D (D1 +D3)[l+ X+(l+L32) X2]= . Y
l+2X+(l+J32)X 2

(9 1oo)

where

D I + D3 = Bending stiffness of the structure if the

intermediate layer were absent entirely.

(i.e. - the uncoupled bending stiffness)

Assuming the optimum value of X is obtained, Equatlon

9.98 is substituted into Equation 9.100 to give the elastic

bending stiffness for optimum damping, Dopt, in terms of
the uncoupled bending stiffness as

1 +B 2'Dopt 1 +¥+ (1 +Y)( )
--= 1+ "Y

D1 + D3
2(1 + Y)+(2 + y) I_1/(1 +Y)(1 +132):

9 .lOl)

This is plotted in Figure9.55for3 values of J3 represen-

tative of "easily obtainable (0.5), " "probable" (I .0)and

"possible" (2.0) damping materials (Reference 9.27). For

a symmetrical laminated panel, (Y = 3), the dynamic

stiffness is approximately twice the uncoupled stiffness.

Note that if the damping layer were infinitely stiff, the

shear parameter approaches infinity and, as indicated by

Equation 9.100, the bending stiffness of the composite
structure would be

u

Dcouple d = (D t + D3)(1 +Y) (9.102)

Y

10 I 20 40 60 80 100

0 S _

a

l_ /
_ 11'j _1.0

/_ _ 2.0 "_'_ _

?

2.O-.-----/

O0 2 4 6 8

Y

lO

FIGURE 9.55 Ratio of Dynamic Bending Stiffness to Uncoupled

Static Bending Stiffness for Optimally Designed

(x = Xopt) Three-Element Laminated Structure
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The relative decrease in bending stiffness due to the finite
shear stiffness of the damping layer is equal to the ratio

Dopt/Dcouple d .According to Equations 9.101 and 9. 102,

this is equal to the ratio

D D
opt _ opt 1 (9 103)

"Dcouple d D1 + D3 1 + Y

Thus, the decrease in bending stiffness of the laminated
structure below what it would be if the outer metal layers

were rigidly attached can be determined by dividing the
ordlnate values in Figure 9.55by the quantity (1 + Y). For
example, for a symmetrical laminated panel, (Y=3), de-
signed to have optimum damping, the dynamic stiffness
will be about 48 percent of the stiffness of a solid plate
with the same total metal thlckness but will be 190 per-
cent stiffer than the uncoupled stiffness of the two metal
layers.

Resonant Frequencies of Laminated Structure

It is important to recognize that the essential objective of
damping treatment is to reduce response at resonance,
hence, only resonant frequencies are significant for
evaluation of frequency effects on damping. The n-th

resonance frequency of a laminated beam or plate may be

expressed in terms of the bending wave number Kbn for

this frequency, the real part of the complex bending
stiffness of the composite structure, D, and the unit mass

m. The equation is:

f = K2 1_ D_" (9.104)
n bn Im

where

Kbn = Bending wave number for the nth mode

m = Mass per unit area for a plate or per unit
length for a beam

Assuming an optimum design, Equation 9.101 can be used to

define the dynamic bending stiffness, D= Dop t. For

laminated plates, the terms DI and D__are expressed in

terms of stiffness/unit area (i .e. - Eh3;12 (1 - v 2) while

for laminated beams, they are given in terms of the stiff-

ness per unit length(i .e. - Ebh3/12) where b is the beam

width and h is the plate or beam thickness. The bending

wave number for the n-th resonance mode, Kbn, of a

vibrating beam or plate is a constant for a given plate or
beam size with specified end conditions and can be given

terms of the frequency parameter, Cn, used in Tables

3.27 and 3.31 of Chapter 3 to define the resonant fre-

quencies of beams and plates. The expressions are:

For plates,

K2 27r _/12(1 - v2) C K • 104 Cn= n m =1.03--
bn 2 2

a c a
L

(9.105)
where

v = Polssons ratio

a,C n = Plate span and frequency constant given in
Table 3.31, page 3-176

cL = Longitudinal speed of sound in material

K = Material constant in Table3.39, page 3-188.
m

(Note that Kbn is not actually dependent on the material

since the ratio CL/K m is a constant equal to the speed of

sound in steel at room temperature - the reference con-

dition for the values of Cn)

For beams,
2_ C K • 10 4 C

n

K2 = n m = 0.311--_
bn L2 CL

where

L,C n =

(9.1o6)

Beam length and frequency constant given

in Table 3.27, page 3-170.

Combining the above relationshi ps with Equation 9.102 and
9.104, the resonant frequency of a laminated plate, with

optimum damping, can be given by

C hl K • 104[ (I+H_)(Dopt/(D 1+D3)] 1/2
f = n m

n a2 L 1 + H2 p2/Pl + H3 j

where

and

(9 .io7)

H2, H3 = h/h 1 and h3/hl, respectively.

P2' Pl = density of damping and elastic layers,
respectively

Dopr/(D1 + D3) = normalized dynamic stiffness
found from Figure 9.6.

Equation 9.107 is the same for beams except that h1 is

replaced by r1, the radius of gyration of the base element

and a is replaced by L, the beam length. In both cases,
the top and bottom elastic elements are assumed to have

the same elastic modulus and mass density.

Thus, the resonant frequency calculation reduces to
calculating the resonance of the base element alone,

using the charts presented in Tables 3.27ancl 3.31 of Chapter
3, and multiplying the result by the correction factor in
brackets in Equation 9.107. The numerator of this factor
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accounts for the increased stiffness of the composite beam

while the denominator accounts for the increase in mass.

For optimum damping, this factor is a function of the

parameter h2t h3, I_, and p2/Pl. This correction factor

is plotted in Figure 9.56 as a function of h3/h 1 for repre-

sentative values of h2/h 1 and for [3 = 1 and p2/Pl = 0.3.

For typical configurations consisting of thin damping tape

applied to a base plate or a symmetlrcal laminated

sandwich, the increase in resonance frequency will be

20 to 40 percent.
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FIGURE 9.56 Resonant Frequency of Laminated Structure
Relative to Resonant Frequency of Base Layer

Alone (For Optimum Damping Configuration)

Simpilfied Design Method

The shear parameter X, defined for Equation 9.95, can now

be expressed in a modified form, using the expressions in

Equatlons9.105and 9.106 for the bending wave number of

the nth resonance. The result fora laminated plate, with

uniform treatment, is

[ G2 {a'_2] [ hl / Elhl_]

If this is equated to the expression for the optimum value

of the shear parameter Xop t inEquation9.98, and the

terms rearranged, a reduced shear parameter, y, is ob-

tained which relates the damping and elastic properties of

the system to its geometry. The resulting criteria for

optimum design can then be reduced to the single equation

(1 + e 3 H3)

e3 H3H2 = 1' (9.109)

where

y = the reduced shear parameter, and

e3 = E3/E 1

H2, H 3 = (h2/hl) and (h3/hl), respectively.

For uniform plates,

....1.03 Cn E1 (__)2

/9,10/
Note that the left side of Equation 9.109 is salelya

function of the variables, e3, H 3 and H2 since Y is also

determined by these same variables. They, in turn, are

related by Equation 9.109 to the value of the reduced

shear parameter y required for optimumdamping. The

latter depends on the frequency constant for the configu-

ration, Cn, the ratio of the elastic modulus of the base

layer, E 1, to the magnitude of the complex shear modulus

[G2 1_/_'-_ ] of the damping layer, and the thickness to

span ratio (h 1/a) of the base plate.

For laminated beams, Equation 9.110 still applies except

that the constant 1.03 is replaced with 0.311r C be-
n

comes the appropriate frequency constant for the beam

configuration, and the plate side a is replaced with the

beam span L.

Using Equation 9.109, the relationship between H2, H3,

and 1' for the same material on the outer layers (e 3 = 1) is

given in Figure9.57. This figure is applicable to optimum

damping treatment for either a plate orabeam. Fora

given value of the shear loss factor, B, the maximum com-

bined loss factor r/max can also be established in terms of

H2 and H3 usingEquations 9.97and 9.99. Contours of con-

stant r/max are therefore shown in Figure 9.8 for B = 1.

For other values of _, the maximum combined loss factor

varies approximately asJ30"7for values of [3 from 0.5 to 2.

Thus, a single design chart is provided which relates the

geometric, elastic and damping parameters. For a symJ

metric laminated panel, where E3/E1, and h3/h 1 = 1, the

optimum thickness ratio of the damping layer can be speci-

fied in terms of the reduced shear parameter as

h2opt _ 1 + _/3

(1,2/12) - 1 h3 = h 1

(9.111)
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The corresponding maximum comoined loss factor for the

symmetrical panel is

3 t3 (1 + H2o)2

q max =

2+3(1 +H2o)2+ r_/l+j32 1'H2o

(9.112

where

H2o = h2apt/h I as defined by Equation 9.111.

The optimum thickness ratio h2op/h I and the correspond-

ing maximum value of the combined loss factor, given by

Equations 9.111and9.112 ore shown in Figure 9.58asa

function of the reduced shear parameter, 1', for four values

of J3. For practical laminated structure, the optimum

thickness ratio is approximately equal to4/y, and the

the maximum combined loss factor is practically inde-

pendent of 1' and is roughly equal toO.3 of J3, the material

loss factor in shear.

Due to practical considerations, such as fabrication tech-

niques, the optimum thickness of the damping layer may

not always be realized. The change in combined loss

factor with variation in the thickness ratio, h2/h 1, is

shown in Figure 9.59 for JB= 1 and a typical value of the

reduced shear parameter 7 = 100. As expected, con-

siderable latitude is possible in the damping layer thick-

ness without a serious decrease in the combined loss factor.

6

u_

o

L_
oE

_J

E

1

._s

"B_

_6 0.I
o

_ _
_2
_ 0.01
E

_x_.

i

.x:

) -
c_

0.00
I0

_ I I I I I I I I I 1 I '-i

1.0

0.5

qmax

0.1

___ h2°pt
--h 3 = h1 h1

I000

I I II I I II
100 10,000

y - Reduced Shear Parameter

Figure 9.58 Maximum Combined Loss Factor and Optimum

Thickness of Damping Layer for Symmetrical

Laminated Panels or Beams

o_
U

i

0.4

0.3 -- rlmox7 7

0.2 _ opt

0.1
O.Ol

Figure 9.59

I
y=100

p =1.0

h3/h 1 : !

0.I 1.0

h2/h 1 - ThicknessRatio for Damping Layer

Variation in Combined Loss Factor for Change in
Thickness Ratio of Damping Layer Above and Below
Optimum Value for a Symmetrical Laminated Panel

Weight of Constrained Layer Damping Treatment

For constrained layer damping treatment of uniform alumi-

num plates, the additional weight of treatment, relative

to the weight of the untreated plate is shown in Figure

9.60 for three different values of the relative thicknesses

of the damping and constraining layer. A shear loss factor

of 1 and density of 0.05 Ib/in 3 is assumed for the damping

material. Optimum design for the damping layer thick-

ness h2, is assumed in each case. Since this optimum
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thickness depends on the damping material and base panel

configuration, only one optimum set of values of the

thlckness ratios, h2/h 1 and h3/h 1 are possible for a given

configuration. Thus_ Figure 9.60 illustrates the probable

range of the added weight for various constrained layer

treatments using a damping material with the density as-

sumed. A slmilar evaluation of weight versus maximum

combined loss factor is shown in Figure 9.61 for con-

strained layer damping treatment of steel plates. In both

cases, the constraining layer and base layer are assumed

to be the same material. For aluminum plates, a comblned

loss factor of 0.2 requires a damping treatment weight of

about 40 percent of the base plate weight while for steel

plates, the added weight is about 25 percent for the same

loss factor.
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Practical Appl_catlons of Constrained Layer Damping

Treatment

From a comparison of typical design curves for two and

three layer damping treatment, (e.g., Figure 9.46 and

Figure 9.60, see also Figure 11.42 - 11.44, page 11-37),

it is clear that the three layer configuration can achieve

higher damping factors. There are, in general, two basic

types of these three layer configurations (Reference 9.28).

• Panels with a thick damping layer constrained by
a thin metal foil

• Laminated panels fabricated with thin self-adhe-

sive damping layers

The first type of treatment can be readily applied to ex-

isting structure, although the cost would generally be very

high for any application requiring treatment over very

large surface areas. However, this method of treatment

can be easily applied to irregular structure. It is widely

used in the damping treatment of aircraft fuselage panels.

The second type of treatment employing panels laminated

with thin adhesive layers combines the maximum capability

for high damping with convenient fabrication techniques

and varying degrees of static strength. Thus, it is receiv-

ing wide usage for the fabrication of highly damped equip-

ment mounting structure. An increase in the availability

of load carrying structural stock such as plates, and beams

(see Figure 11.38, page 11-33) can beexpectedinthe

future as the benefits of incorporating damping into load

carrying structure becomes more important. Critical struc-

tural elements of ground facilities could be fabricated from

such damped elements.

9.6.3 VISCOELASTIC DAMPING MATERIALS

As pointed out earlier inthissection, the development of

an optimum layered damping configuration depends on the

selection of a sultable viscoelastic damping material.

Unlike the more common building materials, the names

and physical properties of these materials are less familiar

to the structural designer. Space does not permit more

than a brief review of the subject in this manual for, as

with all organic materials, the variations in types and

properties of these materials are numerous. As a minimum

guide for design applications, the following topics are

considered.

• Terminology for viscoelastic damping and adhe-
slve materials

• General characteristics and examples of these
materials

• Variations in loss factor with temperature and

frequency.

Viscoelastic adhesive materials are included in this re-

view since they are used for fabrication of laminated

structural elements requiring modest strength capability

and high damping. Additional practical details cover-

ing application of viscoelastic adhesives to equipment

packages are given in Section 11.8.2.1, page 11-31.



9-46 Architectural Acoustics and Vibration Control for Ground Facilities

9.6.3.1 Terminology of Viscoelastic Damping and

Adhesive Materials.

The following pertinenttermlnology for viscoelastic mate-

rials has been compiled from References 9.25, 9.28,

9.30, 9.33, and 9.34. The terms are grouped conve-

niently into four categories

• Types of Material

• Processing Modifiers

• Qualitative Characteristics

• Physical Parameters.

TYPES OF MATERIAL

Viscoelastic-A material for which the stress under load

is dependent on both the strain and the rate of strain.

Adhesives - Thermoplastic, thermosetting_ elastomer poly-

mers or combinations thereof which ore used for bond-

ing materials together. Structural adhesives for high

strength bonding of metal parts usually consist of

thermo setting plastics,while adhesives with maximum

damping capability employ elostomers or mlxturesof

elastomers and plastics.

Branched Polymer - Polymer with branched molecular

chains.

Cross-linked Polymer - Polymer with chemical links at

intervals along the chain.

Elastomer - A polymeric material which, at room temper-

ature, can be stretched, to at least twice its original

length and will return quickly to approximately its

original length. This property is attributed to chem-

ical cross-connecting bonds (vulcanizing) between the

basic carbon chain molecules which provides the rub-

bery quality. Most elastomers can accept elongations

of 500 to 1000 percent.

Linear Polymer - Polymer consisting basically of a linear

or amorphorous chain molecule.

Plastics -General name for thermoplastics and thermo-

setting plastics.

Polymer- Organic material conslstlng of long carbon

m--_ecule chains to which are attached one or moreof

seven other elements - hydrogen, oxygen, nitrogen,

chlorine, flourine_ sulfur_ and silicon. Also used to

designate raw or uncompounded rubber-like material.

Thermo-elastomers - A cross between plastics and elasto-

mers with the properties of both. Can be molded or

remolded llke a thermoplastic and will stretch, elas-

tically, llke an elastomer. While not chemically

linked like elastomers or like thermosetting polymers,

the nature and structure of the chemical bonds provides

a rubber-like quality.

Thermoplastic (resin)- A polymer which undergoes no

permanent chemical change durlng moderate heating,

and can be remolded or Iiquifled upon reappllcatlon of

heat.

Thermosetting Polymer- A polymer which undergoes per-

manent chemical change by heating, can be molded but

does not revert to llquldform upon reappllcatlon of heat.

Thlxotroplc Paste - Substance whose properties are affec-

ted by mechanical action (i.e., flows only under pres-

su re).

Vulcanlzate -A vulcanized elastomer compound.

PROCESSING MODIFIERS

Additives - Materials added to o viscoelastic material to

modify its damping or structural properties. (e.g.t

addition o£ carbon black to rubber and addition of

organic fibers to an adhesive polymer.)

Copolymerizatlon -Chemlcal linking together of two

polymeric materials.

I
Filler - An inert additive, such as vermiculite, which re-

places some of the viscoelastic material tending to

change the loss factor and stiffness. This change is

generally not as dependent on temperature or frequen-

cy as for a plasticizer.

Gum Stock - Basic ingredients of an elastomer necessary

for vulcanizing only; without any plasticizer or filler.

Plasticizer-An organic fluid additive which serves to

increase the flexibility of a polymer by diluting the

polymer.

Polyblending - Mechanical blending of two polymers.

Polymerlzing - Linking together of single molecules or

monomers into long chains called polymers.

QUALITATIVE CHARACTERERISTICS

Aging- The tendency for rubber to increase its stiffness

with time.

Creep - Continued elongation under steady load - char-

acteristic primarily of thermoplastics and elastomers,

thus precluding their use when high loads must be sus-

tained for long times.

Crystallinity- Property of stretched elastomers where

molecules are highly oriented like crystals leading

to a much higher stiffness of the material.

Durometer - A relative measure of the hardness of a rub-

ber compound - the higher the Durometer, the harder
the rubber. It is obtained with a simple handle-held

spring actuated indentor with a conical tip of standard

dimensions.

Transition_ First Order - Temperature at which an elasto-

mer starts to increase its stiffness rapidly.

Transitlon_ Second Order - Temperature at which an elas-

tamer becomes brittle llke glass.
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PHYSICAL PARAMETERS

Dynamic Modulus- Mean ratio of stress to strain under
dynamic loading - of the order of 1.3 to 2.2 times the
the static modulus.

Loss Factor in Extension - Ratio of loss modulus to storage

modulusofelasticity -equattotangent of phase angle
between tensile stress and strain.

Loss Modulus of Elasticity - Imaginary part of dynamic
modulus of elasticity (ratio of stress to component of
strain which lags stress by 90°).

Loss Modulus of Rigidity- Imaginary part of dynamic
modulus of rigidity.

Modulus of Elasticity - Modulus in tension or compres-
sion - complex when measured dynamically.

Modulus of Rigidity- Modulus in shear - complex when
measured dynamically.

Shape Factor- Ratio of area of surface under load toarea
of free surface (applied to rubber isolators).

Static Modulus- Ratio of stress to strain under steady

load.

Storage Modulus of Elasticity - Real part of a dynamic
modulus of elasticity (ratio of stress to component of
strain in phase with stress).

Storage Modulus of Rigidity - Imaginary part of dynamic
modulus of rigidity.

9.6.3.2 Properties of Viscoelastic Materials

Based on the definitions given in the prevloussectlon,

the following general characteristics can be defined for
basic types of viscoelastic damping materials. These

have varying degrees of adhesive and damping properties
and are used for laminated damped structure orforsurface
application with unconstralned-layer damping treatments.

Plastl cs

Thermoplastics

- Usually requires careful pre-bondlng surface
treatment

Subject to creep under static loads

With proper mixture and/or additives can pro-
vide very high damping and good bonding
strength

Examples

o Vinylchloride copolymer
Damping Foll
Spray--on Surface Layer

o Vinylacetate copolymer
Self-adhesive bonding layer

Elastomers

Thermosetting Plastics

- Requires minimum pre-bondlng surface treat-
ment for adhesive application

- Very low creep

- Maximum strength and temperature capability

but lower damping

Examples

o Epoxy - Shear strength to 8000 psi at 70° F
- Usable to 180°F

o Epoxy Phenolics - Shear strength to 3000psi
at 70° F

- Usable to 500°F

o Epoxy Silicones - Shear strength to 2000 psi
at 70°F

- Usable to 900°F

Thermo-Elastomers

- Combines high strength of plastics with vary-

ing flexibility of elastomers, depending on
mi xtu re

Examples

o Polyurethanes - Shear strength to 6000 psi
at 70°F

- Usable from-100 to +200 ° F

o Phenolic Nitrites - Shear strength to
4600 psi at 70°F

- Usable to 500°F

Adhesive Type

Pre-bondlng requirements vary from minimum
removing oli and grease to maximum of adding

primer coating

- Lowest strengthand highest flexibility of adhe-
sive viscoelastic materials

- Examples

o Silicones - Shear strength to 200 psi at 70°F
- Temperature range - 90° F to

+600 ° F

Non-Adhesive Type

- Widely used for vibration isolators

- Intermediate between liquid and solid
(isovolumetrlc like liquid and stability of shape
like a solid, Poisson_sratio 0.5)

- Examples

o Natural Rubber (Hevea)

o Neoprene

o Butyl Rubber

o Polyurethanes
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Detailed information on physical properties of _'hese mate- 16o

rials may be found in the following references
140

• General physical properties- References 9.33,

9.34, and 9.36. 120

• Damping properties - References 9.20, 9.28,

9.30, and 9.32. 100

• Adhesive Properties - References 9.37 and 9.38. gO
Y

Temperature - Frequency Variation in Damping Properties

Practical design configurations which employ viscoelastic

damping materials will often be exposed to a significant

change in ambient temperature. The typical "tempera-

ture bandwidth" for a number of common viscoelastic

materials is illustrated in Figure 9.62. As shown, the

combined loss factor of typical configurations is within

1/2 its maximum value for a total temperature range of

about 35 to 90 ° F. The operating temperature for maximum

damping for these data lies between 50 ° to 140 ° F. (Ref-

erence 9.29).

1.0_
!

c" 0.1
-100 -50 0 +50

Relative Temperature Above or Below
Optimum Damping Temperature - OF

÷10o

FIGURE 9.62 Typical Temperature "Bandwidth" of loss Factor
for Viscoelastic Damping Materials (From data
in Ref. 9.29)

Optimum frequency temperature operating zones of maxi-

mum damping forsix typical viscoelastic polymer materials

are shown in Figure 9.63. This illustrates the boundaries

of frequency and temperature for which the shear loss

factor I_ or the material is equal to or greater than 1. The

data has been selected from values given in Reference

9.30 to illustrate the relatively wide temperature range

that can be covered by selected damping materials. From

the analytical results in section 9.6.2.2 on constrained

layer damping configurations, it was shown that the maxi-

mum combined loss factor, q for an optimum design, was

about 0.3 times the shear loss factor 13- Thus, by proper

choice of materials, the data in Figure 9.63 indicate that

a maximum combined loss factor of approximately 0.3

(| .e., Q-_ 3) would be possible for an optimally designed

configuration at operating temperatures from about -40 ° C
0 0 0

(-40 F) to 120 C (+248 F) in the frequency range from

100 to 1000 Hz.
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FIGURE 9.63 Frequency end Temperature Zones far Shear LossFactor,
B, Equal or Greater Than 1.0 far Six Viscoelastic
Polymer Damping Materials Covering a Wide Range of
Operating Temperatures. o) Polystyrene, b) Polyester,
c) Polyvinyle Chlaride, (PVC) d) Plasticized PVC
e) Plasticized Polyvlnyl Acetate f) Polylsd0utylene
(Data from Reference 9.30)

Similar data on temperature-frequency zones for the max-
imum shear loss of several common elastomer materials are

shown in Figure 9.64. In this case, the maximum shear
loss factor varies from 0.2 to over 1.0. These materials

are representative of the type commonly used for rubber-

in-shearvibrationmounts. (see Figure 11.54, page 11.49).
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FIGURE 9.64 Frequencyand Temperature Zones for Maximum
Shear LossFactor,_, for Elastomer Damping
Materials Covering a Wide Range of Operating
Temperatures. o) Hard Rubber, b) Aquaplas
c) Urethane Rubber-Shore 80A, d) Polysulfide
Rubber (Data from Reference 9.30)
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Extended Temperature Range for Mixtures of Viscoelastic

Compounds.

One method for extending the operating temperature

range of a viscoelastic material is to mix two or more

compounds. The results from one investigation which used

this method are shown in Figure 9.65. This shows the

variation with temperature of the loss factor q and dyna-

mic elastic modulus E for 1,2, and 3 compound mixtures.

It is apparent that by a proper choice of mixtures, the

usable temperature range for high damping can be increased.

This is also accompanied by a more gradual decrease in

the dynamic modulus.

Range of the Loss Factors and Elastic Modulus for Polymer

Compounds and Elastomers

From the data presented so far in this sectlon, it is obvious

thata wide variety of damping characteristics are possible

for various types of viscoelastic materials. This is shown

more clearly in Figure 9.66. Approximate envelopes of

the storage modulus E 1 and loss modulus E2 of elastlclty

for a large number of polymer (thermoplastic and thermo-

setting plastic) materials and elastomer (rubber- llke)

materials have been plotted based on the extensive data

summary contained in Reference 9.32. The material loss

factor q in extension is represented on this graph by lines

representing a constant value of the ratio

E2

E1 - q

The data indicate that for extensional strains, the loss

factor for polymer or plastic type materials generally lle

in the range of 0.01 to 1.0 and for elastomer materials,

in the range of 0.1 to 1.0.

A similar set of envelopes for the storage modulus G 1and

loss modulus G2of rigidity is shown in Figure 9.67 for the

same two general types of viscoelastic materials. In this

case, the loss factor J3 in shear, where

G 2

G-T=P

is close to 1 for the softer polymer materials, with de-

creasing values of J3 for materials with a high storage
modulus. For elastomer materials, the loss factor in shear

lies roughly between 0.1 and 1 with some extreme mate-

rials (such as Butyl rubber) having a loss factor much

greater than 1.

Considering all the data shown, these indicate that vis-

coelastic materials have loss factors 1 to 2 orders of mag-

nitude greater than typical loss factors for metallic mate-

rials. In summary, methods for applying viscoelastic

materials to increase the damping of conventional metallic

wall structure has been demonstrated. This increased

damping will have the following effects:

• Increased sound transmission loss

• Reduction in structural vibration environments

generated by vibrating walls

• Improved fatigue llfe for such walls.
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9.7 STRUCTURAL VIBRATION CONTROL

Vibration energy can be transmitted into interior sections

of a building which is exposed to a high intensity noise

field by two basic paths:

• Direct transmission through the structural framework

of the building.

• Indirect acoustic transmission into the interior of the

buildlng and subsequent acoustically induced vibra-

tion of the structure.

Methods of control of the second path have been covered

in the preceding sections of this chapter. Consider now

the control methods applicable to the first path - the direct

transmission.

9.7.1 EFFECT OF DAMPING TREATMENT ON

STRUCTURALLY TRANSMITTED VIBRATION

From the review of transmission of damped structural waves

in Section 3.3.7.2, page 3-161, it was shown that the

attenuation per wavelength of plane longitudinal waves

and lateral bending waves in beams was defined by

• Longitudinal waves

isk - 8.68 _ q - dB/wavelength (9.113)

• Lateral bending waves

PB _ 4.34 _ r I - dB/wavelength
(9.114)

where

q = material loss factor.

This attenuation loss is directly proportional to the ma-

terial loss factor r1 so that any increase in the latter pro-

vides a proportional increase in attenuation of structural

attenuation.

According to the results presented in Section 9.6.2, loss

factors of damped configurations of the order of 0.2 are

not difficult to achieve. Thus, the attenuation rate of

longitudinal waves and lateral bending waves for heavily

damped structure would be approximately

IJL (Damped) _ 5.5 dB/wavelength

I_B (Damped) ~ 2.7 dB/wavelength

For the fundamental frequency of a typical beam, the

longitudinal or bending wavelength will be of the order of

twice the length of the beam so that the total attenuation

of longitudinal or bending waves, at the fundamental fre-

quency, would be of the order of 2.7 and 1.4 dB, respec-

tively over the length of the beam. To be more specific,

for the nth mode, the total attenuation A over the length

of a beam for a combined loss factor of r1would be

• Longitudinal waves

A L _13.6 qn - dB

• Lateral bending waves

A B ~6.8qn - dB

Therefore, for a given loss factor, this total attenuation

over the length of the element increases directly with mode

number but is independent of its size. Thus, significant

attenuation of structurally transmitted vibration can be

achieved for higher modes of vibration of heavily damped

structural elements. A more exact analysis of this problem

is not attempted here. The problem is complicated by the

types of modes involved, the method of coupling of con-

nected structural elements in any structure, the frequency

variation in the loss factor, and the frequency of vibration

of the various modes of the structure. It is sufficient to

point out, at least qualitatively, trends for the effect of

structural vibration. The concept could have important

applications in cases where excessive structurally-

transmitted vibration could only be reduced by increasing

the attenuation of the transmission path.

Damping of Joints

The major part of the damping achieved in conventional

structural framework is due to various forms of energy loss

at the joints. Several techniques are being investigated

which would further increase this joint damping (References

9.28, 9.39-9.41). These include

• Use of oil-films between joints

• Use of viscoelastic inserts between joints

• Optimization of frictlonal or viscous losses in riveted

or bolted joints.

While design applications have not been standardized for

these techniques, they offer promise for application in the

future to speclal cases, such as rocket facility structure,

where improved structural damping is desirable.

9.7.2 VIBRATION ISOLATION

One of the last stages in the control of vibratory motion

from external sources is accomplished by employing vibra-

tion isolation for sensitive equipment. This can also be

one of the initial stages for control of vibratory forces from

internal sources such as rotating machinery. In either

case, the basic method is the same. In the simplest form,

this consists of inserting one or more isolator spring elements

between the equipment and its mounting structure. The

spring element is designed to insure that the natural fre-

quency fo of the combined equipment mass m and isolator

stiffness k is well below some critical frequency fc" This

may be expressed by

fo = _ << fc (9.115)
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Forisolationofvibrationfromexternalsources,thiscritical
frequencymaysimplybeacharacteristicpeakfrequency
in theexcitationor it maybethenaturalfrequencyofa
criticalinternalpartwithintheequipmentitemwhichmust
beprotected.

Forisolationofinternalsources,thecriticalfrequencyfc
will bethepredominantfrequencyofthedrivingsource
(e.g., therotationalspeedofacompressorsystem).

Thevibrationattenuationofanisolatorsystem is specified

by its motion or force transmissibillty as follows.

Motion Transmlssibility

• The ratio of the amplitudes of the vibratory motion

(displacement x2, velocity 5<2, or acceleration _2) of

the isolated mass to the corresponding motion (x 1, ;<1'

or _1) at the input to the isolator system.

Force Transmlssibilit X

• The ratio of the force PT(t) transmitted through the

isolator to the driving force P(t) of the isolated

machinery.

9.7.2.1 Isolation of a Single Degree-of-Freedom

System

The basic theory for vibration of a single degree of freedom

has been covered in Section 3.2.1, Chapter 3. From

Equation 3.29, page 3-7, it can be shown that the trans-

missibillty for an undamped single degree-of-freedom mass-

spring isolation system is given by

1
T(w) - (9.116)

1 - (U/go)2

where

g = 2_ f, the excitation frequency

go = 2_ fo' the natural frequency of the isolator de-
fined by Equation 9.115.

This expression is plotted in Figure 9.68. Note that for

excitation frequencies greater than 2 go' the transmis-

sibility is always less than I. This still holds true for

damped single degree-of-freedom isolators, as shown in

Figure 3.7, page 3-8.

The natural frequency of a lumped mass single degree-of-

freedom system can be determined from Figure 9.69. This

is a graphical evaluation of Equation 9.115 in a convenient

form for design calculution.
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Lower Limit for Natural Frequency of Isolator

A practical lower limit for the natural frequency of the

isolation system is imposed by the maximum static deflec-

tion es relative to the base or the peak dynamic deflection

ema x (relative to the base) at the resonance frequency fo"

For a linear spring, the static deflection can be specified

in terms of fo' as shown graphically in Figure 9.70. This

relationship is obtained from the equation

1 _ 1 1fo  :3.13
(9.117)

where

W = mg, the weight of the equipment

g = 386 in/sec 2

es = static deflection, inches.

5o

,

_'10 "--. -I
i

o

Z :

m

1 I t I I i I I

0.01 0.1 1.0 2.0

Static Deflection - in.

FIGURE 9.70 Relation Between Natural Frequency and Static

Deflection for a Linear, Single-Degree-of-

Freedom System (from Reference 9.35)

Isolation systems which employ materials such as rubber,

fiberglass, or cork have nonlinear load-deflection charac-

teristics so that the above expression is no longer valid.

Typical data relating fo to the static deflection for such

cases are illustrated in Figure 11.55, page 11-50.

The peak (relative) dynamic deflection, emax defines the

envelope of additional clearance needed for the isolated

equipment, relative to the mounting structure, to permit

full dynamic response without impacting adjacent struc-

ture. For a sinusoidal input displacement, with an am-

plitude X I (fo) at the natural frequency fo, the isolated

system, ema x is given by

ema x = Q X 1 (fo) (9.118)

where

Q = resonant amplification factor of isolator

= c/c c or I/q.

For random excitation with a constant input acceleration

spectral density, the peak relative dynamic deflection for

a linear system can be determined from the design chart in

Figure 3.46, page 3.46. Additional practical details of

vibration isolation of equipment, based on a single degree-

of-freedom model, are covered in Section 11.8.2.4, page

11-48.

9.7.2.2 Isolation of Two Degree-of-Freedom System

The application of a single degree-of-freedom model for

design of vibration isolators is not adequate for many cases
which involve motion in two or more directions. In fact,

good engineering practice would usually dictate that at

least twodegrees of freedom be considered when designing

an isolation system for any but the simplest lightweight

equipment. In recognition of this, most manufacturers of

vibration isolators specify the stiffness of standard vibration

isolators in two directions - longitudinally along the axis

of the isolator and perpendicular to this axis. Some of the

basic design principles involved for two degree-of-freedom

isolators are considered in this section (Reference 9.35).

Force Excitation

Consider the system illustrated in an elevation view in

Figure 9.71. The mass m is assumed to have four equal

linear spring isolators located at the four corners. Let this

mass represent a unit of rotating machinery with an un-

balance force P sin gtacting vertically through thecenter
Y

of gravity and a force Px cos gt acting in the horizontal

direction at a distance e above the center of gravity_. For

the sign convention illustrated, forces and translational

displacements are positive when up or to the right, and

moments and rotational displacements are positive when

counterclockwise. Vertical distances from the X axis

through the center of gravity are also positive inthe up

direction.

XT" m

o

L
,,,,:

lPy

t÷
XJy

"_ex_///_// I .tey

Y

FIGURE 9.71 Elevation View of Rigid Body Mounted on Isolators
Located at Four Lower Corners, and Excited by

Harmonic Forces Px' Py applied to Mounted Body

in XY Plane. Excitation May Also Result from

Motion u,s of Supportwhere Px = Py = 0
(Adapted from Reference 9.35)
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For motion in the vertical direction, only one equation of
motion is involved since the applied vertical force is

through the center of gravity. In this case_ the system is
statically decoupled in the vertical direction and motion
in this direction cannot excite vibration in any other mode
for equal stiffness of the vertical springs (see Section
3.3.2.6, page 3-56 for discussion of statically and dy-
namically coupled systems).

Applying the methods discussed in Section 3.3.2, page
3-50, the equation of motion for the y direction can be
given by

m _ + 4 ky = Py singt

where

(9.119)

ky = vertical stiffness of each spring.

The twoequations of motion for translationalong the X axis
and rotation about the Z axis (the axis perpendicular to
the plane of the paper) are

m_ ÷ 4 kx - 4 ky a c_ = Px cos gt (9.120)

I z_- 4k xax+4k xa 2 c_+4kyb 2a_=- Px ecos,.,t

where

kx = horizontal stiffness of each spring

a = verticaldistancefromCGtomid-pointof isolators

c_ = angular rotation

Iz = mass moment of inertia of body about Z axis

b = horizontal distance from CG to vertical axis

through springs.

These twoequatlons of motion define the dynamic response
of the mass as a two degree-of-freedom system for the co-
ordinates x and a_. A complete solution for the forced re-
sponseof this system is carried out in Reference 9.35 along
the same general lines discussed in Section 3.3.3. Trans-
mlssibilities for forced response in each of the two direc-
tions x and c_ can be obtained in a similar fashion.

For design purposes, the primary problem is similar to that
for the single degree-of-freedom system - to design the
isolator stiffnesses so that the natural frequencies of the

system fall below (or outside) the range of critical fre-

quencies. In this case, the disturbing frequency is in-
ternally set by the rpm of the rotating machinery.

The two natural frequencies of the two degree-of-freedom

system are obtained by a solution of Equation 9.120 in the
same manner outlined in Section 3.3.2.2. The resulting

expression can be given in a convenient nondimensional
form as (Reference 9.35)

_y b

where

bJ

y
= _ k /m - the natural frequency for vertical

Y translation

p = _- the radius of gyration with respect
to the Z axis

k x

y

a,b = dimensions defined for Equation 9.120, and

= the two natural frequencies of the coupled sys-
C

tern.

Thlsexpression is shown graphical ly in Figure 9.72 in terms
of the nondimensional parameters used in the above equa-
tion. For a given value for the stiffness parameter

the two natural frequencies of the system are found by the
intersection of a vertical line through this abscissa value

and the tw.__.ooparameter lines for a given value of a/p.

For a case where the stiffness parameter (p/b) V_x,/ky is

close to 1/2 and the distance ratio a/p is much less than 1,

the two natural frequencies approach the one value _c =

(b/p). In this case, to avoid excessive coupling be-
Y

tween the two modes, it is common practice to attach the
isolators to the mass in a plane which passes approximately
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FIGURE 9.72 Curves Showing Ratio of Two Coupled Natural
Frequencies ¢_cin XY Plane to Decouplecl

Natural Frequency gy in Translation along Y
Axis. The Isolator Stiffness in theX and Y

D rect ons are Indicated by kx and kv, Respec-
' _ Rtively, and the Radius of Gyration with e-

spect to the Z Axis through the Center of
Gravity is Indicated by p. (from Reference
9.35)

through the center of gravity. In this way, just as for ver-

tical translation, dynamic coupling between horizontal
motion and rotation is eliminated or reduced.

Equation 9.121 defines two of the natural frequencies of

the rigidmass for motion in the XY plane. A third is given

by the natural frequency Oy = 4k_-_y/m which is the so-

lution of Equation 9.119 for vertical translation in this

plane. Two more coupled natural frequencies are obtained

for motion in the YZ plane. Equation 9.121 still applies

except that the dimension b becomes the corresponding

dimension c, illustrated in the plane view in Figure 9.73,

and Iz is replaced by Ix, the mass moment of inertia about

the X axis.

One more natural frequency remains to define the six de-

grees of freedom for a rigid body - the natural frequency

for rotation in the XZ plane about the Y axis. Again, for

equal stiffness of the four springs in the X direction (kx),

and in the Z direction (kz), the system reduces to a single

degree-of-freedom model with the equation of motion given

by

_+4{3 b2 kz+4_c2kx = 0ly

where

ly = mass moment of inertia about the Y axis

= angular rotation about Y axis.

The last natural frequency obtained from this equation is

gi yen by

_// +c2k
b2 kz x (9.122)

Ul_ = 2 ly

Z

L '
xt I2:..

-f

c

J_

FIGURE 9.73 Plan View of Rigid Body Mounted Upon isolators Located
at Four Lower Corners. The Stlffnesses of the ]solators
in the Directions of the X and Z axes are Indicated by

kx and kz, respectively. (From Reference 9.35)

Thus, each of the natural frequencies of the idealized sys-

tem are defined so that the spring stlffnesses can be de-

signed to achieve the desired minimum transmisslbility of

the driving force into the foundation. For constant-speed

rotating machinery, this may involve having some of the

natural frequencies of the isolator system well above the

driving frequency.

Motion Excited Systems

The same principles outlined above apply for motion exci-

tation of the base. In this case, with a wide band random

input, it is usually desirable to have all the natural fre-

quencies as low as possible, and well separated unless

center-of-gravity mounting is employed.



9-56 Architectural Acoustics and Vibration Control for Ground Facilities

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

REFERENCES 9.16

Furrer, W., "Room and Building Acoustics and

Noise Abatement, " Butterworths, London, 1946.

"Solutions to Noise Control Problems in the Con-

struction of Houses, Apartments, Motels and
Hotels," AIA File No. 39-E, Owens-Comlng

Fiberglas Corporation, Toledo, Ohio, 1963.

Zwlkker, C., and Kosten, C.W., "Sound Absorb-

ing Materials," Elsevier Publishing Co., N.Y. 1949.

"Architectural Acoustical Materials," Acoustical
Materials Association Bulletin No. XXXVII, N .Y.

Kinsler, L.E., and Frey, R.F., "Fundamentals of
Acoustics," John Wiley & Sons, N.Y., 1967.

Morse, P.M. "Vibration and Sound," McGraw-
Hill Book Co., N.Y., 1948.

Eyrlng, C.F., "Reverberation Time in Dead Rooms"
d. Acoust. Soc. Am. 1, 1930, 217.

Knudsen, V.O., and Harris, C.M., "Acoustical
Designing in architecture," John Wiley & Sons ,
N.Y., 1950.

"Laboratory Measurement of Airborne Sound Trans-

mission Loss of Building Partitions," American So-
ciety for Testing and Materials, Philadelphia, Pa.

Designation E90-66T, Revised 1966.

Creme,, L., "The Propagation of Structure-Borne
Sound," D.S.I.R. Sponsored Research (Germany),
Report No., 1, Series B.

Beranek, L.L., "Noise Reduction," McGraw-
Hill Book Co., N.Y., 1960

Gosele, K., "Radiation Behavior of Plates,"
Acustlca; Vol. 6, No. 45, 1946.

ASHRAE Guide and Data Book, Systems and Equip-
ment, Published by American Society of Heating,
Refrigerating and Air Conditioning Engineering,
N.Y., 1957.

Bolt, Beranek and Newman, "Handbook of Acous-

tic Noise Control," WADC Technical Report 52-
104, Vol. 1, 1952.

•kukaslk, S.d., and Nolle, A.W., ed., "Handbook
of Acoustic Noise Control," Bolt, Beranek and
Newman, WADC Technical Report 52-204, Vol. 1,
Supplement 1, 1955.

9.17

9.18

9.19

9.20

9.21

9.22

9.23

9.24

9.25

9.26

9.27

9.28

Bolt, Beranek and Newman, "Methods for Improving
the Noise Insulation of Houses with Respect toAir-

craft Noise," Report 1387, Submitted to FHA
Nov., 1966.

Beranek, L.L., "Acoustics", McGraw-Hill Book
Co., N.Y., 1954.

CompertstM.C., "The Sound Insulation of Circular
and Slit-Shaped Apertures," Fourth Int. Congress
on Acoustics, Copenhagen, 1962.

Wilson, G.P. and Soroka, W.W., "Approximation
to the Diffraction of Sound by a Circular Aperture
in a Rigid Wall of Finite Aperture," d. Acoust .
Soc. Am. 37, No. 1, Feb. 1965, p. 287.

Lazan, B.J., and Goodman, L.E., "Material and

Interface Damping" Chap. 36, Shock and Vibration
Handbook, Harris, C.M. and Creede, C.E.,ed.,
McGraw-Hill Book Co., N.Y., 1961.

Crede, C.E., "Application and Design of Isola-
tions," Chap. 32, Shock and Vibration Handbook,
Harris, C.M., and Crede, C.E., ed., McGraw-
Hill Book Co., N.Y., 1961.

Ungar, E.E., "Loss Factors of Viscoelastically
Damped Beam Structures," Acoust. Soc. Am. 34,
Aug., 1962, pp. 1082-1089.

Mead, D.J., "The Damping of Stiffened Plate
Structures," Chap. 26, Acoustical Fatigue in Air-
craft Structures, Trapp, W .d., Forney, D.M., ed.,
Syracuse University Press, N.Y., 1965.

Kerwin, dr., E.M., "Damping of Flexural Waves by
a Constrained Viscoelastic Layer," J. Acoust. Soc.
Am. 31, dul. 1959, pp. 952-962.

Ungar, E.E., "A Guide to Designing Highly Damp-
ed Structures," Machine Design, Feb. 14, 1963.

Ruzicka, d. E., "Vibration Response Character-
istics of Viscoelastic-Damped Structures," Shock
and Vibration Bulletln, PartS, Feb. 1965.

Ross, D., etal, "Design Study of Damping Tech-
niques - Quarterly Progress Report," Bolt, Beranek
and Newman Report No. 591, USN BuShlps Con-
tract NObs-72452, Oct. 20, 1958.

Ruzicka, ,J.E., ed., "Structural Damping" Amer-
ican Society of Mechanical Engineers, N.Y., 1959.



References 9-57

9.29

9.30

9.31

9.32

9.33

9.34

9.35

Oberst,H. andSchommer,A. "Optimizationof
ViscoelasticDampingMaterialsforSpecificStruc-
turalCompositeApplications,"Chap.29,"Acous-
ticalFatigueinAerospaceStructures,"Trapp,W.
J. andForneylD.M.Jr.,ed.ISyracuseUniversity
Press_Syracuse_N.Y._1965.

Ungar,E.E.,andHatch,D.K., "YourSelection
Guideto High-DampingMaterials,"ProductEn-
gineerlng_April17r1961.

Owens,F.S.,"ElastomersforDampinaOverWide
TermperatureRanges," Shock and Vibration Bulle-
tln_ Jan 1967.

Chi, S.H._ "Bibliography and Tabulation of Damp-
ing Properties of Non-Metalllc Materials_" WADD
TR 60-540, Sept. 1962.

Rondeau_ H.F., "Synthetic Materials," Machine
Design, July 21, 1966.

Ferry, J .D. _ "Viscoelastic Properties of Polymers"
JohnWiley&Sonsr N.Y., 1961.

Crede, C.E.t "Vibration and Shock Isolation,"
John Wiley & Sons, N.Y., 1951.

9.36

9.37

9.38

9.39

9.40

9.41

Frye, W. A., "Rubber Springs," Chapter 35,
"Shock and Vibration Handbook_" Harris, C. M.
and Crede, C. E., ed., McGraw-Hill Book Co.,

N. Y., 1961.

Sharpe, L. H., "Assembling with Adhesives,"
Machine Design, Apr. 18, 1966.

Guttman, W. H., "Concise Guide to Structural
Adhesives," Reinhold Publishing Co., N. Y.,
1961.

Hanks, B. R. and Stephens, D. G., "Mechanisms
and Scaling of Damping in a Practical Structural
Joint," Shock and Vibration Bulletin, Part 4, Jan.
1967.

Maidanik, G., "Energy Dissipation Associated
with Gas-Pumping in Structural Joints," J. Acoust.
Soc. Am. 40, No. 5, 1966, pp. 1064-1072.

Eaton_ D. C. G., "Interface Damping at Riveted
Joints," ASD TR 61-467, Part II, Air Force Ma-

terials Laboratory, Aug. 1965.



CHAPTER 10

EFFECTS OF NOISE,

VIBRATION AND BLAST

ON PERSONNEL



TABLE OF CONTENTS

SECTION

10.1

10.2

10.2.1

10.2.2

10.2.3

10.3

10.3.1

10o3o2

10o3o3

10o3o4

10o4

10o4.1

10.4.2

10.5

10o6

10.6oi

I0 o6.2
10.6.2.1
10o6o2o2

10o6o3

I 0 °6,4

10.6.5

10o7

10.7.1

10o7o2

10o7o3

10o8

10.8oi
10.8.1 °I
10o8oi .2
10.8oi °3

10o8.1.4

10,8.2
10o8.2.1
10.8o2o2
10o8o2.3

10.9

10o9oi
10.9oi oi
10o9.1.2
10o9oi °3
10o9oi °4

PAGE

EFFECTS OF ACOUSTIC NOISE ON PERSONNEL .............................. 10-I

PHYSIOLOGICAL EFFECTS OF ACOUSTIC NOISE ............................. 10-I

PAIN ........................................................ 10-I

HEARING DAMAGE .............................................. 10-2

NON-AUDITORY EFFECTS .......................................... 10-5

SUBJECTIVE REACTION TO ACOUSTIC NOISE ............................... 10-5

LOUDNESS .................................................... 10-6

NOISINESS .................................................... 10-7

10-10AGE .....o°.oo...o°.......o.o......o.....o....o.o.........°-

ANNOYANCE .................................................. 10-10

OBJECTIVE INFLUENCE OF ACOUSTIC NOISE ............................... 10-10

SPEECH COMMUNICATION ........................................ 10-10

EFFECTS OF NOISE ON BEHAVIOUR AND EFFICIENCY ...................... 10-12

COMMUNITY REACTION ............................................. 10-13

EXPOSURE OF PERSONNEL TO BLAST ..................................... 10-18

GENERAL DISCUSSION ............................................ 10-18

PRIMARY EFFECTS ............................................... 10-18
Effects of Duration an Lethal Limits for Blast ............................ 10-18

Analytical Model for Predicting Effects of Duration ....................... 10-20

SECONDARY EFFECTS ............................................. 10-20

TERTIARY EFFECTS .......................................... ..... 10-21

SUMMARY OF BLAST EFFECTS ....................................... 10-22

EXPOSURE OF PERSONNEL TO SONIC BOOM ............................... 10-22

THE BOOM INDOORS AND OUTDOORS ................................ 10-22

THE EFFECTS OF SPECTRAL CONTENT UPON NOISINESS ..................... 10-23

DAMAGE LEVELS ................................................ 10-24

EFFECTS OF VIBRATION ON PERSONNEL .................................. 10-24

MECHANICALLY INDUCED VIBRATION ................................. 10-24
Mechanical Effects ............................................ 10-24

Physiological Effects ........................................... 10--25
Psychological Effects ........................................... 10-25
Pathological Effects ........................................... 10-26

ACOUSTICALLY INDUCED VIBRATION ................................. 10-26
Sonic Vibration of the Head ....................................... 10-26
Sonic Vibration of Whole Body ..................................... 10-26
Sonic Vibration of the Thorax/Abdomen System .......................... 10-27

HEARING PROTECTION .............................................. 10-28

PROTECTION DEVICES ............................................ 10-28

Earplugs ................................................... 10-28
Semi- Inserts ................................................. 10-29
Earmuffs ................................................... 10-29
Helmets ................................................... 10-29



TABLE OF CONTENTS (Continued)

SECTION

10.9.2

10.9.3

10o9o4

I0oi0

I0.I0.I

10o10o2

10.10.3

10o11

10.11 .I

10ollo2

10ollo3

PAGE

COMPARISON OF EAR PROTECTION DEVICES ........................... 10-29

SUMMARY OF EAR PROTECTION DEVICES .............................. 10-32

ACOUSTIC SHELTERS FOR PERSONNEL ................................ 10-34

BLAST PROTECTION FOR PERSONNEL .................................... 10-34

PROTECTION OF THE EARDRUM ..................................... 10-34

PROTECTION AGAINST BLAST-GENERATED MISSILES ...................... 10-35

PROTECTION BY BLAST-PROOF BUILDINGS ............................. 10-36

SHOCK AND VIBRATION PROTECTION FOR PERSONNEL ....................... 10-37

PROTECTION FROM GROUND VIBRATION .............................. 10-37

PROTECTION FROM DIRECT ACOUSTICALLY INDUCED VIBRATION OF BUILDINGS° . . 10-38

PROTECTION FROM GROUND SHOCK DUE TO EXPLOSIONS ................. 10-38

REFERENCES ..................................................... 10-39



CHAPTER 10

EFFECTS OF NOISE, VIBRATION,

AND BLAST ON PERSONNEL

divided into two distinct areas. The first is the effect of

the launch site noise environment on personnel who must
work in the area for which the noise is "part of the job"
and the second is "community response," defining the

effects of the noise upon a nearby population for which
the noise may be either a distinct nuisance or a necessary
part of a working environment.

Basic criteria for maximum noise and vibration environ-
ments that are acceptable to man have been briefly

summarized in Chapter 5. A more extensive background of
the basis for these criteria is developed in this chapter.

By definition, noise is considered as an undesirable stimu-
lus. In this case, it is convenient to consider both acousti-
cal and mechanical excitation as "noise". Furthermore,

acoustical noise may be defined to include consideration
of transient overpressures such as blast or sonic boom.
Thus, this chapter presents, in sequence, a detailed re-
view of the effects on man of acoustical noise, blast and

sonic boom overpressure and mechanical vibration and
concludes with the discussion of devices for protecting

man against these environments.

Existing data applicable to effects of rocket noise on man
are incomplete and show a large degree of scatter. This is
primarily due to the difficulty of measuring the effects

of rocket engine noise. Many of the results which are avail-
able for the lower frequencies are not accurate, having been
obtained from experiments utilizing earphones. These are
inadequate at low frequencies since, at these frequencies,
the entire body becomes an important receptor for sound
waves. Fortunately, one series of tests have been con-
ducted with whole body exposure down to 1 Hz.andcan be
used to estlmatean upper bound of physlologlcal effects
of infrasonic noise.

Figure 10.1 illustrates a qualitative model for the overall
response of man to noise. The community response problem
is conceived as an amalgam of four major factors, which
are, roughly, in order of importance:

10.1 EFFECTS OF ACOUSTIC NOISE ON
PERSONNEL

Consider first, the effects of acoustic noise. The main
factors which determine its effects upon personnel are its
intensity and its frequency spectrum. In general, the
effects increase in number and magnitude as the intensity

increases. The listener's behaviour depends almost en-
tirely upon his previous experience, and his initial re-
action to noise stimuli may be to identify the noise as a

warning of danger. His further reaction, as the noise in-
creases in level, is one of disturbance and annoyance,

particularly, if it interferes with sleep or rest. The next
most important effect of the noise is its interference with
speech communication. At this point, the noise has be-
come a definite handicap which is measured by the extent

to which speech is masked by the noise. Further increases
of intensity cause temporary hearing loss to a degree which
depends upon the spectrum of the noise and its duration.
Upon cessation of the sound, hearing is gradually restored
although the cumulative effects of numerous temporary
losses of hearing can cause permanent damage over a

period of time. As the intensity becomes still greater ,
the noise actually becomes uncomfortable. Such sound
levels can excite physiological reactions such as tension,
which in turn leads to fatigue, the cumulative effects of
which could become dangerous. Although the pain sen-
sation is obviously indicative of dangerously high sound
levels, it does not necessarily accompany eardamage.
Unfortunately, the converse is also true; that ear damage
is not always accompanied by a warning sensation of pain.
There is also evidence that very high sound levels can
cause nausea, dizziness, and inhibit performance of motor
tasks.

These subjective and objective effects of noise may be

(1) Physiological effects of acoustic noise.

(2) Objective influence of acoustic noise.

(3) Subjective response to acoustic noise.

(4) Community soclo-economic factors.

The noise itself, in this partlcu lar case, comprises two com-
ponents, the amblentnolse environment and the additional
stimulus due to the booster exhaust noise. The effects of

the total nolseare thus dependent on both the sum and dif-
ference of the two components that represent the total level

of exposure and the all-lmportant increment, of short dur-
ation, which gives rise to the noise problem ata rocket
launch or test site. The four factors will now be discussed
in detail.

10.2 PHYSIOLOGICAL EFFECTS OF ACOUSTIC
NOISE

10.2.1 PAIN

Auditory or aural pain is normally identified as an aching
sensation which is located "deep in the ear" and a
threshold of pain can be defined as the sound pressure
level which causes the onset of this sensation over and
above the discomfort associated with excessive loudness

and an intermediate tickling sensatlon.

Figure 10.2 shows the threshold of pain produced by both
pure tones and broadband noise according to three sources
(References 10.1, 10.2, and 10.3). The Benox report
(Reference 10.1) describes experiments conducted using
five subjects with some experience in high intensity noise
exposure. These were exposed to (1) static pressures,
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(il) discrete frequencies, and (iii) jet noise. It was found

that below 50 Hz., pain was felt with little or no "loud-

ness," and the subjects noted only a "rhythm of overtones"
at the pain threshold. In the higher frequency range be-
tween 800 and 2,000 Hz., the sound was found to be un-

comfortably loud at levels well before the pain threshold
was reached . Between 15 and2,000Hz., the pain thresh-

old is very close to 140 dB, a result which is corroborated
by the measurement of von BSkSsy (Reference 10.2). Below
15 Hz., the pain threshold for sounds presented by ear-
phones rises rapidly to 175- 180 dB at very low frequencies
approaching quasl-statlc pressure changes. At frequencies
higher than 2,000 Hz., the pain threshold may begin to
rise again, but the measurements do not extend into this
region. For jetenginenoise from small jetfighter aircraft,
the pain thresholdwas found between the overall levels of
134 and 140 dB.

Superimposed on Figure 10.2 are the envelopes of sound
pressure levels to which subjects were exposed during the
tests of Reference 10.3. These experiments were conduc-
ted to discover the effects of low frequency and infrasonic
noise and no attempt was made to determine thresholds of
any kind. The results are discussed more fully below and
it is sufficient to state here that the pure tone levels be-

tween 40 and 100 Hz. represent the limits of voluntary
tolerance.

10.2.2 HEARING DAMAGE

Exposure to high intensity sound causes a loss of hearing
which may be permanent, or temporary with normal hear-
ing acuity returning gradually after the noise ceases. It
is now recognized that some degree of permanent hearing
loss can result from a single exposure to excessive noise,
or from the cumulative effect of repeated cases of tempo-
rary loss. Hearing loss isdetected by a shift in the thresh-
old of hearing.

The mostcomplete study of hearing damage criteria to date
is reported in Reference 10.4, which is a review of avail-
able research material conducted by the NAS-NRC Com-
mittee on Hearing, Bioacoustics, and Biomechanics. Fig-
ures 10.3 and 10.4, taken from Reference 10.4, show

damage risk contours for narrow bands of noise and pure
tones, respectively. These curves are based eitherupon
direct measures of temporary threshold shifts or permanent
noise induced losses in hearing and extrapolations from
such data. The data points and extrapolations have been

verified to a reasonable extent by one or more independent
investigations, although some relations are based upon less
evidence than others. In particular, the maximum pure
tone levelsto be allowed regardless of duration (i .e., the

top curve of Figure 10.4) are estimates which are not
supported by experimental data, and, in fact, all the pure
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tone resultsare not so well substantiated by experiment as
are the equivalent results for bands of noise. However,
because of the similarity of Figures 10.3 and 10.4, it is
felt that the results are valid. Also, there is very little
data showing effects at frequencies below 100 Hz. and it
was concluded that there is insufficient evidence to war-

rant extrapolating the results into that region.

Permanent damage risk is predicted from observations of
temporary threshold shifts from the generally acknowledged
bellef that temporary shifts become permanent after repeated

occurrencer once perday, five clays perweek, for ten years.
The specification of sound levels which constitute a damage
risk, utilized in producing Figures 10.3and 10.4, is that
"exposure to sound may be deemed excessive if itw ill cause
ears of normal hearing (that of an average young adult) to
experience an average temporary threshold shift in pure
tone auditory acuity measured two minutes after exposure,
of 10 dB or more at 1,000Hz. or below, 15dBat2_000
Hz. or 20 dB at 3_000 Hz."

Shown for comparison in Figures 10.3 and 10.4are damage
criteria curves proposed in 1946 in Reference 10.5. These
levels were claimed to cause negligible damage for con-
tinuous daily exposure during 8 hour working days. It can

be seen that for the random noise case in _particular, the
level is significantly higher than the more recently pro-
posed criteria, especially at the higher frequencies.

Another comparison can be made with a more recent and
widely used criteria for hearing damage. Since 1956_ a
general hearing damage risk criteria_ embodied in Air
Force Regulation No. 160-3 "Hazardous Noise Exposure",
has been in use at many government facilities. This
criteria specifies a damage risk in terms of an Equivalent
Exposure Time (EET) for exposure each working day for 25

yearn to a wide band noise spectrumwith a constant octave
band level of 85 dB in the frequency range of 300 to 4800
Hz. The equivalent exposure time is based on the as-

sumption that equal hearing damage results from equal
energy (intensity times duration ) of exposure. A Limiting
Equivalent Exposure Time (LEET) at the specified constant
octave band level is used to define an acceptable risk
criteria_ beyond which ear protection is recommended ,
or mandatory r depending on the particular LEET chosen.
Thust ear protectlon is recommended if the EET exceeds a
LEET of 480 minutes (8 hours per day) at a constant octave
band level of 85 dB from 300 to 4800 Hz. Ear protection
is mandatory_ if the EET exceeds a LEET of 480Ominutes at

the same band level. Based on the energy equivalence
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concept,theLEETof 4800minutesat85dBisconsidered
equallydamagingas480minutesat 95dB.Thiscriteria
cannowbecomparedwiththosespecifiedinFigure10.3
forwidebandnoiseexposure.

First,it isclearthattheminimumLEETof480minutesat
a constantbandlevelof 85dB,beyondwhichearpro-
tectionis recommended,agreesverywellwiththemore
recentdatashowninFigure10.3.Inthelatter,thehear-
ingdamageriskcontourfor480minutesperdayhasan
octavebandlevelvaryingfrom89dBinthe300-600Hz
bandto85dBinthe2400-4800Hzband.Tocomparethe
twocriteriaat higherlevels,the300-600Hzbandis
chosenasmorerepresentativeforlowfrequencyrocket
noise.Allowableexposurelevelsforarangeofexposure
timearelistedinthefollowingbrieftable,basedonthe
twodamagecriteria.

ExposureTime
Per8HourDaX

480mln
120rain
30rain
7rain

11/2rain

AllowableOctaveBandLevel
(300-600Hz)

Figure10.3 AFReg160--3
89dB
96dB
107dB
125dB
135dB

85dB
91dB
97dB

103dB
110dB

Clearly,theAirForceRegulationismuchmoreconserva-
tiveat higherlevelsthanthemorerecentdatainFigure
10.3.Attheparticularfrequencybandchosen,thelatter
indicatethatanequaldamagecriteriaisroughlyequiva-
lentto a constantproductof soundpressuretimesex-
posuretimein contrastto theequaldamagecriteria
assumedfortheAirForceRegulationofaconstantproduct
ofpressuresquaredtimesexposuretime(i.e. - constant
energy).However,thetwocriteriadoagreeonone
furtherpoint- inbothcases,anoctavebandlevelof135
dBisspecifiedasthemaximumallowableexposurelevel
withoutearprotectiontregardlessof thetimeduration.
(Accordingto themorerecentcriteriain Figure10.3,
thisisonlytruebelow1000Hz.) Furthermore,theAir
ForceRegulationspecifiesa maximumexposurelevelat
150dBunderanycondition,withearprotection.This
maximumlevelis consistentwiththeresultsdiscussedin
thefollowingsection.

.4

10.2.3 NON-AUDITORY EFFECTS

Many reports suggest that intense sound can cause nausea,
dizzinesst and vomiting in certain indivlduals. Some of
the symptoms resemble those of sea sickness and probably
depend_ in part at least, on the stimulation of the sense of
spatial orientation, a process whereby the non-auditory
part of the inner ear_ the "labryinth," plays a part. This
supposition is supported by the fact that the symptoms can
be suppressed by plugging the ears.

Mohr, etal. (Reference 10.3) report particular effects sus-

tained by subjects with considerable experience in ex-

posure to high noise levels during low frequency tests at
sound pressure levels up to 153 dB. The tests were conduc-
ted in the NASA Langley Low Frequency Noise Facility
using both narrow band noise and discrete frequencies.
The envelopes of the test points are shown superimposed on
Figure 10.2. Exposures were made with ear protection in
the major ity of cases and no threshold shifts were detectable
after one hour's exposure. However, the most prominent
effects were found, as would be expected, when ear pro-
tection was removed for brief periods. The main features
of the effects noted by thesubiects, in addition to the
aural sensations described above, were as follows.

At frequencies in the range of 5 to 50 Hz., some subjects
felt nostril vibration, chest and abdominal wall vibration,

hypopharyngol fullness (gagging) and perceptible visual
field vibration. However, these experienced subjects
thought these exposures were well within tolerance limits.
For discrete frequency sounds, the effects were very simi-
lar although subjective sensations rose very rapidly above
levels of 145dB. At higher frequencies, the limits of
voluntary tolerance, with ear protection, were reached
and are shown in Figure 10.2. Decisions concerning these
limits were made upon observation of certain alarming

responses. These included mild nausea, dizziness, chest

discomfort, skin tingling at 100 Hz., coughing, choking
respiration, salivation, pain on swal low ing, hypopharyngol
discomfort, and headache. All subjects suffered a tempo-
rary loss in visual acuity. Most symptoms disappeared im-
mediately after the test, although there was a marked de-
gree of post exposure fatigue. No evidence of permanent
damage was observed as a result of these tests.

10.3 SUBJECTIVE REACTION TO ACOUSTIC NOISE

The two attributes of a sound which are commonly used to
evaluate the reaction of a listener are its "loudness" and
its "noisiness". In principle, the distinction between the

two properties is clearly defined. "Loudness" is the sub-
jective magnitude of a sound, i.e., the absolute level or
strength of a sound as assessed by the listener. Noislness_
on the other hand, can be defined as a measure of the un-

acceptability of the sound. It is therefore possible for two
sounds of equal loudness to have entirely different noisi-
ness values depending upon the quality of a sound.

Generally speaking, a sound can be described quantita-
tively by its sound pressure level, frequency spectrum and
duration, and it might be expected that this information
could be utilized to define both its loudness and its noisi-

ness. Unfortunately, this task is difficult due to the
extremely complex mechanisms involved in the human hear-
ing processes. Not only does judgment of a single noise
vary between listeners, but also the judgment of a single
listener may vary, being influenced by such factors as his
environment, emotional state, activity, fitness, and hear-
ing acuity among many others. Also it may be difficult
in a given situation, to distinguish between the loudness
and the noisiness of a sound, since the two properties are

strongly interrelated. In fact, as will later be seen, sub-
jective judgments of the two quantities are closely similar.
In spite of the obvious difficultles of measuring individual
subjective reaction to noise_ it has been shown by many
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workers that collective judgment is sufficiently uniform to

justify the development of quantitative rules for evaluation

of loudness and noisiness. Current methods, ln fact, show

good consistency in the prediction ofsubjectlve response to

Broadband noise. However, these methods are continuously

being refined to account for factors such as duration, rate

of onset and decay, and discrete frequency content.

10.3.1 LOUDNESS

The loudness, or subjective magnitude of noise, is a rela-

tive property, and the first step to be taken in its defi-

nition and measurement is to specify a scale of units.

Fletcher and Munson (Reference 10.7)suggesteda 1,000

Hz tone as a standard sound against which others should

be judged for loudness. Stevens (Reference 10.8) later

proposed the unit of loudness be called the sane, andgave

a value of 1 sane to the loudness of a 1,000 Hz tone with

a sound pressure level of 40dB. The sone scale ls such

that a sound 'U'wice as loud" as 1 sane is given a value of

2 sones and so on.

An alternative dimension is that of "loudness level" which

is measured in phons and is, by definition, equal to the

sound pressure level, in dB, of the 1000 Hz. pure tone

which has equal loudness. Thus this scale is more closely

related to the conventional logarithmic scale of sound

intensity, and for this reason is generally used for the

definition of loudness values. Nevertheless, the sone scale

forms a more convenient basis for the rating of subjective

judgments, and it has been necessary to find the relation-

shipbetweensones and phons. It is now generally accepted

that a doubllngof loudness, that is a factor of two increase

in loudness, corresponds to an increase in loudness level

of t0 phons for a loudness level greater than 40 phons.

This relationship applies at all frequencies and is funda-

mental for the establishment of the equal loudness contours

which are discussed below. It is important to note how-

ever, thatthis result represents the mean of measured data,

some of which are presented in Figure 10o5o The scatter is

considerable, and is partly the result of the different
methods of loudness estimation used.
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Now to predict the loudness of a complex sound of known

frequency spectrum one needs to know (i) how loudness

varies with frequency, (H) how loudness varies with band-

width, and (ill) what is the rule for adding the loudness

of different bands of noise. The Ioudnessof pure tones

is reviewed first since the results prove useful for extrap-

olation of loudness of bands of noise to low frequencles

and high levels.

o
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Numerous "equal loudness contours" for a pure tone have

been produced which show the variation of judged loud-

ness with frequency. Notable among these are those of

Fletcher and Munson, 1933 (Reference 10.7), Churcher

and King, 1937 (Reference 10.9), and Robinson and

Dadson, 1956 (Reference 10.10) examples of whlch are

shown in Figure 10.6. Differences among the three sets

of data are apparent, especially towards the lower fre-

quencies. Of the three sets, that of Robinson andDadson,

being the most recent,ls considered the most reliable.
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Pure Tones for Two Different Loudness Levels

Investigations similar to the earlier pure tone experiments

have been carried out using bands of noise, the first of

wh ich was made by Stevens (Reference 10.11) uslng octave

bands. Stevens found that loudness contours for bands of

noise differed from the pure tone contours although exhib-

iting the same general trends. The loudness of a given

band of noise was still measured in sones, relative to the

1,000 Hz. pure tone standard, and it was found that, for

a reasonably smooth spectrum, the rule for addingtogether

the loudness of a number of adjacent bands is approxi-

mately

S = S + F(Z S-S ) .
t m m
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This states that the total loudness, in sones, St is equal

to the loudness of the loudest band, Sm, plus some

fraction, F, of the sum of the loudness of the remaining

bands. For the value of F, Stevens recommended 0.3

for octave bands, 0.2 for half octaves and 0.15 for

one third octaves. From the sane summation, the overall

loudness level in phons (LL) is obtained from the overall

loudness in sones St by the following expression

LL=40+33.31og10S t , (S t > 1 sane)

Robinson and Whittle (Reference 10.12) performed a care-

ful and extensive study of the available data on loudness

contours for bands of noise, in addition to compiling an

additional set, and recommended that the most valid result

could be obtained by simply averaging the contours given

by Stevens (Reference 10.1 I), Cremer etal. (Reference

10.13), Robinson and Whittle (Reference 10.12) and

Zwlcker (References 10.14 and 10.15). Acomparlsonof

the results obtained by this averaging process and the pure

tone contours of Robinson and Dadson (Reference 10.10) is

made in Figure 10.7 where the boundarlesdeslgnatlngthe

measurement limits are also shown.
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FIGURE 10.7 Average Loudness Contours for Pure Tonesand
For Noise (After Reference 10.12)

These subjective judgments have one majorshortcomlng for

application to the noise field of large rocket boosters in

that the extent of the contours in level and frequency is

inadequate. The pure tone results of Reference 10.10

cover loudness values up to 120 phons and the composite

broadband contours are limited to about 100-110 phons° In

addition there are few results below 50 Hz. The reasons

for this deficiency are clear enough; it is difficult to per-

form accurate experiments in the low frequency range and

the physiological dangers of high sound pressures, dis-

cussed in paragraph 10.2, make large scale testing at such

levels impractical.

Robinson and Dadson made adetailedanalysis of their pure

tone loudness contours and found that at each frequency

the loudness could be accurately expressed as a quadratic

function of sound pressure level. From the datawhlch they

provide, the contours have been extrapolated to135 phons

as shown in Figure 10.7. Using these results as a guide,

the broadband equal loudness contours have been extended

in a similar way. It must be mentioned at this point that

in deriving the average contours shown in Figure 10.7,

Robinson and Whittle corrected all data to equivalent dif-

fuse field conditions, using the relationships presented as

Figure 10.8 which may therefore also be used when applylng

these curves to normally incident plane wave conditions .
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10.3.2 NOISINESS

In attempts to develop simple methods by whichthe loud-

ness of sounds could be physically measured, standard

sound level meters have been provided with A, B, and C

scales. These scales utilize filter networks which weigh

the measured sound spectrum in accordance with the

Fletcher-Munson loudness contours. The A, B, and C

scales correspond approximately to the compliment of the

40, 70, and 100 phon contours respectively. When these

instruments were used to measure the sound of jet aircraft

and observers were simultaneously asked to rate the "ac-

ceptability" of the noise, itwas found that the correspond-

ence between the two ratings was not as good as might be
desired. This led to the notion that loudness and noisiness
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arenotnecessarilythesamething.Figure10.9from
KryterandPearsons,(Reference10.16)illustratesarecent
measurementofthedifferencebetweenjudgednoisiness
andloudnessfor bandsof noise. Based on such data,

Kryter modified the existing equal loudness contours of

Stevens and established a set of noisiness contours to ac-

count for the effects of annoyance of a noise. (Reference

10.16). A unit of noisiness, was also proposed, calleda

noy, which is analagous to the sone as a loudness unit.

One noy is defined as the noisiness of a band of random

noise centered at 1000 Hz and having a sound pressure

level of 40 dB. The actual bandwidth of the reference

standard was not fixed but could vary appreciably above

or below approximately one octave. To illustrate the re-

sulting noisiness contours, Figure 10.10 compares the 40

and 160 noy noisiness contours proposed by Kryter (Ref-

erence 10.16) with the corresponding 40 and 160sone
loudness contours for octave bands of noise of Stevens

(Reference 10.11) upon which the former are based. Also

shown are the 40and 160sone loudness contours for octave

bands of noise from Robinson and Whittle interpolated from

Figure 10.7. The general trend of all three curves at both

levels is similar. However, the differences in absolute

level are indicative of the degree of accuracy inherent in

any subjective rating scale.
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The perceived noisiness of a sound is calculated in much

the same way as its loudness in phons, using noys instead

of sones. The summation formula for wide band spectra is

N = n + F (T n - nmax)max

where N = total noisiness in nays, nma x is the noisiness
of the noisiest band and F is a factor which takes values

0.3 for octave bands, 0.15 for one-third octave bands and

0.07 for one-tenth octave bands. Figure 10.11, prepared

for use in the calculation of perceived noisiness,represents

a complete set of noisiness contours (in noys),obtained from

Reference 10.16 and extrapolated to 20 Hz. and 750 noys.

Given the sound pressure level in each octave or third

octave band, the noy value for each can be read from

these curves. The overall noisiness is then calculated ac-

cording to one of the summation formulae
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FIGURE 10.10 Comparison of Equal Noisiness Contours

and Equal Loudness Contours for an Octave

Band of Noise

or

N =

N =

n + 0.3 0-n [octave]max - nmax)

n + 0.15 (Z n - nmax) [I/3 octave]
max

The perceived noise level in PNdB is deflnedas the sound

pressure level corresponding to the overall noisiness, N,a_

1000 Hz., and can therefore be obtained directly from

Figure 10.11.

Effects of Duration

Both rate of onset and decay of a sound, together with its

duration have significant effects upon an observer's evalua-

tlon of both loudness and noisiness. Garner (Reference

10.18) has shown that the loudness of a tone or a band of

noise increases with duration for periods measured in

fractions of seconds. For longer periods the loudness stays

constant and actually begins t_o decrease during extended

exposures. In contrast, noisiness continues to increase

with increased duration. Kryter and Pearsons (Reference

10.16) investigated the effects of both duration and rise

and decay times and found that judged noisiness was rela-

tively insensitive to the latter. The effect of duration,

however, was important; an increase in duration resulted

in an increase in noisiness. Specifically, it was found

that the sound pressure level for equal noisiness of a given

sound spectrum decreases approx imately 4.5 d B per doubling

of duration. However their tests were performed at sound

pressure levels of around 100 dB and the applicability of

this result to other levels is unknown. Also the durations

used in these tests were between one and one-half and

twelve seconds. Pearsons (Reference 10.19) extended these

tests to durations of 64 seconds and found that the depend-

ence of perceived noisiness on duration appears to be a
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continuously varying function. Figure 10.12 taken from

Reference 10.19, shows the combined set of results for the

two tests. Three straight line segments have been fitted to

the data, arbitrarily Broken at durations of one and one-

half, four, sixteen, and slxty-fourseconds. Within the

three ranges, the perceived noise level increases by 6.0,

3.5, and 2.0 PNdB per duration doubling respectively.

For application to rocket launch and static tests, a du-

ration of exposure equal to or greater than 16 seconds will

be typical, and the 3 PNdB correction per doubling of du-

ration may be expected to apply.
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10.3.3 AGE

One factor which should be taken into consideration dur-

ing both subjective judgment tests and the later appli-

cation of the results is the normal loss of hearing with in-

creasing age, presbycusis. Statistically averaged figures

for the increase in hearing loss level with age for various

frequencies are plotted in Figure 10.13. Unfortunately

the data are limited and the relationships between thres-

hold deficiencies and subjective evaluation of noise are

not defined.

10.3.4 ANNOYANCE

Under actual day-to-day conditions, an individual's judg-

ment of the annoyance of a sound will depend upon many

factors. It is extremely difficult to categorize sounds into

annoyance ratlngsand each individual case must be treated

upon its merits. Some typical faetorswhich affect the

annoyance of sound are: (i) the observer's activity and de-

greeofconcentratlon upon it, (ii)whether or not the noise

is necessary for any practical purposes, (iii) the frequency

with which the sound is heard and the degree of the

listener's conditioning to it and, (iv) his emotional state

of mind.

10.4 OBJECTIVE INFLUENCE OF ACOUSTIC NOISE

10.4.1 SPEECH COMMUNICATION

The most immediate objective effect of excessive noise on

people is the interference with voice communication due

to masklng. Due to the low frequency content of rocket

noise and the relative high frequency content of speech

sounds, this interference would seldom be a significant

factor in a community area around a launch or test site.

However, for operating personnel, in control centers or

exposed areas close to a rocket firing, noise levels which

interferewith voice communication can be a serious opera-

tional handicap. As a rough initial guide, voice communi-

cation can become impaired when the average octave band

sound level of the noise in the frequency range of 600 to

4800 Hz exceeds levels ranging from 40 dB for normal

voice communication at distances of 8 to 10 ft to 55 dB for

voice communication of 3 to 4 ft (Reference 10.21). Such

levels may often be reached in operating areas where

voice communication is critical.

Toevaluate the resulting degree of interference with voice

communication, methods have been developed which relate

a weighted ratio of the speech-to-noise intensity to com-

munication efficiency. This relationship is quantified in a

single number called the articulation index.
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One method, frequently used for detailed evaluation of

communication systems, in lieu of actual operational tests
in noise, is based on the following concepts: (Reference
10.21, 10.22).

• The effective intensity range of the speech
signal lles within a 30 dB spread equal to
+ 12dB above and -18 dB below the long
time average rms pressure spectrum level of
the speech signal.

• Limiting lower and upper values for this
effective intensity range are specified re-
spectively by the threshold of hearing and
an overload limit beyond which, speech
communication is not improved by further
increases in the speech signal.

• The effective frequency spectrum of the
speech signal, between about 200 and 6000
Hz, can be divided into 20 unequal fre-
quency bands which contribute an equal
amount of intelligence.

These first three concepts are illustrated in Figure 10.14
which is from Reference 10.21. This shows the range of
the effective pressure spectrum level for normal speech at
a distance of 1 meter from a speaker. This spectrum is
plotted on a non-linear frequency scale established by
letting the frequency bands of equal intelligence have
equal width on the abscissa.

The overload limit is shown in Figure 10.14 as a constant
pressure spectrum level of 95 dB. This value is from Ref-
erence 10.21 and is chosen for simplicity in lieu of the
more complex and somewhat higher values in Reference
10.22. It corresponds approximately to a speech sound
level of about 115 dB at the ear and would rarely be ex-
ceeded in most communication systems employed at rocket
firing areas.

To compute the articulation index, the actual peak speech
spectrum levels received by a listener are determined by
adjusting the spectrum levels in Figure 10.14 for the
acoustic galn-versus-frequency characteristics of the sys-
tem. If the adjusted spectrum exceeds the overload limits
in any band, the latter level is used as the effective peak
spectrum level in that band. The rrns pressure spectrum
level of the noise at the ear, corrected for any noise re-
jection by headsets etc., is then plotted on the same
graph. The area between the speech peaks and the rms
noise spectrum divided by the area of the effective speech
spectrum without noise is called the articulation index.
It is normally expressed as a percentage.

Additional refinements to this procedure, covered in de-
tail in Reference 10.22, include corrections to the noise
spectrum to account for non-linear growth in masking at
high noise levels and effective growth in masking of the

spectrum above and below its predominant peak frequency.
The validity of applying these corrections to low frequency
rocket noise spectra is not known.

Since the peak spectrum level of speech is usual ly bel ow 95
dB, the articulation index can ordinarily be expressed as

110
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FIGURE 10.14 Basis for Calculation of Speech Articulation

Index, Showing Audibility Threshold, Region

of Speech Level, and Overload Region (From

Beranek, Ref. 10.21).

where

and

AI = 1O0
2O

(Si- Ni)/600

i=I

Si = peak speech spectrum level in dB in
.th
I band

Ni = rms noise spectrum level in dB in the
.th
i band (including any corrections from

Reference 10.22)

I 0 when Ni >Si(Si- NI)= 30 when Ni < Si- 30

Thus, the computation reduces to summing the peak signal
to rms masking noise ratio, in dB, in each band, with the
limitation that the values cannot be negative and cannot
exceed 30 dB. Additional corrections to the value of the
articulation index itself can be made to account for

acoustic reverberation at the receiving end, relative vocal
effort of the talkerand visual cues. (See Reference 10.22).

In general, however, these refinements would not apply in
the analysis of communication systems around rocket launch
a reas.
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Numerous investigators have verified the general validity

of this analytical process for predicting the efficiency of a

communication system by actual tests. For test material

consisting of sentences, the percent correctly understood

is related to the computed articulation index as follows.

Articulation Index-% 10 20 30 40 50 60

Sentence Intelligibility-% 18 54 80 90 94 97

Thus, as a rough guide, a system with an articulation

index of less than 30 percent will generally be unsatis-

factory while 60 percent will provide nearly perfect trans-

mission of information.

A less precise but more easily calculated parameter which

is widely used for estimating speech interference is the

Speech Interference Level (SIL). This is related to the

articulation index,in that the spectrum is divided into three

Bands which make equal contribution to speech intelllgl-

bilit_ but in this case convenient bands are chosen which

coincide with the filter bands of commercial sound ana-

lyzers. These three bands are chosen as 300-1200Hz.,

1200-2400 Hz., and 2400-4800 Hz. (see Figure 10.14)

where the first of these is represented in analyzers by the

two octave bands 300-600 and 600-1200 Hz. If the level

in the 300-600 Hz.band is not more than 10dB above that

in the 600-1200 Hz Band, the SIL is defined as the arith-

metic average of the sound pressure levels in the three

bands 600-1200, 1200-2400, and 2400-4800 Hz. However

if the levels in the 300-600 Hz. band are more than 10 dB

higher than those in the 600-1200 Hz. bandt then the

average in the four Bands between 300 and 4800 Hz. must

be used. If the speech spectrum is known, an approxima-

tion to the articulation index can be made as follows:

(1) Using the damped meter circuit of an octave

band analyzer, measure the octave band sound

pressure levels of the ambient noise to derive
the SIL as defined above.

(ii) Using the undamped meter circuit, measure the

peak sound pressure levels of the speech signal

(with the ambient noise removed or reduced to

a level which causes no interference) in the

same bands and average in the sameway to yield

an "adjusted peak level of speech .H It is ad-

visable to add about 4dB to the final answer to

compensate for the inertia of the standard sound

level meter movement.

(ill)The differencebetween the adjusted peak level

and the speech interference level _ when divid-

ed by thirty_ approximates the articulation

index.

As a guide to the dlrecteffects ofSILupon voiceaommuni-

cation_ Table 10.1, taken from Chapter 13 of Reference

10.21 _ shows the SIL's which barely permit reliable speech

intelligibility at various talker-listener distances and voice

levels. For more details on the calculation and use of both

Articulation Index and Speech Interference Level the

reader is referred to Chapter 13 of Reference 10.21.

TABLE 10.1

SPEECH-INTERFERENCE LEVELS (IN DECIBELS

RE 0.0002 M1CROBAR) THAT BARELY PERMIT

WORD INTELLIGIBILITY AT THE DISTANCES

AND VOICE LEVELS INDICATED. NO RE-

FLECTING SURFACES TO AID THE DIRECT

SPEECH ARE ASSUMED (AFTER L.L. BERANEK

REFERENCE 10.21)

Distance,

ft

0.5

1

2

3

4

5

6

12

Voice Level (Average Male)

Normal Raised

71 77

65 71

59 65

55 61

53 59

51 57

49 55

43 49

Very Loud Shouting

83 89

77 83

71 77

67 73

65 71

63 69

61 67

55 61

10.4.2 EFFECTS OF NOISE ON BEHAVIOUR AND

EFFICIENCY

It has been noted previously that high intensity noise and

sudden unexpected noise can cause undesirable physical

reactions in the body of minor or negligible significance_

It might also be expected that noise which does not cause

such direct reactions might reduce the efficiency of a sub-

ject performing his normal activities. This could bea

significant factor for defining an acceptable environment

for manned ground stations near launch or test sites where

the efficiency of control or test operators is vitally import-

ant. Unfortunately, the direct physiological effects of

noise are extremely difficult to isolate, being masked toa

great extent by psychological effects such as annoyance

and distraction. Thus_changes of external influences on

subjects during a test, together with consequent

changes of mental attitude, play an important part in their

reaction to a given situation. Industrial surveys are parti-

cularly prone to this type of unknown factor_ and there-

fore, yield poor results. Laboratory experlments are limited

by the number of subjects and results are of correspondingly

less statistical value. Nevertheless, the results are of

value in helping to specify tolerable noise limits. The

main conclusions are discussed below.

Noise does interfere with efficiency to some extent, and

it can broadly be stated that, for simple tasks, the more

unfamiliar the noise or themore unfamiliar the workt the

more serious will this interference be. It is found that for

simple tasks, efficiency declines when the subject is first

exposed to the noise but that efficiency is gradually re-

gained as the subject becomes.familiar with the sound.

However_ the magnitude of the effect is always small and
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themainconclusionisthatfamiliarnolsesofshortduration
donotrepresentaserlousthreattoefficiency.Whenthe
averagerateofworkovera fairperiodoftimeistaken
thereisnoconsistentdecllneinperformanceandtheremay
evenbesomeincrease.

Similarresultsarefoundwhentheworkisofamorecom-
plexandintellectualnature.Inthiscase,theneteffect
of noiseis normallyfoundto beanincreaseinerrors.
Speedandoutputareapparentlynotaffectedsignificantly.
Asubjectperformingacomplextaskismuchmoresuscep-

tible to distraction and annoyance and steps to reduce the

noise or loudness level of infrequent, though familiar,

noises are desirable if efficiency is to be maintained.

More significant effects of noise have been found on vigi-
lance tasks which include visual watch-keeplng and con-

tinuous work over extended periods. A typical example of

such work is the monitoring of warning signals (e.g. pres-

sure gauges). Definite deterioration of performance on

this specific task has been found over periods of one and

one-half hours. Detailed analysis has shown a sudden

decline in performance at the onset of the noise and then

an improvement, sometimes followed by a further decline.

This suggests that the subject initiates addltlonal effort in

a noisy environment which he cannot maintain. Noise

appears to have an even more marked effect upon tasks

which require continuous actlvity and concentration.

Errors begin to increase rapidly after a short time (10 min-

utes or so) and further increase with an increase in noise

level.

A study of particular relevance to the problem of launch

or test site operation was made by Woodhead (Reference

10.30) who investigated the effects of short bursts of noise

on a group of subjects performing a complex visual search

task. The task involved the identification of printed

numbers presented in random sequence at the rate of five

per second. The total period of performance in each case

wasfifteen minutes and the subjectswere exposed to bursts

of recorded rocket noise, of one second duration, at

various intervals during the task. Inaqulet environment

it was found that of the total errors made, 44 percent oc-

curred during tests when the bursts of noise were ata level

of 110 dBr27percent whenthenolse was at 70dB, and 29

percent when there were no noise stimull. A detailed

analysis of performance during the 30 second periods fol-

lowing each noise burst showed that the errors induced by

the loud noise were of a particular type, i.e., failure to

notice a warning signal. The continuous activity involved

in the task was not appreciably affected.

Extensive tests have uncovered no significant effects of

noise upon sensory and motor functions with the exception

of a recent experiment (Reference 10.23) which included

a study of the effect of different sound pressure levels at
each ear. With a difference of 20 dB between ears (80 clB

and 100dB of random noise), some loss of balance was

noted among the subjects. Although the effect was slight,

it was considered of potential significance in motor task

performance. Such an unbalanced exposure could occur

with a communicator wearing a headset.

Practical conclusions which can be drawn from the results

of the many studies are that

1) The direct effectsofnoise on human performance

are far less significant than the annoyance it

causes,

2) there is no effect on efflclency at sound pressure

levels less than 90dB. At higher levels, power

of concentration may be impaired,

3) familiar nolses are less likelyto reduceefficiency
than unfamiliar ones.

10.5 COMMUNITY REACTION

Predicting likely community reaction to a noise stlmuJus

involves several steps. Three factors are of prime import-

ance. First, "likely reaction" isa statistical problem.

Annoyance by soundatany particular instant is a function

of current activity. Secondly, the annoyance created

bya particular sound isa relative matter. Itdependson

the extent to which the sound compares with the ambient

noise environment towhich the listener may be accus-

tomed. Thirdly, there is the problem of how "community

reaction" is to be measured . A commonly used index is the

level at which complaints are. received. However,

it is an obvious reality that for every complaintreglstered

many more people will be annoyed and disturbed, but do

not make a formal complaint.

Considerable effort has been directed, therefore, towards

developing methods for predicting community reaction to

noise based on a knowledge of the physical parameters of

the noise weighted by due consideration of other subjective

elements. While each community noise problem must be

evaluated carefully on its own merits, such prediction

methods provide a valuable guide for site planning of

potential noise sources and a gulde for deft nl ng operational

controls on such sources to avoid adverse community re-

action.

A major advance in the development of reliable methods

for assessing community reaction to noise was made by

Stevens, Rosenblith, and Bolt (Reference 10.24) who pro-

posed the concept of a composite noise rating (CNR). They

suggested that the measured or computed loudness of the

noise could be modified by increments which take account

of additional subjective response factors. These include

background noise, temporal and seasonal factors, character

of the nolse and previous exposure. The modified result, the

CNR, could then be related directly to an expected scale

of community response based upon observatlons of the reac-

tions of typical residential communities. While their

method for allocation of numerical values to the various

factors was necessarily crude, correlation between predic-

tion and observation for a series of subsequently studied

case histories was sufficlentto justify use ofthls method in

most cases. Figure 10.15 taken from Reference 10.24

is a graphical representation of the resultst showing the

range of responses which can be expected from communi-

ties exposed to noise of varying CNR. A method for relat-

ing the CNR to physical characteristics of the noise will be

covered later on in this section.
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Later studies have modified, simplified, improved and

adapted this initial work (References 10.25, 26, and 27)

with particular emphasis on the airport noise problem.

Reference 10.27, gives comprehensive instructlonsfor pre-

dicting community reactions in _he vicinity of airports

from a knowledge of aircraft types and operation schedules,

and has been recommended as a standard procedure for

evaluating airport noise problems (Reference 10.28).Unfor-

tunately the technique isnot suitable for direct application

to the community noise problem at rocket operation centers

for a number of obvious reasons. The operation schedules,

noise time histories and noise characteristics are different

from those at an airport. Also, communities in the immediate

vicinity of rocket test centers are likely to be much more

tolerant,since a high percentage of the population will be

motivated economically and professional ly towards accep-

tance of, and indeed interest in, the noise. This is a very

important difference betweennoiseintrusion from rocket

tests or launch operations and airport noise. It can be

worth up to 15 dB in noise level for the same community

acceptance.

A suggested method for the prediction of noise response

outlined in this section is believed to be a realistic

approach, and is developed from those of Reference 10.27

and the earller more comprehenslve techniques of Reference

10.24. The final result of the suggested calculations can

be left in the form of that of Reference 10.27, namely one

of three levels of community reactions which can be pre-

dicted within a certain area. Alternatively, however, a

more detailed method can be used which gives estimated

numerical values for areas of known population density

which may be subsequently integrated to give a measure

of the average complaint reaction of the entire community.

Although complaint density does not necessarily indicate

the true intrusion value for a given noise disturbance, it

does provide a useful numerical rating which can be com-

pared with observed complaints tovalldate or improve the

prediction methods. Thisalternate proposed method assumes

that sound pressure level spectra can be calculated at

relevant points in any community by methods outlined in

Chapters 6 and 7 of this manual. Additional factors

which are then taken into consideration are,

• Time histories of noise stimulus exposure.

• Background noise.

• Temporal factors; time of day, time of year.

• Frequency of firings.

• Previous exposure.

• Population distribution.

The step-by-step procedure which accommodates these

aspects of community reaction will now be detailed.

Step 1 Launch or Test Operation Data

The first step is to collect pertinent data on the expected

launch or test operations for extended periods of time. For

each launch or test firing, this comprises information on

the type of vehicle launch or test sequence, pad location

and likely acoustic propagation conditions at the time of

firing. This information should then be divided into two

groupscorresponding toflringsoccurring between the hours
of 0700 and 2200 and those between 2200 and 0700.

Table 10.2 shows a suggested format for gatheringthlsin-

formation. It is recommended that the vehicle speclfl-

cation be represented by one of 5 different categories,

each defined by an approximate thrust range ratio of 3 to

1 which corresponds to an approximate overall sound

power ratio of 5 dB.

Step 2 Sound Level Contours

Typical ground noise contours can then be defined for each

vehicle thrust class and for each propagation condition.

The time period within which average frequenciesof rocket

firings are to be computed, should be chosen to cover a

period when both firing frequency and weather conditions

are reasonably uniform. For the larger rockets, it isantlc-

ipated that the distances between launch pads will be

important for community areas at a great distance from the

launch center. For smaller rockets, inter-pad distances

will tend to be small enough so that all tests can be as-

sumed to originate from a central point in the middle of a

test complex.

For each firing category (defined by thrust class and weather

conditions) and each community Iocationlthe time variation

of the stimulus sound pressure level and octave band spec-

trum in each community area of interest is calculated

according to the methods described in Chapters 6 and 7.

Step 3 PNdB Calculations

A perceived noise level, in PNdB, is then calculated with

the data of paragraph 10.3.2 using the maximum sound

pressure level in each octave band from Step 2.

It is recognized that the equal noisiness contours of Figure

10.11, even in their extrapolated form, are not entirely

adequate for the perceived noise calculations for the

classesof large launch vehicles which have spectrum peaks

at sub-audible frequencies. However, the upward trend
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TABLE 10.2

SUGGESTED FORMAT FOR GATHERING LAUNCH OR STATIC TEST SCHEDULE DATA

TIME PERIOD: to
• • • • • . . •

VEHICLE
THRUST (LB)

< 100,000

100,000 to
330,000

330,000 to
1,000,000

1,000,000 to
3,300,000

3,300,000 to
10,000,000

OV ER

10,000,000

0700-2200 2200-0700
TOTAL PAD

FIRINGS 1 2 3 4

TOTAL PAD
FIRINGS 1 2 3 4

of the contours at the low frequencies,togetherwith the
loudness contours of Figure 10.7 and the pain threshold
curves of Figure 10.2 illustrate that these frequencies are
are not likely to cause auditory disturbances.A further im-
portant influence of the sub-audible part of the spectrum
occursthrough bul Iding vibration which adds to the annoy-
ance and general fear reaction. The particular fear
of possible property damage and depreciation may also be
especlally significant. However, it may be expected that
launchings of these very large vehicles will be relatively
infrequent,and when they do occur,of considerable inter-
est to the local communities. This factor will play a large
part in countering the adverse effects of the lower fre-
quencies and may even weigh public reaction in a favorable
direction .For this reason it seems justifiable to ignore the
sub-audible part of the spectrum for launch sites. For

static test sites, however, community motivation factors
will not necessarily be so great and infrasonic effects,
which include direct physiological factors and indirect
effects such as window rattle may be approximately ac-

counted for by applying the following increments to the
calculated perceived noise level.

Correction Factor to CNR for Infrasonic Effects
m

Below 115 dB 0

Octave Band Level 115 to 125 dB + 5 PNdB

5- 20 Hz Above 125 dB +10 PNdB

A more detailed consideration is made of infrasonic vi-
bration effects in Section 10.8.

Step 4 Corrections for Operational Factors

Table 10.3 lists the additional correction increments, in
PNdB, as functions of the operational factors discussed
be) ow.

It will be noticed that all the increments listed are mul-

tiples of 5 PNdB. The reason for this is that in most cases
more resolution is not justifiable in the light of current
knowledge of the effects of the various factors. Also it is
doubtful whether public reaction scales could be spec-
ified to a greater degree of accuracy.

(i) Duration of Stimulus

For each community area and each vehicle category, an
equivalent exposure time is defined as the period within
which the overall sound pressure level is within 10dBof
its maximum value.

The duration corrections listed in Table 10.3 are based

on the assumption that the perceived noise level scale is
valid for durations of around 20 seconds. The results

shown in Figure 10.12 indicate that for test signal dura-
tions greater than 16 seconds the perceived noise level

should be increased by 3 PNdB for each doubling of dur-
ation, and the 5 PNdB increments are suggested to accom-
odate duration effects.

(ii) Time of Day

During the daytime, many people are away from their
residences, working in an area with a higher noise level.



10-16 Effects of Noise, Vibration, and Blast on Personnel

TABLE 10.3

OPERATIONAl CORRECTION FACTORS TO CNR

Factor Correction

Exposure Less Than 0.5 0
Time 0.5 to3 + 5

(Minutes) More Than 3 + 10

0700 - 2200 0
+10

Time of

Day

Number
of

Firings

2200 - 0700

0700 - 2200 2200 - 0700
5 or Less 3 or Less
More Than 5 More Than 3

Test Firing (Ground)

0
+5

Firing 0
Type Launch - 10

+5
Seasonal

Effects

Winter - With Sound Focusing Effects
Winter - No Sound Focusing Effects
Summer

PNdB
< 50

51 - 60

Class of District

Very Quiet Suburban
Suburban

-5

_-5

Urban Near Industry

0
61 - 70 Residential Urban - 5
71 - 80 - 10

Background
Noise

_ 80 Heavy Industry -15

Previous" None + 5

Exposure Some 0
• Optional

(See Text)

This factor could be accommodated in two ways. The pop-
ulation survey can be divided into two parts, day and night,
with the daytime estimation based on place of work rather
than place of residence. However, the additional effects
due to increased activity, and consequently decreased
noise sensitivity, are difficult to take into account. The

alternative procedure is to ignore population movement
during the daytime and merely allow for the increased
disturbance at nightime by applying the 10 PNdB cor-
rection for night firings.

(iii) Number of Firings

(v) Seasonal Variations

The validity of this correction is wholly dependent upon
climatic conditions. In regions where seasonal variations

do not significantly influence community habits, applica-
bi lity is certainly doubtful. Howevers if wlnter temperatures
cause residents to spend appreciably greater proportions of
their time indoors,the average noise levels to which they

are exposed will be reduced. On the other hand, sound
focussing problems are likely to be more severe in winter
time so that a 5 PNdB increase relative to summer con-

ditions may be justifiable.

From the total firing schedule defined for a long period under
Step 1, the average number of firings per daily time period
can be calculated. In doing so, consideration should be
given to any known and regular periods of increased ac-

tivity. For example, if the majority of firings are confined
to the Monday to Friday period each week, then weeks
should be taken as five, rather than seven days.

(iv) Firing Type

It is aknown factthatthemotivation factor in communities

adjacent toa launch center is very high and the population
has a very favorable attitude towards noise intrusion. It
is also likely that the bigger and noisier the vehicle, the
more informed and interested the public will be. In the
vicinity of static test areas, however_ motivation is not so
high. Static firings commandmuch less glamour and public
interestwiththeresultthat tolerance is lower. A 10 PNdB

decrement is then proposed for application in the case of
launch operations.

(vi) Background Noise

Prime interest is in the reaction of people to the stimulus
noise due to the rocket firing itself. However,some of the
sound energy reaching a community will originate from
other, more local sources, which contribute to a general
background level. Generally, residents accept this back-
ground noise as part of their daily environment and the ef-
fect of the stimulus is really measured by how it compares
with this reference level.

The perceived noise level (PNdB) of the appropriate back-
ground noise iscalculated bythe standard methods and the

corresponding correction factor can then be found from
Table 10.3.

(vii) Previous Exposure

A person's reaction to a sound is dependent upon whether
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or not he has heard it before (See paragraph 10.3.4) and

the degree of his adaptation to it. The noise of an occa-

sional aircraft overhead is now very familiar to the ma jorlty

of people who may therefore be considered to be completely

adapted to it. Unfortunately, this adaptation is unstable

and can be upset by events such as accidents which are

associated with the noise. In such circumstances, corrections
should be reconsidered but Table 10.3 indicates the in-

crement which should be applied in cases of no previous

exposure. In fact, this is an unlikely situation among the

residents near rocket firing centers and it is anticipated

that no such correction need be applied, except in the

event of introduction of partlcu larly powerful noise sources

which radiate to previously insignificant areas.

Step 5 Calculation of the Composite Noise

Rating (CNR)

The composite noise rating is calculated for each firing

category byadding algebralcallythe total of the correction

numbers derived from Table 10.3 to the perceived noise

level in PNdB determined in Step 3. From the various

values applying to each category, an overall effectlveCNR

must then be evaluated for each communi ty area of interest.

Onlythose CNR's which are wlthln three units of themax-

imum need beconsldered.lf there are threeor more CNR's

which satisfy this requlrement,then 5 unltsmust be added

to the highest one to give the overall CNR. tf there are

less than three, the highest CNR applies.

Step 6 Estimation of the Area Community

Response

The relationship between three dlfferentscales of communi-

ty reaction to the PNdB Composite Noise Rating is shown

in Figure 10.16. The first, shown on the far left of the

ordinate scale, is the same as presented earlier in Figure

10.15. It predicts 5levels of community reaction in terms

of an alpha numeric CNRscale. The later is shown on the

abscissa so that it can be compared with the corresponding

PNdB CNR scale.

Community Reaction Scales
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The second reaction scale on the ordinate axis is taken

from Reference 10.27, and involves only 3 reaction ranges
which are predicted by the corresponding PNdB CNR

range.

Finally, a new quantitative scale of community reaction is
constructed which correlates the number of complaints per
100 families with thePNdB CNR. This scale is based on

previously _npubllshed data obtained during community re-
action studies around a major airport. These data are also

plotted in Figure 10.16 along with the mean llne through
the data and two "confidence bands" thus relating all three

community reaction scales on a single graph. This new

scale provides a valuable tool for quantifying community
reaction with a parameter (complaint density or per cent
complaints) which is a measurable and realistic gauge of
community reaction. The correlation of this quantitative
ordinate scale with the other qualitative rating groups is
conslderedas a preliminary but useful tool for interrelating

available data on community response to noise intrusion.

It isworth noting that the slope of the mean line on Figure
10.16 is equivalent to a 6 PNdB increase in level for a two-
fold increase in complaint response. This compareswlth
the slope of the subjective loudness function, shown in
Figure 10.5 which shows a 10 dB increase in level for a
two-fold increase in judged loudness. It is recognized
that all these scales are based on jet noise and spectra
which peak at higherfrequencies than typical rocket noise.
(Reference 10.28). However, assuming community re-
action to be dominated by the noisiness of the sound in-
trustlon, the perceived noisiness concept should auto-
matically compensate for this frequency shift and it is pro-
posed that Figure 10.16 can be used with reasonable con-
fidence to classify likely community reaction by any one
of the three scales.

Step 7 Estimation of the Average Community
Response

Use of the first five steps to estimate a likely complaint
density in a particular community region can be extended
to define an average complaint density or likely mean
reaction for an entire community. This additional step is
based on thesuppositlon that a district can be conveniently
divided into a number of regions within which the various
reaction factors can be regarded as uniform. After calcu-
lating the expected complaint density for each of these
regions the mean community complaint density is simply
the sum of the product of the complaint density and number
of families for each region, divided by the total number of
families. Thus, if an entire community is divided up into

N zones of Area AN, not necessarily equal, with popu-
lation density PN in each zone and a complaint density
C N is estimated for each zone on the basis of its average
composity noise rating CNR N, then the total complaints
Co, from the community, can be estimated by the ex-
pression

Co = _ PN " AN ' CN (CNRN)

10.6 EXPOSURE OF PERSONNEL TO BLAST

10.6.1 GENERAL DISCUSSION

The basic concern for personnel exposed to the blast wave
from a propellant exploslon is toprevent anybodily injury.
Non-lnjurious subjective reactions to explosions are not
considered significant factors for siting criteria. While
such subjective reactions could be very marked, in this
case, it is not considered justifiable to base site locations
or distances on such reactions.

Extensive studies have been carried out by White and
Richmond at the Lovelace Foundation for biological effects
of blast. Theyhaveshownthatbodilyinjuryduetoablast
can be categorized as follows(References 10.31, 10.32,
10.33, and 10.56).

Primary Effects (Tolerance to Transient Overpressure)

Eardrum Rupture
Lung Damage
Letha l lty

Secondary Effects ('Tolerance to Impact by Missiles)

Skin Lacerations
Serious Puncture Wounds
Concussi on
Skull Fracture

Tertiary Effects (Tolerance to Physical Displacement)

Body Displacement
Skull Fracture From Impact

The maximum allowable overpressure for each of these
effects is specified in the following sections.

10.6.2 PRIMARY EFFECTS

The criteria listed in Table 10.4 have been suggested for
the maximum incident overpressure for injurious prlmary
effects. Two values of incident overpressure are given; the
lower value holds for a subject located near a reflecting

wall where_ due to reflectiont the effective overpressure
is equal or greater than the incident overpressure.

The criteria for lethal blast overpressures have been esti-
mated by Richmond and White (Reference 10.56) by
extrapolation of data obtained on animals.

10.6.2.1 Effects of Duration on Lethal Limits for Blast

The criteria for lethal exposure given above apply only to
blast waves with actual durations greater than 0.1 second.

Figure 10.17 shows the estimated overpressures (LD_n) for
50 percent fatality of man versus duration of th_e_blast
pulse. The data points represent smoothed values reported
by Richmond and White for the observed 50 percent mor-
tality overpressure versus duration for 6 different types of
mammals scaled up to a 70 Kg man (Reference 10.33).
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TABLE10.4

THRESHOLDBLASTPRESSURESFORPRIMARYEFFECTS
OFFASTRISETIME- LONGDURATIONBLASTPULSE

Effect

• EardrumRupture
• LungDamageThreshold
• Lethality 1%Fatalities

+

(t >0.1sec) 50% "
P

99% "

INCIDENT PRESSURE

No Reflection,psi

5

10-12

30-42

42-57

57-80

With Reflection,psi

2.3

4.4-5.1

11-15

15-18

19-24

+
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Theweightofthetestanimalscoveredarangeof1_000to
I andscalingwasaccomplishedbythefollowingsteps:

1) FollowingReference10.33,theoverpressurepeak
causing50percentfatalities(LD50)wasmuItiplled
by(70/W).069whereW isbodyweightinKg.

2) Themeasureddurationofthepositivephaseof the
blast,t+ wasmultipliedbytheratio(70/W)1/2.P

Thechoiceofa squarerootscalingtawbetweenbody
weightandcharacteristictimeisatvariancewitha cube
rootscalinglawexpectedfora lineardynamicmodelofthe
body.Thelatterscalingconceptis,infact,proposedby
vonGierke(Reference10.34).Thescalinglawswere
chosen,in thiscase,onthebasisofa "bestfit" tothe
experimentaldata.
Justificationfor theuseofthesescalinglawsisapparent
fromthegoodcollapseofthedata,andit isthusbelieved
thattheresultscanbeused for the prediction of the effects
of blast on humans with reasonable confidence. The scal-

ing laws themselves imply that an increase of body weight
increases the tolerable level of overpressure and increases
a characteristic response time.

10.6.2.2 Analytical Model for Predicting Effects of
Duration

The increase in allowable overpressure for shorter duration
blasts suggests that the response of the body to a blast may
be a function of the impulse of theblast wave for durations
much less than some characteristic reaction time. Thus, it
is reasonable to use, as an analytical model, the response
of a single degree of freedom system to a blast waver to
attempt to explain this duration effect. This simple model
can only be considered as a rough approximation (i. e.,
representing a critical normal mode) of a complex blo-
dynamic nonlinear system.

A significant application of this model can be for semi-
empirical analysis of blast protection methods for personnel.
For example, the allowable rate of blast pressure increase
inside a personnel shelter can be estimated from the known
ramp-step response of a simple oscillator.

To apply this model _ the mirror image of the shock response
spectra for a classical blast wave (see Chapter 3)has been
fitted to the data in Figure 10.17. The theoretical curve
is adjusted for a best fit to the scaled data and the fit indi-
cates that the "critical single degree of freedom system"
has a characteristic frequency of about 36 Hz. It is inter-
esting to compare this result with the findings ofvon Gierke
(Reference 10.34). He associated blast tolerance with
lung response on the assumption that equal maximum com-
pression of the lungs in response to blast (or pressure in the
lungs) produces equal injury patterns. Using a thorax
resonant frequency of 45 Hz. (see paragraph 10.8.1),which
is somewhat higher than the above resultt curves of equal
thorax compression in response to sawtooth blast waves
were calculated and showed a strong similarity to the data
of Richmond and White (Reference 10.33).

It is also important to note that the critical dynamic mode

involved in lung damage or lethal iniurywill notnecessarily
be the same as that involved in nonlniurlous reaction to
low frequency sound or overpressure. For the former, ex-
cessive pressure differentials within the body are a major
source of physical damage (Reference 10.32). For the
latter, nonlnjurious phenomena such as dynamic distortions
of internal organs may be the cause of nonauditory sub-
iective sensation.

10.6.3 SECONDARY EFFECTS

Secondary effects of blast injury to humans are associated
with injury by missiles. Such missiles can be fragments of
an exploded vehicle or secondary missiles generated at
some distance from the explosion by excessive overpressure
(i. e., glass fragments from windows). The first category
is not considered further in this chapter since normal safety
requirements for operating personnel will dictate adequate
protective housing to prevent injury.

For secondary missiles generated by failure of structure
remote from the explosion_ the degree of passible human
injury is dependent on

• Weight and Shape of Missile

• Distance Traveled Before Impact

• Velocity and Angle at Impact

• Location of Impact on Body and Degree of Penetra-
tion (if any).

Detailed investigations on this topic have been conducted
by the Lovelace Foundation (see References 10.32, 10.35,
and 10.36). Some of their results are summarized in Table
10.5 which lists proposed criteria for threshold of injury by
secondary effects. Reference 10.37 outlines an analytical
method for predicting the required overpressure and yleld
to achieve the missile velocities indicated in Table 10.5.

However, experimental data is preferred due to the parti-
cular significance of the hazard from glass fragments.
Experimental data on the distribution of mass and velocity
of glass fragments from blast-failed windows is shown in
Figure 10.18. The measurements were made during tests
at the Nevada Proving Ground and were reported in Refer-
ence 10.35. Also shown_ from the same reference, is the
criteria for the threshold mass and velocity for glass frag-
ment puncture wounds in the abdomen of a dog. The glass
fragmehts were trapped at a distance of 10-12.75 feet
from the windows which were located at various distances
frorr, the blast center.

The mean overpressure at each window location is shown
beside the mean velocity and mass of the glass fragments.
The wide range of missilevelocities and masses for a given
overpressure is very apparent. Although the mean velocities
decrease with overpressure_ the mean fragment mass
increases so that over the range of incident pressures
studied, a trend relative to the injury criteria is not clear.
Howeverr it is reasonable to assume that for blast pressures
just sufficient tobreak o window, a serious wound could be
inflicted on a person by any large fragment within a few
feet of the wlndow. With this in mind, it is recommended
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TABLE 10.5

TENTATIVE CRITERIA FOR THRESHOLD

OF INJURY BY MISSILES

Effect Misslle Velocity ft/sec

Skin Laceration

Serious Puncture Wounds

Lung Hemorrhage - (1)

Lung Hemorrhage

Rib Fracture - (I)

Rib Fracture

Fatality - (1)

Fatality

Cerebral Concussion or

Skull Fracture

5O

100

8O

10 Ib Object

10gin Glass

10gin Glass

0.4 Ib Object

0.8 " 40

0.4 " 120

0.8 " 60

0.4 " 170

0.8 " 155

15

(1) Non Penetrating Missile Impact on Chest Wall of Dogs

(Reference 6.30)

that, for siting criteria for rocket test fac_lltles, overpres-

sures required for window breakage alone be used as a

basis for establlshlng criteria for secondary effects of blast

on man.
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FIGURE 10.18 Distribution of Glass Fragments at 10 to 12 Feet

From Windows Foiled by Blast Compared to Criteria

for Threshold of Abdominal Puncture Wounds in Dogs

by Glass Fragments (Data From Reference 10.35)

10.6.4 TERTIARY EFFECTS

Persons exposed to a blast are subjected to injuryby being

blown down by the blastwind and impacting a hard surface.

Again, criteria from the studies reported by the kovelace

Foundation can be used as a guide for this type of injury.

These criteria are listed in Table 10.6.

TABLE 10.6

TENTATIVE CRITERIA FOR THRESHOLD OF

INJURY BY BODILY DISPLACEMENT

Effect

Whole Body Displacement

Mostly "Safe"

Lethality Threshold

Skull Fracture

Mostly "Safe"
Threshold

Impact Velocity

ft/sec

10

20

10

13

Although analytical methods are available for correlating

blast parameters with the required velocities listed above,

(Reference 10.36), pertinent experimental data will be

used instead. Experimental studles have been conducted

by the FAA with a simulated blast wind to determine the

dynamic pressure required to cause a man to lose his
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balance, (Reference 10.38). The dynamic pressure required

for unbalance varied with the position of the man. The
minimum value, for which no recovery was posslble,varied
from 0.103 to 0.165 psi for a man walklng with one side
facing the blast wind. The minimum value would corres-
pond to an incident overDressure of 2.2 psi at a scaled
ground distance (R/WTI/3)-of 27 ft/Ib 1/3. The highest

dynamic pressure required was 0.2 psi for a man standing
with his back to the blast.

10.6.5 SUMMARY OF BLAST EFFECTS

In summary, the most critical effect of blast exposure for
man will be injury by glass missiles. Siting criteria in-
volving blast hazards to personnel in uncontrolled areas
should therefore be based on minimum risk of window

breakage. For personnel in controlled areas where glass

fragments are not involved, maximum incident overpres-
sures must be limited to less than 2 psi to avoid injury by

impact of the head or eardrum rupture.

human body and leads to a pressure doubling for the higher
frequencies on the side facing the oncoming wave. Von
Gierke (Reference 10.39) suggests this could be responsi-
ble for the common subjective sensation of being "hit" by
the boom. Indoors, the effect of a boom is quite different.
The building itself acts as a filter which removes much of

the high frequency energy. The transmitted pressures and
particle velocities are lower but reverberation extends the
duration of the disturbance and essentially eliminates its
directional character. The building vibrations result in
rattling noises which add to the general stimulus.Airborne
shock waves also give rise to a ground shock. However,
magnitude of the ground shock is not considered to be

a major contributing factor to subjective response to a
sonic boom.

Pearsons and Kryter (Reference 10.40) performed laborat-

ory experiments to determine the relationshlpsbetweenthe
judged "acceptability" of subsonic jet aircraft and simula-
ted sonic booms as heard indoors, and their results are
shown as Table 10.7. These results indicate that:

10.7 EXPOSURE OF PERSONNEL TO SONIC

BOOM

A further source of community disturbance is the "sonic
boom". At large distances from the aircraft, it takes the
form of an impulsive acoustic pressure dlsturbancet having

a time history which can be approximated by an N-wave,
and having a duration between approximately .04 sec-
ond fora fighter type aircraft to approximately 0.4 second
for a commercial supersonic transport. Details of the sonic
boom N-wave are covered in Chapter 6, Section 3. For
very low flying aircraft it can reach levels around 150
pounds per square foot, but for normal supersonic flight of
fighter through SST aircraft, overpressures at the ground
would rarely exceed 5 pounds per square foot.

10.7.1 THE BOOM INDOORS AND OUTDOORS

Outdoors, the progressive shock wave diffracts around the

1) When the building is "rattle free", the sonic boom

is less noisy indoors than outdoors by about 11
PNdB.

2) When the boom causes the building to rattle, it is

judged 2 to 3 PNdB more noisy indoors than out-
outdoors.

3) In the latter case1 the sonic booms considered,
which could be expected from high altitude flight

of fighter type aircraft, were considered to be as
noisyas a subsonic alrliner take-off heard indoors
about 1.5 miles from the airport. Thus, it is
clear that the degree of sonic boom exposure
expected in communities near commercial air
routes, where large SST aircraft fly at frequent
intervals, represents a very significant form of
community noise.

TABLE 10.7

COMPARISON OF JUDGED NOISINESS OF SUBSONIC JET AIRCRAFT AND SIMULATED
SONIC BOOMS (AFTER PEARSONS AND KRYTER, REFERENCE 10.40)

Location

Under Flightpath

4 Milesto Side

of Flightpath

8 Milesto Side

of Flightpath

Typical
Sonic Boom Measured

(Ib/sq ft)

Outdoors Indoors

2.3 0.5

2.0 0.45

1.6 0.36

PNdB Values From Subsonic Jet Aircraft That

Would be Judged Equally Acceptable

Outdoors

95.5

94.5

Indoors

No Rattle

84.5

83.5

81.5

Window Rattle

98

97

95

Typical PNdB Values
Actually Present 1.5 Miles
From Airport After Takeoff

of Subsonic Jet Aircraft
Outdoors

92.5

112

70

Indoors

95

55'
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10.7.2 THE EFFECTS OF SPECTRAL CONTENT UPON

NOI SI NESS

Considerable insight into the subjective effects of the

sonic boom has been gained from studies of the Ioudnessof

acoustic impulses performed at the University of

Southampton, England (References 10.41 and 10.42o)

Subjects were asked to judge the loudness of acoustic im-

pulses (N-waves) having different rise times, amplitudes

and total duration, as compared to a steady 400 Hz. pure

tone. Both were played through special earphones. The

main results of these studies are that:

(i) rise time has a signlficant effect upon loudness but

duration does not.

(ii) N-waves having durations longer than 50milll-

seconds were heard as double impulses, and

(ill) filtering out energy below 40 Hz. did not affect

the loudness.

But probably the most significant finding, by Zepler and
Harel (Reference 10.42), was that the loudness of an N-

wave is highly correlated with its spectrum, which is

dependent to a large extent upon the rise time.The power

spectrum of the N-waves was calculated and weighted

according to the 80 phon equal-loudness contour of

Robinson and Whittle (Reference 10.12) extrapolated

to 40 Hz. The integrated area under this weighted spec-

trum gave a measure of loudness and Figure 10.19 shows

excellent agreement between calculated and judged loud-

ness for different rise times.
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FIGURE 10.19 Relative Loudness of Simulated Sonic Booms

Asa Function of Rise Time. (From Reference

10.42)

It might be expected that the same reasoning would apply

equally well to both Ioudness and nolsiness, as discussed

in Section 10.3, but when Pearsons and Kryter applied

their Perceived Noise Level calculations to both the sonic

boom spectra and the spectra of the subsonic aircraft which

were judged to be equally noisy (Reference 10.40), they

found that the booms were computed to be noisier by some

12 dB. Although this discrepancy may possibly be ex-

plained as a duration phenomenon,the duration corrections

di scussed in paragraph 10.3.2 wou Id be greatly excessive,

being of the order of 40 dB. A much more likely explana-

tion is that the noisiness increment is the effect of the low,

and particularly the infrasonic, frequency content of the

boom signature. The earphone tests of Reference 10.14

preclude the very important acoustic wave reception by

the whole body,Particularly by the thorax/abdomen system

which doubtlessly play an important part in the subjective

judgment of low frequency sounds. It is useful, therefore,

toconsiderthe form of the energy spectrum of a sonic boom

N-wave. (See Section 6.3.2 of Chapter 6).
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FIGURE 10.21 Energy Spectrum

of N-Wave

Figure 10.20 shows the time history of an idealized N

wave. The energy spectral density, defined as the square

of the absolute value of the Fourier Spectra for this time

history, is illustrated conceptually in Figure 10.21. The

effects on the energy spectrum of the two independent

parameters, the peak overpressure, Ap, and the time

duration "r , are shown in Figure 10.22. For a constant

Ap, it is clear, from Figure 10.22, that the audible part

of the spectrum is essentially constant for varying "r .

However, the infrasonic energy increases rapidly with air-

craft size. It is to be expected that the larger aircraft,

although judged equally noisy by the ear, will be con-

slderably more disturbing due to non-audltory effects of

the low frequency content of the longer N wave.

Increasing Increasing

_1_ Ap /k /'l I _""

IOgl0_° IOgloCa

Asymptotic Effect Asymptotic Effect

of Varying Z_p of Varying "r

('r Constant) (Z_p Constant)

FIGURE 10.22 Scaling of Energy Spectral Density

of Sonic Boom N Wave

(Ref. 10.43)
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10.7.3 DAMAGE LEVELS

Dueto the impulsive nature of sonic booms, their most sig-

nificant effect on observers is to induce a startle reaction.

The actual level of the pressure disturbance is very much

lower than that which may cause any damage to the hearing

mechanism. For example, no temporary hearing loss has

been measured in subjects,

(i) immediately after exposures to booms up to

30 Ib/ft 2, or

(il) 3 to 4 hours after exposure to booms up to

120 Ib/ft 2. (Reference 10.39)

Further, no damage to the eardrum is expected below

720 Ib/ft 2 and certainly none has been found at pressures

up to 144 Ib/ft 2.

Therefore, no acoustic protective measures for personnel

exposed to high level sonic booms at flight test centers is

considered necessary.

10.8 EFFECTS OF VIBRATION ON PERSONNEL

10.8.1 MECHANICALLY INDUCED VIBRATION

From a subjective point of view, vibration may be defined

as any fluctuating mechanical force which man perceives

by senses other than hearing_ although in the majority of

practical cases, vlbration at frequencleswithln the hearing

range will be accompanied by sound. At all frequencies,

the whole body is a receptor for acoustic waves but their

reception becomes particularly important at infrasonic

frequencies, since the sound is feltpurely as a vibration.

High levels of vibration can make people uncomfortable

although it does not necessarily follow that all levels in-

terfere with the performance of manual or mental tasks.

Sensory detection of vibration involves differential motion

between the body and its point of contact with the vibra-

tion source, and the elastic response of the body itself.

The body is an extremely complex dynamic structure whlch

has equally complex resonance modes.At low frequencies,

roughly in the range 1 to 30 Hz., these involve whole

body resonances due to the elastic coupling of the various

limbs whereas in a higher frequency range, between 30

and 100 Hz., the tissue responds llkea fairly uniform

visco-elastic medium .At higher frequencies still, vlbratlons

are strongly attenuated at the body surface and, subjec-

tively, become insignificant in comparison with the

associated acoustic stimulation. The frequency ranges of

some of the more important body resonance phenomena are

shown in Figure 10.23.

10.8.1 .t Mechanical Effects

Van Gierke (Reference 10.34) has developed a simplified

mechanical model which simulates the response of the

human body to vibratory excitation and this is shown dia-

grammatically in Figure 10.24. This combines the

essential response characteristics of the thorax-abdomen

system, and upper torso for longitudinal force applications

0.1 1

Frequency, Hz

10 100 l03 104 105

Range of Sensation of Vibeatlon
/

Major Body Resonances,

Disturbances of Breathing and Speech

Effects on Pastural Contro_,
I

Motion Sickn_s. _' j

I
Blurrlng of Vision

I
InterF_ence with Task Pee[ormonce

I

FIGURE 10.23 Frequency Ranges of Subjective Vibration Effects

and pressure, accounting for the motions of the mass of the

upper torso on the elastic structure of the spine and the

motion of the abdominal wall, the diaphragm and the lung

plus thorax.

Throat

Head

fo 20-30 Hz.

Arms

Spinal Column

fo _ 10-12 Hz.

C best Wal I

f ~ 50 Hz

Abdominal
Mass

fo~ 4-6 Hz.
I Vibration

Input

(Sitting)

I
Vibration Input

(Standing)

FIGURE 10.24 Mechanical Model of Human

Body Exposed to Vibration
(Reference 10.34)

This model helps to illustrate the mechanical effects of low

frequency vibration on the body. The dominant mode of

vibration, eitherstanding orsltting, occurs around 4-6 Hz.

This involves mainly the abdominal mass and structures in-

side the chest and an important effect is its interference

with the respiratory mechanisms as it causes increased

pumping of air to the lungs. An important secondary mode

is the longitudinal oscillation of the spinal column which

occurs around 10 to 12 Hz.and a third is one in which
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the head oscillates whh respect to the torso between 20

and 30 Hz. At frequencies below about 4 Hz. the body

moves as a single mass, without resonance.

The mass, stiffness, and damping coefficients of the mecha-

nical model shown in Figure 10.24 were determlned by

comparing theoretical and measured body responses. The

coefficients of the thorax-abdomen system yielded a theo-

retical resonance peak for the chest wall around 45 Hz.

(Reference 10.34), which helps to explain the responses of

subjects exposed to high intensity, low frequency sound

(Sections 10.6.2 and 10.8.2). Also, an identical model

was used by Holloday and Bowen (Reference 10.61) to

calculate the lung pressures in rabbits exposed to blast.

By esHmating the coefficient values from a consideration

of physical dimensions, they were able to mathematically

simulate measured lung response with great precision.

10.8.1.2 Physiological Effects

Vibration certainly constitutes an environmental stress

which contributes to fatlgue,but also causes a number of

specific physiological disturbances. These include inter-

ference with breathing and speech, particularly in the

range 3 to 15 Hz. and widespread effects upon the

nervous system. Low frequency vibraHons affect the organs

of balance and other receptors involved in the regulation

of posture,and increased effort is required to maintain both

balance and posture.In severe cases, unsteadiness can per-

sist for some time after the vibration has ceased.

Whole body vibration at frequencies lower than 4 Hz.and

acceleration amplitudes greater than 0.03g can cause

motion slcknesstthe effect being maximal around 0.3 Hz.

10.8.1.3 Psychological Effects

Figure 10.25 taken from Reference 10.45 shows various

sinusoldal vlbraHon exposure crlterla,which define limits

of perception,unpleasantness and ;ntolerabillty. Subjective

tolerance is at a minimum at frequencies between 5 and

10 Hz., primarily due to abdominal response. Within that

range, the threshold of vibration perception is approxi-

mately 0.005 g,the threshold of discomfort is about 0.1 g

and the ultimate limit of voluntary tolerance is around

2g.

Although these criteria were derived from experiments

using purely slnusoldal excitation,the work of Reference

10.46 indicates that the effects of narrow band random

vibration are equivalent to those of sinusoidal vibration

having the same mean frequency and the same rms level.

Task performance is reduced by vibration through its direct

effects upon the body, interfering with muscular action,

vision, and communication. For example, the legibility

of instruments is reduced, particularly at frequencies be-

tween 2 and 20 Hz due to excitation of body resonances

and involvement of the eye movement systems.

A tentative criterion for the effects of vibration on task

performance is shown in Figure 10.26, based on a com-

parison of the data reviewed in Reference 10.47 and the

subjective response data of Figure 10.25.
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FIGURE 10.26 Tentative Criteria for the Effects of

Vibration on Task Performance

10.8.1.4 Pathological Effects

Exposure to moderate vibration levels for long periods can

cause medical disorders such as backache although there

are no published criteria for these effects. Acceleration

amplitudes exceeding 2g in the frequency range 2 to 10

Hz. are likely to cause injury if sustained for more than a

few seconds and very high levels, greater than 5g, can

cause hemorrhage of the lungs and intestines, and spinal

injury. Superimposed on Figure 10.25 is an experimentally

measured limit for physical tolerance of sinusoldal vibra-

tion. (Reference 10.34). Higher vibration levels than

these are known to cause physical damage to tissue and

bone. A further example of the usefulness of the mecha-

nical model discussed above is to be found in the indi-

vidual tolerance curves of the various subsystems, (head,

spine, etc.,) which are plotted for comparison. These

curves were computed using the mechanical analogy and

represent lines of constant critical displacement.

It should be noted that levels at which vibrations become

intolerable to the subject are considerably lower than

levels which cause damage, particularly at higher fre-

quencies.

10.8.2 ACOUSTICALLY INDUCED VIBRATION

It has been pointed out that infrasonic or subaudible acous-

tic levels will evoke subject reactions due to sensation of

vibration induced by the noise. It is desirable to attempt

to relate the criteria for mechanical vibratlon to low fre-

quency acoustic levels which will generate low frequency

vibrations of the body. Three estimates are made to pro-

vide some approximate criteria for subjective response to

subaudible noise.

10.8.2.1 Sonic Vibration of the Head

A controlled experiment was conducted by van B@k_sy

(Reference 10.48) involving measurements of the motion
of the human head in a 134 dB sound field. Over the fre-

quency range of 100-500 Hz, the observed motion, ex-

pressed in terms of peak acceleration, can be defined by

A-_ 2x 10 -4f, peak g's

where f = frequency of the incident wave- Hz.

The data indicates a linear extrapolation to lower fre-

quencies is reasonable. As shown in Section 8.1.1.3 of

Chapter 8, the rms net force P" on a sphere of diameter d

in a plane wave sound field with an rms pressure _" is,

_d 2 [_/ 2_ f d/c_" = _ "P 1+4(_fd/2c)4

where c = speed of sound.

It has been shown that first resonances of the human skull

occur between 500 and 1000Hz. (Reference 10.49) and

that the head-neck mass-spring system has a resonance

around 2 Hz. (Reference 10.50). Thus, it is reasonable to

consider the head as approximating a free rigid sphere in

the frequency range of about 5-250 Hz.

With the above expression for the net force, assuming a

weight of 7.5 Ib and an average diameter of 6.5 in., then

such a sphere, in a sound field with an rms sound level of

134 dB would have a peak acceleration over the range of

5 - 250 Hz of

A' _ 2.8 x 10 -4 f , peak g's

The remarkable agreement between the predicted and ob-

served head vibration justifies the use of the latter data as

a predictor for sonlcally induced head vibration in the

range of 5 to 250 Hz. The estimated and measuredac-

celeratlon amplitude is plotted as a function of frequency

in Figure 10.27 for a 134 dB sound field.

10.8.2.2 Sonic Vibration of Whole Body

Below a frequency of about 4 Hz. the body will behave

approximately as a rigid system. Assuming the theory for

net acoustic force on a rigid cylinder may be applied, an

estimated sonic vibration level of the body is predicted by

the expression (see Chapter 3):

dLF
A_T [_2fd/c]
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where L = Length of "cylinder" -in.

W = Weight of "cylinder" - Ib

_" = rms pressure in incident wave - psi, and

d = Diameter of cylinder.

Based on d=12 in., L=70 in., W=150 Ibs, the accelera-

tion is roughly

A _ .05_f-g's f < 5 Hz.

This relationship is also shown in Figure 10.27 for a 134

dB sound field.
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FIGURE 10.27 Acceleration Amplitude of Various Body Responses to

Discrete Frequency Acoustic Excitation

10.8.2.3 Sonic Vibration of the Thorax/Abdomen

System

Studies of the mechanical model of the human body, which

were discussed in paragraph 10.8.1.1, suggested that a

chest wall resonance should occur at a frequency around

45 Hz, for acoustic excitation, with the air volume in the

lungs oscillatingthrough the throat. Mohr and van Gierke

(Reference 10.34) in facbobserved this resonance close to

60 Hz. From unpublished test results (Reference 10.51),

which are compared in Figure 10.27 with the "rigid body"

acceleration responses of the head and torso, a resonance

of around 45 Hz is apparent. The comparison shows that

chest acceleration amplitudes, measured in asemi-re-

verberant sound pressure level of 124 dB are considerably

greater than the predicted "rigid body" responses for

this same sound level.

It seems likely then that these chest motions will play an

important part in subjective sensations of tow frequency

sound, and it is interesting to relate these results to the data

on subjective response to vibration discussed in paragraph

10.8.1.3. Figure 10.25 showsa region of acceleration

versus frequency which is judged to be %npleasant".

Although this region represents acceleration levels applied

to the body at various points and in various directions,

Figure 10.28 has been prepared, which shows the estimated

range of discrete frequency sound pressure levels which

would be required to produce the same acceleration levels

at the chest wall. No attempt has been made to account

for possible attenuation between the point of application

of the accelerating force and the thorax, which may have

been a significant factor in the results of Figure 10.25.

Also i t has been assumed that chest acceleration are li nearly

related to sound pressure level in calculating equivalent

sound pressure levels from Figure 10.27.
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FIGURE 10.28 Discrete Frequency Sound Pressure Levels Estimated to

Cause Chest Wall Vibration Levels Corresponding to

"Unpleasant" Acceleration Region of Figure 10.25

Provided these assumptions are reasonable, Figure 10.28

represents an estl mate of the non-audi tory subj ecti ve effects

of low frequency sound which are additional to the normal

judgements of loudness and noisiness (section 10.3). The

tests of Reference 10.51 were performed with the subjects

wearing earprotection and itwas noted that their sensations

were dominated by chest vibrations. However, they were

exposed to constant sound pressure levels of 124 dB and it

was only in the immediate vicinity of the chest resonance

(around 40-50 Hz.) that the levels were regarded as un-

comfortable. Figure 10.28 shows "unpleasant levels" at

somewhat lower sound pressures. This apparent discrepancy
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couldbeattributedto differencesin thedefinitionsof
"uncomfortable"and"unpleasant"andattenuationsof
mechanicallyexcitedvibrationsthroughthebodymayalso
beimportant.Nevertheless,intheabsenceofothersources
of information,thisdatawasusedtocompilethetableof
infrasonicnoise corrections to the PNdB calculations in

section 10.5 and again it must be stressed that the values

are tentatl ve.

10.9 HEARING PROTECTION

In situations where it is impossible to shield personnel from

excessive noise levels which are potentially damaging to

hearing, it is necessary to provide some direct protection

of the ears. Biological problems makelt difficult to devise

convenient methods which provide complete hearing pro-

tection against soundof any frequency or level and current

devices compromise cost, comfort and convenience to yield
sound attenuation at the ear of the order of 30 dB in the

mid-frequency range. The main problem is that sound does

not reach the inner ear through the ear canal alone, and

sound received by any part of the body is transmitted,

admittedly via a high transmission loss, to the hearing

mechanism. By exposing very small areas of the body to

sound radiation, von Gierke, et al (Reference 10.52) found

that the thresholds of hearing for body absorbed sound were

approximately 60 dB, 70 dB and 85 dB above the air con-
duction threshold for the forehead, chest and abdomen

respectively. For free field exposure, these figures are

reducedappreclably and bone conducted sound, especially

that received by the head, becomes a controlling factor

which limits the maximum sound attenuation that can be

provided by ear protective devices.

Devices currently available fo_ hearing protectlon include

earplugs, seml-inserts, earmuffs, and helmets and an

example of each typels illustratedln Figure 10.29. Before

making a direct comparlsonofthelr relative merits, each

will be described in terms of its mode of operation.

o)

c)

a) earplugs,

b)

FIGURE 10.29 Types of Hearing Protectors. b) helmet, c) seml-inserts, d) earmuffs

I0.9. I P ROTECTION DEVICES

10.9.1.1 Earplugs

Earplugs are made of a pliable material and are inserted

directly into the ear canal. A simple physical model of

the inserted plug, is shown in Figure 10.30.

An ideal earplug would be completely rigid, precluding

all sound transmission. This ideal cannot be achieved in

practice. There are threeways in which an earplug transmits

soundto the eardrum. These are 1) by vibrating as a rigid

body, 2) directly, through air leaks, or 3) through longi-

tudinal elastic vibrations of the plug material.

Of these, the third can practically be ignored since the

impedance mismatch reduces excitation and transmission

to a very low level, and the second can be minimized

through good plug design. The first, however_is unavoidable

since a completely solid plug will still be free to vibrate

due to the compliance of the skin lining the ear canal. In

fact, assuming a plug weight of 0.5 gin. which is typical,

the best attenuation which can possibly be achieved at

frequencies below 200 Hz. is less than 30 dB, although at
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FIGURE 10.30 Simple Model of Ear Plug Inserted in the

Ear Canal

high frequencies, the attenuation theoretically increases by

6 dB per octave. Further transmission reductions could be

gained by using heavier plugs but comfort would be sacri-

fi ced and extemal support may be necessary. Unfortunately,

practical plugs fallwell short ofthisideal limit, mainly due

to the difficulty of achieving a good airtight seal. Figure

10.31 compares the noise attenuation of a practical ear-

plug with the ideal. The measured data indicate that

practl ca l earplugs show approximate ly 12 dB less attenuation

than the ideal plug atfrequenciesbelow 1000 Hz. At higher

frequencies the deft ciency increases sharp ly. This is because

sound can reach the eardrum indirectly via routes other than

the ear canal and even with the ears completely occluded,

bone conducted sound reduces the maximum attenuation to

approximately 30dB at 1000 Hz.

i

'_- _....Simple Model

Simple Model \With Air Leak

I0 - no Leak (Ref. 10.49) \(Ref. 10.49)

20

30 "_
Solid-No Leaks) _ _.
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FIGURE 10.31 Earplug Transmission Loss

10.9.1.2 Semi-Inserts

Semi-inserts close the entrance to the ear canal without

being insertedinto itanclmust be supported by a headband.

Their prime use is with earphone systems rather than ear

protectors, and they usually carry small hearing-aid type

earphones in their outer ends. Although they attenuate

sound in much thesamewayas earplugs, theyare generally

not as efficient_ mainly due to the problem of achieving a

good seal to the ear canal. Substantial improvements are

undoubtedly possible, but plugs and muffs are much more

popular and very little data on seml-lnserts are available.

10.9.1.3 Earmuffs

Earmuffs cover the entire outer ear, being supported by a

headband and cushioned against the side of the head. They

are the most conveniently fittedofall ear protection devices

anda satisfactory seal can be achieved onalmost any head.

Athigh frequencles, their sound attenuationcharacteristics

aregoodbut the large contact area can cause appreciable

air leakage which reduces their performance at low fre-

quenci es. The attenuation at the ear is given by an equation

o£ the form (Reference 10.49, Chapter 8).

Po Sl Zm _ -Zbm/

where So is the effective outer area, approximately equal

to the area encompassed by the outer cushion perimeter, Si

is the area enclosed by the inner cushion perimeter, Z m is

the paral lel impedance o£ the earmuff mass and its compliant

cushion and Zbm is the impedance of the ai r cavity enclosed

by the ear muff. Pl/Po is the ratio of the sound pressures

i nsi de and outside the muff. Thus to maxlmize the protection,

So/S i andZbm must be as small as possible.

Many factors govem the choice of these various parameters

and a compromise is necessary. A small value of So/S i

implies a small cushion area which is uncomfortable;

typical values for this area ratio are approxirnately2. The

impedance of the muff, Zm, is restricted by the need to

limit the weight and maintain apliable cushion necessary

for a good fit against the head. Current designs attempt to

increase the damping of this "spring-mass" impedance by

filling the cushionswith material of extremely high viscosity,

such as oil, putty or wax. The impedance of the cavity,

Zbm, varies inversely as the air volume of the muff and

directly as the square of the cross-sectional area leading to

it (Si). These requirements lead to a deep earmuff, since

Si is governed by the dimensions of the outer ear.

10.9.1.4 Helmets

Helmets cover a large proportion of the head surface with

either a rigid plastic shell or a non-rigid fabric material.

The latter type is not effective, by itself, for good sound

attenuation. However, if the ears are protected by some

other means, such as earplugs_ to the extent that bone

conducted sound becomes signifi cant, the fabric helmet can

provide additional transmission loss. Rigid helmets, on the

other hand, can provide good ear protection with enclosed

earmuffs and also materially reduce the bone transmission

through the skull.

10.9.2 COMPARISON OF EAR PROTECTION

DEVICES

Available data on the amountofsound attenuation provided

by the various types of hearing protection devices show a

high degree of scatter. The effectiveness of any one model

of any type varies from person to person and, on one person,
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dependsonthecaretakentofit it. Also,differentmodels
of thesametypeof devicevaryconslderablyin their
characteristics.Finally,themeasurementsofvariousinvest-
igatorsshowlargedifferences.
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FIGURE 10.32 Comparison of the Attenuations Produced by Earplugs,

Earmuffs and Helmets.

(Data from Reference 10.52)

Figure 10.32 compares the mean sound attenuation curves

for earplugs, earmuffs and helmets taken from Reference

10.52. The numerical data corresponding to these results

are presented in Table 10.8. The distribution of the

performance of the various models about the mean is

i l lustrated as plus ormlnus one standard deviation in Figure

10.33. Although these results disagree to some extentwith

the data from other sources they do constitute a useful

comparison of the three devices, since they should be self-

consistent. Figure 10.32 shows that at frequencies below

about 200 Hz. the earplug provides the best protection,

whereas at high frequencies, above 1500 Hz, the helmet

appears best. In the told-frequency range the earmuff has

clearly superior characterlstlcs.

An interesting concept which this comparison suggests is

that of uslng earplugs, earmuffs and a helmet in combination,

to provide maximum protection throughout the frequency

range. Figure 10.34 represents an analagous circuit of such

a system showing the two major sound transmission paths,

through the ear canal and through the bone structure, with

the various impedance elements affecting each. It is seen

that bone conducted sound can stimulate the hearing sense

in two ways, either directly, or through excitation of the

air volume between the earplug and the eardrum, and

consequently1 the eardrum. The diagram illustrates that,

although the individual transmission loss of each device

may be substantial, they are not additive when all three

are used in combination. No experimental data is availa-

ble for the sound attenuation of this combination but

Figure 10.35 shows the effect of using earplugs in con-

junction with earmuffs for one particular model of each.

These curves, from Reference 10.53, show the mean results

of measurements using five different subjects. The bands

on either side of the mean attenuation line represent the

experimental scatterexpressed at _4-1 s .d. of the five tests.

No data scatter figures were presented for the plug/muff

combination.
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FIGURE 10.34 Conceptual Analog Circuit of Sound Transmission Paths for
Simultaneous Use of Earplugs, Earmuffs, and Helmet

Also shown for comparison in Figure 10.35 is a curve
showing the bone conduction threshold relative to the air
conduction threshold, taken from von Gierke et al (Reference

10.1). The latter reports results of experiments conducted
to measure the bone conduction threshold for sound trans-

mitted through various parts of the body. It was concluded,
as may be expected, that the maximum attenuation is limited
by bone conduction from sound impinging upon the head.
The curve shown in Figure 10.35 was calculated from data

for bone conducted sound received by the forehead. Bone
conduction explains to a large extent the result, apparent
in this figure, that the additional presence of earplugs

does not appreciably increase the transmission loss above
thatofear muffs alone, at frequencies above about 500 Hz.
In fact, for a range of frequencies around 1000 Hz. the
conversels true, the earplugs actually decrease the atten-
uation. However, this phenomenon is associated with a
coupled resonance of the air volumes in the ear canal and
under the earmuff. The fact that earmuffs yield a trans-
mission loss greater than the maximum predicted by bone
conduction considerations, again at frequencies around
1000 Hz., is attributed to the shielding effect of the muffs.
They cover an appreciable surface area at the side of the
headwhere bone transmission effects may be expected to be
most significant.

It is emphasized that the results presented in this section

are susceptible to practically the same degree of experi-
mental variation as the subjective response data discussed
in previous sections of this chapter. Thisis basically due
to the variation of physical characteristics from subject to
subject. With earplugs especially, the attenuation will
depend very largely on the fit of the earplug to the ear
canal. Superlmposedon Figure 10.31 are two curves showing
the effects of an air leak upon attenuation. These were
obtained experimentally using a cylindrical tube 0.15 cm
in diameter and 1 cm long (Reference 10.54). The leak _n
this case is rather higher than would be likely in practice
but the example does serve to show how sensitive earplugs
are to the degree of fit.

In reality, the highest attenuation of sound to the ear is

achieved by pressing the thumbs against the entrance to
the ear canal. The resulting attenuation closely ap-
proaches the maxlmum llmlt imposed by the bone-conduc-
tion threshold.

Unfortunately, no data are available for the efficiency of
the various ear protectors at frequencies below 100 Hz.
However, it may be expected that due to air leakage, the
attenuatl on of each type will fall to zero at low frequencl es
as shown by the air leakage curve of Figure 10.31. On
this basis, tentative extrapolations are indicated in Figure
10.35.
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FIGURE 10.35 The Use of Earplugs and Earmuffs in Combination (Bone conduction curve obtained
by calculation, using data on sound transmission through forehead. Plugs and Muff
tested bymethod of threshold shift in 1/2 octave bands of noise).

10.9.3 SUMMARY OF EAR PROTECTION DEVICES

The data presented in this section indicate that:

• The best sound attenuation possible, using
available ear protection devices, ranges
fromaround 25 dB at 100 Hz to about 45 dB

at 4,000 Hz. This can be achieved using
earplugs and earmuffs in combination.

• Earmuffs alone give roughly the same pro-
tection at frequencies above 500 Hz where
earplugs alone are less efficient by approxi-
mately 10 dB.

• It is essential that hearing protectors be
adjusted or selected to fit well in order to
minimize leakage effects.

• Additional attenuation can be gained by
the use of large rigid helmets which can
effectively reduce the conduction of sound
by the skull. However, there would be
large penalties of expense and comfort to

achieve the gain in attenuation.

• Atfrequenciesbelow 100 Hz., no measured
data are available but, because of leakage,
the best protection will be limited to 0 to
25 dB at these low frequencies.
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TABLE10.8
SUMMARYOFEARPROTECTORATTENUATIONIN DB(FROMREFERENCE10,52)

EARPROTECTORS

Ea___..pIugs
V-51R
SMR
Flents
SelectoneA
SelectoneK
Relaxor
LeeSonicEarValve
CM-1(representativecustommolded)

Ean'nuffs

Clark372-8A(a)
Clark372-8A(b)
Clark372-8A(c)
ClarkX-372-4
ClarkExperimental31X
ClarkExperimental32X
ClarkExperimental33X
Clark248
Clark124
RH-2Sta-SafeSoundmaster
MSAEarsaver
WillsonSafe-T-Earmuff(earlymodel)
WillsonSafe-T-Earmuff(presentmodel)
RCAPrototypeQuietEar(initial)
RCAPrototypeQuietEar(refined)

Helmets

BillJackFllteSoundHelmet
BillJackSoundAbsorbHelmet(comfortablefit)
BillJackSoundAbsorbHelmet(tightfit)
HighAIt.MB-5FlyingHelmet
PilotProtectiveDH-5Helmet
AFP-4Helmet

Ear Protector Combinations

Clark 372-8A(c) and V-51R
Clark 372-8A(a) and V-51R
MSA Noisefoe and V-51R
Willson Safe-T-Earmuff and V-51R
AF Ear Cushion MX-2088 and V-51R
Bill Jack Flite Sound Helmet and V-51R

FREQUENCY IN Hz

,25125oI 5ooi1ooo12ooo13ooo14000 1¢ooo18ooo

25 24 26 28 36 38 34 40 38
29 29 32 30 33 41 46 46 42
25 23 26 29 35 42 40 39 36
21 20 22 27 37 41 43 44 39

9 11 14 17 32 37 39 42 34
6 8 9 14 18 17 14 15 20
2 3 11 10 16 17 12 30 29

19 17 19 21 32 34 34 37 36

12 18 33 40 40 44 46 41 39
20 24 42 36 35 43 43 44 35
19 23 38 37 31 41 40 46 35
12 20 30 38 40 41 47 43 38
19 22 35 30 35 41 42 41 36
18 21 28 31 35 45 42 41 38
14 17 28 28 28 36 40 40 37
19 26 36 44 43 48 53 46 39
5 9 21 21 30 42 46 45 37
3 4 6 13 25 30 34 39 32
8 10 9 22 38 39 55 46 46

19 20 30 37 41 38 40 38 34
21 26 34 39 41 47 52 41 39
14 15 25 39 34 35 44 36 31
16 18 26 35 37 37 39 29 31

8 9 22 25 37 50 50 50 44
4 12 17 26 36 48 52 48 44
9 14 18 30 43 55 57 49 44
4 12 15 22 39 42 52 53 55
8 4 21 21 36 43 44 47 42
5 1 10 9 28 32 30 33 20

37 35 40 40 39 48 56 48 40
29 33 38 38 45 52 55 49 44
27 33 32 41 42 43 51 45 38
36 33 37 40 40 44 49 49 40
24 29 37 40 43 41 48 49 43
29 35 44 45 49 53 58 53 45
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10.9.4 ACOUSTIC SHELTERS FOR PERSONNEL

For locations very neara launch or test site, the hearing

protection that can be provided by the personal protection

devices discussed so far in this section would be inade-

quate. In such regions, it is necessary, therefore, to pro-

vide additional attenuation of noise by having the person-

nel located inside shelters or buildings with adequate

sound transmission loss. Such steps are even more impor-

tant for protection from btast, which is discussed in the

fol lowing section.

Additional requirements can also exist for acoustic pro-

tection of personnel. For example, operating positions

near sources of high intensity noise, other than the rocket

exhaust itself, may require such additional protection to

be provided during various types of ground check-out test-

ing operations.

Design of such acoustic shelters follows the concepts dis-

cussed in more detail in Chapter 9 under architectural

acoustics. Whenever possible, such shelters are designed

into the basic building in anticipation of high noise levels

near operating personnel or at locations where communi-

cation interference is critical.

Prefabricated shelters can also be employed, when neces-

sary, to provide required noise attenuation at temporary

locations or in permanent locations which are not suitable

for integrally designed acoustic treatment. A typical ex-

ample of such ashelterlsshown in Figure 10.36. These

units can be readily assembled on-slte using a custom or

standard configuration which utilize modular construction

concepts. A representative range of the noise reduction

available for such units is shown in Figure 10.37. These

units will be particularly effective near sources of high

frequency noise such as turbines or high speed pumps but

will not materially reduce overall sound levels generated

by current and future high thrust rocket boosters due to the

relatively low noise reduction achieved at low frequencies.

Vibration isolation of such shelters, however, can assist in

improving their performance in this range.
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FIGURE 10.37 Typical Range of Noise Reduction
Provided by Pre-Fabrlcated Sound
Reduction Shelters

FIGURE 10.36 Typical Pre-Fobricated Acoustic Shelter

for Personnel Protection

10.10 BLAST PROTECTION FOR PERSONNEL

Methods for protecting personnel from blast hazards consist

primarily of separating exposed personnel a sufficient dis-

tance from a firing pad or, protecting them inside blast-

resistant buildings. No standard equipment is available

which would allow exposed personnel to be protected from

blast overpressures significantly greater than about 2 psi

(Reference 10.45). If impact for exposed personnel due to

bodily displacement or injury to missiles could be reduced

orellminatedby special emergency procedures, the princi-

ple remaining hazard would be that associated with the

blast overpressu re.

10.10.1 PROTECTION OF THE EARDRUM

Some protection can be provided against eardrum rupture

clue to blast overpressure by the use of hearing protection

devices. This can be illustrated as follows. The average

attenuation characteristics of hearing protection devices,

illustrated in Figure 10.33 and 10.35 indicates that the

attenuation, when extrapolated to low frequencies, may

have either a finite valuer such as for earplugs, or will

decrease to zero, as for earmuffs, depending on leakage

into the ear canalo The amount of attenuation of a blast
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overpressure pulse provided by ear protectors may be esti-

mated, theoretically, by a Fourier analysis technique.

(Reference 10.55). The time history of the blast wave is

transformed into a frequency spectrum which is then multi-

plied by the predicted frequency response (or attenuation)

of the ear protector. This modified spectrum is then trans-

formed back into a time history of the resulting response.

Typical analytical results are illustrated in Figure 10.38

and 10.39. The first figure shows the Fourier spectrum of

a classical blast wave with a duration of 0.1 seconds

(typical for possible explosion of current boosters). Also

shown is the attenuation versus frequency for a typical

earmuff. The theoretical time histories of the attenuated

and unattenuated blast pulses are shown in Figure 10.39.

The attenuation for the ear protector is based on a simpli-

fied analog model of a typical earmuff or earplug with a
small leak which reduces the attenuation loss to zero be-

low 100 Hz.
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FIGURE 10.38 Relative Fourier Spectrum of Classical

Blast Wave and Low Frequency Attenu-

ation of Typical Ear Protection.
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Attenuated Overpressure at Eardrum for

Typical Earmuff with Low-Frequency Cutoff

at 100 Hz Due to Leakage

The equivalentanalog circuitof an earmuff, which exhibits

this attenuation characteristic, is shown in Figure 10.40a.

The circuit consists of a mass and resistance, representing

theair leak, in series with the compliance of the air cavity

between the ear protector and the eardrum.

For earplugs which can be fitted without an air leak, the

equivalent circuit shown in Figure 10.40b, represents the

impedance of the mass of the earplug in series with the

compliance and resistance of the skin around the earplug,

all in series with the compliance of the ear canal cavity.

In this case, a constant attenuation at low frequencies is

provided by the two compliance elements in series.

Earplug

Air Leak + Skin

Canal T Canal T

0 0110 0

a) Earprotector With J b) Earplug With

Air Leak No Air Leak

FIGURE 10,40 Simplified Equivalent Analog Circuit

of Ear Protectors (Reference 10.49).

Considering typical field use of ear protection devices,

the expected attenuation characteristics would tend to be

closely represented by the model which accounts for the

•effect of an air leak. In this case, a significant reduction

in blast pressure at the eardrum can be achieved for blast

waves with durations less than about 0.1 seconds. For

longer durations, the low frequency content of the blast

wave is not appreciably reduced by typical ear protection
devices.

Practical limits also exist on how much benefit can be re-

alized bysuch ear protection, from the standpoint of avoid-

ing eardrum rupture. For exposed personnel not subject to

injurybymissiles or glass fragments, lung injury due to the

stresses imposed by the blast wave can appear at over-

pressures in excess of 4.4 psi, with reflection (Reference

10.31). Thus, for long duration blast waves from large

rockets, protection provided for the eardrum would tend to

be of limited practical significance. For shorter duration

blasts, however, protection for the ears would be bene-

ficial, not only to avoid eardrum rupture but to avoid dis-

comfort, pain, or hearing damage.

10.10.2 PROTECTION AGAINST BLAST-GENERATED

MISSILES

For exposed personnel, protection against missiles origi-

nating from the blast site can only be safely provided by
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adequateseparatlon distance. Figure 10.41 illustrates the

approximate range of such missiles as a function of equiva-

lent explosive weight. The estimated range is based on

correlation of measured data as discussed in more detail in

Chapter 8. The maximum blast overpressure, correspond-

ing to the equivalent explosive weight and missile range,

is also shown on this figure. These overpressures are ap-

preciably less than the maximum values discussed earlier

for primary effects of blast. This illustrates the fact that

separation distances dictated by possible blast-generated

missiles will ordinarily be much greater than distances

dictated by injury from overpressurealone. Because of

the wide range of possible sizes and trajectories of blast

generated missiles, any such missile must be considered a

source of potential injury to exposed personnel.
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FIGURE 10.41 Equivalent Explosive Weight vs Maximum
Fragment Distance. (F,om Ref. 10.60)

10.10.3 PROTECTION BY BLAST-PROOF BUILDINGS

O
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FIGURE 10.42 Typical Blast Overpressure Measured

Inside 5 ft x 7 ft Shelter at 4700 ft

from 29 KT Nuclear Test.
(From Ref. 10.56)

the detailed dynamic model illustrated in Figure 10.24

based on a characteristic resonance frequency of the lung

of 45 Hz. (Reference 10.34). These results have been

utilized to define an approximate upper limit of over-

pressure as a function of rate of rise which would produce

equal damage to the lung. For a fast rising pressure step,

for which the dynamic response of the lung would be com-

parable to a long duration blast pulse, the maximum over-

pressure was set equal to 4.4 psi, the lower limit for thres-

hold of injury to the lung (See Table 10.4). The results

are shown in Figure 10.43 and clearly indicate the po-

tential improvement in maximum allowable internal blast

pressure inside a building providing the rate of change of

pressureis less than 1000 psl/second. Note that the maxi-

mum rate of change of pressure inside a building will be

essentially a characteristic of the building design and will

be independent of the external environment.

When it is necessary to locate personnel closer to a rocket

firingpad than would be allowed by missile or overpressure

criteria, blast-designed protective housing must be em-

ployed. A detailed discussion of blast design procedures -_

is given in Chapter 8. Since such buildings cannot always ,

be completely sealed against intrusion of any incident

overpressure wave, it is desirable to consider the damage

criteria for exposure to any resulting internal transient >_

pressure pulse. In this case, it is possible to utilize the o

analytical model discussed in Section 10.6.2, which re-
lates effects of blast duration on blast injury, to predict "R

possible injury by an internal pressure rise inside a build-

ing.

The overpressure environment inside a building will gener-

ally consist of a slowly rising pulse. A typical example of

such a pulse, measured during nuclear weapons tests in-

side a small 5 ft. by 7 ft. concrete shelter, is shown in

Figure I0.42 (Reference 10.56). A conservative analyti-

cal model of such a pulse can be described as a ramp-step

change in pressure with a rise time T and a maximum

value Pmax" The response of the human lung to just such a

pressure change has been analyzed by van Gierke using

100

10
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I I I I

I 1

1 I I I 1 I l I

T

I I 1 t I I
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Ap/T - Rate of Change - psi/see
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FIGURE 10.43 Calculated Maximum Overpressure vs Rate

of Change for Ramp-Step Pressure Pulse

Which Would Correspond to Threshold of

Lung Injury by a 4.4 psi Fast-Rise Step.
(Based on Dynamic Model of Lung in Ref.
10.34 and Blast Injury Criteria in Ref. 10.56)
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However, the maximum value of the internal pressure will
depend on both the external pressure transient and the
characteristic pressure change rate for the structure. The
lattercan be effectively determined with the use of models

in shock tube facilities. Given a requirement for definite
venting to the atmosphere from inside a building a lower

response rate to pressure changes can be achieved by in-
corporating bends or baffles in the venting passages. In
fact, as shown in Reference 10.57, by simply incorporating
constrictions in venting ducts, significant reductions in
the transmitted blast pressure can be achieved. The use of
rock-filled filters, followed by an expansion plenum, has
also been evaluated as an effective means of blast attenu-

ation through venting ducts (Reference 10.58).

10.11 SHOCK AND VIBRATION PROTECTION
FOR PERSONNEL

In the close vicinity of rocket launch or teststands,

personnel working inside structures exposed to severe
ground vibration from blast, acoustic, or rocket exhaust
environments, may require special shock and vibration
protection. The design of such protective measures will
be dependent on the specific loads anticipated and upon
location. This section, which is restricted to a brief dis-

cussion of vibration isolation concepts, explains how ma-
terial presented in other chapters of this manual may be
used to design protection facilities in cases where the
loading can be defined.

10.11.1 PROTECTION FROM GROUND
VIBRATION

Ground vibrations are excited indirectly during rocket fir-
ings through the transmission of test stand vibrations which
result from fluctuating thrust forces. They are also caused
by thefluctuating pressures in the turbulent exhaust stream
when it impinges on the blast deflectors on the ground.
However, in both these cases, the vlbratlons are confined
toa relatlvelysmall area near the stand, since propagating
ground waves are very highly damped. However• high in-
tensity acoustic waves propagating away from the exhaust,
continue to excite ground motions at significantly greater
distances.

As a rough guide• acoustically-exclted ground vibration
levels that are potentially hindering to performance of
tasks (See Figure !0.26)may be expected at distances from
the firing which ape less than:

210 [Thrust_lbs/1061 0.4 -ft

In the event that operational factors require personnel to
be stationed within such distances from the rocket firing

pad, vibration protection may be required in working.
areas. For any particular case, the amount of vibration

required can be estimated by using the methods outlined
in Chapter 9 to predict the ground vibration input to the
building and then comparing this with the criteria specified
in Figure 10.26. This protection can be provided, for ex-

ample, by vibration-isolated modular floors utilizing a
common type of spring isolation system such as illustrated
in Figure 11.11 of Chapter 11. The design resonant fre-
quency of such an isolation system should decrease in-
versely with engine thrust, due to the increased low fre-
quency content of the acoustic energy of the higher thrust
rocket° Again, as a rough initial estimate, the resonant
frequency of the loaded spring isolation system should
satisfy the following criterion:

Note that for rocket thrusts much less than one million

pounds, the above expression indicates that the resonant
frequency (or low pass cut-off frequency) of the isolation

system can be higher than 15 Hz. However, frequencies
in this range coincide with the natural frequencies of
typical building structures so that, except for the ground

floor, inherent vibration isolation will tend to be provided
by the normal vibration characteristics of the building it-
self. Thus protection for ground vibration induced by
acoustic excitation will not generally be required except
for areas very close to high thrust rockets.

10.11.2 PROTECTION FROM DIRECT ACOUSTICALLY
INDUCED VIBRATION OF BUILDINGS

Structures located above ground very close to rocket firing
sites will experience appreciable vibration due to direct
acoustic excitation of external walls. Again, as for ground
vibration, only occupied buildings located very close to a
large rocket firing pad would require provisions for vi-
bration protection of personnel. Protection methods would
consist of the same type of vibration isolated floors dis-
cussed earlier. Building vibration levels, in this case,
will generally equal or exceed those induced by ground
motlon• particularly on flear Ievels well above the ground.
The relationships stated in the last section may be used,
with the followlng corrections, to estimate the approximate
radiusand isolation frequency requlrements• for protection
of personnel, to reduce vibration below hinderance levels.

1) Increase radius of protection zone by 50 per-
cent over that indicated in Section 10.11.1.

2) Decrease resonant frequency of isolation system
by 50 percent from that indicated in Section
10.11.1.

A more exact analysis of protection requirements requires
a detailed analysis of the building response to acoustic
excitation following the methods of Section 8.1.

10.11.3 PROTECTION FROM GROUND SHOCK DUE
TO EXPLOSIONS

Incorporated in the launch pad facility for the Saturn V
vehicle is a "blast shelter" for pad personnel or flight
crews. This is an example of shelters which can be pro-
vided at a rocket launch pad for personnel safety in the
event of an anticipated vehicle explosion. A typical
shelter• illustrated conceptually in Figure 10.44, must

provide protection from very high blast pressures (of the
order of 100 psi) as well as protection from the resulting
severe ground shock. The protection against blast pressures
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FIGURE 10.44 Typical Blast Proof Shelter for Personnel Near Rocket Launch Site

is efficiently and readily achieved through the use of blast
resistant dome structures such as illustrated. Blast loads

on such structures are discussed in detail in Section 8.2 of

Chapter 8.

For protection against injury by the ground shock, it is

necessary to provide some means of secure retention of the

personnel in chairswhlchare, in turn, mounted on a shock-

isolated floor. The severity of the ground shock environ-

ment that could occur, in a typical case, and the resulting

protection criteria are illustrated in Figure 10.45. This

shows the estimated ground shock spectrum at 315 ft from a

propellant explosion with a TNT equivalent of 106 Ibo

(comparable to the TNT equivalent for a fully loaded

Saturn V)o The incident blast is estimated to have a peak

pressure of 100 psi and an equivalent positive phase du-

ration of 65 milliseconds° The ground motion has been es-

timated by the methods outlined in Chapter 9 using a typi-

cal seismic velocity of 1000 ft/sec and a soil elastic modu-

lus of 25,000 psi.

Alsoshown in Figure 10.45 are criteria for human tolerance

to a single vertical acceleration pulse (up or down) and

criteria for tolerance to short time sinusoidal vibration.

The actual ground motion will generally consist of a short

burst of approximately sinusoidal oscillations which would,

in turn, excite a number of damped oscillations of the

isolated floor. Thus, a criterion for tolerance to ground

shock would be expected to fall between the criterlan for

single acceleration pulses and the short-time vibration

i
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FIGURE 10.45 Comparison of Estimated Ground Shock Environment

at 315 Ft From Explosion of Saturn V (W T_106 TNT)

With Criteria for Voluntary Tolerance to Shock or

Vibration (Data From Reference 10.45 and 10.50)

criteria. With this in mind, and allowing for the displace-

ment amplifications near resonance, it is estimated that for

the case illustrated in Figure 10.43 a resonant frequency of

2 to 3 Hz would be required for the isolation system° This

corresponds to a static deflection of the isolation system,

under its own weight, of 1 .I to 2.5 inches.
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The blast shelter illustrated in Figure 10.44 is designed to

accomodate a number of personnel on one spring-mounted
platformo In this case, the weight of the platform would
be appreciably greater than the total weight of the person-
nelo Thus, any dynamic response of the human body will
tend to have little effect on the shock response of the iso-

lated floor. Another type of shock protection system could
consist of an individually isolated chair for each person
with a weight comparable to thebodyweight. In this
case, the mechanical impedance (or dynamic mass) of the
human should be considered in the design of the suspension

system for each chair. As shown in Figure 10o46, the
average mechanical input impedance measured for a seated
man is roughly approximated by a simple mass-spring-

damper system with a mass equal to the static mass of the
body and a resonant frequency of about 5 Hz (Reference
10.59)o The effect of this dynamic input impedance will
be to reduce the effective shock input to the man at fre-
quencies near the fundamental resonance of 5 Hz.
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CHAPTER 1 1

VI BRO-ACOUSTIC CONTROL

FOR EQUIPMENT

11.1 INTRODUCTION

The most complex and, frequently, most costly part of a

launch pad facility or engine test stand is the ground

support equipment. This consists of the broad spectrum of

electronic, electromechanlcal, hydraulic, and pneumatic

equipment used to measure, control, and record all of the

checkout and test functions of the facility. The success

of the firing or launch may very well depend on proper

operation of this equipment. Thus, test facility structure

has a major function to provide the protective housing

necessary to keep the internal vibration and acoustic

environment below failure levels for critical ground

support systems.

Todefine the vibro-acoustlc design requirements for equip-

ment, it is necessary to consider the following questions:

• Where is the equipment located and what is its

normal unprotected environment?

• What type of equipment is involved2

• What role does it play in the testing sequence?

• What is an acceptable failure risk?

• What is the probable equipment failure or response

level in the normal acoustic environment?

• What additional protectlonor equipmenthardening

is required?

• How is this protection or hardening provided?

Each of these questions will be considered in the rest of

this chapter.
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11.2 LOCATION OF SENSITIVE GROUND

SUPPORT EQUIPMENT

A representative distribution of ground support equipment

(GSE) for a major launch facility is shown in Figure 11.1.

This illustrates thegeneral arrangement of the GSE for the

Saturn V launch facility. The significant point in this

layout is the amount of sensitive equipment which is

located at the launch site inside the launch/umbilical

tower. In contrast tothis type of arrangement, engine

test facilities will generally havea minimum of sensitive

equipment located immedlatelyadjacent to the test stand

to minimize requirements for protective housing. A trade-

off is clearly indicated between the cost of the protective

housing for equipment versus the cost of remote operations

with the equipment. Both quantities depend on the dis-

tance from the engine test stand so that an optimum distance

could be chosen as indicated conceptually in Figure tl .2.

o
u

Cost of Protective Housing

_--.-Total Cost

\., _J

_"_ Cost of Installing amndnt

Optimum Fixed Cost Based on
Distance Minimum Protection

Requlrements

Distance Bet_veen Test/Launch Stand and Sensitive Equipment

FIGURE 11.2 Optimizing Equipment Location At Test/
Launch Site

The purpose of this chapter is to provide necessary infor-

mation on environmental effects on equipment to assist a

facility designer in conducting such a cost study. There

are, of course, many other systems operation factors that

would be involved in this trade-off study.

11.2.1 ENVIRONMENTAL ZONES

To provide a scale for measuring theseverltyofacoustlc

environment problems with ground equipment, it will be

convenient to establish the following zones.

ZONE 1 Areas exposed to the high temperature

and/or high velocity flow induced by

the engine exhaust. This zone extends

ZONE 2

ZONE 3

ZO NE 4

out to a radius of about 10 nozzle dia-

meters for an undeflected rocket flow.

Sound levels will be of the order of 165

dB in this zone so that only very rugged

equipment can be located in this reglon.

Areas protected from exhaust flow but

exposed to overall sound levels of
150db to 165db. Such an area would

extent out to approximately 75 nozzle

diameters from the jet axis for an un-

deflected rocket flow. Withlnthis zone,

special construction techniques will be

necessary to house sensitive equipment.

Areas exposed to overall sound levels

from 130 dB to 150db. Such an area

would extend from about 75 to 750 noz-

zle diameters for an undeflected rocket

exhaust. Protection of sensitive equip-

mentwlthin this zone could be provided

by more conventional industrial con-

struction.

Areas exposed to overall sound levels
below 130 dB will extendfrom about

750 nozzle diameters from the rocket

and beyond. Little or no protection for

equipment will be necessary in this zone.

These approximate zones are based on acoustic environ-

ment levels for a typical advanced vehicle launch facility.

For a betterdefinltion of the limits of the zone for the on-

pad condition at a launch site or For a static test site, see

Chapter 6.

Associated with the acoustic environments for each of

these zones would be a potentialblasthazard environment.

Although the blast overpressure at the boundaries of these

zones can not be predicted as easily as the acoustic pres-

sures, it is possible to define approximate values for pre-

liminary design purposes. The estimates are based on the

criteria for TNT blast equivalents of 10 percent for LOX/

RP-1 propellants and 60 percent for LOX/LH 2 propellants

as discussed in Chapter 6. Applying these criteria to

typical large boosters in the Saturn and Post Saturn class,

the following approximate values of potential blast pres-

sure and nominal acoustic pressures at the boundaries of

the above zones can be defined in Table 11.1A.

Notethat for amulti-engine booster, one nozzle diameter

is the diameter of an equivalent single nozzle with the

same thrust as the cluster, that is, it is equal to the exit

diameter per nozzle times _/Number of E_ As shown

in the last column, the possible blast pressure exceeds the

rms sound pressure by one to two orders of magnitude.

Even though the dynamic magnification factor for structural

response to continuous acoustic noise will be higher than

the dynamic response to a transient blast pulse, the design

load for nonexpendable types of structure near a launch

site will ordinarily be based on blast loads rather than
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acousticloads.Thus,thebasicstructuraldesignfeatures
requiredforblastprotectionofgroundequipmentmustbe
incorporatedfirstbeforeconsideringanyacousticprotec-
tion. It mustbeemphasized,however,thattheblast
overpressurespresentedin Table11.1Aareapplicable
onlyfora launchsiteor flightconfigurationenginetest
stand. Other types of test stands, such as engine develop-

ment test stands, may have a much lower blast hazard so

that acoustic protection requirements may be controlling

factors for structural design of equipment rooms.

11.3 TYPES OF GROUND SUPPORT EQUIPMENT

Ground support equipment may be identified, accordlng to

its functional characteristics, as follows:

Electronic or Electrical

Hydraulic
Pneumatic

Mechanical

The major problems associated with acoustic and vibration

effects will involve the first three categories and the

emphasis in this chapter will be placed accordingly.

However, since all types of equipment may appear in any

of the basic zones outlined above, a more useful break-

down can be made by dividing all equipment infotwo

general groups according to the consequences of failure

occurring duringa test. These groups are:

A° Equipment which must be operational before and

during the firing sequence of a rocket engine for

launch or static tests. This type of equipmentrequlres

the highest degree of environmental protection or

rugged design since the equipment must not malfunction

during a test. Four subdivisions within this group can

be defined in descending order of criticality according

to the type of failure involved.

A-1 Equipment failure which would cause a catastrophic

failure of the engine or launch vehicle.

-2 Equipment failure which would cause an immediate

shutdown of an engine test sequence or delay initia-

tion of a vehicle launch.

-3 Equipment failure which would result in Iossofcritical

control or test data.

-4 Equipment failure which would result in loss of

desired test data.

B. Equipment whlch is required during pre-firlng check-out

to verify the readiness of the test or vehicle system.

The acoustic environment protection required, in this

case, need only prevent equipment damagedurlngthe

firing of a launch.

While other breakdowns can be made, the arrange-

ment above will be suitable for purposes of this chapter.

Before proceeding, it should be pointed out that some of

the equipment ona launch or tesfstand is considered ex-

pendable and is usually replaced after every launch or

test firing. However, if the item falls in categoryA, it

has a function to perform during the initial part of the

firing so that environmental design is still an important

consideration. A llst of typical components whlch were

damaged during a launch is given in Table 11.1B. These

data, from Reference 11.2, show that most of the com-

ponents would fall in the A-1 and A-2 category identified

above. Therefore, they would have to be evaluated for

theiroperational reliability during the initial engine noise

and vibration environment that exists prior to the high

temperature exposure.

TABLE 11.1A

BOUNDARIES OF TYPICAL LAUNCH ENVIRONMENTS

Zone Radius

(Nozzle Diameters)

I0

75

Sound Pressure

dB psl-rms

165 0.5

150 0.1

Blast Pressure

psi

2t00

3.5

Blast Pressure

Sound Pressure

>200

35

750 130 0.01 0.15 15
4

>750 <130 <.01 < 0.15
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Quantity

TABLE11.1B

TYPICALLAUNCHDAMAGEOFAUXILIARYGROUNDSUPPORTEQUIPMENTDURING
LAUNCHOFRANGERSPACECRAFT(DATAFROMREFERENCE11.2)

Item

1 AirConditioningDucttoVehicle
1 AirConditioningBlanketforVehicle

24 PropellantandPressurizedGas
QuickDisconnectComponents

3 AirDuctstoThrustSectionand
InstrumentPod

3 PropellantCheckandDrainValves
2 PropellantFlexibleDuctsand

Harnesses

CauseDamage

Covering Torn Away Flame and Blast

Destroyed F lame

Overheated Flame

Overheated Flame

Overheated Flame

Overheated Flame

2 Microsw itches Overheated F lame

8 Umbilical Cables Overheated Flame

Overheated Flame

Excess Heat and Blast Flame and Blast

Excess Blast Blast

6 Hold-Down Release Components

16 Miscellaneous Harnesses and Hoses

2 Duct and Tubing Support Brackets

11.4 RELIABILITY OF GROUND SUPPORT

EQUIPMENT

A brief review of system rellab_llty concepts is desirable

at this point (Reference 11.10).

The reliability R over a lifetime t of a single component

whose failure rate is X failures per unit time is

-X t
R = e (11.1)

For example, if X= 1 failure per 1,000 hours, the relia-

bility over a lifetime of 10 hours (probability that the com-

ponent would still be operational) would be

R = e -10/1000 = 0.990

Thus, there is a 99 percent chance that the component

will be operational throughout the period of 10 hours.

11.4.1 SERIES SYSTEM

In a series system, all components must operate forthe

system to function. Its reliab_llty R is given by the

product of the componentrel_abflltles. _For a system w_th

K components,

Rs = R1 . R2 • R3 .... RK (11.2)

-X t
= e s (11.3)

whereXs = system failure rate = X I+X 2+X 3 .... +X K
For example, for two components each with the same

failure rate of one failure per 1000 hours, the system failure

rate would be two failures per 1000 hours and the system

reliability for a 10 hour lifetime would be 0.9802.

11.4.2 PARALLEL OR REDUNDANT SYSTEM

If any one of the components can operate the entire system,

the system is called parallel or redundant. For Kredundant

components, the system reliability is

R = 1 - a (11.4)
S S

where JParallel System Unreliability

Qs = 1"QI' Q2' Q3 .... QK (11.5)

Thus, for a redundant system, the unreliability (i.e., one

minus the reliability) is equal to the product of the com-

ponent unrellabilltles. Therefore, the redundant system

reliability is

R = I (I (I (I (I (11.6)s - - RI) - R2) - R3) .... RK)

where R. is the K-th component reliability defined by

equat ion K(11 . 1).

For example, if two components are in parallel and each

has the same failure rate (1 in 1000 hours) as before, the

system reliability over a 10 hour I_fe will be

R = I - (I - 0.99) (I - 0.99)
$

= 0.999
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This is equlvalent to a system failure rate of one failure
per 100,000 hours.

11.4.3 SERIES - PARALLEL SYSTEM

The usual system consists of a combination of series and

parallel operations as indicated by the schematic diagram
of a typical Saturn V launch facility subsystem in Figure
11.4. A simplified diagram of such a system is shown in
Figure 11.3. This system will operate through either ABCE
or ADE. As shown, the system reliability is established by
defining first the reliability of the redundant subsystem BC
and D using Equation 11.6, and then using Equation from
11.2 for the rest of the system.

RsRARERBRCI I

FIGURE 11.3 Reliability of Serles-Parallel System

11.4.4 ANALYSIS OF SYSTEM RELIABILITY AND
ENVIRONMENTAL PROTECTION

In the initial planning stages of a new launch or test faci-
lity, the facility designer must examine the basic rell-
ability requirements for the major support systems. The

specific objective would be to establish a clear definition
of the degree of environmental protection required for
various components of each system. The analysis might be
carried out in the following steps:

l) Identify the failure category for the system accord-
ing to the breakdown in the last section (i .e. ,A-1
category for any system whose failure would result
in a catastrophic failure of the launch or test

vehicle .)

2) Establish an overal l rellabillty target for the system
based on this category.

3) Identify the major components of the system and
their general physical arrangement.

4) Estimate the basic reliability of each of the major
components neglecting for the moment any effects
of the actual environment.

5) Compute the "laboratory environment reliabillt)_'
of the overall system.

6) Optimize the decrease in reliability (e. g.,
increase in failure rate) allowable for each com-

ponent which will still meet the overall reliabi-
lity goal of Step 2.

7) Estimate the maximum allowable environment for

each componentwhlch can cause this decrease in

reliability.

B) Compare this allowable environment with the
normal external environment to establish the degree

of environmental protection required.

Unfortunately, the currently available information on
effects of high intensity acoustic environments on equip-
ment reliability is not sufficient to make Step 7practical
at this time. However, the available information on this

subject, covered in the remainder of this chapter, can be
used for preliminary estimates of reliability effects.

11.5 RESPONSE OF EQUIPMENT TO ACOUSTIC
ENVIRONMENTS

11.5.1 GENERAL DISCUSSION

The dynamic response of equipment in a h igh level acoustic
environment will consist of one or more of the following
forms:

a) Vibration of the equipment mounting induced by
acoustic excitation of the support structure.

b) Vibration of the equipment as a rigid body on its
mounting due to the net acoustic forces on the
equipment surface.

c) Vibration of portions of the external housing of
the equipment due to acoustic loading.

d) Vibrational or compressional stresses of internal

equipment elements due to the internal acoustic
envlronment.

The first two types of response depend critically on the
equipment mounting structure while the last two depend
solely on the equipment design. While the complexity of
response modes makes it difficult to determine with great
precision the acoustic effects on equipment, useful data
and analysis methods will be presented which are suf-
ficiently accurate for evaluating environmental protection
requirements.

11.5.2 SUMMARY OF ACOUSTIC TESTS AND
FAILURE DATA

Before considering the various response modes in detail,
the available acoustic test data on equipment malfunction
will be briefly reviewed. A malfunction is defined as any
momentary out-of-tolerance performance of the equipment
such as excessive noise, contact chatter, etc. Except for
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the case of vacuum tubes, no report has been found of

irreversible damage to equipment due solely to acoustic

excitation. This excludes, of course, the many cases of

structural damage due to acoustically induced vibration.

Table 11.2 summarizes available acoustic environment

test data on equipment reported in References 11.3-11.7.
Also shown are some data from Reference 11.8 on mean

failure rates of the same type of components under a labo-

ratory environment. The first column indicates the number

of types of the component tested. The second column

shows the minimum octave bancl level in the frequency

range of 200-2000 Hz for which a malfunction occurred.

This frequency range was chosen as representative of the

range of fundamental resonant frequencies of internal parts

of the various components. The next column shows the

maximum octave band level, over the same frequency

range, for any test which did not show a malfunctlon. For

certain types of equipment, a sufficient variety were

tested acoustically to provide astatistlcallysignificant

measure of minimum sensitivity levels.

These items include accelerometers, capacitors, coaxial

cable_ meters, potentiometersr relays, and vacuum tubes.

Further details for these will be given later.

Additional data on failure rate ofequipment_ is given in

Reference 11.8. It must be emphasized that the failure

rate, called the generic failure rate, applies only for a

laboratory environment. According to Reference 11.8, the

generic failure rate must be corrected for more severe en-

vironments to obtain a service failure rate by multiplying

by the following factor:

Usage

Laboratory

Ground Equipment

Trailer-Mounted Equipment

Rail-Mounted Equipment

Aircraft Equlpment-Bench Test

Missile Equlpment-Bench Test

Aircraft Equlpment-ln Flight

Missile Equlpment-ln Flight

Multiply Generic

Failure Rate
By

1

10

25

3O

5O

75

100

1000

These factors are not entirely applicable to ground support

equipment for launch or test facilities due to the wide

range of possible environments. Some indication of the

average failure rate for ground equipment may be deter-

mined from the data in Table 11.2. These were analyzed

to show the distribution in percent malfunction as o func-

tion of the average octave band sound level in 6 dB inter-

vals for frequencies of 200-2000 Hz. A careful exami-

nation of the results where a malfunction occurred shows

that the data fell into two groups - items that failed at a

level of less than 145 dB (Group I) and items that failed

at higher levels (Group II). For tests which did not ex-

hibit a malfunction, it was assumed that an increase of

6 dB in level (doubling of sound pressure) would have re-

suited in a malfunction. These hypothetical 'h_alfunction"

data coincided with the actual malfunction data in Group

II. These two distributions are plotted in Figure 11.5 on a

probability graph for the 65 different types of equipment

tested. The two groups of data fall roughly on one of two

straight lines indicating a log normal distribution in each

case. Note that the three points at the lower end of the

Groupll data fall outside this group by definition. Data

on vacuum tubeswere excluded in this analysis due to their

exceptionally high acoustic sensitivity.

The data used For this analysis included results ranging

from a test of onlyone specimen of a type up to testsof

five specimens for one out of 30 varieties of a single type.

The equipment mounting configurations for these acoustic

tests alsovary considerably from components freely suspended

in the sound field through components mounted on a rigid

block to items mounted on a chassis. The latter situation

was in the minority, however, so that the results are con-

sidered representative of acoustlcally induced malfunctions

which were not the result of acoustic vibration of support

structure.

Clearly, the malfunction probability curves in Figure 11.5

can not be used for predicting the acoustic sensitivity of

any one type of ground equipment. However, one attempt

was made to categorize the equipment tested by possible

response modeasa basis for predicting acoustic sensitivity.

Each equipment item in Table 11.2 is identified in the

first column, by one of the three categories given below

(Reference 11.3).

a) Components whose function involves motion of

flexible parts (i.e., relays, pressure switches,

etc.

b) Components which are nominallystatlonarybut

contain structural elements which are relatively

flexible (i.e., vacuum tubes, coaxial cable,

etc .).

c) Components with relatively rigid parts andsup-

part structure (i.e., solid state components,

capacitors, resistors_ etc.).

An analysis of the data in Table 11.2 according to this

breakdown did not show significant differences among the

three categories.

The observed probability of malfunction can be utilized to

predict a failure rate from the expression

Probability of Malfunction = P= 1 -R (11.7)

where R is the reliability defined by equation 11.1. The

corresponding failure rate, X , is found by substituting

equation 11.7 in 11 .I and solving for X to give

= (11.8)
t log e

where t is the time to failure.

Assuming a time to failure (or malfunction) for the acoustic

tests of 0.1 hours, the failure rates shown in Figure 11.6

were calculated from the data in Figure 11.5. A single

datum point is also shown which represents a measurement

of component failure from a four-hour sonic fatigue test of
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TABLE 11.2

ACOUSTIC TEST LEVELS FOR EQUIPMENT MALFUNCTION AND MEAN FAILURE RATES OF
EQUIPMENT IN A LABORATORY ENVIRONMENT

Type
(3)

C

C

b

C

b,c
C

b

a

c

c

c

c

b

C

C

C

a

a

b

b

b

a

c

a

c

a

a

a

c

c

c

a

a

b

b

C

brc
C

C

b,c
b

C

C

b

CLASS

Electrical and Electronic Components

Accelerometer

Amplifier,Audlo
Amplifier,Decade, Lab. Type

ACOUSTIC TEST LEVEL (1)

No. of Types
Tested

(4)

Minimum
Fal led

dB

120

Maximum
Passed

dB

145-168(8)
150

Mean Failure

Rate (2)

Fol lu res/106hr

2t8 ,

184 (7)
157

Ampllfler,Magnetlc 2 157 2
Amplifier,Servo 157 2.0
Capacitors 11
Coaxial Cable
Carom utators

8 138 0.02
142
165Computer, Analog

Connectors

Current Repeater
Diode Module

134
155

168
140
160
155

Heater, Electrical, 100 watt
Inductor

0.2/pl n

0.2
0.02

I nverter
Junction Box 155

Limit Switch 166 0.5/cs (5)

Moving Coll Meters 8 155
135
130

Oscillator, Lab. Type
Oscilloscope, Lab. Type
Phase Shifter 149
Potentiometer 13 138 160 0.13

Power Supply, 400 Hz 156
Recorder, Strip Chart 139
Rectifier 2 130

Relays 30 131 160 0.25/cs
Relay Module, Solid State 156
Relay, Time Delay 150

139

3 165 (7) 0.25

128

Reslstance to Current Convertor
Resistors

Signal Conditioner, Power
Switch, Solenoid
Switch, Fluid Pressure, Electrical
Television Camera

Telemetry Data System

160

142 0.5/cs(5)
133
155

2 134 160 0.6
155 1.2

Vacuum Tubes

Voltage Regulator
Voltage to Current Convertor

Voltmeter, Lab. Type

Transmitter, Telemetry

Timer Control

Transducer, Temperature
Transl stars

Thermal Sensors

130

148
2 151 0.61

140 2
40 1I0 150 (6) O. 80

130
160
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Type

a

g

a

a
a
g

a

a

a

a

a
C

b

b

a

a
g

TABLE 11.2 (CONTINUED)

CLASS

Pneumatic and Hydraulic Components

Computer, Pneumatic
Controller, Pressure
Control Panel, Pneumatic
Gas Volume and Analysis Meter
Gauge, Pressure 0-5000 psi

Indlcator I Controller
Indicating Switch, Pressure

Regulator, HydrauLic
Regulator, LO 2
Recorder, Pneumatic
Switch, Pressure Activated
Thermometer Bulb
Transmitter, Pressure

, Temperature
Valve Pressure

Valve, Solenoid
Valve, Vent and Relief

Pyrotechnic Components

Ejector Cartridges
Explosive Cartridges
Igniters

ACOUSTIC TEST LEVEL (1)

No. of Types
Tested

(4)

10

Minimum
Failed

dB

Maximum
Passed

dB

Mean Failure

Rate (2)

Failures/106hr

134
134 2.14

159 2.4
120

159

135

134
160

162
134

155
155
134
150
160
160

155
156
155

151
175

163

151

Pyrotechnic Squibbs 151

4.0

0.5/cs (5)
2.14
3.00

15

5.7

(1) Octave Band Sound Level in dB re: 0002 mlcrobars from 200 - 2000 Hz - Minimum at which
malfunction occurred - Maximum for which no malfunction occurred for a different variety

of the same type (References 11.3-7).

(2) Mean Generic Failure Rate in laboratory environment (Reference 11.8).

(3) Equipment Response Category - see text.

(4) Only one type tested except as noted.

(5) Failures per 106 cycles.

(6) Maximum Failure Level.

(7) Octave Band Sound Level to produce 1 mv output with 300 volt bias on capacitor.

(8) Octave Band Sound Level producing a 1 g output.
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99

• - Malfunction Group I

95 M- Malfunction 1 /

O - No Maliunctlan Obse,veO- Group II /

90 Malfunction Assumed At l O/
6 dB A_ove Tes_ Level _ /

_ so

/ o,'2. io /I

3 o // I
/ /

I I , , /;
II0 120 130 14U IDU 160 170 180

Average Octave Band Level - 200-2000 Hz

FIGURE 11.5 Malfunction Distribution from Acoustic Tests of 65

Different Types of Electrical, Pneumatic, Hydraulic

and Pyrotechnic Equipment and Components -

Vacuum Tubes Excluded. (From References 11.3-

11.7)

a complete jet aircraft wing system (Reference 11.9). The

significance of this single point is that it represents direct

measurement of the acoustically induced failure on a com-

plex structu, al-equlprnent system with a large number of

component parts. The statistical significance of the point

is therefore very high. It applies only to the observed

functional or structural failures of the various hydraulic,

and electrical systems. It does not include any failures of

wing structure components.

The surprising agreement between this datum point and the

estimated failure rate for the Group II equipment indicates

that the latter is representative for hardened equipment

used near a rocket launch or test facility. Thus, as indi-

cated in Section 11.4.4, a preliminary method is avail-

able for estimating ground support equipment rellabflityas

a function of acoustic environment.

11.5.2.1 Estimated Reliability of Exposed Ground

Support Equipment

The average reliability of hardened equipment due only to

exposure to the launch acoustic environment can be esti-

mated from Figure 11.6 and equation 11.1. This estimate

is shown in Figure 11.7 for an exposure time of 10 seconds

and 200 seconds, typical for a launch and test stand,

respectively. The failure rate used for these estimates was

obtained from the maximum value of the Group I1 data in

Figure 11.6. The very high probability of malfunction

indicated by Figure 11.7, particularly for exposed equip-

ment near a test stand, must be considered asa preliminary

conservative estlmate. However, for a given required re-

liability, the estimate does provide a basis for defining a

maximum acoustic isolation requirement for protective

housing.

.-r

o

2
i

100

10

I I I I I I

.01

110

/ y Sonic Test on

/ /V AI .... ft Wing

/ Group, II

_ Group 1 Data

I I I I I I
130 150 170

Average Octave Band Level - 200 - 2000 Hz

FIGURE 11.6 Failure Rate Calculated From Acoustic Test

Data in Figure 11.5 Assuming A Test Failure

Time of 0.1 Hour

8

"6
>.

16

ii

a::
im

1 I

.1

200 sec.

.01 y

.001 y

.0001 I

115 135

I I

,/

/j
I0 sec.

I I

155 175

Average Octave Band Level - 200-2000 Hz

FIGURE 11.7 Estimated Probability of Malfunction of

Exposed Acoustlcally-Sensltive Equipment

For Launch Stand (Duration = 10 Seconds)

and Test Stand (Duration = 200 Seconds).

Based on Group II Data, Figure 11.6
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11.5.3 ACOUSTIC EXCITATION OF EQUIPMENT
MOUNTING STRUCTURE

11.5.3.1 Analytical Method

For most equlpmentl the most significant effect of a high
intensity acoustic environment is the acoustic excitation
of the equipment mounting structure. This is particularly
true for equipment mounted on large lightweight panels.
The acceleration response of structural panels due to
acoustic excitation may be estimated empirically by the

expression

A (f)

where

A (f)

= P (f) M A (I 1.9)
W

= space average rms acceleration at
a frequency f - g_s

P (f) = rmspressure at the same frequency

-psi

w = panel surface welght-psl

MA = acoustic mobility of panels.

The theoretical developmentand related experimental data
for acoustic mobility of panels has been covered in Chapter
8. The recommended design value for M A for equipment

loaded panels is shown in Figure 11.8. This represents an
upper bound to the experimentally derived factor relating
acceleration response of a panel of a given weight to the
acoustic driving force. The expected higher damping for

panels supporting bolt-or rivet-mounted equipment is
reflected in this curve. The surface weight will be the
total weight of the panel plus equipment. The fundamental

mode of the panel, which is the normalizing factor for the
frequency scale in Figure 11.8, can be determined from
the charts presented in Chapter 3. For panels which are
not enclosed on the back side or mounted in a large stiff
baffle, a correction must be made to Figure 11.8
to account for the decrease in net acoustic loading due to
diffraction of sound waves around the back of the panel.

10

Total Weight of Panel + Equipment

Area of Panel

fo = Fundamental Resonance Frequency of Panel

FIGURE 11.8

f/f0

Design Envelope for Acoustic Mobility of Baffled Flat Panel

with Mounted Equipment
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This correction factor, shown in Figure 11.9, depends on

the ratio of a geometric mean panel dimension S to the

acoustic wavelength X. For values of S/X <.5, the net

acoustic driving force an the panel is assumed equivalent

to that an a rigid sphere (see Section 11.5.4). For S/X >.5t

the random phasing of the diffracted waves around the back

of the panel provides an effective "acoustic" baffle. Ex-

perimental data, shown in the curve, were measured on a

2" x 10" panel with and without a baffle; the data indi-

cates the theoretical estimate is conservative.

As an illustration of the above analysis method, the vibra-

tion response of a typical unbaffled panel with low damping

is calculated in the following example:

=:i-6
_1C3

FIGURE I1.9 Correction for Acoustic Response

of Panel Due to Lack of Baffle

or Back Enclosure

Example:

Panel Size - a=24in, b=34.Sin,

Panel Material- Steel

Bare Panel

Surface Weight =

Equipment WeightDis-
trlbuted over Panel

Total Surface Weight

Panel Edge

Conditions - 24 in side - simply supported
- 34.5 in side - free

h = I/8 in

(1/8 in)( .3 Ib/in 3) = °038 Ib/in 2

= .012 Ib/in2

= .050 Ib/in 2

First Resonance Fre-

(Bare Panel) -fl,0 = 9.6h • I04/b 2quency

= 10Hz

Assume mass and stiffening effect of equipment cancel

each other out so that panel resonance is not changed.

S/X : f_'_13,400 = f/465.

The response acceleration spectral density (APSD)and
overall rms acceleration is calculated in Table 11.3for

a hypothetical acoustic environment near a launch stand.

A suitable vibration test spectrum for equipment mounted

on the panel can be defined by an envelope of the calcu-

lated points.

11.5.3.2 Experimental Data on Acoustic Mobility Of

Cabinet Mounted Equipment

A large part of the ground support equipment for a launch

or test facility is mounted in standard equlpment racks such

as illustrated in Figure 11.10. The acoustically induced

vibration of equipment mounted in such racks is not readity

predictable by analytical means. However, experimental

data are available from two different tests of equipment

racks located in a high intensity acoustic environment.

These data have been analyzed to provide an estimate of

the acoustic mobility of rack mounted equipment.

FIGURE 11.10 Typical Power Distribution Rack
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TABLE 11.3

CALCULATION OF VIBRATION RESPONSE OF UNBAFFLED

EQUIPMENT PANEL TO ACOUSTIC EXCITATION

Frequency (f) - Hz

Octave Band Level - dB

P (F) - Ib/in 2 - rms (in Octave Band)

s/X

No Baffle Correction (Figure 11.9)

Effective Pressure Ib/in 2

f/fo
A (f)-w/P (f)

P (f)/w

A (f) - g's - rms

A 2 (f) _ g2

Af- Hz (Octave Band)

APSD -g2/Hz

Overall G's = IZA2(f)] 1/2

10

138.0

0.023

0.022

0.064

0.0015

4O

146.0

0.058

0.086

0.26

0.015

8O

150.0

0.092

0.17

0.52

0.048

320

143.5

0.044

0.69

1.0

0.044

1280

139.0

0.026

2.8

1.0

0.026

1.0

20.0

0.03

0.6

0.36

4.0

20.0

0.3

6.0

8.0

20.0

0.96

19.2

32.0

5.0

0.88

4.4

7.1

0.051

36.0

28.0

1.3

368.0

56.5

6.5

19.3

226.0

0.085

128.0

1.25

0.52

0.65

0.42

905.0

0.00046

20.6g rms
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Saturn V Ground Computer Environmental Test

The first test, described in detail in Reference 11.12, was

conducted on a portion of the SATURN V ground computer

system to be located in Level A of the Saturn V Launcher/

Umbilical tower approximately 100 feet from the vehicle

centerllne. Separate acoustic and vibration tests were

conducted providing a separate measure of the relative

acoustic and mechanical mobility of the equipment racks,

(Reference 11.12). In both cases, an array of equipment
cabinets was mounted on a section of the shock-isolated

floor designed to reduce mechanical input to the base of

the cabinets. The isolation was provided by coll springs,

illustrated in Figure 11.11, which were designed fora

4 Hz. resonance frequency of the floor system. The aver-

age acoustic and vibration test levels are shown, in Figures

11.12and11.13 respectively, in terms of one-third octave

band levels. These represent the highest test levels em-

ployed during a series of successively more severe test

levels. The response data for two typical cabinets have

been analyzed in one-third octave bands to determine

their acoustic and vibration mobilitles, respectively.

y

_!:i,

FIGURE 1 1.11 Typical Floor Isolation Springs Employed With Saturn V

Ground Computer Acoustic Vibration Test

For the acoustic test data, the acceleration response,

measured in one-thlrd octave bands, was normalized by
the one-third octave band sound level to obtain a vibro-

acoustic transfer functlon or acoustic mobility. For pre-

sentation of the data, this functlon is expressed in the form,

10 IoglA(f)/P(f)l 2 = A.L. -SPL+ 170.7 dB
I I

re:l g/psl (11.10)
where

A(f) = rms acceleration at frequency f - g's

P(f) = rms pressure at frequency f - psi

A.L. = Band acceleration level in dB re: 1 g

SPL = Band sound level in dB re:0.0002 micro-

bar.

Frequency- Hz

10 100 1000

140

O

jOA

i 120

o

_ 80
8 16 31.5 63 125 250 500 1000 2000 4000 8000

Third Octave Band Center Frequency - Hz

v

u_

c_

FIGURE 11.12 Average Acoustic Test Spectrum for SATURN V

Ground System Computer Cabinet (Ref. 11.1 2)

Frequency- Hz

_o .... _oo ........ _,ooo........

!ilr,4 l!
io ; I i I ; i

b fV\/\l\i

-21

. ' t i-31 T

16 31.5 63 125 250 500 1000 2000

Third Octave Band Center Frequency - Hz

FIGURE 11.13

4000

Average Vibration Test Spectrum for SATURN V

Ground System Computer Cabinet (Ref. 11.12)

80OO

A typical plot of this acoustic mobility, measured at one

point at different sound levels, is shown in Figure 11.14.

The frequency range of the data is limited due to the low

signal to noise ratio encountered at the hi/gher frequencies

where acoustic excitation and the resulting acceleration

levels were low.

The maximum acoustic mobillties were computed from the
data for horizontal motion and vertical motion. The results

are shown on Figures 11.15 and 11.16 respectively. For

the horizontal motion, (i.e., motion normal to the surface

of the cabinet walls), a predicted upper bound for the data
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isshown.ThiswascomputedfromFigure11.8using,for
asurfaceweight,a totalcabinetweightof1800pounds
dividedbythetotalsurfaceareaforthe34"x 36"x 80"
cabinets.Atypicalfundamentalresonanceof100Hzfor
astiffenedsectionofthe1/16inchsteelcabinetwallwas
estimated.

7C

sc

J

_" 3C

__ 2c

1[

(

I0

, , ,j

_ ,

_ o ! I + ! !I

, I I
_. 130 dB

133 dB

m 136 dB

, _ 0 140 dB

i ] -- Average

I

10_ 1000

Third Octave Band Center Frequency - Hz

'I'
II

Nominol Test Levels

10,000

FIGURE 11.14 Acoustic Mobility Measurement in Third Octave Bands

at Four Test Levels on One Location of the SATURN V

Ground Computer.

Cabinet - Horizontal Motion of Cabinet Structure

(Ref. 11.12)

FIGURE 11.15

Third Octave Band Center Frequency - Hz

Maximum Acoustical Mobility Measured in Third Octave

Bands in Horizontal Direction From Acoustic Test of

SATURN V Ground Computer System (Ref. 11.12)

For the vertical direction, the acoustic excitation of the

isolated floor results in much higher vibration levels than

in the horizontal direction for frequencies below about 40

Hz. This will be a significant feature of the acoustically

generated vibration environment for equipment mounted on
an isolated floor. While structural vibration transmission

tothe floor Will be reduced by the isolation system, acoustic

energy transmitted into the room through the walls or ceil-

ing will act as an additional and direct driving force for

the floor.

Another important result should be noted in Figures 11.15

and 11.16. In both cases the maximum acoustic mobility

or response of the cabinet structure is about 10 dB higher

then the corresponding floor response. This is not due to

resonant amplification of structurally borne vibration from

the base of the cabinet. Rather it is due to the local

acoustic excitation of the lighter cabinet structure.

A general design method for predicting the acoustic vi-

bration of equipment cabinet cannot be developed from

the limited data given above. This is attributed partly to

the lack of sufficient data to establish a valid analytical

or empirical model and partly to the complex vibration

response characteristics of a typical equipment cabinet.

This is illustrated by the following estimates of the funda-

mental vibration modes for the cabinet tested.

FIGURE 11.16

j

+ _ 1 '1 _

J

i • I

A On Cabinet

On Floor

I III,
1000 10,000

Third Octave Band Center Frequency _ Hz

Maximum Acoustic Mobility Measured in Third Octave

Bands in Vertical Direction From Acoustic Test of

SATURN V Ground Computer System (Ref. 11.12)

Estimated Vibration Modes of Equipment Cabinet

a) Unstlffened Panel Lateral Vibration -

(Simply Supported)

f1,1 +

where

c L = 2 x 105 in/sec - speed of sound in steel

a = 33 in - average panel width

b = 80in - panel height

h = 1/16 in - panel thickness

p = Polsson's ratio = 0.3
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so that

fl,1 _ 6.4 Hz.

For the torsional, longitudinal and bending modes of the
cabinet, it is assumed that the equipment mass adds no
stiffness. The modes can be estimated as follows.

b) Cabinet Torsional Mode - (Fixed-Free)

fl 4_lp

3
a hG

k = _ - Torsional stiffness of squarer L
box beam of length L, side
a, and thickness h < < a.

G = Modulus of

2
Wa

p 6g

Rigidity = 12 x 106 psi

Polar mass moment of inertia

of solid with square cross
section.

so that

W _ 1800 pounds - weight of cabinet with

equipment

fl = 158 Hz.

c)

where

so that

d)

where

Cabinet Longitudinal Mode - (Free-Free)

fl-- "2

E = ¥oung's Modulus = 30 x 106 psi

A = 4 ah - cross sectional area

fl = 407 Hz.

Cabinet Lateral Bending Mode - (Free-Free)

fl = 3.56 V_--b3

2 a 3
I _ _- h - area moment of inertia for

thin square box section

so that fl = 491 Hz.

The significant paint indicated by these estimates is the
very low frequency of the fundamental modes of the cabi-
net side panels relative to the cabinet mode. The esti-
mated modes of the cabinet would therefore have limited

validity clue to lateral bending modes of the side panels
which exist at much lower frequencies.

Limited measurements were also made during this test on
sound transmission through the cabinet walls. Between
30 and 100 Hz, the internal sound level varied from 5 to

10 dB higher than the external level and then dropped
sharply below the external level at higher frequencies.
This region of transmission gain coincides with the fre-
quency range near the lower modes of the cabinet walls

and the region where structurally transmitted vibration
from the base was higher than the input at the base. This
is considered representative of the combined structural
and acoustic transmission into this type of equipment cabi-
net. Typical results from the vibration test are summa-
rized in Figures 11.17 and 11.18. The first figure shows

the transmission loss or relative acceleration response_ as
measured in one-third octave bands between the vertical

input to the bottom of the floor isolators, and the top of
the floor and cabinet. As shown, a theoretical prediction
of transmission loss based on a simple single degree of

freedom isolator does not properly account for the de-
graded loss due to standing waves in the isolator and
structural resonances in the floor and cabinet structure.

The amplification between the top of the floor and in-
ternal locations in the cabinet in the frequency range of
20 to 125 Hz is also evident.

Figure 11.18 shows the cross-axis response between the
vertical acceleration at the base of the floor and horizon-
tal motion within the cabinet. The minimum value of in-

axis response in the vertical direction, between the floor

and cabinet is also shown. The amplification for both
directions is very evident in the low frequency range.

Equally significant for definition of internal vibration
levels in the cabinet is the amplification above 700 to
1500 Hz between the cabinet base or floor and points
inside the cabinet. In other words, for the particular

cabinets analyzed, the design vibration environment for
components within the cabinet will exceed the design en-
vironment at the base of the cabinet.

i

a
.-s_
>

o

o

c_

7_] T _ F T I I E i f i I [,i _ i i ] i i
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O_ Isoloted Floor (_)
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FIGURE 11.17 Vibration Transmission Loss in Vertical Direction Between

Input to Shock Isolated Floor and SATURN V Ground

Computer Cabinet

Ecluipment Cabinet Response During Saturn I Launch

As a comparison with the above laboratory test, data were
obtained from a test conducted by NASA on the vibration
response of a standard equipment rack used for mounting
relay modules (Reference 11.13). The measurements were
obtained during the period T - 1 1/2 to T + 2 sec. of a
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Saturn I launch. The rack was located in level B of Pad34

at the Kennedy Space Flight Center. The raw vibration

data were analyzed with a fixed 10 Hz bandwidth filter

and have been converted to equivalent one-thlrd octave __

band levels for purposes of this analysis. The acoustic o
environment measured in this area was reported in Refer-

ence 11.14 and is shown in Figure 11.19. The average

and maximum response levels observed at 30 locations on °°

the rack in the vertical and lateral directions ore shown

in Figure 11.20. For this test, the rack was bolted di- -_

rectly to a 3/8 inch steel floor. Lacking any data on the

floor, its vibration level was estimated using a resonant

frequency of 20 Hz, and the acoustic mobility curve in
Figure 11.8. This estimate, also shown in Figure 11.20, g

indicates that the floor vibration would be slightly less -_'_

than the cabinet vibration at the lower frequencies as ex-

pected. The apparent acoustic mobility of the cabinet, >_

based on the above data, has been computed and is shown -_

in Figure 11.21 ° The maximum mobility is 20 to 40 dB

higher than observed for the Saturn V Ground Computer
System. This higher mobility is attributed to the combined

effects of: a) lack of an isolated floor mounting, b) struc-

turally transmitted building vibration, andc) lower rack

weight.

10

:!
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Floor. Measured During Vibration Test of SATURN V _ 0

Ground Computer System (Ref. 11.12) (_-o -I0 _--_it_ed Vibr_t'Ol f_e el _ I . ._ k_ [,,J-|l '_1;

As shown in Figure 11.21, vertical motion of the rack _ ._\structure is higher than the horizontal motion at low fie- | /_'_8 i_' _e'__ o_ ..-"1
I _I "_Coolnet bolted' I

quencies as expected dueto coupling with the floor vlbra- -20 r , I, l, I,I , , t,_,, T ,o ,,I
tion. Above about 150 Hz, however, the difference in m0 moo m,0o0

levels in either direction is not significant. Third Octave Band Center Frequency - Hz

Due to the wide range of maximum values of acoustic

mobility noted in these two experiments, a general model

for predicting internal vibration levels of equipment cabi-

nets located in high intensity noise areas can notbe estab-

lished. Further testing is required to more clearly define

the relative significance of structurally borne acoustically

induced vibration for this type of structural assembly.

FIGURE 11.20 Acceleration Response Level at 30 Points Inside

Standard Equipment Rack During SATURN I Launch

KSC, Pad 34, Level B (T - 1 1/2 to T + 2 Sees)

(Ref. 11.13)
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Apparent Vibro-Acoustic Mobility Calculated From

Acceleration Response Levels in Figure 11.20 and

Sound Levels _n Figure 11.19

11.5.4 ACOUSTIC SENSITIVITY OF SPECIFIC

EQUI PMENT COMPONENTS

Acoustic sensitivity test results of some of the components

included in Table 11.2 are briefly reviewed in more

detail below. Results are given only for those components

for which sufficient tests were conducted to provide some

degree of statistical confidence. Acoustic test environ-

mentsare given in terms of the mlmlmum octave band levels

for which components or equipment malfunctioned or the

maximum levels used in a test.

The curves shown in Figure 11.22 - 11.25 cover the

following types of components and equipment:

• Hydraulic Regulator

• Inverter

• LO 2 Regulator
• Potentlometers

• Pressure Switches

• Pressure Valve

• Relays and Relay Panels

• Sensitive Moving Coll Meters

• Timer Control

• Vacuum Tubes

• Vent and Relief System

Additional details which have been observed during

acoustic tests of specific types of components are given

below. These effects were observed while the item was

suspended in a wide band random reverberantnolse field

with a spectrum centered about 500 Hz. (Reference 11.4).

Capacitors - Polarized units generate electrical noise

levels of the order of 50 mlcrovolt/microfarad in a 160 dB

sound field.

Coaxial Cable - No electrical noise output above 0.3

millivolt for sound levels tess than 133dB.At 160dB, the

following noise signals were observed for 4 different types

of coaxial cable.

5 ft of RG59/U -0.85mv

27 ft of RG 58/U - 0.65 mv

13.5ft of RG58/U -0.44mv

5 ft of RG 8A/U -2.5 mv

5 ft of RG62A/U - 1.3 mv

Length of the sample was not necessarily significant. The

highest electrical noise output was observed for the largest

cable (RG 8A/U) with a loosely woven braided shield.In

general, the electrical noise spectrum coincided approxi-

mately with the acoustic spectrum. It is important to note

thattheseresultsrepresent only acoustical ly induced noise.

Electrical noise is also commonly generated in coaxial

cables by mechanical vibration of the cable supports.

Accelerometers Two barium tltanate accelerometers

tested did not generate any output wlthl n the normal fre-

quency range of the acoustic test signal at levels up to

160 dBo However, at the resonant frequency of the acce-

lerometers, (15- 18 kHz), the two units generated an

electrical output equivalent toa 11 - 13g acceleration

when exposed to a 100 dB noise field at these frequencies.

Thermistor A 10oC temperature rise was observed on

a thermistor mounted in a small electronic package ex-

posed toa 158 dB sound field for 5minutes.

Transistor Amplifier - Atwo-stageampllfler with 43dB

gain employing 2N333 transistors exhlbiteda negligible

increase of electrical noise output when exposed to a

160 dB sound field.

Vacuum Tubes - Vacuum tubes tested were very sensitive

to acoustic excitation partlcu larly at the resonant frequen-

cies of the internal grid elements and their supports.These

resonances fall in the range of 200 to 13,000 Hz. Suggested

acoustic sensitivity criteria for vacuum tubes are,

110dB - malfunction threshold for low signal level
vacuum tube circuits

130dB-malfunction threshold for ruggedlzed

vacuum tubes

150 dB - mechanical damage possible.

Miscellaneous Laboratory Equipment

Two sensitive vacuum tube AC voltmeters and a decade

amplifier tested showed marked increases in electrical

noise floor levels for octave band sound levels over 120 dB

in the frequency range of 300 - 1200 Hz. For one of the

voltmeters, internal resonances were excited by octave

band levels as low as 97 dB. Based on the approximate

linear relationship observed between electrical noise out-

put and acoustic excitation level, the electrical noise to

acoustical noise transfer functions ranged from- 140 dB to

- 168 dB re: 1 v/0.0002 mlcrobars. Thus, for octave band

levels of the order of 140 to 168 dB, the corresponding

electrical noise output from these units would be about

1 volt.
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Two cathode ray oscilloscopes tested exhibited picture
distortion at a 130 dB octave band level.

A precision differential AC-DC voltmeter began to show
disturbance of the meter reading when exposed to 130 dB
octave band level.

A precision phase meter showed no noticeable effect at an
octave band level of 140 dB.
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An RC vacuum tube audio oscillator exhibited noticeable

disturbance to the output wave form at an octave band
level of 140 dB.

Tests of resistors, inductors, capacitors, dry cell batteries,
connectors, and transistors exhibited little or no effect at
octave band levels up to 160 dB in the range from
150 to 600 Hz.
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11.5.5 SOURCES FOR ADDITIONAL INFORMATION
ON ACOUSTIC SENSITIVITY

For analysis of environmental design requirements of spe-
cific equipment, it may be desirable to rev;ew available
acoustic test data for similar items.

11.5.5.1 Interservlce Data Exchange Program

One source of information is available through the Inter-
service Data Exchange Program (IDEP).This is a coopera-
tive activity between the three military services to provide

automatic _nterchange of environmental test data for equip-
ment and components. Over 165 defense contractors and
Government research facilities participate in this data ex-
change program° Copies of environmental test reports
generated by the participants are submitted to the IDEP
Office of the cognizant service where they are micro-
fi Imed and duplicate fl Im copies attached to summary cards.
(See Figure 11.26.) These cards are then automatically
distributed to all full participating contractors and agencies
which have contractural interests in the subject area cov-
ered by each report.Coded listings of the available reports
are also published for assistance in identifying pertinent
test data according to the type of component and type of
environmental tests conducted.
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.',.is* PAI_TTYPE.%I_ZE_.EAT_I_NC'.LLgT=ET(_"9 VENDOR 10 VENDOR PART NO 11 IND/GOV STD NO ,2:o__:;{

I Heat sensing, 200°F max. oper. _ i I!6!-A-03 2

I

_emp., _,'S __la x i_Z,'8 length,
J

4___T_II___A& 119_6 ; 13.5 _v output I
i

for max heat _lux input. ],

.....
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i
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FIGURE 11.26 Sample Format of IDEP Environmental Test Data Reports
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11.5.5.2 Manufacturer Specifications and Environ-
mental Design and Test Specifications

A surveyofmanufacturers of typical ground support equip-
ment employed on current rocket vehicle test stands was
conducted in preparation of this manual. The response to
this survey was limited and did not provide significant in-
formation for evaluating the acoustic sensitivity of ground

support equipment. However, as the acoustic environments
increase for the larger launch and test facilities, and as

rellabl llty requirements increase for man-rated systems, it
can be expected that more manufacturers will be required
to specify equipment compatibility with high infensity
noise environments. The imposition of standard Military

Environmental Test Specifications as design requirements
for equipment will assist in providing information on en-
vironmental integrity to the equipment designer.

An example of a typical acoustic test requirement for such
a specification is shown in Figure 11.27. Although the
test spectrum is not necessarily typical of a low frequency
rocket noise spectrum, it provides a reasonable acoustic
test envlronment for many ground support equipment items.
This is based on the fact that acoustically induced mal-
function will frequently be due to internal resonant re-
sponses of the equipment. The test spectra shown in Figure
11.27 encompass the frequency range of internal reso-
nances for most equipment items so that sensitivity to di-
rect acoustic excitation can frequently be established on

the basis of these tests. Two important exceptions can
Occur.

0 I160 OA
u

150 ................

140 r N
_u 130

m 120

MIL-STD-810

>_ Grade C

lOO
37.5 75 150 300 600 1200 2400 4800 9600

Octave Band Frequency - Hz

FIGURE 11.27 Typical Example of Standard Acoustic Test

Specification for Equipment

1) A more accurate simulation of an expected service

environment containing intense high frequency
energy may be required for evaluation of items
(i.e., accelerometers) whose internal resonant
responses fall above the range of the standard
test specifications

2) A better simulation of the low frequency content

of rocket noise may be very necessary to properly
evaluate the acoustically induced vibration
sensitivity of equipment mounted on large low-
surface-density mounting structure.

It must be stressed, however, that reliance on a standard

test specification is not a replacement for accurately
defining the acoustic design environment.Typical acoustic
design environments for the Saturn V launch facility are
shown on Figure11.28.(Reference 11.15.) Clearly these

expected service environmentsdlffer significantly from the
standard test spectra shown on Figure 11.27. It is always

necessary, therefore, to evaluate the expected equipment
response to the real environment before compromising by
using a standard environmental test specification.
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FIGURE 11.28 Typical Acoustic Design Environments for NASA

Launch Complex 39, SATURN V

11.5.5.3 Evaluation of Acoustic Sensitivity, from
Vibration Environment Specifications

Vibration qualification test data for equipment are more
commonly available than acoustic test data. This can be

helpful in evaluating equipment sensitivity to acoustic ex-
citation for certain types of equipment. For example,
equipment which has a heavy, damped enclosure and is
capable of withstanding high acceleration levelswill tend
to be insensitive to direct acoustic excitation° Quantita-

tive estimates of the acoustically induced vibration input
for such equipment, mounted on large metal panels, may
be estimated by the methodsdlscussed in Section 1 1.5.3.1.
If the acoustically induced vibration levels, estimated for
a particular acoustic environment, is well below the known
vibration environment capability of the equipment, it is
reasonable to assume that the item willwithstand this

acoustic environment. This is not a safe assumption for
equipment with light metal enclosures as shown by the
experimental data for the vibro-acoustic response of the

ground computer cabinet discussed in Section 11.5.3.2.
To emphasize this point,these data have been replotted in
Figure 11.29 to show the maximum equipment cabinet



11-22 Vibro-Acoustic Control for Equipment

vibration relativetothe vibration at the top of the isolated

floor for both the vibration test and the acoustic test.

Although the acoustic test data cover a limited frequency

range, it is clear that the local acoustic response of the

cabinet structure exceeds the structurally transmitted vi-

bration response by 10 to 15 dB for the same vibration
level at the base of the cabinet.
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FIGURE 11.29 Maximum Response of Equipment Cabinet Structure
Relative to Responseat Base for Vibration and
Acoustic Tests of a SATURN V Ground Computer
Equipment Cabinet

11.6 RECOMMENDED ACOUSTIC ENVIRONMENT

CRITERIA FOR EQUIPMENT

Although the available data on acoustic response of ground

equipment is relatively limited, the information presented

in this chapter is sufficient for establishing a preliminary

environmental design criteria for such equipment. Once

thiscriteria is defined, and the ambient acoustic environ-

ment near the equipment is determined, the amount of

additional acoustic or vibration protection or hardening

required can be defined.

Based on the preceding discussion in this chapter, it would

be desirable to establish an environmental criteria on the

basis of the following three key variables.

1) Reliability requirements

2) Equipment type

3) Mounting or installation configuration

A general requirement for equipment reliability while

operating in 'an acoustic environment would requirean

analysisof system criticality and system reliability as out-
lined in Sections 11.3 and 11.4.

11.6.1 CRITERIA FOR RELIABILITY ANALYSIS

In lleu of a general reliability design requirement, the

following method is suggested for preliminary design.

1) Establish the generic failure rate of the equip-

ment in a laboratory environment. Values for

some equipment types are listed in Table 11.2.

2) Multiply this failure rate by a factor of 100 to

establish an operating failure rate providing the
maximum environments listed in Table 11.4 are

not exceeded. This factor of 100 is an order of

magnitude higher than the factor suggested for

ground equipment in Section 11.5.2. I.

It is considered a more realistic multiplier for

operational acoustic environments near rocket

launch or test sites.

3) Multiply this failure rate by additional factors as

necessary to account for environments other

than acoustics.

4) If the operating acoustic environment exceeds

the levels indicated in Table 11.4, further in-

crease the failure rate by the following factors.

Change in Sound Level Multiply Failure

Above Design Environments Rate By

in Table 11.4

5 dB 3

10 10

15 30

20 100

s) Using the corrected failure rate estimate the

equipment reliability as outlined in Section 11.4.

The additional multiplying factors in Step 4 for

sound levels in excessof the following design

environments are based on the approximate slope

of the curves in Figure 11.6. These show the

estimate of failure rate versus sound level for a

wide range of equipment.

It must be emphasized that this suggested procedure is a

tentative one and will require additional validating data

on failure rate of equipment in an acoustic environment.

11.6.2 CRITERIA FOR ACOUSTIC DESIGN

ENVIRONMENT

The recommended acoustic design environments forground

support equipment are given in Table 11.4. The sound

levels specified are the maximum octave band levels in the

frequency range 200- 2000 Hz or in the octave band

closest to the internal resonance frequency of the equlp-

ment. These represent conservative estimates of maximum

design environments for ground equipment with normal
malfunction or failure rates.

For equipment mounted inside a typical thin gauge equip-

ment cabinet, the levels specified in the first column may

be assumed to be the design environments on the outside
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surface of the equipment cabinet.

For equipment mounted inside a blast proof enclosure or
similar thick metal enclosure with appreciable damping,

the allowable external design environments outside the

enclosure, specified in the second column, are 10dBhigher,
based on a nominal 10 dB noise reduction for such an
enclosure,

The designenvlronmentslistedlnTabte 11.4 must be ap-
plied with discretion. For example, the levels suggested
for pneumatic and hydraulic equipment are conservative
estimates based on the limited data available. In many

cases, equipment components in this category can be ex-
posed without malfunction to higher levels. However, such
items shouId be examined on an individual basis to establish

more accurate design environments.

TABLE 11.4

RECOMMENDED ACOUSTIC DESIGN ENVIRONMENT FOR GROUND
SUPPORT EQUl PMENT

(Maximum Octave Band Sound Levels in the 200 - 2000 Hz
frequency range or at the frequency of internal

equipment resonances- dB re: 0.0002 Microbar)

TYPE OF EQUIPMENT

Electronic Eclulpment

Cabinet or
Shock Mtd.

MOUNTING

Rigid Mtg.
or Blast Proof Enclosure

Low Pressure Components
(< 10 psi) 130 140

High Pressure Components 140-150 150-160
(> 10 psi)

Pyrotechnic Components -- 150-160

Pneumatic, Hydraulic Efluipment

Accelerometers

Isolated Bending Type -- 140
Compression Type 145
Isolated Compression Type 155

Heavy Duty Relays, Switches 130 140

Sensitive Relays
Potentiometers 120 130

Commutators

Solid State Components 145 155
Resl stors

Capacitors

Vacuum Tubes

Signal <10mv 100 110
Signal > 10 mv 120 130

Laboratory Electronic Equipment 100 110
not Covered Above

Ruggedized Electronic Equipment 120 130
not Covered Above
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11.7 RESPONSE OF EQUIPMENT TO OVERPRESSURE

FROM BLAST AND SONIC BOOM

11.7.1 INTRODUCTION

Exposed ground equipment near rocket launch and test

stands is subject to damage from blast by an explosion

of the propellants. Facilltieslocated near aircraft flight
research centers such as Edwards Air Force Base are also

subject to sonic booms loads generated by supersonic air-

craft.

Peak overpressures From these two phenomena can range

from .001 psi (2 psf) fornormal sonic boom overpressures

to over 100 psl near a propellant explosion. The effects

of such loads and criteria for protective design will clearly

vary considerably for such a wide range of overpressures.

Due to the lack of definitive data on transient overpressure

effects on equipment, it is necessary to use analytical or

seml-empirlcal means for evaluation of the problem.

Effects of blast or sonic overpressures may be categorized

as follows:

1) Overpressure loads on secondary mounting struc-

ture which supports exposed equipment.

2) Transient overpressure effects on the equipment

itself.

3) Transient acceleration loads on the equipment or

itsmountlng structuredue to the dynamic response

ofprlmary building structure induced by theover-

pressures.

Each of these effects is briefly analyzed in the following.

11.7.2 OVERPRESSURE LOADS ON EQUIPMENT

MOUNTI NG STRUCTURE

For exposed equipment near a rocket launch or test standt

potential blast pressures may far exceed the damage limits

for the equipment itself. If a blast-proof protective housing

cannot be provided for the equipment, it must be consid-

ered as expendable. However, assuming the expected blast

damage will not destroy the basic primary structure on

which the equipment is mounted, it may be necessary to

insure that the equlpment is not torn loose from its mounting

to become a missile. This would be particularly important

for exposed equipment at a static test site located near in-

habited areas or secondary propel lant storage tanks. I n this

case, the equipment mounting structure should bedeslgned

to withstand the blast loads. The normal blast load analysis

forbuildlngstructure,coveredlnChapter 8, is used with

some simplifications for analysis of this problem.

11.7.2.1 Force of Blast Overpressure and Dynamic

Pressure on Exposed Equipment

Considering the wide variety of posslble configurations of

an exposed equipment package,a simple cube can be used

as a model to represent the equipment. The blast load on

the equipment is the sum of the diffraction load on the

front face due to the incident overpressure and the net

drag load due to the dynamic pressure of the blast wind.

Diffraction Load

The duration of the diffraction load willordinarily be very

short relative to the duration of the positive phase of the

overpressure or dynamic pressure. In this case, for a cubical

obstacle,the diffraction load can be assumed to consist of

a triangular pulse with a peak pressure equal to the peak

reflected overpressure, P
ro

The effective duration t of the triangular pulse on the
c

cube with one side face on to the blast front can beshown

to be approximately

t = 3 a/Crefl (11.11)
c

where a = 1/2 the width or the full height of the

obstacle, whichever is smaller,

Crefl = velocity of sound in reflectedoverpres-
sure region (see Chapter 8),

and tc is much less than the blast duratlon.

Figure 11.30 shows the value of Pro and t/a versus scaled

distance R/W_./31/for a cube with side 2a. The discussion

in Chapter 3 on response to a triangular load may be used

to estimate the response to this diffraction load. As an

example, consider the following.
1000

Equivalent

Diffraction

Load

Pro

100 _ _ k .tc

t c << t

i

1- i i

1 l0 100

Pv/W1/3 - Scaled Distance - ft/Ib 1/3

FIGURE 11.30 Peak Reflected Overpressure and Effective
Duration for Diffraction Load on a Cube
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Example
Equipment"Cube"
EquipmentWeight
MountingStructure

Stiffness
ResonantFrequencyof
PackageonMounting

Structure
LocationofEquipment
EquivalentTNT

WeightofPropellant
ScaledDistance

PeakDiffractionLoad
(Figure11.30)

EffectiveDurationof
Load(Figure11.30)

ResonantFrequency
x Duration

DynamicLoadFactor
forTriangularPulse

StaticEquivalentof
DiffractionLoad

PeakDynamic
Deflection

TimeofMaximum
Deflection

Drag Load

- a

- W

- k

- f
O

= 1/2 ft

= 6.1 Ib

= 105 Ib/in.

= 3.13"v_'W-

400 Hz

R

W T =

R/W1/3 =
T

Pro(2a) 2 =

t =
C

- ft =
OC

x
max

- 1.17
X

$

- 1.17x 4030 = 4550 Ib

- X
max

- t
max

1000 ft

106 Ib

10 Ib/ft 1/3

28 psixlx 144
4030 Ib

1/2x2.4 =1.2

msec

0.48

= 4550/105
= 0.045 in.

= "44/fo

= 1.1 msec

Thedrag load may be assumed to be a triangular pulse with

a peak value given by

where

F = qso CD A

qso = Peak Dynamic Pressure

C D = Drag Coefficient

A = Frontal Area

(11.12)

The estimated maximum peak dynamic pressure for propel-

lant explosions, discussed in Chapter 6, is shown in Figure

11.31 as a function of scaled distance. The drag coeffi-

cient will vary with the exact shape of the equipment. A

value of 1.3 is typical for a rectangular structure.

The effective duration tqe of the actual dynamic pressure
load is also shown in Figure 11.31, normalizedbythe cube

root of the equivalent TNT yield in pounds. For the same

example considered earlier, the max lmumdynamlc response

to this load can be estimated as follows.

Scaled Distance R/WT 1/3 : 10 Ib/ft 1/3

TNT Equivalent W T "= 106 Ib

Peak Dynamic qso = 1.9 psi
Pressure

1000

1oo

L
t
qe

tqe ,/WT 1/3

0.1
1 10 100

R/VCTI/3 - Scaled Distance

FIGURE 11.31 Peak Dynamic Pressure and Effective

Duration for Drag Load on a Cube

Scaled Effective tqe/WT1/3 = 1.4 msec/Ib 1/3
Duration

Effective Duration t = 140 msec
qe

Resonant Frequencyx Duration fotqe = 56

Dynamic Load Factor = 2

Static Equivalent of Drag Load = 2x 1.9x 1.3x 144

= 710 Ibs

In this case, the dragload is much less than the diffraction

load and may be neglected. For smaller equipment pack-

ages closer to the blast, the drag load would frequently

be predominant. The methods developed in this section

for computing the blast loads on small exposed equipment

packages are considered suitable for design purposes.

While approximate, they are based on simplified versions

of standard blast load analysis methods discussed in Chapter

8. Full advantage of plastic design concepts should be

used where necessary to avoid an overly conservative

design.
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11.7.3 TRANSIENT OVERPRESSURE EFFECTS ON

EQUIPMENT

For equipment which must function during an explosion or

for which internal damage must be prevented, an approxi-

mate criteria for dlrect effects of translentoverpressure can

be estimated based on the acoustic design criteria in Sec-

tion 11.6. This extrapolation of acoustic criteria to blast

criteria is necessary due to the lack of any data on direct

effects of overpressure on equipment.

It is essumed thatmalfunctlon or failure of equipment under

acoustic excitation is caused by resonant responses. The

peak value of the response x n fora single resonance ata

modal frequency fn can be defined by;

x • Q (11.13)
n = 3_n ob

where [3n =

Pob =

Q =

modal response parameter relating the

static value of the response parameter x

(i .e .-stress, acceleration, etc .) to pres n

sure.

rms pressure in the octave band centered

around the resonant frequency fn

dynamic magnification factor.

The factor of 3 in the above expression accounts approxi-

mately for the effective peak value of the random response.

Fatigue effects are not considered.

i
For excitation by a blast wave, the peak response x n in

the same mode is obtained from a shock response spectrum
S in the form

I
X =

n

where _n =

13n Pro S (fn tpe) (11.14)

the same response parameter as above

Pro = peak reflected overpressure

S(fntpe) = Shock Response Spectrum - a funcfionof
the modal frequency fn times the effective

blast duration tpe.

If it is further assumed that the same degree of equipment

malfunction or failure occurs for the same peak response•

for both acoustic and blast overpressures• then the peak

reflected overpressure Pro which will cause the same res-
ponse as the acoustic environment is given by

3 Pob [_t Q/'_'2"n] 1/2
p - (11.15)

ro S (fn tpe)

P 3 it 1/2ro b__O]
Pob 2

(I I. 16)

A range of incident blast overpressures for malfunction or

damage levels of equipment Based on the above expression

is listed in Table 11.5.

These estimated overpressure damage levels for equipment

can provide a guide for blast overpressure protection re-

quirements for sensitive ground support equipment which is

not considered expendable in a blast environment.

11.7.4 ACCELERATION LOADS ON EQUIPMENT

DUE TO BLAST RESPONSE OF MOUNTING

STRUCTURE

The lasteffect of blast loads on equipment to be considered

is the acceleration load on equipment induced by blast re-

sponse of its mounting structure. Consider the example of

a rigid equipment package mounted to a large panel ex-

posed face-on toa blast load as illustrated in Figure 11.32.

The overall blast load on the panel is represented by the

superposition of two equivalent triangular pulses as shown

in Figure 11.32. In this case, the back of the plateis

assumed enclosed by a sealed cabinet so that the incident

overpressure is effective for its full duratlon.

P
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P + 0.8
so qso

2a

P (t) _-

(t)

-- P2max + Plmax

r____ P2 .,_'11"=" h

P2

P| max

I
I
I

t t

c pe

FIGURE 11.32 Approximate Time History of Blast

Load on Panel Mounted Equipment

For blast pulse durations ranging from 10 to 500 milli-

seconds and internal resonant frequencies of equipment

ranging from 200 to 2t000 Hz • the shock spectrum para-

meter for the triangular pulse will range from 1.77 to 2.

Based on a conservative value of 2, the ratio of peak

reflected blast overpressure to rms octave band acoustic

pressure for equal peak response is

The first pulse, which excludes the diffraction load due to

the reflected overpressure, has a peak pressure Plmax equal

to the sum of the peak incident overpressure P plus 0=8
so

times the peak dynamic pressure qso" The duration is equal

to the effective positive phase duration• t of the inci-

dent overpressure wave. pe'
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TABLE11,5
ESTIMATEDBLASTOVERPRESSURECRITERIAFOREQUIPMENT

MALFUNCTION
(SensitiveEquipment)

DAMAGE _ MALFUNCTION
(Sensitive \ (Rugged
Equipment)k Equipment)

DAMAGE
(RuggedEquipment)

OctaveBandLevelat EquivalentIncident
EquipmentResonance BlastOverpressure
dBre:0.0002microbar psi

Q=5 25
130 .01 .023

150 .11 °23

170 1.0 2.2

190 8°0 15.0

Thesecondpulsewhichaccountsforthediffractionload
hasapeakpressureP2maxequalto thepeakreflected
overpressurePo minusP, • Theduration,forsideaimax 6aclessthanside6, isequalto tc= / tell" These four

quantities are shown in Figure 11.33. The clearing time

t c is given for a square plate with a = 1 foot ( panel

width = 2 feet). The effective duration tRe , scaled by
the cube root of the TNT equivalent W T, is alsoshown.

The response of the mounting panel to these two triangular

pulses can be determined from the shock spectra for atri-

angular pulse given in Chapter 3 in terms of the peak

dynamic displacement Xma x relative to the static displace-

ment x s. The resonant frequencies of the mounting panel

with its equlpmentand the panel stiffness can be estimated

by the methods presented in Chapter 3.

As an example, consider the following case of a 60-pound

equ ipment package central ly mounted on a 40-1nch x 40-1nch

x 1/2-1nch steel plate located at the same position con-

sidered in the example in Section 11.7.3.

EXAMPLE

Static Stiffness at Center - k = 33.4 psi/Ib
P

Resonance Frequency of Bore Panel " fi,1 = 60 Hz
/.

ResonanceFrequency " fo = fl,1/_/1- +
4 (Eclui P. Wt.)

(Panel Wt.)

= 42 Hz

Blast Load: Plmax = 11.5 psi tpe = 170 msec

(From Figure 11.33) P2max = 17.5 psi tc : 4 msec

Dynamic Responseto Plmax (See Chapter 3)

Resonance Frequency x Duration - f t : 7.15
o pe

Dynamic Mag. Factor - Xmax/Xs : 1.97

Static Deflection - xs = Plmax,/kp = 0.344 in.

Max. Dynamic Deflection - x = 0.68 in.
max

Time of Max. Deflection " fo tmax = 0.50

(Max. occurs during pulse)

(2"_ fo)2 x
.'. Max. Acceleration _ ma..____x s _ 62 g

g g
(For f t > > 1)

o pe

Dynamic Response to P2max

Resonance Frequency x Duration - f t : 0.168
oc

Dynamic Mag. Factor - Xmax/X s = 0.53

Static Deflection - xs = P2mox/kp : 0.52 in.

Max. Dynamic Deflection - Xmax : 0.28 in.

Time of Max. Deflection - f t = 0.31
o max

(Max. occurs after pulse) _ (2_ fo )2
• '. Max. Acceleration max - Xmax 50 g

g g

For this case, a conservative acceleration load could be

defined as the sum of the peak responses to each input.
However, in this case_ the time of occurrence for each

peak is such that coincidence of the peak responseswill

not occur. A better approximation to the net peak response

is obtained if it is taken to be the square rootof the sum of

the squares of the peak response for each input. Thus, for

this example, the equipment would experience a transient

peak acceleration of about 80 g's. Note that this also

represents an acceleration load on the equipment attach-

ment palntswhich is in addition to anyblast loading on the

equipment container itself_ discussed in Section 11.7.2.

A similar analysis can be made for other cases to define

transient acceleration or shock loads on panel-mounted

equipment.

Application of this type of loading to ground equipment

near a potential propellant explosion will depend on the

design philosophy of preventing damage to the equipment

or simply preventing failure of its attachment structure.

For the latter case,a more economicaldeslgn will be pos-

sible by allowing for plastic deformation of the attachment

structure. In this case_ the more detailed blast response

methods outlined in Chapter 8 should be used.
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FIGURE 11.33 Estimated Maximum Load Parameters for

Propellant Blast Load (Face-On) for a

Square Equipment Mounting Plate

11 .7.5 ENVIRONMENTAL EFFECTS ON EQUIP-

MENT DUE TO SONIC BOOMS

11.7.5.1 Direct Effects

The upper range of incident overpressures associated with

sonic booms from supersonic aircraft is generally less than

10 Ibs/ft 2 (.07 psl). The dynamic magnification factor for

response of a single degree of freedom system by o sonic

boom N wave has a maximum value be_een 1.8 and 2 for

the parameter fo T= 1/2 (Resonance Frequency) x Duration of

N wave) >2.5. Since the duration will range from .08 to

0.4 seconds, and internal equipment resonance frequencies

will usually fall above 100 Hz, fo T will exceed 2.5 and

a value of 2 for the dynamic magnification is reasonable

for consideration of direct effects of the Nwave on equip-

ment. From equation 11.16, it can be shownthat the peak

responses of equipment resonances to a sonic boom can be

expected to be no more than comparable momentary peak

responses caused by acoustic.excltatlon having an octave

bandsound level of 132 to 138dB(Q =5-25). Thisfalls

in the range of possible malfunction of sensitive equipment

but below the range of any probable damage.

11.7.5.2 Indirect Effects

More slgnlflcant effects are expected for sonic boom ex-

cltatlon due to building responses. These are considered

in more detail in Chapter 8. It will be sufficient here to

point out one of the major problems associated wlth equip-

ment, or more specifically, mechanical or electrical

systems mounted to building walls and ceillngs.

Vibration of a roof or wall, which is caused by sonic boom

loading, will impose acceleration or inertia loads on equip-

ment attachment points.

The magnitude of such acceleration loads may be estimated

as follows:

1) Assume the total static design load on the roof is

75 Ibs/ft 2 •

2) Assume design practice requires that the static

deflection to the load not exceed 1/360th of the

roof span.

3) For a peak normal incident pressure of 10 Ib/ft 2 ,

a reflection factor of 2, and a dynamlc magnlfl-

cation factor of 2 (the normal range will be from

about 1.6 to 2.1 for typical building resonance

frequencies), the peak dynamic load would result

in 2 x 2 x 10/75 or 53 percent of the peak def-

lection under the design statlc load, assuming

only the fundamental mode of the roof responds

significantly.

4) The fundamental resonance can be estimated by

assuming the roof has just the required stiffness to

pass the static load design criteria. The funda-

mental resonance of the roof is then given by:

(See Chapter 3)

= 3.93 (l+WdW) (1_.17)

where

f1,1

13 = raHo of span to center deflection

b = shortest span - in.

W e = external static design load - lb.

W = weight of roof plus dead load - lb.

For _3= 360, b = 300 inches, W e = 35 Ib/ft 2, W = 40 Ibs/

ft 2, the fundamental wouicl be

5)

fi,1 = 5.9Hz.

The maximum incremental staHc displacement at

the center of the panel which would occur for an

additional staHc load equal to the peak sonic

boom reflected overpressure would be

_ 2 x I0 x 300
- 0.22 in.

Xs 75 x 360
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6) The maximum acceleration of the center of the

panel, for response to a sonic boom has been

shown to be

where

_4 2_foX s _/ (2_foT)2 'max 1 + g's
g gT

(]1 .m)

fo = f1,1 = 5.9 Hz.

T = 1/2 duration of N wave - sec.

For T = 0.1 sec., this gives a value for the peak

acceleration at the center of the roof of 0.84 g.

Allowing for the effect of response in the higher

modes, a reasonable design estimate for the added

load on equipment mounted at the center of the

roof is I g.

Thus, the net load for equipment mounted near the center

of the roof would be at least 2g. This would normally be

w ithln the design margin for equipment mounting structure.

A more detailed analysis would be required, however, for

buildings routinely exposed to such high son ic boom loads.

For inhabited buildings, it would be desirable to isolate

any light fixtures or other roof-supported equipment to

reduce the startling effects of motion induced by the sonic
boom.

11.8 DESIGN METHODS FOR ENVIRONMENTAL

PROTECTION OF EQUIPMENT

The final aspect of effect of noise on equipment to be con-

sidered is the application of various environmental

protection techniques. This is the logical final phase in

the environmental design process once the environment at

the equipment location and its potential effects have been
evaluated.

If a requirement for additional environmental protection

is indicated to insure overall reliabilityofa ground system,

the designer may consider one or more of the following

steps.

• Selection of more rugged components

Protective packaging design employing:

- Damping treatment of component mounting

structure

- Protective potting of components

- Acoustic isolation of equipment

- Vibration isolation of equipment

Each of these steps is reviewed in the following sections.

No attempt is made to present a complete review of equip-

ment design. The reader is referred to References 11.8 and

11.10 and 11.16 for additional information.

11.8.1 SELECTION OF COMPONENTS

As indicated earlier in this chapter, the sensitivity of a

given type of component to acoustic excitation varies ap-

preciably. For example, relays can have a malfunction

threshold at sound pressure levels ranging from 130 to more

than 170 dB, depending on the particular type, function,

and construction. While a smaller range of malfunction

thresholds may be expected for relays which are designed

to perform the same function, nevertheless appreciable

variations in acoustic sensitivity may still be expected.

What then, are the criteria for selection of the most

rugged type of component for a given functional require-

ment?

Simplicit X of Design

Clearly, the simpler the design, in particular, the fewer

the parts, the higher is the inherent reliability of the compo-

nent. The exception to this rule occurs when complexity

is added to provide redundant or alternate functional modes

for the component_thus increasing its reliability. (See

Section 11.4).

Absence of Moving Parts

Perhaps more significant, in the case of resistance to

acoustic excitation, is the number and type of moving

parts. For example, a solid state electronic switch will

tend to be much more resistant to acoustic noise than a

functionally comparable mechanical relay. This is even

more dramatically true in the case of electronic equipment

employing transistors in place of vacuum tubes. In fact,

given the current state of the artof solid state eircuitrytit

would seldom be necessary or desirable to employ vacuum

tube type electronic equipment in areas close to rocket

launch or test sites when noise levels around the equipment

would exceed 110 dB.

Size and Surface Weight Density of Equipment

All other things being equal, the smaller the volume and

the higher the weight per unit surface area of a given type

of equlpment,the higher the threshold of acoustic sensitiv-

ity. This may be explained by the following simple

qualitative analysis.

In the frequency range of equipment resonances, the

acoustic pressure spectrum will decrease roughly inversely

with the first to second power of frequency or

P(f) a f-m

where m = 1-'--2.

The vibro-acoustic coupling factor, J(f) or ratio of ef-

fective acoustic pressure to actual acoustic pressure can

increase or decrease with frequency depending on the

mounting of the equipment and its size relative to the

acoustic wavelength. Thus_ let
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J(f) a fn ,

where-1<n<+1.

Malfunctionorfailureoftheequipmentmaybeassumedto
occuratacharacteristicresonancefo which,forsimilar
shapes,will varyroughlyinverselyasa characteristic
dimensionL oftheequipment,or

f a L-1
O

Consider first.that malfunction occurs due to an excessive

acceleration response at this resonance frequency.

The acceleration response, A(f o) will vary as

A(f o) a' P(fo ) • J(fo)/W

where w -- surface weight density of equipment.

Thus, from the above relationships

A(f) a Lr/w

where r -- m-n = 0 _3.

Thus, at one extreme the acceleration response would

tend to be independent of size and vary inversely as the

surface weight and, at the other extreme, the response

would vary directly asthe third power of size and inversely

as the surface weight.

Now assume that the malfunction occurs due to an exces-

sive displacement D(f) at the characteristic resonance.
o

In this case the response will vary as

D(fo ) a A(fo)/f 2

or D(f o) a LS/w

where S = 2-4.-5.

Thus, the displacement response will vary from the second

to the fifth power of the size and inversely as the surface

weight.

Thus the inherent variation in acoustic response magnitude

with size and weight of an equipment package is clearly

demonstrated and shows that the smaller and more densely

packaged the equipment, the lower will be its acoustic

response.

Preferred Components

Lists of preferred components are published by various

government centers for use by equipment designers.

Selection of components from such lists takes advantage of

the previous experience accumulated with their satisfac-

tory use. Providing their application to new equipment
will involve similar acoustic environments, the element of

"proven experience" is a significant advantage. However,

such "preferred components" lists are subject to two short-

comings. 1)Theycan easily become outdated as new com-

ponents or modifications are used. 2) They seldom provide

sufficient information for evaluation of equipment sensi-

tivity in severe acoustic environments.

Optimum Mechanical Design

For equipment subject to malfunction or damage induced

by acoustically generated vibration, a number of general

design guidelines exist for carrying out goad mechanical

design practice. (References 11.16, 11 . 17).

Some of these guidelines are summarized below in the form

of a check-list which may be usedfor selecting equipment

which will tend to be insensitive to acoustically-induced

vibration.

• Minimum use of cantilevered mounting for parts.

• Useofchassis-clampsfor wire lead-connected com-

ponentslarger than about 0.4 in. in diameter.

Wire lead connections made to minimize fatigue

failure (e.g., short leads with some slack plus in-

sulation covering to provide damping).

Internal and external wiring laced into a cable and

secured to chassis at frequent intervals to prevent

conductor vibration fatigue.

Use of close-fltting alignment pins or guides to

bear shock and vibration loads between chassis,

assemblies and enclosures.

• Heavier parts located as close as possible to load

bearing structure.

• Maximum rigidity of mounting chassis without

excessive weight.

• Adequate reinforcement at corners of mounting

structure and at other stress concentration points.

• Proper bend radii of sheet metal parts.

• Minimum unsupported spans of circuit cards.

• Static balance of rotating or pivoting parts.

• Minimum use of large unsupported cabinet walls

for component mounting.

• Proper choice and application of shock mounts to
achieve desired isolation with minimum cross-

coupling between modes of vibration.

• Adequate "rattle" space to avoid shock loads.

11.8.2 PROTECTIVE PACKAGING DESIGN

In addition to the general guidelines for low sensitivity to

vibration given in the preceding check-off llst, more
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specificprotectiondesigntechniquescanbeemployed
whichareparticularlysuitableforreducingsensitivityof
equipmenttoacousticexcitation.Thesetechniqueshave
beendiscussedingeneralconceptualforminChapter5.
Specificexamplesoftheapplicationofthesetechniques
for protectivepackagingdesignwillbeconsideredinthis
section.

Optimumchoiceofanygivenpackaglngtechniquecanbest
beillustratedbyreviewingagainthemultiplepathsfor
vibro-acousticexcitationofequipment.Thisisillustrated
inFigure11.34.Thetransmissionofvlbro-acoustlcenergy
throughthemultiplepathsillustratedcanbereducedby:

• Dampingtreatmentofequlpmentmountingstructure

• Protectivepottingofcomponents

• Acousticisolationofequipment

• Vibrationisolatlonofequipment

Response of-- Sensitive Components----- 7

Outer Case //
I---- _ ,, Responsefrom

I r_'-'-'l ,2"Int.... I No_se
----I

FIGURE 11.34 Structural and Acoustic Paths for

Vibro-Acoustic Excitation of

Equipment Components

Note that these four steps are not listed in the logical

sequence of a source-transmlssion path-receiver concept.

Rather they are given in an approximate order of maximum

effectiveness for application to existing equipment. The

logical order for new facilities under design might very

welt put the last two on top of the llst.

11.8.2.1 Damping Treatment of Equipment Mounting

Structure

As discussed in Chapter 3, the maximum response of a

single degree of freedom system to random excitation,

such as noise from rocket engines, varies directly as the

square root of the dynamic magnification factor Q. Thus

any method of fabrication or assembly of equipment

structure which reduces the "Q", by increasing damping,

will tend to reduce the dynamic environment for internal

components. Exceptions to this rule can occur for dis-

crete resonant modes of a structural assembly when appli-

cation of damping alters the dynamic response character-

istlcs in such a way as to increase the response level at

certain frequencies. Such a situation is illustrated in

Figure 11.35 which shows a comparison of the measured

transmissibilltles for a damped and undamped structural

chassis (Reference 11.18). While the damped chassis has

a much lower overall transmlssibility, (i.e.-ratioof re-

sponse acceleration to input acceleration), higher re-

sponses do occur, with damping, at frequencies below

about 120Hzandlnthe range of 550-720Hz. In general,

however, such situations can be easily remedied and do

not compromise the advantages of incorporating damping

in structural design of equipment packages.

Damping treatment for protective packaging of equipment

may be grouped into two broad categories: ]) treatment

designed as an integral part of the structure, and 2) ex-

ternal ly appl led treatment.
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FIGURE 11.35 Transm|sslbility Curves for Typical Solid and

Viscoelostic-Damped Chassis.

(From Ref. 11.18)

Integrated Damping Treatment

Design techniques for incorporating damping within a

structural configuration may range from modifications of

conventional metal chassis fabrication techniques to the

use of specially designed viscoelastlc-damped laminated

panels. Typical values for dynamic magnification factors

for different types of construction can be specified, as

shown in Table 11.6. This table provides an approxi-

mate degree of improvement in damping (lower Q) that

can be expected in changing from one structural concept

to another. It must be emphasized, however, that vari-

ations on the actual values for Q of :L- 100 percent may be

expected for different models of the same basic structural
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concept. For conventional fabrication techniques, the

use of bolted joints generally offers the highest potential

damping. The damping is due to coulomb friction at the

joints and damping due to air-pumping between surfaces

of the unbolted sections. (Reference 11.19). It has also

been shown that the use of lubricants or thin viscoelastic

films on the joints can be used to increase joint damping

by a factor of 2 to 4 (See Chapter 9).

TABLE 11.6

TYPICAL VALUES OF DYNAMIC MAGNIFICATION

FACTORS FOR VARIOUS TYPES

OF STRUCTURAL FABRICATION

(Data from Reference 11.16, 11.18)

Method of Construction

One-piece metal structure 50

Welded assembly 24

Riveted assembly 12.5

Bolted assembly 10

Adhesively bonded metal structure 8

Viscoelastic-damped laminated structure 5

Typical Q

In the succeedingdlscussion in this section, it will be con-

venient to consider the effectiveness of various types of

damping treatment in terms of the combined (or specimen)

loss factor, q , of the assembly. This loss factor is es-

sentially equal to the reciprocal of the dynamic magnifi-

cation factor, Q, and depends on the damping and elastic

properties of the materials used in the assembly as well as

its geometry.
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The use of high-strength structural adhesives employing

various thermoplastic and thermosetting polymeric resins

provides an efficient fabrication technique which offers

damping capability roughly comparable to bolted joints.

The information on damping characteristics of such

materials discussed in Chapter 9, indicates that available

structural adhesive materials which have the required high

shear and elastic strength tend to have a damping loss

factor of the order of 0.1 (Reference 11.8, 11.19).

The highest damping capability that can be built-in to
structural materials is achieved with laminated or sand-

wich panels employing relatively low-strength, high-loss

factor viscoelastic materials. Loss factors of the order of

1.0 are typical for such materials.

An example of improved damping that can be achieved

with such materials is shown in Figure 11.36. This figure

illustrates measured transmissibilities for a basic chassis

design that was fabricated by three different methods

ranging from solid construction through simple 2-layer

viscoelastic damped panels to 2-layer damped panels with

additional viscoelastic damping provided at corner joints

(Ref. 11.18). Maximum transmissibilities were reduced

from about 15 for the solid construction to 2 for the

damped-panel with damped-corner construction.

The same concept of sandwich or laminated construction

can also be applied to component circuit boards. A

typical example of the results of such an application is

illustrated in Figure 11.37. This shows a comparison be-

tween the dynamic response of a solid circuit board and a

damped circuit board consisting of a layer of viscoelastic

shear-damplng material bonded to the underside of a con-

ventional circuit board and constrained on the outside by

a thin fiberglass sheet (Reference 11 .18). The use of in-

tegrated damping in this case, shows a reduction in peak

transmissibility from over 40 without damping to about 4

with damping treatment.
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FIGURE 11.36 Transmissibility Curves for Solid and Viscoelastic Damped Box Chasses Loaded with

Multiple Mass Elements to Simulate Components (From Ruzicka, Reference 11.18)
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The application of integrated damping treatment to the
fabrication of new equipment structural assemblies may be
accomplished byuslng commercially available materials or
by custom design and fabrication. Some of the types of
commercially available structural shapes, which incorpo-
rate internal damping treatment, are illustrated in Figures
11 .38 and 11 .39. These illustrate fabricated structural
materials consisting of

• Laminated structural plates

• Honeycomb plates, laminated or with external
solid plates

• Formed laminated structural shapes

• Formed structural shapes with damping inserts

In each of the structural assemblies illustrated, damping
is achieved primarily by dissipation of thermal energy
within the viscoelastic damping materials in shear, as the
result of mechanical vibration of the structure.

The design and fabrication of such structure involves the
following key steps:

• Selection of an optimum structural configu-
ration to achieve the desired damping charac-
terlstlcsand structural strength (See Chap. 9).

• Selection of suitable viscoelastic damping
material which has the required shear loss
factor !3 and shear storage modulus, G' (See
Chapter 9 for review of applicable visco-
elastic materials).

• Use of proper pre-bonding and bond curing
procedures to insure maximum structural in-
tegrity of the laminated structure.

The importance of this last step can not be overemphasized.

However, all three steps are interrelated since the entire
process of design and fabrication of lamlnated damped

structure must be considered from the system's standpoint.

Some of the more significant practical aspects associated
with the use of laminated or bonded structure for design of
protective packaging systems may be outlined as follows°
(From References 11.8, 11.20-11.23)

• Maximum structural strength is ordinarily achieved
at the expense of reduced damping.

• Maximum bonding strength is obtained with
thermoplastic and thermosetting plastic adhesives
(structural adhesives).

• Bonding strength of structural adhesives tends to
increase with a decrease in thickness of the bond

while bonding strength and damping capability of
non-structural or elastomer adhesives will gener-
ally increase with an increase in thickness of the
bond.

• Equipment mounted to laminated panels should be
attached, if posslblet to the outer lamination
onlyt to avoid short circuiting the damping effect
achieved by relative-shear motion between the
laminatlons.

Bonded joints offer the advantage of sealing,
electrical and thermal insulation, and po-
tentially higher reliability than bolted or welded

joints

An optimum design for a bonded joint will usually
have a different configuration and require more
careful design than a mechanical joint. Jigs and
fixtures may be required for assembly to realize a

potential advantage of faster and cheaper fabri-
cation over bolted or welded structure.

• In practice, bonded joints should be designed to
be loaded in shear rather than intensiono Al-

though ideally stronger in tension, viscoelastic
bonded joints do not ordinarily realize the higher
strength in pure tension due to eccentric loading o

• An increase in impact resistance of joints bonded
with elastomer adhesives will generally result in

lower shear strength of the joints.

• Bonded joints tend to be weak under peel and
cleavage stresses (stress concentrations at the
edge of a joint) and should be designed accord-
ingly. (See Reference 11 °20)

• For lap joints of equal area, a joint with the
greater length, normal to the load, is stronger°

• Some joints are subject to weakening under stress
combined with excessive temperature, moisture,
and certain gaseous vapors, depending onthe
type of bonding material.

• Some adhesives contain volatile gaseswhich,
under confinement or under heat, can condense

on critical components causing corrosion, or foul-
ing of electrical contacts and sensitive mechani-
cal parts. For example, epoxy adhesive, pro-
cessed wlth curing agents containingamines,
can be extremely corrosive to copper, especially
in the presence of moisture.

Externally Applied Damping Treatment

Prior to the development of bonded multilayer structure in-
corporating built-in damping, damping of equipment pack-
ages was limited to externally applied treatment. This
method is still used effectively (in some cases, more
effectively than built-ln damping) and is particularly con-
venient for application to existing equipment packages of
complex shape. The types of externally-applled treatment
can be grouped into the following three general categories
according to the mechanism for energy loss. Some specific
configurations within these categories are also listed.
(Reference 11.22, 11.23).

Constrained Layer Damping Treatment (Energy Loss
by Hysteresis in Shear Strain)
- Viscoelastic layer with outer rigid panel
- Damping tape with outer metal foll
- Multiple layer variations of first two types
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Unconstrained (Free) Layer Damping Treatment

(Energy Loss by Hysteresis in Extensional Strain)

- Flexible viscoelastic sheet

- High polymer mastic compound

- Water soluble mastic compound

- Asphalt base mastic compound

Frictional and Inertial Damping Treatment (Energy

Loss by Friction and Viscous Effects)

- Fibrous blankets, spot-cemented between panel

and loading septum

- Passive mass dampers applied locally to large

panels

The three general categories are listed roughly in decreas-

ing order of damplngeffectlvenessandcost. However,

wide variations are possible in damping performance of the

various types of treatment so that a precise quantitative

ranking cannot be made. The choice of any one type of

treatment for application to protective packaging of single

equipment packages will tend to be based primarily on its

damping characteristics, durability, and ease of appli-

cation. Unless a large number of units are to be treated,

cost will be secondary. Other factors such as; weight,

ease of removal, flammability, and thermal conductivity

may also be considered. A qualitative comparison of the

various types of treatment, based on such factors, is shown
in Table 11.7.

For the first two general categories, damping effectiveness

is strongly influenced by ambient temperature andthe

damping material must be chosen to achieve optimum re-

sults for any design temperature range. In general, single

compounds or mixtures of viscoelastic compounds are avail-

able which can achieve their maximum damping at temper-

atures ranging from about -40°F to280°F. The more

common types of viscoelastic damping materials, however,

are most effective in the range from about 30°F to 150°F.

Water soluble and asphalt base mastic materials are gener-

ally effectlve over the temperature range of 0 to 80°F. For

the third category of damping treatment, variations in damp-

ing with temperature are not ordinarily signiflcant. In fact,

these fibrous materials can provide thermal insulation,

in addition to the damping, and are frequently used

effectively in situations requiring both characteristics.

The frequency of vibration also has an important effect on

damping characteristics of externally applied damping

treatment. Examples of temperature and frequency effects

are illustrated in the following.

A typical example of the effect of temperature on damping

of a constrained layer configuration is shown by the

measured data in Figure 11.40 for several variations of the

thlckness of the top layer of a laminated panel configu-

ration (Reference 11.24). Note that the maximum (or

optimum) loss factor for each configuration occurs at a

temperature of 20- 30°C (68- 86°F). Other damp-

ing materials are available with a broader "temperature

bandwidth" or one centered about a lower or higher

temperature (See Chapter 9). The lower two curves in

Figure 11.40 are representative of the loss factor obtain-

able with self adhesive damping foils with a thin metal

constraining layer. Figure 11.41 illustrates the typical

variation in loss factor with frequency for such damping

foils. The data shown were measured for damping tape

with 3 different foil thicknesses applied to a 1/8th inch

aluminum bar as reported in Reference 11.25. The

measured data have been shown to be predictable by the

theory discussed in Chapter 9.
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FIGURE 11 .40 Variation in Combined Loss Factor with Temperature

of a Constrained Layer Damping Configuration Con-

sisting of a 0.08" Steel Panel with a 0.008" Damping

Layer of a Modified Vinyacetate Copolymer Material

with Varying Thicknesses (in inches) of the Steel

Constraining Layer (Data from Reference 11.24)
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FIGURE 11.41 Loss Factor vs Frequency for Constrained Layer

(Damping Foil) Treatment of an Aluminum Bar

with Bar Thickness = 0.125" and Damping Layer

Thlckness= 0.01 " (Data from Reference 11.25)

The same general effect of ambient temperature also occurs

for unconstrained or free damping treatments as shown in

Figure 11.42. This shows the variation of combined loss

factor for several types of treatment. The importance of

carefully selecting the proper damping material for a given

temperature range is clearly illustrated. For the sake of

comparison, the combined loss factor obtained for a well

designed laminated panel (i.e.-a special case of a con-

strained layer configuration) is also shown in Figure 11.42.

This illustrates the improvement in overall loss factor

obtainable with optimum constrained layer damping

configurations over that of the free or unconstrained con-

figuration. It is also important to note that constrained

layer damping treatment, while just as sensitive to temp-

erature variations, can provide effective damping overa

wider temperature range due to its inherently higher peak

loss factor. Nevertheless, the achievement of combined

loss factors of 0.1-0.2 with unconstrained damping treat=

ments offers a very significant reduction in vibro-acoustic

response of equipment packages. Furthermore, the rela-

tive ease of application and ready availability of a wide

varietyofmaterials for this type of treatment will continue

to provide an incentive for its effective application.



TABLE 11.7

QUALITATIVE CHARACTERISTICS OF EXTERNALLY APPLIED DAMPING TREATMENT

(DATA COMPILED FROM REFERENCE II .22 AND MANUFACTURERS LITERATURE)

Type of Treatment

Constrained Layer

Viscoelastic Layer

With Outer Rigid Panel

Damping Tape

Spaced Layer

Unconstrained Layer

Viscoelastic Sheet

High Polymer Water

Emulsion Compounds

Epoxy-Base Compounds

Asphalt-Base Compounds

Frictional and Inertial Damping i

Felt Layers

Fiber Blankets

Passive Mass Dampers

Tuned to Resonance

Damping Characteristics

Effectiveness Frequency

Sensitivity

Excellent Variable

Effect

Good Usually

shows

increased

damping

at
Excellent

lower

frequencies

I
Fair to

Excellent

Depending Critical

frequencyon

Configuration tuning

and Material usually

J not
requ i red

Fair

Temperature

Sensitivity

Highly

Sensitive

Requires

Selecting
Material

for

maximum

damping
within

+ 20°F

of operat-

ing temp.

Fair Low Low

Fair Low Low

Excellent High(_) Low

attuned

frequency

Ease of

App(_atlon

Fair (_)

Excellent

(Self-

Adhesive)

Poor C)

Good to

Excellent

®
Good (_)

Good

Foir(_

Fair

Fair

Poor

Physical

Durability

Excellent

Good

Excellent

Good (_

Good (_)

Excellent

Fair (_

Fair

Resistance to Availability

Oil, Water, in Wide

Acids, Etc. Varieties

Good Good

Excellent

Good

Good Excellent

(Variable

Thickness)

Good Excellent

Excellent Good

Good Good @

Poor Fair

Poor Good

Fair Poor @

Density Cost

ib/in 3 $/Ib (_

(ib/ft 2) ($/ft2)

0.1

(0.I-.3) $3.00

($ o.4-
$ 0.8)

.046-

.055

(0.16-I)

.052- $ 2.50

.055

(0.5) Low

(0.2-1.0) Medium

•002-.006
Medium

(.14-I .0)

O Usually requires special design or fabrication

O Some require separate bonding process

@ Requires careful mixing and preparation

(_ Effective only at tuned resonance

Q Usually custom made

(_ Optimum treatment requires baking

Q Compounds require 1-4 days cure

@ Flame pt 400°F

Q Approximate only for 100 Ib or 100 sq. ft lots

(_ Most varieties suited for 50-100°F

Q Flammable

Primarily designed for auto industry

Thermal

Conductivity

BTU/hr/ft/°F

.075

Low

Low

NA

O'-

<

o
u_

n

o

o

C

7O

3
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FIGURE 11.42 Typical Variation of Combined LossFactor for
Different Types of Unconstrained Layer Damping
Treatment with Damping Layer: Bose Layer Thickness
Ratio _--1. Loss Factor for Well Designed Laminated
Panel Shown for Comparison. (Frequency - 75-160 Hz)

Application of externally applied damping treatment to

ground equipment packages is not generally critical from

the standpoint of additional weight. The criteria for

optimum design is more likely to be the reduction of re-

sponse and the cost of treatment. Sophisticated structural

design methods would, in fact, allow a trade-off study to

be made between the added cost of damping treatment

versus cost savings due to lower vibro-acoustic design en-

vironments, increased structural integrity, or equipment

reliability. While such a trade-off study could be made

within the current state of the art, it is more likely that

design objectives would be limited to achievement of some

desired damping or loss factor for minimum cost.

For a given type of damping treatment, the damping
material costs will tend to be a function of the total added

weight of the treatment so that weight increment, while

not necessarily a critical design factor, is a useful param-

eter for trade-off studies.

The approximate range of added weight for constrained

and unconstrained layer damping treatment of aluminum

and steel plates is shown in Figures 1 1.43 and 11.44 re-

spectlvely. The range of weight ratio versus combined loss

factor for each type of treatment is based on an envelope

of the typical damping configurations considered in more

detail in Chapter 9. Far example, the range for con-
strained layer treatment encompasses configurations where

the thickness of the damping layer is 5 percent of the bas_

layer thickness (i .e., very thin constrained layer) to con-

figurations where the constraining layer thickness is 5 per-

cent of the base layer 0.e., very thin or no damping

layer). Based on the highest performance damping con-

figurations indicated by the upper bounds of the shaded

areas in Figures 11.43 and 11.44, the minimum absolute

weight of damping treatment required to achievea design

goal of 0.2 for the combined loss factor (Q = 5)can be

estimated. For example, for 0.1 inch thick plates with an

area of 1 square foot, the minimum weight of damping

treatment would be about 0.5 to 1 Ib for aluminum plates,

and 1 to 1.2 Ibsforsteelplates. The lower value, in each

case, corresponds to the weight for constrained layer

damping treatment.

1.0
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FIGURE 1 | .43 Comparison of Additional Weight of Constrained

and Unconstrained (Free Layer) Damping Treatment

of Aluminum Plates. Based on Typical Damping

Configurations and Materials Analyzed in Chapter 9.
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Comparison of Additional Weight of Constrained
and Unconstrained (Free Layer) Damping Treatment
of Steel Plates. Basedon Typical Damping
Configurations and Materials Analyzed in Chapter 9.
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To minimize cost of damping treatment for large areas,

less than 100 percent coverage can be used to advantage,

providing the localized treatment is properly located.

While no quantitative methods have been developed to

predict overall damping achieved with reduced coverage,

a reasonable design estimate, based on empirical data, is

provided in Figure 11.45. The optimum location for the

reduced treatment is at the regions of the highest plate

vibration (or antlnodes) at the resonance frequencies to be

dampedo A mixed treatment can also be used employing

lightweight damping over the entire panel with heavier

concentration at antlnode positions. These positions can

be readily determined for the first few resonance modes of

a panel by simple vibration tests. The antinodes for low

order modes will not deviate appreciably with variation in

production tolerances between various units of the same

equipment package.
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Coverage of Plate
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Reference 11.22 provides a useful guide for design of the

third category of externally applied damping treatment -

fibrous blankets or tuned mass dampers. This last category

of damping treatment is not as widely employed for aero-

space ground equipment and, hence, is not covered in

detail in this manual.

11.8.2.2 Protective Potting of Components

An effective and widely used method for protecting and

improving the reliability of electronic components mounted

inside equipment packages involves the use of potting

compounds. This process can take the form of simply coat-

ing the component and its adjacent support structure with

a rigid or flexible potting compound or completely en-

capsulating the components inside the equipment package.

An obvious additional benefit of such treatment, when

properly appliedt is the potential ability to reduce vibro-

acoustic response of the equipment by damping or attenu-

ation of vibro-acoustic energy. The two qualifications;

"proper application, " and "potential ability" can best be

illustrated by examining data reported in Reference 11.5

on the effects of potting treatment on the vlbro-acoustic

response of a 1/16" x 2" x 10" glass epoxy circuit board

supporting an array of electrically polarized capacitors.

Two types of capacitors (type A and B) were used in each

of two configurations (capacitor mounted parallel and per-

pendicular to the long side of the circuit board) with two

different types of potting treatment applied to the board.

The acceleration at the center of the board and the elec-

trical noise output of the capacitors were monitored while

the circuit board, mounted at its corners, was exposed on

one side to high intensity sinusoidal acoustic nolse. The

results of these tests are summarized in Table 11.8 in terms

of the decrease (in decibels) of the acceleration and elec-

trical noise output for the two types of damping treatment;

aquaplas and epoxy. A negative entry signifies an in-

crease in response. Also listed are the number of ca-

pacitors which failed, mechanically, during tests at sound

levels above 140 dB.

The significant results of these tests may be summarized as

follows.

With one important exception, damping treat-

ment with either an epoxy compound or aquaplas

damping compound resulted in about 10dB re-

duction in acceleration response. The exception

occurredfor configuration 2B treated with epoxy.

In this case, the acceleration increased accompa-

nied by a corresponding decrease in damping.

The fundamental resonance frequency of this con-

figuration increased only 9 percent with epoxy

treatment over the untreated configuration. The

reduced damping, in this case, may be due to
elimination of coulomb friction losses between

the capacitor and circuit board bythe epoxy

bonding action. Some evidence for this is found

in the fact that the electrical noise output of the

capacitors generally decreased, when the epoxy

treatment was employed, even though the vi-

bration response increased. This is attributed to

a reduction in relative motion or impact between

the capacitors and circuit board which would be

a source for electrical noise output. For all the

tests, the electrical noise from the capacitors

ranged from about 1 to 40 mlcrovolts per g

acceleration.

In several cases, the electrical noise output from

the capacitors increased for a reduced vibration

response. This is attributed to one of two

anomalies: 1) the breaking of the bond between

the capacitor and damping compound causing in-

creased impact noise to be generated, or 2) in-

creased bending or shear stresses imposed on the

capacitors by their bonding to the vibrating cir-

cuit board. The latter effect was noted for con-

figuration 1B coatedwlth epoxy and was accompa-

nied by a 57 percent increase in resonance fre-

quency over the uncoated configuration. This re-

quired an increase in stiffness of 146 percent for
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TABLE 11.8

EFFECT OF POTTING TREATMENT ON ACOUSTICALLY INDUCED ACCELERATION AND ELECTRICAL NOISE

RESPONSE OF CAPACITORS MOUNTED ON A GLASS EPOXY CIRCUIT BOARD (DATA FROM REFERENCE 11o5)

Config- Sound
uration Level

dB

1A 140

(1) 150
160
165

2A

(2)

IB

(3)

2B
(4)

140
150
165

97-126
140
150
162

97-126
140
150
155
165
170

AcceJ.

Average Decrease In Response (in dB) Due to Potting No. of Capacitors
Acluaplas (5) Epoxy (6) Mechanically Failed

Elect. Noise Accel. I Elect. Noise No Aquaplas Epoxy
Treatment

12 dB
10

13
7

14
1

16 dB
10 3_

4

Fracture

-5 1

-9 2
11(7)

6
-2

7 -4(-5to-22) 0
8 0
4 I 11 1

3(7)

-7 3.5 (-5to16) 0

3 0I
4 10(7)
11 (7)

(1) 5 rows of 3 parallel capacitors (Type A) each with axis parallel to
10 inch side of 1/16" x 2" x 10" circuit board

(2) 11 parallel capacitors (Type A) each with axis perpendicular to 10 inch edge

(3) Same as 1A except Type B capacitors

(4) Same as 2A except Type B capacitors

(5) Thickness - slightly less than diameter of capacitors

(6) Thickness- 0.0375 in.

Circuit Board Failed Completely

this configuration where the capacitors were
aligned with the long dimension of the circuit
board and would hence carry part of the bending
stress for the fundamental mode of the treated
circuit board,

Mechanical failure of the capacitors commenced
at sound levels of about 140 dB for the untreated

board and about 150 dB for the potted units.

In general, these limited results suggest that to optimize
damping effects without imposing added bending stresses
on sensitive components, potting treatment should consist
of thick coatings of a material with a low elastic modulus.
Components should be oriented in such a way as to mini-
mize curvature or bending strain along the sensitive axis
of the potted component. In any event, bonding strength
of the potting compound should be sufficient to insure that

bond separation does not occur under the most adverse en-
vironmental conditions so that impact effects are eliminated.

More specific quantitative criteria for designing potting
treatment, from the standpoint of vibro-acoustic protection

are difficult to establish. This is due to the wide variety
of complex mounting configurations and the importance of
other characteristics of the potting treatment. Some of
these characteristics are (Reference 11.27)

• Resistance to corrosion, moisture, fungus, etc.

• Electrical resistivity

• Thermal conductivity

• Resistance to high temperature

• Ease of removal for repairs

However, some guidelines are offered by considering the
potting treatment of component mounting boards as equiva-
lent to an unconstrained or free damping layer.
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TABLE11.9
TYPICALPROPERTIESOFPOTTINGCOMPOUNDS"ANDPLASTICLAMINATESUSEDFOR

CIRCUITMOUNTINGBOARDS(DATAFROMREFERENCES11.8,11.23,11.28-30)

Material

POTTI NG COMPOUNDS

Epoxy Polymers

Silicone Rubber
ii ii

II ii

II ii

Silicone Rubber Foam

Thiokol Rubber
II II

i| ii

ii ii

Polyurethane

PLASTIC LAMI NATES

Phenolic

Acrylic
Fiber Laminated Plastics

Loss

Factor

.2 - .3

.2 - .25

.37

.34

.47

.15- 1.9

.56

.83
I .29

.5- 2.6

.02
.02
• 022

Freq. E
Hz

x 103 psi

10- 100

.021 - .68
100 .021
400 .035
1000 o036

.005 - .01

.2- 10
I 0 .30
40 .33
100 .36

3600 4.5- 8.7

400-1200
350-450
2700-7900

P

Ib/in 3

.04 - .075

.038 - .053
.04

.0072

.048

'r

.046

.047
•039-. 043
.O48- .062

Max.

Temp.
oF

5OO

300 - 500

170

250

Tensile

Strength

x 103 psi

2-12

.2- 1.0

.02

1.3

6 (shear)

6-9
6- 10.5
40

"Representative values - subject to wide variation depending on formulation.

Typical damping and elastic properties of some of the more
common type of potting compounds and plastic laminates
for circuit boards are listed in Table 11.9. Due to the

wide range of properties inherent in such materials and
the lack of readily available detailed data, a detailed
listing is not possible. Thus the table provides only a re-
presentative range of the significant dynamic charac-
teristics for common potting compounds and also gives
typical test data on single samples for the sake of illus-
tration.

These data may be used with the theory for unconstrained
damping layers covered in Chapter 9 to estimate the damp-
ing or combined loss factor for component mounting boards
treated with a layer of potting compound. Since most of
these compounds have a relatively low elastic modulus,
the combined loss factor may be roughly estimated by the
equation: (Reference 11.22)

(11.18)

where

q2

E2,E I

h2,h 1

= loss factor of potting compound

= elastic modulus of potting compound
and mounting board respectively.

= thickness of potting layer and mount-
ing board respectively.

Estimates of damping made with this expression are likely
to be conservative due to the more complex geometry and
the tendency for the potted components themselves to in-
crease the effective stiffness of the "damping" layer.

When the potting treatment involves complete encapsu-
lation of components within an equipment container, re-
sonant vibration response of the components, relative to
their mounting structure, will be virtually eliminated due
to damping and bonding action. Vibro-acoustic ex-

citation reduces to rigid body motion of the component
due to vibration of the entire package or to dynamic
stresses imposed by compressional or shear waves trans-
mitted from the walls of the equipment package through
the potting compound to the component. The former type
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of excitation will generally be significant only for com-

ponents, such as sealed relays, which contain internal

sensitive elements inside a separate housing. In this case,

vibration isolation of the entire equipment package may be

necessary. For the latter type of direct excltatlon through

the potting medium, a rough estimate of the amount of
attenuation can be made as follows.

The attenuation in decibels per unit distance of a longi-

tudinal stress wave in a Iossy medium is given by

where

a = 8.68_ rlf/C L dB/unit distance

r I = extensional loss factor in medium

f = frequency- Hz

CL = _speed of plane longitudinal waves

100

_, 1.0

,o

0.1

' ' ' 'I _ ' ''I
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/
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Frequency - Hz

If the small difference between velocity of longitudinal

waves " and compressional or dilitational waves in the

medium is ignored1 then the above expression provides a

rough estimate of attenuation of the latter type of waves

in a three dimensional Iossy medium. This expression has

been used with the data in Table 11.9 and additional,

more detailed data in Reference 11.28, to estimate the

attenuation rate for typical potting compounds. Typical

results, given on Figure 11.46 show that an attenuation of

10--20 dB per inch of thickness could be expected at fre-

quencies above 1000 Hz. The benefit of such attenuation

would be significant for electronic components which are

very sensitive to compressive stresses. It should be pointed

out, however, that the magnitude of such stresses will

normally be very low for most equipment packages, even

without any attenuation. The stresses would not generally

exceed the acoustic pressures on the outside of the equip-

ment package. Also, an even greater reduction in com-

pressional stresses on components could be achlevedl de-

pending on the configuration, by acoustic isolation. This

topic is considered in the next section.

To summarize, the primary vibro-acoustic protection

offered by potting treatment is to reduce orellminate

secondary vibration of components relative to their mount-

ing structure and provide increased damping of the mount-

ing structure itself. Potting treatment should be applied

with careful consideration of the sensitivity of components

to induced bending stresses resulting from more rigid bond-

ing to the mounting. Application of protective coatings to

circuit boards and modules is increasing due, primarily, to

improvements obtained in circuit reliability by elimination

of arcing, corrosion_ etc. Further improvements in the

vlbro-acoustic protection resulting from such treatment can

be made by optimizing the dynamic properties of these

potting materials. Development tests should be conducted

on any new configurations to insure that optimum vibro-

acoustic protection is achieved. This is likely to be par-

ticularly important for potting treatment of solid state

circuits which may be more sensitive to induced bending

stresses imposed by the potting treatment.

FIGURE 11.46

11.8.2.3

Estimated Attenuation Rote o[ Compression Waves

for Typical Potting Compounds (Data from Reterence

I1 .2B and Table I 1.81

Acoustic Isolation of Equipment

Protective packaging design concepts discussed so far have

been concerned with reducing the vibration response of

the equipment structure and its contents by various forms

of damping or potting treatment. However, reduction of

the acoustic environment for the equipment may also be

desirable or necessary° It will be necessary if internal

components are sensitive to direct acoustlc excitation

(e.g.-See Table 11.4, page 11-23) and desirable if

acoustically-induced vibration response of the equipment

is more efficiently reduced by decreasing the acoustic in-

put rather than by applying damping treatment. The design

objectives and methods for acoustic isolation will not

necessarily be the same in each case. To clarify these

differences, a brief review of the significant paths for flow

of acoustic energy to equipment components inside a

package isagain in order. This is illustrated in the follow-

ing diagram. Flow of acoustic energy is represented by

solid lines and flow of vibration energy by dashed lines.
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Vlbro-Acoustic Response Iof External Structure
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p .........
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There are four links involving flow of acoustic energy.
The first link represents the path between the source of
external noise and the equipment package itself. Noise
control in this link can range from local acoustic shielding
of a single equipment package by a single protective en-
closure to noise reduction within the room, building, or

test area where the original source is located. These
latter noise reduction concepts are treated elsewhere in
this manual (Chapter 7 and 9) and are not repeated here.
For a single protective enclosure, the theoretical design
objective for noise reduction would depend on the relative
significance of the subsequent excitation paths within the
enclosed package. If internal vibration response of the
protected equipment package is the critical path, then
noise reduction of the protective housing should be
effective at frequencies starting with the first structural
resonance of the equipment. If noise transmission to the
inside of the protected package is critical, then the de-
sign objective may be either the same as for the vibration
path, if structural resonances control the internal noise,
or be limited to achieving effective noise reduction at the
internal acoustic resonance frequencies when the latter
control the internal noise. A practical design objective
would tend to ignore this distinction and would be based
on achieving an effective transmission loss at frequencies
starting with the lowest structural resonances.

The second link in the diagram represents the overall
acoustic noise reduction between the outside and inside of
the equipment package itself. A similar evaluation of de-
sign objectives can be made for this path as for the first
path except that now the objectives can be based on the
relative significance of direct acoustic excitation of the

component (path 3) or acoustically induced vibration of
internal structure, (path 4). Specific examples and design
concepts for these first two paths will be given shortly.

The third path represents the direct excitation of a com-
ponent by the internal noise field. Some acoustic isolation
in this path may be achieved by potting treatment, as dis-
cussed in Section 11o8.2.2, or by hermetically sealed
containers for individual components. Such measures will
generally only be effective at frequencies above about
1000 Hz. Noise reduction will be limited to about 10-15

dB and would ordinarily be only a secondary benefit of the
protective housing or coatlng.

Finally, path 4 represents the vibro-acoustlc coupling of
internal noise resulting in a vibration response of internal
structure. In most compact, hardened, ground equipment
packages, this will be a relatively ineffective path com-
pared to direct mechanical or acoustical excitation of ex-
ternal structure. Such a situation is illustrated by the

data in Figure 11.47o This illustrates the results of an ex-
periment reported in Reference 11.5, on the structural
vibration transmitted from the front to backwallofa

simulated equipment package driven mechanically. The
test was conducted, first, at normal atmospheric pressure
and then in a vacuum chamber. No significant differences
were encountered in vibration transmission between the

two tests thus clearly demonstrating, for thls case, the
predominance of direct structural transmission instead of
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FIGURE II .47 Relative Vibration Response of One Wall of a

Chassis with Mechanical Vibration Excitation on

the Opposite Wall. One Line for Test at Atmospheric

Pressure and Other Line at Less than ]ram Hg. (Data

from Reference 11,5)

internal acoustic excitation. Exceptions can occur, how-
ever, when internal component mounting structure is
effectively vibration isolated. In this case, internal
acoustic noise may be a more significant source of internal
vibration response. An approximate upper bound of the
effectiveness of this path can be specified by a simplified
form of the analytical methods discussed in Section
11.5.3.1. Based on an analysis of the acoustic tests of
component-ladened circuit boards, reported in Reference

11.5, the maximum acceleration, A(fo), at the funda-

mental frequency (to) of the circuit board could be pre-

dicted by the expression:

P(fo )
A(f o) _ T " Q - g's (11.20)

where

P(fo) = rms acoustic pressure near circuit
board at frequency fo - psi

w = surface weight of circuit board plus
components- psi

Q = resonant amplification factor of board

Observed resonant amplification factors for this test varied
from 23 to 100; the average was 40.

Consider, now, the noise control design procedures for the
first two paths. Both involve essentially the same three
basic elements:

• Maximize the structural impedance of the outer
walls to reduce their vibration response and
corresponding noise transmission

• Minimize acoustic leaks through the outer wall
to prevent "short circuits" of the basic noise
attenuation through these walls

• Minimize resonant response of internal acoustic
modes by providing internal acoustic absorption
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Estimating Noise Reduction

The types of enclosures used for equipment may be grouped

roughly into the following three categories according to

their characteristic noise reduction capability.

• Conventional Cabinet Racks

- Low Frequency Noise Reduction - Low

High Frequency Noise Reduction - Low to

Average

• Specially designed Large Cabinets or Walk-In

Enclosures

Low Frequency Noise Reduction - Low to

Average

High Frequency Noise Reductlon-Average to

High

• Small Sealed Enclosures for Exposed Equipment

Low Frequency (Below 100 Hz) Noise Re-

duction- High

High Frequency (Above 100 Hz) Noise Re-

duction - Average

Methods for predicting noise reduction for these three

categories vary, depending largely on their size and de-

gree of venting to the surrounding atmosphere.

For example, for the first category, vents or air condition-

ing systems are usually necessary so that noise attenuation

will normally be limited to very low values. A rough esti-

mate of the noise reduction (NR) could be made, in this

caset with the following expression.

Total Surface Area of Cabinet

NR "_10 log Vent Area - dB

This assumes that the vent area has zero transmission loss

and effectively cancels any transmission loss provided by

the rest of the structure. Thus, a cabinet with a vent area

of five percent would have a sound transmission loss of

about 13 dB. The actual noise reductiont or dlfference

between external and internal sound levels, would be a-

bout 6 dB less than this figure at low frequencies and 0 to

4 dB higher at high frequencies (above 200 Hz). Further

refinements to this type of estimate would usually not be

practical for this type of enclosure.

For the second category_ conventional methods for esti-

mating noise reduction for rooms, discussed in Chapter 9,

can be employed. Typical noise reduction obtainable for

this type of enclosure has been shown in Figure 10.37_

page 10. 34.

These prediction methods are based on statistical concepts

for the structural response and internal noise field and are

not entirely applicable to the third category of equipment

packages due to their size and corresponding low density

of structural and acoustic modes. This is illustrated by the

measured noise reduction of a small simulated equipment

package shown in Figure 11.48. The lowest acoustic re-
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FIGURE 11.48 Example of Noise Reduction Through 1/16" Wails
of a 5" x 7" x 11" Aluminum Container Simulating

an Equipment Package (Data from Reference 11.5)

sonance of the 5" x 7 " x 11"enclosure occurs at a fre-

quencyof610 Hz which is well above the lowest structural

mode (~ 250 Hz in this case). Thus, resonant response of

discrete structural and acoustic modes of these small

equipment containers will usually control the maximum

internal noise levels. This makes it difficult to accurately

predict noise transmission for such enclosures due to un-

certainties in estimates of damping and absorption of the

discrete modes. Nevertheless, a simplified prediction

method can be usefully employed to estimate noise re-

duction for these enclosures. It can also provide a guide

for improving noise reduction design particularly at fre-

quencies below the lowest structural mode.

Such a prediction method is outlined in self-explanatory

fashion in Figure 11.49. The chart has been simplified to

include both the transmission loss through the enclosure

walls and the internal effects of the sound absorption in-

side the enclosure. The chart has been developed, in

part_ from concepts outlined in Reference 11.31. A graph

similar to Figure 11.49 can be constructed for a given

equipment container using a semi-log graph paper and

following the procedures indicated.

The graph should be started by plotting the mass law line

using the equation indicated and then the fundamental

frequency of the largest panel, fl ' located on the abscissa.

The design charts in Table 3.11 of Chapter 3 may be

used for estimating the resonance frequencies of the

panels. Between this frequency and the frequency f2'

(the lower bound of the coincidence region)_ the noise

reduction will fall well below the mass law transmission

loss at discrete structural and acoustic modes of the en-

closure. The estimated minimum noise reduction in this

range is located 10 dB below the mass line and is based

on average conditions. Deviations as much as 10 dB near

the lower order panel resonance frequencies can be ex-

pected. (See Reference 11.32 for a more detailed analysis

of sound transmission in this frequency range).

Between the frequency f2' which is found by construction

on Figure 11.49, and 4 f2 t the noise reduction will be

controlled largely by coincidence effects. The estimated

minimum noise reduction in this range is specified by the
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FIGURE 11.49 Design Cha_t for Estimating Noise Reduction
Through Small Equipment Enclosures with
Simply Supported Side Walls

parameter H 2 in Figure 11.49. This corresponds to the

frequency range where bending wavelengths in the panel

walls are equal to the trace wavelengths of the acoustic

waves impinging on the walls. The lowest frequency at
which this condition can occur is called the critical fre-

quency, fc' and in typical metal walls of thickness h

inches, is equal to

f = 470/h Hz
c

In this frequency range, as in the last one, acoustic ab-

sorption helps to limit the maximum sound transmission.

However, structural damping, while beneficial, is not as

important as in the lower range. In this higher frequency

region, the panel tends to act more like a lumped mass.

According to the above criteria, this frequency range will

tend to fall near the upper frequency range of interest for

most equipment contalners.

The estimated noise reduction in the stiffness region is

based on the ratio of effective stiffnesses of a panel and

the enclosure. The largest panel of the enclosure is se-

lected as the controlling element for predicting noise re-

duction. The effective stiffness (or ratio of static pressure

load to net volume displacement) for a typical side panel

is given, with sufficient accuracy for this analysis, by

the firstterm in a normal mode expansion of the deflection

of a simply supported panel to a static load. For any

consistent system of units, this is given by:

2

lt8Dh_ 3 lab--.. + -_-_1 (11o21)
k = A3P 64

where

D = Bending Stiffness = Eh3/12(1 - v 2)

E = Modulus of Elasticity

h = Panel Thickness

v = P.oisson's Ratio

a,b = Panel sides

A = ab

The error incurred by neglecting higher order terms in the

modal expansion is conservative and entirely negligible for

normal panel aspect ratios. This stiffness is more con-

veniently expressed in terms of the fundamental frequency,

fl' and surface weight w of the panel in the form

lt6 2

k fl w (11.22)

p 16gA

where

g = Acceleration of gravlty.

The corresponding effective or acoustical stiffness of the

enclosure is given by

where

The

can

to

2 I'P

k = pc = o (11.23)
c V V

p = Density of Air

c = Velocity of sound in air

V = Volume of enclosure

y = 1.4foralr

P = Atmospheric pressure
o

volume taken up by the contents inside the enclosure

usually be neglected. However, it may be desirable

modify the predicted fundamental frequency of the

panel, to account for the added stiffness of the enclosure,

when plotting the noise reduction curve. In this case, the

frequency is increased by the ratio [1 + kc/k p ]1/2

where k and k are given by Equations 11.22 and 11.23,
p c

respectively.
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The noise reduction in thls region is defined by

NR = 10 log 1 +k kc

which reduces to the term H1 given in Figure 11.49 for an

ambient pressure of Po = 14.7 psi and an inch-lb-sec.

system of units.

For panel boundary conditions other than simply supported,
the following corrections apply to Equatlon 11.22, as-
summing changes in resonant frequency due to different
boundary conditions have already been applled.

Clamped Edges - Multiply kp by 1.5

Supported on one Edge - Multiply kp by 1 o2Clamped on Other Edge

The decrease in noise reduction at the lowest frequencies
is due to leakage through joints or penetrations of the en-
closure walls. The loss in this region has been estimated
with the use of the lumped parameter analog of the en-
closure which is illustrated in Figure 11.50. A typical
transmission curve is also shown indlcating the cut-off
frequency f . The model is applicable for frequencleswell
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FIGURE11.50 (a) Equivalent Analog Circuit and (b) Acoustic

Transmission Curve, with Damping, Through

Leakage Path into Small Equipment Enclosu_eat

Frequencies Well Below the Fundamental of

Structural and Acoustic Modes

below the fundamental structural and acoustic modes of
the enclosure. The stiffness elements are the same as de-

fined in Equations 11.22 and 11.23. The leakage path,
shorted across the plate stiffness, if represented by the

acoustic mass m_/S 2 where

m_ = pL'S (11.25)
p = Mass density of air = 1.4x 10-7

lb. sec2/in 4 at 59°F

L' = Effective length of leakage path-ln.

S = Cross-sectlonal area of leakage path-in 2.

The effective length of the path can be assumed to be

equal to the actual length plus an end correction

1.7 S__. Although a more accurate representation of
the leakage path could be made to account for viscous
and heat conduction losses (Reference 11.33), this re-
finement would only be justified in cases where extreme

requirements exist for minimizing low frequency sound
transmission into a critical enclosure. Such a situation

could exist for a protective enclosure of sensitive equip-
ment located very close to a launch or rocket test stand.
In this case, an intentional leak could be built into the
unit for pressure relief purposes which could still provide
high sound attenuation. If necessary, the leak could be
calibrated by imposing a small but rapid change in
pressure differential on the enclosure and observing the
internal pressure change with time. Under such con-
ditions, a small leak will act like a pure acoustic re-
sistance and the differential pressure time history can be
roughly described by the simple expression

where

Z_P(t) = Ape -t/T (11.26)
O

A p = Initial differential pressure
O

T = Acoustic time constant

_ 8_ pL'V - sec.
S2yp

O

where

P = Viscosity of air= 27x 10-10

(T°R_ 0"7
x \..._-_-_-/ Ib.sec ./in. 2

.3
V = Volume of enclosure - m

y = 1.4forair

P = Ambient pressure - psio

As an example, for a 10-inch cubical enclosure with a
leakage path consisting of a 0.02-inch diameter hole
through a 0.1-inch plate, the time constant T would be
3.9 sec. This would be the time required for a sudden
differential pressure change to decrease to 37 percent of
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its initial value. If the enclosure were made of aluminum,

the stiffness controlled noise reduction would be 31 dB but

would drop rapidly to zero for frequencies below 18 Hz.

Summation of Noise Reduction For All Panels of the

Enclosure

For larger, more complex enclosures, it may be desirable

to compute the noise reduction for each major panel to

determine an overall composite noise reduction for the

enclosure. The effective acoustic stiffness k o£ the out-
P

side walls is equal to: one over the sum of the compliance

(1/stlffness) of each wall or

"£p = 1/[l/kpl +l/kp2+ .... 1/kpn ] (11.28)

Then using Equation 11.22 and Figure 11.49 or Equations

11.22 - 11.24, the stiffness-controlled noise reduction

can be computed for the composite structure. In this fre-

quency range, it is assumed that the acoustic wavelength

is greater than the circumference of the enclosure. At

higher frequencies, the net displacement of air inside

will decrease due to the out-of-phase action of the

various panels.

At frequencies above the first structural resonance, the

overall noise reduction through all sides of the enclosure

can not be readily computed by the usual methods appli-

cable in architectural acoustics due to the low modal

density. However, some guidelines can be provided to

assist in design improvements. At frequencies near the

lower panel modes, opposing symmetrical panels will tend

tovibrate in-phase causing approximately a 6 dB decrease

in noise reduction, In this same frequency range, the

additional noise transmission through the other walls which

vibrate out-of-phase will tend to smooth out the trans-

mission curve since each panel will contribute its own in-

dependent modes to the transmission of sound energy. As

a rough guide, the initial estimate of noise reduction

based on the largest single panel could be reduced by 6dB

at frequencies where in-phase motion will occur and by

the following correction factor, A, at intermediate fre-

quencies above the lowest panel modes.

dB Ill 29/

where

A. = area of each of the other n panels
i

A 1 = area of largest panel

r = empirical weighting factor -< I

The factor r would be used to weight the relative area

Ai/A 1 of the other panels according to an engineering

estimate of the relative damping or vibration charac-

teristics of the other panels. Thus, r could have the

value of 1 for any undamped panel not supporting any

equipment components and 0.1 for any panels which are

well damped or heavily loaded with components. Ad-

ditional refinements could include identification of the

fundamental modes of the other panels. Further im-

provements in noise reduction estimates would require ex-

perimental tests.

Methods for Design Improvement

Methods for increasing the noise reduction through small

equipment enclosures have now become clear and may be

summarized as follows.

Transmission through the leakage paths is accomplished by

reducing the ratlo-leakage area/path length. Very small

leakage areas are required to maintain high noise re-

duction at low frequencies encountered around rocket test

sl tes.

In the stiffness controlled region, increasing panel stiffness

is the only effective solution for increasing noise reduction

for a given enclosed volume. Addition of stiffeners, and

use of corrugated or honeycomb panels can be used to

provide such stiffening. Note that lncreaslng structural

damping is ineffective in this range since the panel im-

pedance is stiffness controlled. Although lightweight,

stiff materials can provide high noise reduction in this

range, this will be at the expense of reduced transmission

loss at high frequencies.

In the frequency range of low order structural resonances,

selective application of damping treatment, such as dis-

cussed in Section 11.8.2.1, will be the single most ef-

fective means for reducing internal noise levels. A typi-

cal example of improved noise reduction achieved for a

small equipment container with the use o£ laminated

structure in place of solid panels is illustrated in Figure

11.51. Note the marked reduction of the dip in noise re-

duction at the first panel mode for the laminated panel.

It is also worth noting the high noise reduction achieved

at lower frequencies with both configurations. A pre-

dicted noise reduction of 41 dB agrees very well with the

observed results. As expected, structural damping has no

effect on noise reduction in this stiffness control led

region.
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FIGURE 11 .51 Comparison of Measured Noise Reduction for

SoJld and laminated Panel Equipment Enclosure

(0.08" x 4.5" x 6.5" x 6.5" Aluminum)
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In the frequency range of internal acoustic resonances,
treatment of the interior with acoustic absorption ma-
terial will help to maximize noise reduction. Such ma-
terial can also provide an indirect source of damping for
panel vibration by increasing the acoustic radiation re-
sistance load for the vibrating panels. One type of treat-
ment, available commercially form suppliers of damping
materials, incorporates unconstrained layer damping treat-
ment on one side of a two layer composite with a layer of
open cell, foamed plastic material on the other side to pro-
vide high acoustic absorption. Typical acoustic absorption
coefficients for one type of treatment are listed in Table
11.10.

TABLE 11.10

TYPICAL ACOUSTIC ABSORPTION COEFFICIENTS OF
FOAMED PLASTIC SHEETS FORMING EXPOSED SIDE OF
A COMBINED STRUCTURAL DAMPING*AND ACOUSTIC

ABSORPTION TREATMENT

Foam Frequency Hz
Thickness 125 250 500 1000 2000 4000

1/4" 0.05 0.06 0.10 0.20 0.45 0.82

I/2" 0.06 0.10 0°25 0.60 0.90 0.99

1" 0.12 0.30 0.66 0.90 0.99 0.96

"Loss factor of 0.05 in. thick damping layer was 0.017 at
160 Hz on 0.25 in.steel plate (Geiger Plate Test).

The potential benefits of this type of combined structural
and acoustic damping for interior lining of small equip-
ment containers are obvlous.

A wide variety of conventional acoustical materials are
also available for interior acoustic treatment of en-

closures. Materials to be considered should have a very
high absorption coefficient at the lower order internal
acoustic resonances for maximum effectiveness. An ex-

tensive table of absorption coefficients of such materials
is given in Table 12.13, page 12.23. Radiation damping
of the walls and low frequency acoustic absorption can be
increased by adding a thin impervious membrane to the
outside surface of the treatment. Maximum effectiveness

of any acoustic treatment can be achieved by placing it
at pressure antinodes. For example, a minimum cost treat-
ment for damping internal acoustic resonances would con-
sist of an acoustic lining on three adjacent walls forming
one corner of the enclosure.

Structural design changes can be made which can also re-
duce noise transmission. These include the avoidance of

large unsupported opposing walls, breaking up symmetry of
the wall structure, and use of adhesively bonded joints.
Finallyt a desirable design concept would minimize the
ratio of unsupported area to thickness for the walls of the
enclosure since this ratio controls the modal density of the
structure and the noise reduction will vary inversely to

modal density at high frequencies (Reference 11.32).

In the frequency range where coicidence effects become
significant, the same design improvement concepts in-
volving structural damping, acoustic absorption, and
structural design are beneficial. However, one additional
factor becomes significant in this range. At coincidence
frequencies much greater than the fundc_mental mode,
damping of the bending waves in the finite panel causes it
to behave as if it had no boundaries, and hence standing

waves are suppressed. Then, as shown in Reference 11.31,
the sound transmission loss (in linear units) is proportional

to the square of the quantity:

where PP rl/cL

pp = material density

q = material loss factor, and

cL = speed of sound in material.

While the above expression indicates that material thick-
ness is not important forsound transmisslonat coincidence,
the total surface mass, and hence panel thickness does
control sound transmission at frequencies nearcoincidence.
Nevertheless, maximizing this quantity will tend to reduce
coincidence dips in the noise reduction curve. The ratio

pp/C L is listed below for a few materials in descending

order of relative magnitude, based on a value of 1 for
steel. Available data on the loss factor, r I , for these
materials is atso listed and indicates a similar trend is
followed.

"Coincidence" Parameters

Material Pp/cL q

(relative to steel)
Lead 6.1 .015
Plywood 2.18 .01
Brass 1.66 -

Copper 1.63 -
Cast Iron 1.36 .10
Steel 1.00 .0047

Plexlglass 0.85 .002
Titanium 0.58 .0012- .0037
Aluminum 0.34 °000045 at 1500 Hz

to .003 at 15 Hz
Magnesium 0.23 .0032

On the basis of these parameters, steel is clearly prefer-
able among the more common materials used for equipment
contalners. The inherent difference in noise reduction for
steel and aluminum indicated by the above data is re-
flected in Figure 11.49. Brass and copper alloys offer

further possible improvements where strength is not crlti-
cal. Unfortunately, comparable data are lacking for the
wide variety of structural plastics which are frequently
employed for equipment packages. Although optimum ma-
terial selection appears to offer definite benefits in maxi-

mizing noise reduction of high frequencies, itshould not
be overemphasized. In other words, the most effective
means for reducing noise transmission through equipment
enclosures is through optimum application of structural
damping, acoustic absorption and good vibro-acoustlc de-
sign practices.
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11.8.2.4 Vibration Isolation of Equipment

As indicated earlier in this chapter, vibration isolation is
one of the important methods for reduclng acoustically-
induced environmental loads on equipment. As shown in
Figure 11.34, page 11-31, structurally transmitted vi-
bration can originate at a point remote from the equipment

package due to acoustic vibration of the basic mounting
structure or originate at the package structure itself by
direct acoustic excitation of the container walls. When

other means of reducing thls acoustically generated vi-
bration have been exhausted, such as noise reduction or
damping treatment, then vibration isolation may be called
for to provide adequate equipment protectlon. It is de-
sirable to conclude this chapter, therefore, wlth a brief
revlew of practical methods for protecting ground support
equipment from such vibration. Only the use of vibration
isolators, as a part of protective packaging design, is
considered in this section. A more general discussion of
methods for vibration control is given in Chapter 9. The
theoretical background for vibration isolation is reviewed
in Chapter 3 and is also extensively covered in engineer-
ing texts and handbooks (e.g. Reference 11.34-35).

BaSic Principles

If an equipment package is represented as a rigid mass
with a weight W-Ibs, then a linear spring with a stiffness
k-lb/in, inserted between the package and its support
structure will attenuate frequency components of the sup-

port motion which exceed a cut-off frequency fc equal

to_f'_ times the resonant frequency of the spring-mass.
That is

f =_'_ f
C a

where

fo w  -313¢C 

(11.30)

The absolute transmissibillty T, which is equal to the
ratio of the absolute motion of the mass to motion of the

support, varies with the frequency ratio f/fo' as plotted

in Figure 11.52 for a linear damped vibration isolator.
The motion may be specified as the amplitude of the dis-
placement, velocity or acceleration. Note in Figure

11.52 that for f/fo > 1.4, the transmlsslbility increases

(i .e., higher vibration transmission) as the amplification
factor, Q, of the isolator decreases. This is just opposite
to the change in transmissibi!ity at resonance which is

approximately equal to the dynamic magnification factor
Q. At frequencies well above resonance, the transmlssi-
billty is equal to

Tf>f _-_j/(1 +(f/foQ)2"/(f/fo )2 (11.31)
0

which approaches f/fQ for low values of Q,or (f/f)2

for high values of Q. Thus, the idealized model for an
isolator indicates low damping is desired for isolators to

achieve maximum vlbration attenuation at high frequencies
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FIGURE 11.52 Transmlsslbilltyofo Linear Viscous

Damped Isolator

well above the resonant frequency. However, an ad-
ditional effect occurs in vibration isolators at high fre-

quencies which dictates a compromise is desired in se-
lection of an isolator material for optimum high frequency

transmisslbillty. This is the phenomena of wave motion in
the isolator which acts to increase the transmlssibility at

frequencies corresponding to one-half wavelength reso-
nances in the isolator spring (Reference 11.34). These
resonant peaks may be very pronounced for isolators, such
as steel springs, with low damping properties. A suitable
compromise is provided by the use of rubber vibration iso-
lators with intermediate values of damping (Q's of the
order of 5 to 20). A comparison of typical transmlssl-
bilities for three different types of isolator materials is

shown in Figure 11.53. This illustrates the variation in
high frequency transmlsslbility with damping discussed a-
bove. The curves for the rubber and Hycar isolator ma-
terials are based on measured data. The curve for the

steel coil spring was calculated on the basis of the theory
in Reference 11.34.

The peaks in the transmlssibillty curve above the cut-off
frequency occur at the standing wave resonance frequen-
cies, f given by

sn

where

fsn = n_f ° _ (11.32)

f = resonance frequency of ideal isolator
o (Equation 11.30)

W E = weight of equipment supported by
isolator

WI = weight of isolator

n = 1,2,3 .....
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It is important that these standing wave effects be con-

sidered when evaluating high frequency vibration trans-

mission of isolators. Due to these standing waves and the

additional influence of the flexibility of the equipment

package itself, minimum transmissibility of an isolator is

usually limited to .01 to .1 (20 to 40 dB) at frequencies

greater than 10 times the resonant frequency °

Selection of Vibration Isolator Configuration

The types of vibration isolators most frequently used for

equipment packages are

• Rubber (in shear or compression) vibration

isolators

• Steel call compression springs

• Wire mesh compression springs

• Foam rubber compression pads

Typical examples of these isolators are illustrated in Figure

11.54. Other types of material such as cork, fiberglass

and felt are a!s0 used for vibration isolation along with

pneumatic cylinders or air bags. However, these types

are more frequently employed for isolating large structures

or heavy machinery.

Selection of a particular isolator configuration may re-

quire the evaluation of several design parameters, in ad-

dition to the obvious ones of resonant frequency and damp-

ing. The significance of these parameters will increase

with the size and complexity of the equipment package
and its ambient environment.

• Resonant frequency to achieve required trans-

missibility in the frequency range of the input

moti on

a) Rubber in Shear

c) Rubber in Shear and

Compression

e) Wire Mesh Spring

b) Rubber in Compression

d) Coil Spring

f) Foam Rubber

Compl ession Pad

FIGURE 11.54 Typical Vibration Isolators for Ground

Support Equipment

• Damping

• Maximum static load

• Maximum allowable deflection

• Maximum operating temperature

• Mounting position on package to minimize

coupling of multiple modes of isolation system

• Effect of non-rigid equipment package

Resonant Frequency Under Load

Most rubber materials exhibit non-linearcharacteristlcs

under static loads. In this case, the resonant frequency

estimated for the linear spring by Equation 11.30 or by its

equivalent,

f = 3.13 (11.33)
0

where

6st = static deflection under load - inches

is not valid. The effective or dynamic stiffness of a non-

linear spring for a given static load is the local slope of

the force-deflection curve at the static equilibrium point.

For isolators using rubber in compression, this dynamic

stiffness is greater than the static stiffness (hard spring) so

that the resonant frequency is higher than predicted by

Equation 11.33. This is illustrated in Figure 11.55 which

shows the typical relationship between resonance frequen-

cy and static deflection for several types of vibration iso-

lators under full load. For steel springs, the actual reso-

nancefrequency is closely approximated by theory. Rubber
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(From Reference 11 .38)

isolators loaded well below their full capacity also behave

in a nearly ideal fashion.

This figure also illustrates the fact that for the materials
shown, resonance frequencies below 6 Hz are achieved
only with call springs. Thus, for maximum attenuation of
low frequency vibration induced by noise of rockets, call
spring isolators, or equivalent mechanical or pneumatic
springs, are generally required.

Damping

Typical values for resonant amplification factors of several
types of vibration isolator materials are given in the
following (References 11.34 and 11.36).

Material Q

Natural Rubber (50 parts, Carbon Black) 5-25

GR-S Rubber (Krylene) 4.5

Polylsobutylene 1.7-3.3

Steel 1O0

These represent approximate values which are subject to
appreciable variation depending an the amount of ad-
dltlonal friction damping provided by the isolator configu-
ration.

Maximum Static Load

The maximum static load capacity of conventional vi-
bration isolators ranges from less than 1 pound to over
10,000 Ibs per unit. The resonance frequencies, under
full load, fall in the range from 6 to over 30 Hz. Detailed
performance characteristics of specific units should be ob-
tained from manufacturers specifications. A summary of
maximum load capacity, stiffness and size of a wide va-
riety of commercially available rubber and call spring
isolators is contained in Reference 11.34.

Maximum Allowable Deflection

The maximum deflection of a vibration isolated package
must be considered to insure that: 1) the isolator does not
bottom-out under peak dynamic loads or 2) the rattle
space, or envelope of maximum displacement
pac-_age, is sufficient to prevent any impacts wlth ad-
jacent hard surfaces. The result, in either case, would
be to generate a shock input to the package which can be
more severe than the environment of the mounting structure.
This is particularly true for any shocks resulting from in-
adequate rattle space. Shocks due to bottoming out of the

isolatorare frequently attenuated by a gradual "hardening"
of the load-deflection characteristics of the isolator

spring, thus eliminating any sudden changes in acceler-
ation. However, specific "bottoming" characteristics

vary widely with the design of the isolator and must be
determined from detailed manufacturers specifications.

The determination of rattle space requlrementswill de-
pend on the frequency spectrum of the input motion to the
isolator. Since the source of vibration at rocket test sites

will be random acoustic noise, the vibration spectrum of
the equipment foundation will generally consist of a com-
plex spectrum of random noise with peaks in the spectral
content corresponding to the vibration modes of the su-
porting structure. When the random input spectrum can be
described by a constant acceleration spectral density,
W(f), (See Chapter 3 for definition of acceleration
spectral density) over a bandwidth appreciably wider than

the resonant bandwidth, f/Q, of the isolator, then the

root rms deflection, X , of the package, relative to its
r

mounting surface, can be estimated by

where

,_ ~ 386 _- W(f) Q fo" (11.34)
r (21t fo )_

Q Maximum Transmlssibility at

Resonant Frequency fo

If the input acceleration spectral density can not be as-
sumed to be constant, or is known from measurements,
then a more accurate estimate of the rms relative de-

flection can be made by integrating, grap_y, the

product of the input acceleration spectrum W(f) in g_'/Hz
X

times the square of the absolute transmlsslbillty curve and
multiplying the square root of the resulting area by

386/(2_fo)2fora deflection in inches. This graphical pro-

cess is illustrated in Figure 11.56. The method is approxi-
mate but is sufficiently accurate for design purposes.

The peak deflection X of the package, relative to its
pr

support, can be stated statistically; the deflection will
exceed 3 times the rms value about 1 percent of the time,
or 4.3 times the rms value 0.01 percent of the time.



Design Methods for Environmental Protection of Equipment 11-51

_f _f
f
o

f

386 ] 1'12 = 386 [- -I ]/27R: [fw<O "lm/f,l'd_ ---lA,eoJ in.

(2'_ fo )2 (2_ fo )2

FIGURE II .56 Graphical Determination of rms RELATIVE

DEFLECTION of Vibration Isolated Mass

Excited by Wide-Band Random Noise

Maximum Operating Temperature

Conventional rubber isolators are generally limited to a

temperature range of -65°F to 175°F or, with special ma-
terials, to 250°F. Metal coll springs or wire mesh springs
can be used up to 500°F to 1000°F, depending on the
design and material.

Mounting Position

The vibration isolated package can vibrate in 6 degrees of
freedom, that is along 3 translational axes and about 3
rotational axes. The optimum mounting arrangement for
the vibration isolators is one which minimizes coupling of
vibration from a translational direction to a rotation.

This has the advantage of simpllfylng the analysis of the
isolation characteristics to that of a single degree of free-
dom system and reduces the rattle space requirements. This
"uncoupled" mounting arrangement can be accomplished
by arranging the isolators so that no rotation of the
package occurs when it is displaced by a force directed
through its center of gravity. Methods of designing such
mounts are treated in detall in Reference 11.35. The

methods require knowledge of the in-axlsand lateral
stlffnesses of the isolator units as well as their mounting

positions and the mass moments of inertia of the package
about its axes at rotation.

Effect of Non-Rigid Equipment Package

The vibration isolation concepts considered so far have
assumed a rigid equipment package. In reality, most
packages exhibit a dynamic masswhich changes with fre-
quency due to their flexibility or non-rlgidity. The effect
of this is to reduce the maximum isolation that can be

achieved. An example of this effect was shown by the
measured vibration isolation of a spring mounted floor as-

sembly in Figure 11.17, page 11-16. In this case, maxi-
mum transmission loss was limited to about 20 clB.

To briefly summarize, proper application of vibration iso-
lation systems to sensitive equipment packages provides a
useful and efficient means of reducing the vibration loads
due to acoustic excitation of the package or its mounting
structure by 20 to 40 dB. However, if the acoustic ex-
citation is applied directly to the package, vibration iso-
lation must be applied to internal components to be ef-
fective.
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CHAPTER 12

CONVERSION TABLES AND

MATERIAL PROPERTIES

12.1 INTRODUCTION

This chapter consists of conversion tables, charts and ma-
terial data compiled from various sources, for this manual.
Section 12.2 gives the conversion factors with particular
emphasis on conversions among the MKS, CGS, and the
English Engineering systems, Tables 12.1 through 12.10.
Conversion charts are also included in this Section to con-

vert decibels (dB) tocorrespondlng power and pressure ratios,
Chart 12.1; to convert sound pressure level to intensity,
Chart 12.2, and to pressure, Chart 12.3; and to convert
pressure spectral density to octave and one-third octave

band levels, Chart 12.4. Table 12.11 provides correc-
ions for the addition of Sound Pressure Level in dB.

Table 12.12 lists the perferred frequencies, intervals
and band numbers for acoustic measurements. Section

12.3 contains a collection of the physical properties

of the commonly used building construction materials.
In particular, Table 12.13 represents an extensive effort
of technical and literature review. Nevertheless, many
no-entrles are due to the lack of published information.

Figures 12.3.1 through 12.3.6, andTable 12.14 are
supplementary data on glass and woods, and the stress-
cycles curves of a few representatlvebuildlngmaterlals.
In Section 12.4 the acoustic absorption coefficients of
various materlsls commonly found in buildings and resi-
dences are listed alphabetically in Table 12.15. Most
absorption coefficient values are given in terms of a
probable range rather than aslnglevalue, to cover the
wide range of similar materials or products encountered.
Sources for these absorption coefficient data are mainly
from literature published in the United States. Data from

foreign sources, obtained from laboratory tests with dif-
ferent test standards, were exclused. Figures 12.7a
through 12.7f show the sound transmission loss through

representative partitions, walls, doors, windows, and
floor-ceillng assemblles. References and bibllography of
data sources are llstedfor Sectlons 12.3 and 12.4 at

the end of this chapter.

12.2 CONVERSION TABLES AND CHARTS

TABLE 12.1a CONVERSION FACTORS FOR UNITS OF LENGTH

cm m in. ft

1 cm

1 m

l in.

I ft

1

100.

2.5400

30.480

0.01

1

0.02540

0.30480

0.3937

39.37

1

12.

0.032808

3.2808

0.08333

1

TABLE 12.1b CONVERSION FACTORS FOR UNITS OF AREA

2 2
cm m sq. in. sq.ftFrom XEquals

1 cm

2
lm

1 sq in.

1 sqft

1

104

6.4516

929.03

10 -4

1

6.4516 • 10-4

0.09290

0.15500

1550.0

1

144.

1.0764- 10-3

10.764

6.9444 • 10-3

1
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TABLE 12.1c CONVERSION FACTORS FOR UNITS OF VOLUME

3 3
cm cu in. cu ft m

3
1 cm

1 cu in.

1 cu ft

1 m3

1 gal

1

16.387

28317.0

106

3785.4

0.061023

1

1728.

6.1023 ' 10 4

231.

3.5315 • 10-5

5.7870 • 10-4

1

35.315

0.13368

10-6

1.6387" 10 -5

2.8316 " 10-2

I

3.7854 • 10-3

TABLE 12.2 CONVERSION FACTORS FOR UNITS OF MASS

g kg Ib slug
I

Fro X
lg

1 kg

lib

1 slug

1

103

453.59

14594.

10-3

1

0.45359

14.594

2.2046 • 10-3

2.2046

1

32.174

6.8522 • 10-5

6.8522 • 10-2

3.1081 • 10-2

TABLE 12.3 CONVERSION FACTORS FOR UNITS OF FORCE

dyne newton kg (wt) Ib (wt)
Fro_ X_---_

1 dyne

1 newton

1 kg (wt)

1 Ib (wt)

1

105

9.8067. 105

4.4482 • 105

10 -5

I

9.8067

4.4482

1.0197. 10-6

0.10197

1

0.45359

2.2481 • 10 -6

2.2481 • 10 -1

2.2046

1
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TABLE12.4 CONVERSIONFACTORSFORUNITSOFDENSITY

g/cm3 kg/m3 Jb/cuin. Ib/cuft
Fro_ X _----_

1 g/cm 3

1 kg/m 3

1 Ib/cu in.

1 Ib/cu ft

I

10 -3

27.680

0.016018

1000.

I

27680.

16.018

0.036128

3.6128 • 10-5

1

5.7870" 10-4

62.428

6,2428 • 10-2

1728.

1

TABLE 12.5 CONVERSION FACTORS FOR UNITS OF PRESSURE

dyne/cm 2 bar atm newton/m 2
I

From_,X__

I dyne/cm 2

1 bar

1 atm

1 n ewton/m 2

1 mm Hg (°C)

I in. Hg (oc)

1 Ib(wt)/sq in.

1

106

1.0133 • 106

10

1333.2

33864.

68947.

10 -6

1

1.0133

10-5

1.3332 • 10 -3

0.033864

9.8692. 10-5

0.98692

1

9.8692" 10-4

1.3158 • 10 -3

0.033421

0.068947 0.068046

0.1

105

1.0133" 105

1

133.32

3386.4

6894.7

TABLE 12.5 CONVERSION FACTORS FOR UNITS OF PRESSURE (CONTINUED

mm Hg (0oc) in. Hg (0°C) Ib(wt)/sq in. in. H20 (4°C)

I

Fro 
1 clyne/cm 2

1 bar

1 arm

1 n ewton/m 2

1 mm Hg (0°C)

1 in. Hg (O°C)

1 Ib(wt)/sq in.

7.5006. 10 -4

750.06

760.

7.5006. 10-3

I

25.400

51.715

2.9530 • 10 -5

29.530

29.921

2.9530 • 10-4

0.03937

1

2.0360

1.4504 • 10-5

14.504

14.696

1.4504 • 10 -4

0.019337

0.49116

1

4.0148- 10 -4

4.0148 • 102

406.78

4.0148 • 10-3

0.5352

13.595

27.673
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TABLE12.6aCONVERSIONFACTORSFORUNITSOFENERGY

joule erg. Btu ft-lb(wf)
From_ X _._---_

I joule, newton- m

1 erg, dyne-cm

1 Btu

I ft-lb(wt)

1

10-7

1054.80

1.3558

107

1

1.0548 • 1010

1.3558 • 10 7

0.94805 • 10 -3

9.4805 • 10-11

I

1.2851 • 10 -3

0. 73756

7.3756" 10-8

778.16

1

TABLE 12.6b CONVERSION FACTORS FOR UNITS OF POWER

Watt ft-lb/sec Hp Btu/ml n
I

From_' X _.,=-_

1 watt, ioule/sec

1 ft-lb/sec

1 Hp

1 Btu/rain

1

1.3558

745.7

17.57

0.7378

1

550.0

12.96

1.341 • 10-3

1.818 • 10-3

1

0.02356

0.05688

0.07712

42.44

I

TABLE 12.7 CONVERSION FORMULAS FOR UNITS OF TEMPERATURE

I

To Convert to---_ OF oc OR OK
From, Use

oF

° C

o R

oK

1

°C + 32
5

OR - 459.67

_OK - 459.67
5

_-(°F - 32)

1

5°R-273.15
9

OK - 273.15

OF + 459.67

9°C + 491.67
5

1

9o
gK

5OF + 255.37
9

°C + 273.15

5 oR
9

1
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TABLE 12.8 a CONVERSION FACTORS FOR TRANSLATIONAL VELOCITY AND ACCELERATION

From_ X.__

g-sec,

g

ft//sec

ft/sec2

in ./sec

in .//sec 2

cm/sec

cm/sec2

m//sec

m/sec2

g.-sec,

g

0.0311

0.00259

0.00102

0.102

ft/sec

ft/sec2

32.16

0.0833

0.0328

3.28

in ./sec

in ./sec2

386

12.0

0.3937

39.37

m/sec

m/sec2

9.80

0.3048

0.0254

0.010

TABLE 12.8b CONVERSION FACTORS FOR ROTATIONAL VELOCITY AND ACCELERATION

From X .._lsI "--
rad//sec

rad/sec 2

degree_sec

degree_sec 2

Hz.

Hz ./sec

rev/min

rev/min/sec

m_D,.
rad/sec

rad/sec 2

0.01745

6.283

0.1047

degree/sec

degree/sec2

57.30

360

6.00

Hz.

Hz ./sec

0.1592

0.002 78

0.0167

rev/mln

rev/min/sec

9.549

0.1667

6O

TABLE 12.9 CONVERSION FACTORS FOR SIMPLE HARMONIC MOTION

From X

Amplitude

Average

Value

Root-Mean-Square

Value (rms)

Peak-to-Peak

Value

Amplitude

1

1.571

1.414

0.500

Average
Value

0.637

1

0.900

0.318

Root-Mean-

Square Value

(rms)

0. 707

1.111

0.354

Peak-to-Peak

Value

2.000

3.142

2.828
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TABLE 12.10 CONVERSION FACTORS FOR EXCESS ACOUSTIC ATTENUATION RATE CONSTANT

Froml X _------_.

clB/1000 ft.

dB/mile

dB/m

nepers
ft

m

Attenuation Constant

a

dB/1000 ft. dB/ml le

1 5.280

0.1895 1

304.8 1609.

8686. 4.586 • 104

2648. 1.398 • 104

dB/m

28.50

8.686

Pressure Attenuation Constant

n epers/ft

1.151 • 10-4

2.182 • 10-5

3.509 • 10-2

0.3048

n epers/m

3.777 • 10-4

7.158 • 10-5

0.1155

3.281

- _ (x2 - Xl) (Pressure at x2)/(Pressure at x I)e =

= (Intensity Decay Constant)/2 -- m/2

- m (x2 - Xl) (Intensity at x2)/(Intensity at Xl)e =
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120

110

IO0

9O

8O

7O

5O

4O

3O

2O

10

10

Chart 12.1

2 3 4 5
10 10 10 10

RATIO

Conversion of Decibels to Sound Power Ratio and Sound Pressure Ratio

6
10
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102

E

e-

100 120 140 160

Intensity Level, dB (re: 1 x 10-16 watts/cm 2)

CHART 12.2 Conversion from Intensity Level

(dB) to Intensity (watts/¢m 2)
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tO
O

O

O

!
O

I
O

CHART 12.3 Conversion From Sound Pressure Level (dB) To

Pounds/Foot 2, Pounds/Inch 2, Dynes/Centimeter 2,

and Newton/Meter 2.

180



12-10 Conversion Tables and Basic Data on Materials

FREQUENCY- Hz

1 10 100 1000 10,000
180 _ J L , , _ , , _ _ _ _ _ J , _ _JL _ _ _ J J _ L L_ _ J _ _ _ _ _175

_<-_'_<- j _.._.j. / .._j. _-__ ,_ _

°° __/--"'[ _"?-,_._ --_.J _ ,4_,

120 _/ / / / / _ 115 Z

o
_1o/ / / / ./ /

1 2 4 8 16 32 64 125 250 500 1000 2000 4000 8000

OCTAVE BAND CENTER FREQUENCY - Hz

CHART 12.4 Conversion of Pressure Spectral Density Level to Octave and One-Thlrd Octave Band Levels
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DIFFERENCES CORRECTIONS

TABLE 12.11

FOR USE IN THE ADDITION OF SOUND PRESSURE LEVELS

I I I

dB 0 I0.1Jo.2 0.3 J 0.4 o.5 0.6 0.7 0.8 0.9
I I I

0 3.01 3.06 3.11 3.16 3.22 3.27 3.32 3.38 ] 3.43 3.48

1 3.54 3.60 3.65 3.71 3.77 3.83 3.88 3.94 j 4.00 4.062 4.13 4.19 4.25 4.31 4.37 4.44 4.50 4.57 4.63 4.70

3 4.76 4.83 4.90 4.97 5.04 5.10 5.17 5.24 5.31 5.39

4 5.46 5.53 5.60 5.67 5.75 5.82 5.89 5.97 6.04 6.12

5 6.19 6.27 6.35 6.42 6.50 6.58 6.66 6.74 6.81 6.89

6 6.97 7.05 7.13 7.22 7.30 7.38 7.46 7.54 7.63 7.71

7 7.79 7.87 7.96 8.04 8.13 8.21 8.30 8.38 8.47 8.55

8 8.64 8.73 8.81 8.90 8.99 9.07 9.16 9.25 9.34 9.43

9 9.52 9.60 9.69 9.78 9.87 9.96 10.05 10.14 10.23 10.32

10 10.41 10.50 10.60 10.69 10.78 10.87 10.96 11.06 11.15 11.24

11 11 .33 11.42 11.52 11.61 11.70 11.80 11.89 11.98 12.08 12.17

12 12.27 12.36 12.46 12.55 12.64 12.74 12.83 12.93 13.02 13.12

13 13.21 13.31 13.40 13.50 13.60 13.69 13.79 13.88 13.98 14.07

14 14.17 14.27 14.36 14.46 14.56 14.65 14.75 14.84 14.94 15.04

15 15.14 15.23 15.33 15.43 15.52 15.62 15.72 15.82 15.91 16.01

16 16.11 16.21 16.30 16.40 16.50 16.60 16.69 16.79 I 16.89 16.99

17 17.09 17.18 17.28 17.38 17.48 17.58 17.68 17.77 J 17.87 17.97

Method: Compute the numerical difference between two sound pressure levels. Add the correction

from the Table to the smaller of the two levels to get the final level.

Addition of more than two levels

Take the levels successively in pairs and perform the above operations i.e.

To add 85 dB, 83.4 dB, 74 dB and 89.6 dB

For the first pair, the Diff. = 85 - 83.4 = I .6 dB

Corr. from table = 3.88 dB

Total = 83.4 + 3.88 = 87.28 dB

Example:

AB CD EF GH

total

For the second pair the Diff.=
89.6 - 74 = 15.6 dB

Corr. from table = 15.72 dB

Total = 74 t 15.72 = 89.72 dB

Note:

Using the two totals from the two pairs, we obtain
Diff. = 89.72 - 87.28 = 2.44 dB

Corr. from table = 4.40 dB

Final total =87.28+4.40_ 91 .7dB

When the difference between two levels is more than 18 dB, use the higher level as the final
value without correction.
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TABLE 12.12

PREFERREDFREQUENCIES IN HERTZ, AT VARIOUS INTERVALS, AND BAND NUMBERS FOR
ACOUSTICAL MEASUREMENTS AND FOR CENTER FREQUENCIES OF FILTER PASSBANDS

(FROM UNITED STATES OF AMERICA STANDARDS INSTITUTE S 1.6-1967)

Preferred Band 1 1/2 1/3
Frequencies No. octave

16

18

20

22.4

25

28

31.5

35.5

40

45

50

56

63

71

8O

9O

100

112

125

140

160

12 X X X

12.5

13 X

13.5 X

14 X

14.5

15 X X X

15.5

16 X

16.5 X

17 X

17.5

18 X X X

18.5

19 X

19.5 X

2O X

20.5

21 X X X

21.5

22 X

Preferred Band 1 1/2 1/3

Frequencies No. octave

X

x X X

X

x X X

160 22

180 22.5

200 23

224 23.5

250 24

280 24.5

315 25

355 25.5

400 26

450 26.5

500 27

560 27.5

630 28

710 28.5

800 29

900 29.5

1000 30

1120 30.5

1250 31

1400 31.5

1600 32

X

X X X

X

Preferred Band 1 1/2
Frequencies No. octave

1600 32 X

1800 32.5

2000 33 X X X

2240 33.5

2500 34 X

2800 34.5 X

3150 35 X

3550 35.5

4000 36 X X X

4500 36.5

5000 37 X

5600 37.5 X

6300 38 X

7100 38.5

8000 39 X X X

9000 39.5

1O00O 40 X

1120O 4O.5 X

12500 41 X

14000 41.5

16000 42 X X X

1/3



Data on Basic Materials 12-13

12.3 DATA ON BASIC MATERIALS

Bu_ld_ng Material

ASBESTOS-CEMENT

Corrugated Sheet

Type A (Std.) 3/8"
Type B (Light Wt.) 3/16"

FLat Sheet and Fiberboard

insulating Panel

Type F (Flexible)
I/8" to 5/8"

Type U (UtiIHy)
3/16" to 5/8"

BOARD

Beaverboard, 1/2"

Cellulose Insulation Board,

1/2"
Masonite, 3/I 6"

Paper Board

Asbestos Board, 3/16"

Asphalt-Saturated

Sheathing, 25/32"
Cellulose Insulation Build-

ing Board, 1/2"
Under Floor Insulation

Board, 25/32"

Sheathing Insulation Board
25/32"

Wallboard, Panel Board

Hardboard, 11/32"

Plasterboard, 27/32"
Sheetrock, 1/2"

Translte, 1/4"

BRICK

70%of U.S. made Clay,
ShaLe, and Sand-Line
Bricks

25%of U.S. made Clay,
ShaLe, and Sand-Lime
Bricks

Brick

Grade

MW

NW

Concrete Building Brick

SCR Brick (Manufactured by

Structural Clay Product
Research Foundation)

BLOCK CONCRETE

Load Bearing, Hollow

Load Bearing, Solid

Non-Load Bearing, Hollow

TABLE 12.13

PHYSICAL PROPERTIES OF VARIOUS BASIC BUILDING CONSTRUCTION MATERIALS

Ultimotestrength , psi (_

JAIIowable Strength, psi]

Camp. Tension Shear

145-270

1,250

185

650

650

!
j 200
1
930-2,030

2,500- J 500-

15,000 J9,000

15,000 - I

22,500 I

2,5O0 - J

3,000 MI
2,000 - I
1,500 M {

1,250- I

2,5O0 MI

1,250 - I
2,500 MI

11,140 I

600-1

1,000 MI
1,000 - I

1,800 MI
300- I

350 MI

®
Modulus

of

Rupture

psi

13,000
5,300

9,600 -

10,800

7,600

3,000
38

1,100

1,100

300

450_

1,500

1,500 -

3,500

458

C
Young's

Endurance Modulus

Limit {Mad. of

Rigidity}

x 10-6psl

0.175

0.61

0.035

0.31

0.68

0.75-I .8

i0.3-0.6]

].75-I .8

{0.3-0.6}

).75-1.8

).75-1.8

Polsson's

Ratio

P

®
Loss Density

Factor Ib/cu.ft

I Ib/sq.ft]
q

f3.7-4.01
11.7-2.0]

0.027 {0.81

[0.7-1.7]

0.017 I0.9]

[I.36]

{1.0]

[1.53J

[I .4O]

(0.95}

O.OO9 13.9}

0.098 {2.0}
0.007 12.3]

0.01 110-130

0.01 110-130

0.01 100-130

0.01 100-125

106

).005 80-90

).012 90-120

).005 80-90

Refer-

ence

28

13

39

13

3

13
13

13

1,2,5

6, 10

28, 29

1,7

18

18
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BuHdingMaterial

CONCRETE (28 Day Strength)

Plain Concrete

Am.Concrete InsHtute

(Command Building):

Type I

Type II

Type III

Type IV

Type V

U.S. Military Spec.

Class AAA

AA

A
B
C

Lightweight Aggregate
Concretes:

Expanded Slog

Haydlte

Vermiculite and
Perllte

Precast Concrete

Floor Slob

insulating Roof Tile
(Reinforced)

Roof Stab

Reinforced Concrete

(Ordinary 1 to 2% of

Tensile Reinforcement)

GLASS

Annealed Plate Glass and

Window Glass

Laminated Glass

Tempered Plate Glass

Glass Block Panel

(with 100 psi Band Strength I

TABLE 12.13 (Continued)

PHYSICAL PROPERTIES OF VARIOUS BASIC BUILDING CONSTRUCTION MATERIALS

Ultimate Strength , psi

[Allowable Strength, psi ]

Camp. Tension Shear

Add 20 to 30% for D ,amic Stre

[ 750-90C [80-160] 180-1601

2,800 . 350

3,500
2,800 • 325

3,500
2,200 - 325

3,000
2,000 300

3,000 325

5,000
3,750

3,000
2,500

1,500

350 -

2, 100

1,500 -
7,000

90-

I, 100

1,500 - J2-7J i
7,000

400-

6oo

1,500 - [2-31

2,500

2,500 - 1,500 - 1,500 -
7,500 3,000 M 3,000M

1750 - [500 - l 5oo -

1,000] 750] 750l j

3,000-
9,000 D

®

36,000 6,500 _

[1,000)..,_ 11,000_8

_0,000 - 20,000 -

30,000 30,000

4OO - i0.4](_6O0

C
Modulus I Encluranc

of l.lmlt

Rupture

psi

qth.

0.5-0.6

9.5-0.55

120-600

250 -600

20-70

,. 45-..0.55

6,50_ _7 ). 45-0_

3,500

20,000-

30,000

10

C
Young's
Modulus

IMad. o

Rigidity

x 10-%s

2.0-2.2

10.07-0.

4.0-4.2[

C

3.8-2.5

1.8-3.0

).8-2.9

!.3-3.4

10
12.5 D

13.6]

Po[sson's

Ratio

P

0.07-0.1

Z).07-0.1

).07--0.I

0.17 -

0.27

C
Loss

Factor

q

0.06-0. I

3.06-0.1

0.06-

0.12

0.002 -

0.03

Density
Ib/cu.f

IIb/sq.I

145-16

90-130

90-125

35-80

50-120

35-55

50-70

155-17(

20-180

20-180

20-1BO

Refer-
ence

1, 7, 5,

16, 27
43

14

24

?,3,25



Data on Basic Materials 12-15

TABLE 12.13 (Continued)

PHYSICAL PROPERTIES OF VARIOUS BASIC BUILDING CONSTRUCTION MATERIALS

Building Material

GYPSUM PRODUCTS

Lath 3/8" to I/2"

Ready Mixed Plaster 400 h

Plaster (Neat,Wood-Fibered, 1,200-

Bond, and Ganging 2,200

Wallboard

1/4" to 3/8"

1/2" to 5/8"

Sheathing Board

Formboard, 1/2"

Gypsum-Concrete

Class A

Class B

Gypsum -Cement

Gypsum Hollow Tile

METALS

(Commonly Used in Building
Structures)

Aluminum Alloys

Annealed

(1100.0, 2014-0,
3003-0, 3004.-0,

5052-0, 5154-0,

and 6061-0)

Heat Treated

(2014-T3,T4,T6)

(6061 -T4,T6,T62)

Brass

Ultimate strength , psi

[ Allowable Strength, psi]

i

Camp. I lension Shear
!

50-

2,200

500 M [100] [ 10]
1125]
1,000 M [1651 [20]
12201

5,000 - 600 -

9,000 1,000

75 M

3,500 tl,000 - 8,000

11,000 30,000 19,000

32,000 - 55,000 - 34,000

58,000 60,000 40,000
14,000 - 26,000 - 16,000

26,000 35,000 22,000

25,000 65,000 15,000

12,0001 12,000] 17,000]

®
Modulus

of

Rupture

psi

700 -

75O

®
280-

990-

1,400 (_
420-

67o(_)
670-

77oQ
270-

350 (_)

7700
350 (_)

,120(1 _

420 (1_

900-

1,400

C
Enduranc,

Limit

o.6 G

0.35 -

.5

(.

Young's
Modulus

I Mad. ol

Rigidity

× 10-6ps

1.0

.2-1.8
0.2D

.2-1.8

0.6D

.2-1.8

10

13.81

10.6

14.0]
10

13.8)

13.5

14.8]

Poisson's ! Loss(_) Density

Ratio Factor Ib/cu .f

[ Ib/sq. f

0.005 60-88

1O8

6O

0.035 0.01-0.0:

43 -62

70-85

55-65

80-115

0.33 0.003 165

0.33 0.003 165

0.33 0.003 165

0.33 525

Refer-

ence

2, 4, 7,

26,18

30,44

49

32,49
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BuildingMaterial

METALS(Continued)
Copper

Annealed

Cold Rolled

Gray Cast Iron
#2O

#4O

Structural Steel

MORTAR

General Mix

(Cement:Lime:Sand)

By Volume
1:l:6

1 : 1/2 to 1 : 4-1/2

I : 1/4:2-1/4 to 3.0

(Type A-l)

t : 1/4 to 1/2 : 2-I/4 to 3.0

(Type A-2)

High Bond Mortar

1:0:2-1/2 to 3.0 (with

15% to 20% Saran Polymer)

Stucco

1:1/4:3-1/4

STONE, Building

Granite

Limestone

Marble

Sandstone

Slate

SYNTHETIC MATERIAL

Acrylic (Plexiglass)

TABLE 12.13 (Continued)

PHYSICAL PROPERTIES OF VARIOUS BASIC BUILDING CONSTRUCTION MATERIALS

r'Th
Ultimate strength , psi

[Allowable Strength, psi]

Comp. Tenslon Shear

30,000 33,000 23,000

36,700 r

38,000 45,000 - 23,000

[19,000] 53,000 28,0OO

60,000 E [11,000]
I19,000]

75,000 20,000 {3,000]
{10,000 ] {3,000]

40,000

30,000 - 52,000 - 37,000 -

41,000 75,000 52,000
[21,000] [ 21,000 [14,0001

33,000]

46,000_

900 - 165 - 45 -

2,800 350 70
100 -

750/V

2, 100 - 270 - 55 -

3,600 400 70

1,800 M

4,800 - 420 -

5,500 460
2,500M

2, 100 - 260 -
2,800 300

1,800M

5,000 - 460 - 140 -

10,000 I, 100 260

1,500 -

2, 8(30

7,700 - 600 - 2,000-
50,000 1,000 4,800
2,600 - 280 - 800 -

28,000 900 4, 600

8,000 - 150 - 1,300 -

_0,000 2,300 6,500
5,000 - 280 - 300.

20,000 500 3,000
3,000 - 2,000 -

4,300 3,600

8,000 ),500

C
Modulus

of

Rupture

psi

1,400 -

5,200
500-

2,000
600-

5,000
700-

2,300

6,000 -
5,000

6,000

I Young',
IEnduranc ! Modulu Polsson's

Limit I Mod. c Ratio

Rigldlt)

0.35-0.5 13-17 0.33
[6.4]

3.35-0.5 0.25

12
15I

18

(7]

0.65 29 0.33

112]

.7-8.2

.8-18

0.45

C
Loss

Factor

n

0.003

0.001 -

0.003

0.002

Density

555

450

49O

45-70

60-190

50-I 7(3

60-180

35-160

70-180

75

Refer-

ence

32,49

5O

31

9,29

2, 5

48,18
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BuHdlng Material

TIL__._E,Clay

Floor, Tile

Wail Tile, Load Bearing
End Construction

Side Construction

TABLE 12.13 (Continued)

PHYSICAL PROPERTIES OF VARIOUS BASIC BUILDING CONSTRUCTION MATERIALS

Ultimate strength, psi (_) (_

JAIIowable Strength, ps[] Modulus
of

Rupture

pstCamp. Tension Shear

850-

3,000

1,000 -
5,000

700-

2,500 M
700-

1,300
500 -
700 M

®
Endurance

LimH

®
Young's I
Modulus

I Mad. of

Rigldltyl

x 10-6sl

Po[sson's
Ratio

P

®
Loss

Factor

n

Density
Jb/cu .ft

{ Ib/'sq .ft}

45-75

Refer-

ence

1,7,28

Building Material

WALL

Brick Wall with Ordinary
Mortar Mix and Commercla

Workmanship:

Bearing Wall, Vertical
Load

Non-Bearing or FHler
Wall

6" Brick Wall

1:1:6 Mortar,

Medium Strength Brick

6" Single Wythe SCR
Brick Wall

with 1:1:6 Mortar

with 1:1/4:3 Mortar

with 1:1/2:4-1/2 Mortal

6" Concrete Block Wall

with 1:1:6 Mortar

8" Brick Wall with Ordi-

naP/ Brick and 1:1:6
Mortar

8" Tile or Stone Concrete

Wall with l:h6Mortar

8" Brick-Block Wall

Ultimate Load

[ Allowable Strength ]

Comp.(_ T ..... (_ Racking1_

600-1

800 M

[150-2001

300-

35O M

[ 100-1501

500 0.15 40

1,450 2.19 113

2.28

4.34

330 0.08 25

900-1 0.16- 75

1,200 j 0.18

._0_" 0.2 - 25 -0.5 45

i 13::43_00} 0.340.25- 52

@
Impact

1.2

1.58

1.5

3.0-

3.7

1.2-
1.3

4-4.3

Y°ung's _

Endurance Modulus

Limit IMod. of

Rigidltyl

x lO-6psi

0.9-3.7

Polsson's

Ratio

ks

0.1

®
Loss

Factor

q

0.1

Density
Ib/cu.ft

_[Ib/sq.ftl

J41.4}

156]

[58]

158i

[79-89}

I_-55]

[61]

Refer-
!
:ence

2,7-10

13,29
33-42

10

10

I0

10

8,37

38
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BuildingMaterial

WALL(Contlnued)
10"Brlck-BrlckCavity

Wall
10"Brick-TileCavltyWall
10"Block-BlockCavltyWall
SolidConcreteUnit

Masonry,withOrdinaryMortar
HollowConcreteUnit

Masonry,withOrdinaryMortar
Re_nforcedSolidConcrete

UnitMasonry
ReinforcedHollowed

ConcreteUnitMasonry
WoodFrame Wall, or

Parfitlon,8 Ft. High
ConvenHonal

Construction :

- Wall Using 2x4 Studs;

16"o.c.; 5/16" Plywood

Sheathing; 1/4" Plywooc
or 1/4" to 1/2" Wall-
board Inside Face; with

Siding or Shingle; Total

Wall Thickness 5-1/4"
to 5-7/8"

- Wall Using 2x4 Studs;

16'b.c.; 25/32" Sheath-

ing Board, Level Siding
or Shingle Outside Face
Lath and Plaster Inside

Face; Total Thickness
6" to 7"

- Wall Using 2x4 Studs;

16"o.c.; 25/32" Sheath,
ing Board and Brick

Veneer Outside Face;
Lath and Plaster Inside

Face; Total Thickness
10-1/4"

- Wall Using 2x4 Studs;
16"o.c.; 25/32" Sheath-

ing Board; Metal Lath
and Stucco Outside Fac_
Lath and Plaster Inside

Face; Total Thickness

6-3/4"

- Wall, or Partition, Usin
2x4 Studs; 16'b.c.;
Fiberboard Sheets Both

Faces; Total Thickness

4-1/2"

- Same as above Except
Sidewings are Added to

the Outside Face; Total

Thickness 5-1/2"

TABLE 12.13 (Continued)

PHYSICAL PROPERTIES OF VARIOUS BASIC BUILDING CONSTRUCTION MATERIALS

Ultimate load

[Allowable Stren_ th I

COMB.@

520

18o-11o1

238

315

[lO0-14ol

1701

1250-300]

1225]

92-140

90-157

52.5

83.5

116

68-78

T.....® Rack_o_

0.17 50
[51

0.20 53

0.35 50

16]

]51

[30-50]

i 30-501

1.5-2 20-38

2.1-2.4 19-24

h 4-0.6@

2.2
(_ 51 :

0.83

O.52 _J_

2-36 26

0.6 lfl_

2.5 10.5

.7-2.3 It ,4-2.1

Impact

2.8

3.0

3.0

10

3-4

6.5

5.7

6.5

10

t'nduranc
Limit

@
YoungIs
Modulus

I Mod. of

Rigidity]

x 10-6d

0.3-0.4

3.75-0.9r

Polsson's

Ratio

W

0.1

0.1

0.1

C
Loss

Factor

q

0.012

0.007

0.012

Density
Ib/cu .ft

[Ib/ sq .ft

[671

1621

[44]

4.5-5.51

9-I0.51

15o.51

[201

[3.61

14.51

Refer-

ence

36

37

34

2

7, 20

7

39,40
41,44

45

45,39

45

45

47

39,47
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TABLE12.13(Continued)
PHYSICALPROPERTIESOFVARIOUSBASICBUILDING CONSTRUCTION MATERIALS

BuUd_ng Moter_al

WALL (Continued)

- Partition, Using 2x4
Studs; 16"o.c.; Wall

Board on Both Faces;

Total Thickness 4-5/8"

- Wall Using lx3 Studs; 15"

o.c; 3/8" Outside and

1/4" Inside Plywood
Faces; Total Thickness

3-I/8"

- Partition, Same Con-

struction as ,Above Except

1/4" Plywood Faces on
Both Faces; Total Thick-
ness 3"

Metal Panel Wall:

- Sheet-Steel WaU, Uslng
3" Steel Channel Studs;

10" o.c. ; Sheet-Steel

on Both Faces; 18 gage
Steel; Total Thickness
3"

- Sheet-Steel Wall, Using
16" Wide Outside Chan-

nel Shaped Sheet Steel
Panel; t6" Wide Inside
Sheet Steel Panel; Wood

Strip and Key Construc-
tion in Joining Panels;

18 Gage Steel; Total
Thickness 3"

- Sheet-Steel Partition,

Using 3" Steel Channel
Studs; 16" o.c., or

Using 16" inside Channei

Shaped Stee] Panel;
WaUboord on Both Faces

ROOF

Steel Roof Deck; 18 to 22

Gage Steel

Sheet-Steel Roof with Joist,

Angle, Zee, Insulation

Board, and Buitt-up
Roofing

Wood Frame Roof; lx4 Joist,
11-1/4" o.c.; Bridging,

25" o.c.; 3/8" Plywood

Sheathing; 1/4" Plywood
Ceiling

Ultimate load

[ AI Iowable Strength I

Comp.(_

88

28O

25O

225

230

18,000J

T .... ._ Racking_

0.95 13

2.1 5.0

1.9 48

1.7 37

1.2 21

1.1-1.3

1.0-1.5

Q
Impact

6.8

10

7.0

7.0

10

1 .3-1.7

®
Endurance

L;mlt

C
Voung's
Modulus

i[Mod, of

RigidHy_

x }0-$s_

Polsson's

Ratio

®
Loss

Factor

q

Density
Ib/cu .ft

[ Ib/sq.ft]

15.41

13.0l

12.6]

[7.sI

[6.8}

[4.0]

{1.9-31

10.5-12}

{7.2]

Refer-

ence

4O

33

42

33,42

19

33
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TABLE12.13(Continued)
PHYSICALPROPERTIESOFVARIOUSBASICBUILDINGCONSTRUCTIONMATERIALS

BuildingMaterial

WOOD,TIMBER AND

PLYWOOD (_

Douglas Fir

(See Legend @ for
Polsson's Ratio, Elastic

RaHo, Rigidity Ratio
and Material Loss

Factor of Douglas Fir.)

Balsam Fir and White

Fir

Hemlock (Eastern and
Western)

Pine (Lodgepole, North-
ernWhite, Western

White and Ponderosa)

Pine (Southern Yellow

and Norwegian)

Spruce (Eastern)

Plywood (Douglas Fir)

Plywood (White Fir)

Plywood (White Pine)

Plywood (Southern Pine)

Plywood (Hemlock)

Den- -3 (_ Ultimate Static Bending Max. Compres-
Fiber Strength at Proportion Limit, x 10 psi

IAIJowable Strength in Bracket] x 10-3 psi @ slon Crushing End-
I sity v . -3 . r n

........ Strength xl0 psi u ace
Ib Compression ! Tension Bending Max. Moa.ot _oung s Moau us

-- I i I (Tension Parallel Horiz. Rupture Limit
ft 3 Par.to Perp.to IPar.to Perp.to to graln.._ Shear Pma]lel Par.to Perp.to Par.to Perp.to

Grain Grain Grain Grain Static Jlmpact to Grain Grain Grain Grain Grain (_)

(References: I, 2, 3, 4, 5, 7, 17, 18, 21, 22, 23,54)

4.6 -
6.45

[1 .o5-
1.70l

3.87-
3.97

10.951

4.02-
5.34

[0.95-

1.201

3.68-
4.48

[0.95-
1.o5]

4.82-
6.15

I1.05-

1.701

4.16

11.051

1.8-

2.51

2.0-

2.35]

1.65-

2.ol

0.82
0.95

10.20-

0.28]

0.38-
0.61

I0.11-

0.221

0.68-
0.8

{0.221

0.54-
O. 75

10.16-;
0.19)

0.83-

1.19

{0.16-

0.28}

0.59

[0.19]

1.94 =

J0.35-I

0.411 !
1.81

2.05

[0.24-

0.281

J0.35-

0.41l

I . 96

[0.33-

0.351

@

@

@

@

@

@

6.18

5.67

5.72

6.8
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LEGEND

Strength in Ib/in 2 , on gross area if applicable. Values may be given as average values or as ranges. Values

followed by letter 'M' indicate minimum strength as approved by American StandardsAssoclation. Values followed

by letter 'D' indicate dynamic strength. Vaiuesin square brackets indicate allowable strength commonly recommended.

Modulus of Rupture is defined as the stress given by the formula Mc,"l, where M is the maximum bending moment in a
beam specimen loaded to rupture, c is the distance from the neutral axisto extreme fiber, and I is the area moment
of inertia. It is also known as flexural tensile strength.

Fraction of ultimate tensile strength at 106 cyclesof loading. The S-N curves of some common materials are shown
in Figure 12.3.6.

Both Young's Modulus of elasticity and modulus of rigidity are determined by static tests, except those values followed
bya letter 'D', which indicates from dynamic tests. Values of modulus of rigidity are given in square brackets.

Thls material damping term is defined as q = 1/Q = 2_ where Q is the dynamic magnification factor at resonance,
and ,_ is the critical damping ratio C/C c. Values of q are given for a frequency range of 100 to 1000 cps.

Determined by shock wave propagation method, a very fast rate of loading.

Strength also depends on size of glass plate.

Strength also depends on load duration, rest period, aspect-ratio and nature of loading. See Figures 12.3.1through 12.3.5
for various service conditions.

®
@
®
®
@
@

@

@
@

@
@
®

®
@
@
@

Lateral loading for glass block; or perpendicular loading for the case of mortar.

Bending parallel to fiber of surfacing.

Bending acrossfiber of surfacing.

Based on 108 cycles of loading.

Yield strength of structural steel.

Vertical compression load on wall sample. Values in psi.

Transverse toad, lb/in 2 of surface area, based on equivalent uniform lateral loading on outside face.

Ameasurement of diagonal tension and shear strength, Ib/in 2 , based on cross-sectional area of wall.

Maximum drop height, in feet, of a 60 Ib sandbag that causes specimen failure. Wall span 7-1,/2ft; supported

along top and bottom edges of interior face. Drop-toad on exterior face.

Plaster cracks on interior side of wall.

Mortar cracks on exterior brick vedeer.

Small clear specimen, free of defect, average moisture 12 percent for wood and timber, or 9 percent for plywood.
For various service conditions, see Table 12.14

For clear material under long-time service at maximum design load and dry condition use.

Strength much higher than the corresponding compressive strength.

Approximately three times the corresponding values of the compressive strength.

Douglas fir:

Poisson's Ratio Elasticity Ratio

I_LR = 0.229 ET/E L = 0.050

_LT = 0.450 ER/E L = 0.068

PRT = 0.390

_RL = 0.036 Loss Factor

_L = 0.029
q = 0.006 -

PTR = 0.374 = 0.013

where subscripts L, R, and T

Rigidity Ratio

GLR/E L = 0.064

GLT/E L = 0.078

GRT/E L = 0.007

indicate longitudinal, radial, and tangential respectively.
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FIGURE 12.1 Allowable Loads for Minimum ThlcknessofRectan-

gular Plate and Window Glass, Four Sides Supported,

Subjected to Wind Load (Solid Lines) and Sonic Boom

(Dashed Lines), or their Equivalents. One Minute

Uni[orm Loading, Representative of "Fastest Mile

Wind." Where Short Side/Long Side <_ I/3, Adjust

Glass Area By Using Figure 12.2.
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FIGURE 12.5 Tentative Damage Criteria for Glass Panes of Various Thicknesses

and Window Exposed to Random Acoustic Noise. Adopted from

Regler, etal, "Noise Control," 4, 13-19, 1959.

TABLE 12.14

Strength Variations of Wood and Lumber

Under Various Service Conditions, in

Percentage Increase (+), or Decrease (-)

from Small Clear Test Specimen as Defined

Slope of Graln with Respect 1:40

to Straight Grain Load 1:20

Application 1:10

Slope - 1:5

Full Size Common Grade Lumber with

Ordinary Defects

Increase of Specimen's Moisture Content

by 1%

Possible Variation of an Individual

Piece from Species Average

Temperature Effect, OF - 20

(Douglas Fir) 0

.. 40

7O
100

140

Effect of Use Under Continuously

Wet Condition or when

Moisture Exceeds 16%

Effect of Load Duration, in 10-_

Days. 10 -Z

(Douglas Fir) 1

102

10 4

Strength Variations of Wood and Lumber Under Various Service Conditions.

Den-

sity

Ib

ft 3

+8

Fiber Strength at Proportion Limit

IAIiowable Strength in Bracket]

Compression

Par.to I Perp.to

Grain Grain

0 to 0 to

- 40 - 50 j

- 5 -5.5

+ 18 + 21

I + 32l

I + 251

]+ 10l

{ol
1-111

]- 25]

l0 to {0 to
-201 -201

Bending

Static Impact

0 0

-21 -10

-48 -38

-68 -64

0 to 0 to

- 50 - 50

-5 -3

16 * 13

f+ 251

!_ 151
[ +BI

I01
[ -101

I- 251

IO to
-201

Max.

Horlz.

I Shear

[01

Ultimate Static Bending

Mad.of Young's Modulus

Rupture ""

Parallel Par.to I Perp.to

toGrain Grain I L_raln
!

0 0

-7 -4

-19 -I1

-45 -33

0 to 0 to

-60 -50

-4 -2

+ 12 + 16

15 to 4O 3to18

10 to 35 3to 15

5 to 15 1 to 10

0 0

-7to -3to-_

-15

-14to -8 to

-38 -28

+8

-6

-18

-31

- 42

Maximum

Compressi an

Crushing

Strength

Par.to Perp.to

Grain Grain

0 to 0 to

- 50 - 50

-6 I -3 I

I
_+13

-)0 to 50

0 to 40

5to I_

0
-5 to

-18

-I0 to

-40
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FIGURE 12.6

Composite Stress-Cycle (S-N) Curves For Some Building Construction Materials, Subjected to Complete-Reversal-Repeated Loads Except

Indicated. (a) Aluminum Alloys, Ref. 52, (b) Plain Concrete, Ref. 16,27, (c) Reinforced Concrete, Ref. 16,27, (d) Annealed Glass,

Ref. 25, (e) Glass-Fiber Reinforced Plastic Laminates, Ref. 25,54, (f) Wrought Steels, Ref. 51,54, (g) High-Strength Low-Alloy Steels,

Ref. 53,54, and (h) Natural and Laminated Woads, (Solid Sitka, Spruce and Douglas Fir, and 5-Ply Yellow Birch and Yellow Popular).

(b) and (c) are S_bjected to Zero-To-Maximum Repeated Loads.
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12.4 DATA ON ACOUSTIC ABSORPTION COEFFICIENTS AND SOUND TRANSMISSION LOSS

TABLE 12.15

SOUND ABSORPTION COEFFICIENTS OF GENERAL BUILDING MATERIALS AND FURNISHINGS $

THICK- COEFFICIENTS
MATERIALS

NESS 125 Hz.

ASBESTOS

Sprayed, Solid Backing

Sprayed, on Metal Lath

Panel with Glass or Mineral Wool

Backing, 2" to 3" Pad

Same, 1-1/4" Pad

ASHES

Damped, Loose (2.5 Ib Water per ft 3)

BRICK

Brick, Unglazed

Br_ck, Unglazed, Painted

CARPET

Carpet,

Carpet, on Concrete

Carpet, Rubber or Felt Underpad,

on Concrete

CONCRETE

Poured Concrete, Unpainted

Same, Painted

Concrete Block, Coarse

Same, Painted

Porous Concrete Block, with Mortar

CORK

Cork Board

DRAPERIES

Draperies, Hung Straight, in

Contact with Wall,

10 to 18 oz/yd 2

Same, Draped to Half Area_

14 to 18 oz/yd 2

18 oz/yd 2 Velour, Hung Straight,

4" from Wall

1 ii

.03

.01

.05-.I0

.02-.II

.I0-.20

.01

.01

.36

.10

.15

.03-.05

250 Hz. 500 Hz.

.25 .60-.70

.75-.90 •90-•97

.79 .99

.32-.70 .73-.89

.90 .75

.55 .65

.03 .03

.01 .02

.05-.15 •15-.25

.06-.14 .14-.24

.20-.27 .35-.65

I

I

.01 .02

.01 .01

.44 .31

.05 .O6

.21 .43

!
•08 •30

.04-.12 .11-.35

.07-.14 .31-.35 .49-.55

.09 .33 .45

1000 Hz.

•8O

.80

.04

.02

.20-.30

.25-.40

.34- .70

.02

.02

.29

.07

.37

.31

.17-.45

2000 Hz.

.90-.95

.80-.90

.8O

.O5

.02

.25-.35

• 25-. 50

.48- .80

.02

.02

.39

.09

J 39

.28

.24-.40

.70

.50

4000 Hz.

• 85-. 90

.81-.88

.81

.33-.58

.07

.03

.30- .40

.30-.60

.60-. 75

.03

.02

.25

.08

.51

.35-.44

.60-.65

.44
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MATERIALS

DUCT-LI NI NG MATERIAL

Duct-Lining Material

FELT

Felt, All Hair, Contact with Wall

Felt, Scott, Firmness I to 3

Same, Firmness 4 to 8

FIBER GLASS

Bonded Fiber Glass Board,

(PF Board) _4 Mounting*

2 to 3-1/4 Ib/cu .ft.

4-1/4 to 7-3/4 Ib/cu.ft.

9 to 10-1/2 Ib/cu .ft.

Fiber Glass Ceiling Board, #7

Mounting

Fiber Glass Tile, #7 Mounting

TABLE 12.15 (Continued)

THICK-
NESS

1/2"

1 "

1 II

1"

I"

125 Hz.

.13

COEFFICIENTS
250 Hz. 500Hz.

.30-.45 .30-.50

.40-.45 .50-.75

.41 .56

.24-.32 .36-.52

.35-.40 .54-.69

I/2" .03 .06 .12-.19

1" .08 .23 .42-.53

2" .19 .51-.54 .79-.85

3" .29 .75-.78 .92-.95

4" .38 ,90 .97

5" .45 .96 .99

1/2" .04 .08 .20 .31

I" .09 .25 .60-.70

2" .21 .57 .89-.94

3" 31 .81 ,97

4" 40 .92 .99

5" .48 .97 .99

1/2" .05 .10 .36

1" 10 .26 .72

2" .22 .60 .95

3" .32 .83 .99

4" .41 .93 .99

5" .50 .97 .99

3/4" .67-.69 .76-.77 .81-.92

1" and .65-.85 .74-.78 .85-.91
1-I/4"

3/4" .57-.72 .64-.84 • 66-. 85

I000 Hz 2000 Hz.

.50-.75 .75-.85

.75-.90 .80-.95

.69 .65

.54-.87 .74-1.0

.71-.91 .78-1.0

.60-.68 .67

.77-.80 .73

.93 .82

.96 .88

.98 .92

.99 .95

.71 .69

.81-.86 .76

.94 .84-.87

.97 .91

.99 .93-.96

.99 .96

.73 .71

.87 .79

.96 .88

.98 .93

.99 .96

99 .97

81-.88 .82-.88

.93-.95 .96-.97

65-.88 .66-.92

4000 Hz

.49

.97-I .0

.92-I .0

.62-. 65

.71

.79

.84

• 88

.91

.68

.75

.81

.86

.87

.92

.71

.76

.82

.86

.90

.93

.60-.88

.93-.97

.50-.90
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TABLE12.15(Continued)

THICK-MATERIALS NESS

FIBER GLASS (Continued)

Unbonded Fiber Glass; rolls or

or Batts, #4 Mounting

2 to 3 Ib/cu.ft.

4 to 6 Ib/cu.ft.

FLOORS

Slate on Solid Base

Concrete or Terrazzo

Wood on Solid Base

Wood Block, Pitch Pine

Cork, Linoleum, Gypsum,

or Rubber Tile on Concrete

Cork Flooring Slabs, Glued Down

Same, Waxed and Polished

FOAM

Polyurethane Form

20 ppi* *

45 ppi

60 to 93 ppi

80 ppi

COEFFICIENTS

125 Hz. 250 Hz. 500 Hz. 1000 Hz. 2000 Hz. 4000 Hz

1" .24-.27 .30-.35 .57-.68 .69-.77

2" .38-.44 .49-.61 .84-.96 .91 -.93

2.5"-3" .47-.68 .59-.78 .93-.99 .90-.94

1" •33-.35 .44-.51 .76-.89 .88-.93

2" .54-.62 .68-•85 .99 .99

3/16"

.01 .01 .01 .02

.01 .01 .015 .02

.04 .04 .03 .03

.05 .03 .06 .09

.02-.04 .03 .03-.04 .03-.04

GLASS

Large Panes of Heavy Glass

Ordinary Window Glass

Glass Pane

3/4" .08 .02 .08 .19

3/4" .04 .03 .05 .11

1 ,i

1 "

1 "

1/4"

1/2"

3/4"

1 _'

1-1/4"-2"

3"-4"

5"-6"

1/8"

1/4"

.09 .11 .13

.12 .20 .23

.17 .34-.38 •32-.64

.10 .18 .15

.13 .25 .25

.20 .27 .37

.24 .36 .54

.27-.37 .44-.68 .62-.94

.61-.77 .96-1.0 1.00

.88-.95 1.00 1.00

.18 .06 .04 .03

.35 .25 .18 .12

.03 .03 .03 .03

.04 .04 .03 .03

.70-.76

.76-°77

.79-.86

.77-.87

.86-.91

.O2

.02

.03

.10

.03

.21

.07

.18

.44

.58-.89

.18

.37

.64

• 74

.84-I .0

I .00

I .00

.02

.07

.02

.02

.71

.86

.60-.87

.73

.02

.03

.02

.22

.02

.22

.02

.37

.52

.64-.84

.38

.60

.88

.88

.97-.99

1.00

1.00

.02

.04

.02

.02
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TABLE12.15(Continued)

MATERIALS

GYPSUM

Board,Nailedto2x 4's16"oc

GRAVEL SOl L

Gravel Soil, Loose and Moist

MARBLE

Marble, or Glazed Tile

OPENING

Window, Open

Grills, Ventilating

Deep Balcony, Upholstered

Seats

Stage

PLASTER

Gypsum or Lime Plaster

Smooth Finish, on Tile or Brick

Sand Finish,on Metal Lath

Rough Finish, on Lath

Scratch Finish, on Metal Lath

Acoustic Plaster

PLYWOOD

Plywood Paneling

SAND

Sand (Sharp), Dry

Sand (14 Ib water/cu.ft.)

THICK- COEFFICIENTS
NESS 125 Hz. 250 Hz. 500 Hz.

1/2" .29 .10 .05 .04

4" .25 .60 .65 .70

12" .50 .65 .65 .80

3//8"

3/8"

3/4"

4 II

12"

4"

.01 •01 .01 .01

1.0

• 15-.50

.50-1.0

•25-.75

.013 .015 .02

.02 .02 .03

.02 .03 .04

.02 .03 .04-.06

.O3 .O7

.22

.11

.35

.30

.05

1000 Hz. 2000 Hz

.O7

.75

.80

.O2

4000 Hz.

.O9

•8O

.75

.O2

.28

.10

.15

.20

.05

.17

.10

.40

.40

.05

.03

.04

.05

.06-.09

.11

.09

.08

.50

.50

.05

.04

.04

.04

.04-.06

.2O

.10

.08

•55

.60

.05

.05

.03

.03

.03-.06

.34

.11

.11

.8O

.75

.15
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MATERIALS

TILES, PANELS AND CEILING BOARDS

Regular Perforated Cellulose

Fiber Tiles:

# 1 Mounting *

# 2 Mounting*

# 7 Mounting*

Random ly Perforated Cel lulose

Fiber Tiles :

#1 Mounting

#2 Mounting

#7 Mounting

Cellulose Fiber Lay-ln Panels,

#7 Mounting

Perforated Mineral Fiber Tile :

#1 Mounting

#2 Mounting

f7 Mounting

Fissured Mineral Fiber Tile:

#1 Mounting

#2 Mounting

#7 Mounting

TABLE 12.15 (Continued)

THICK-
NESS 125 Hz. 250 Hz.

COEFFICIENTS
500 Hz.

1/2" •03-.05 .16-.20 .56-.58

3/4" •04-.09 .26-.29 •77-•81

1/2" .12-.13 .57 •54-.56

3/4" .08-. 23 .55-.67 .64-.68

1/2" to 25-.41 .38-.47 .54-.67

3/4"

1000 Hz.

.82-. 95

.88-.99

.74-.85

•87-.99

.83-. 99

1/2" .08-•25 •18-.30 •62-.68 •58-.79

3/4" 07-. 24 .23-.42 .66-.79 .67-.86

1/2" .08-.17 .50-.67 .46-.61 .52-.70

3/4" .22-•33 .61-.71 .51-.64 .63-.84

1/2" .33-•65 •33-.39 .43-.50 .57-.69

3/4" .32-.56 •36-.45 .54-.58 •69-.83

1/2" .23-.41 .28-•50 •41-.61

3/4" •38-.50 .32-•33 .43-•48

1" .29-.44 .33-.49 .44-.56

.54-.92

.54-.62

.62-.77

1/2" .03-•14 .11-.26 .20-.64 •65-.99

5/8" .03-.20 .15-.35 •56-.79 .71-•99

3/4" .03-.20 .19-.38 .70-.85 .95-.99

1/2" to .01-.11 .36-.40 •68-.84 .97-.99

5/8"

5/8" .44-.73 •38-.81 .59-.76 •82-.99

3/4" •53-.77 .44-.76 .64-.81 .89-.99

1/2" .03-.14 .16-.23 •65-.71 •82-.93

3/4" .03-.14 .19-.41 .67-•96 .84-•99

1/2" •12-.18 .52-•62 •58-•61 .74-.89

1/2" to .44-.79 .34-•86 •50-.72 .71 -.93

5/8"

3/4" •30-.87 .38-.81 .51-.80 .73-•99

2000 Hz•

.87-.93

.81-.85

.84-.95

.86-•87

.82-.92

.59-•84

.59-.83

•57-.85

.59-.87

.65-.79

.66-.86

.49-.82

.56-.69

.67-.79

.64-•95

.74-.95

.72-.87

.85-.86

.77-• 80

o74-.92

.81

.81 -. 86

•70-. 99

4000 Hz.

• 71-. 74

.51 -.64

•71-.79

• 55-. 71

• 54-. 75

•56-. 75

.42-. 73

.55-.81

.47-.78

.67-.81

.49-. 69

.30-.61

.57-.78

.78-.83

.58-.77

.41 -. 78

.51 -.75

.56-.62

.51-.74

.61-.90

.70-.74

.59.-92

.60-.98
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MATERIALS

TILES, PANELS AND CEILING

BOARDS (Continued)

Mineral Fiber Lay-ln Panels,

#7 Mounting

Perforated Metal Pans with

Mineral Fiber Pads or Blankets,

# 7 Mounting

Same, Pads Rated as Part of

Fire Resistive Assemblies

(Mineral Fiber Pad 1-1/4")

TABLE 12.15 (Continued)

THICK-

NESS 125Hz.

COEFFICIENTS
250 Hz. 500 Hz. 1000 Hz. 2000 Hz. 4000 Hz

1/2" .24-.60 .23-.50 .50-.67

3/4" .30-.94 .33-.93 .71-.83

1" .39-.84 .45-.86 .79-.84

2" .53-.94 .66-.86 .65-.94

3" .84-.91 .84-.87 .95-.99

1" .65-.69 .56-.72 .57-.71

1-1/4" .34-.91 .37-.91 .66-.95

1-9/16" .81-.91 .89-.91 .88-.93

2-13/16" .66 .72

Mineral Fiber Tile Rated as 1/2" to .26-.83 .26-.73

Part of Fire Resistive Assemblies, 5/8"

#7 Mounting 3/4" .45-.85 .44-.75

Mineral Fiber Lay-ln Panels Rated 1/2" .19-.42 .23-.53

as Part of Fire Resistive 5/8" .07-.68 .25-.56

Assemblies, I" .76 .76

#7 Mounting

Perforated Asbestos Cement Board 13/16" .75-.77 .64-.66

Panels with Mineral Fiber Pads, to 15/16"

#7 Mounting 23/16" .18 .55

WALLS AND CEILING

Concrete, Unpainted .01 .01

Concrete, Painted .01 .01

Brick, Plastered .01 .01

Brick, Unpainted 18" .02 .02

Brick, Painted 18" .01 .01

Plasterboard, Plastered .02 .05

.96

.39-.72

.55-.77

.34-.68

.41-.80

.83

.60-.62

.98

.02

.01

.02

.03

.02

.06

.57-.96

.85-.99

.93-.99

.75-.95

.85-.87

.73-.88

.99

.99

.99

.50-.99

.80-.99

.42-.96

.49-.99

.99

.75-.78

.98

.02

.02

.02

.04

.02

.08

.56-.93

.79-.99

.62-.97

.56-.80

.56-.58

.66-.73

.75-.98

.77-.84

.83

.49-.98

.67-.97

.44-.93

.46-.97

.98

.65-.68

.58

.02

.02

.03

.05

.02

.04

.41-.81

.42-.94

.44-.76

.37-.75

.30-.34

.54-.55

.60-.80

.60-.80

.67

.36-.91

.44-.99

.46-.85

.31-.82

.92

.42-.44

.44

.03

.02

.03

.07

.02

.06
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MATERIALS

WALLS AND CEI LING (Continued)

Plywood, 5/8", on Battens (1.6"):

Non-Perforated Board

Board Perforated with Slits

Board Perforated with Slits

and 1" Slagwool Blanket

in Air Space

Board Perforated with Slits

and a Layer of Plywood

Nailed to the Back of

Board

Plywood, 3/8", on Battens, 2"

Wood-Wool Stab, 1", on Solid

Wall

WATER

Water Surface, as in a Swimming

Pool

WOOD

Wood, Solid and Polished

Wood, Paneling, 2 to 4 in.

Air Space Behind

Wood Veneer, on 2"x 3" Wood

Studs, 16" o.c.

Wood Sheathing, Pine

Wood Platform with Large

Space Beneath

ABSORPTION OF SEATS AND

AUDIENCE

(Values given are in Sabins per

sq.ft, of Floor Area, or per Unit)

Adult

Seated in Upholstered Seats

Per sq.ft, of Floor Area

Per Person (Add to

Absorption of Chair)

TABLE 12.15 (Continued)

THICK-
NESS 125Hz. 250Hz.

2 ,I

3/8"to

1/2"

7/16"

3/4"

.18 .12 .10

.04 .05 .14

•05 .30 .65

.O8

.28

.18

.OO8

.I

.30

.11

.10

.40

.60

•70

.27

.22

.11

.OO8

•25

.11

.30

• 74

.60

COEFFICIENTS
500 Hz. 1000 Hz. 2000 Hz. 4000 Hz.

.27

.17

.19

.013

.05

.20

.12

.10

.20

.88

.60

.O9

.32

.68

.27

.09

.39

•015

.17

.O8

.17

.08

.20

.60

.07

.24

.56

.37 .70

.10 .11

.95 .56

.020 .025

.04 .04

.15 .10

.10

.08 .11

.15 .10

.93 .85

1.0-1.6 1.0-2.0



12-32 ConversionTablesandBasicDataonMaterials

TABLE12.15(Continued)

MATERIALS

ABSORPTION OF SEATS AND

125 Hz. 250 Hz.
COEFFICIENTS
500 Hz. 1000 Hz. 2000 Hz. 4000 Hz.

AUDIENCE (Continued)

Standlng_ Per Person 2.0-2.5 3.2-3.5 4.2-4.8

Child

Seated, Per Person 1.8-2.2 2.8-3.8

Seats, Unoccupied

Chair, Upholstered,

per Unit 2.0-3.5 2.5-3.5 3.0-3.5

per sq.ft, of Floor Area .44-.49 .54-.66 .60-.80

Chair, Wood or Metal

per Unit .10-.15 .15-.19 .20-.22

Pews, Wooden, per sq.ft.

of Floor Area .57 .61 .75

4.5-4.6

.35-.39

.86

5.0

3.5-4.5

.38-.50

.91

4.0-5.0

.30-.60

.86

Sources of information are listed in the bibliography. These data sources are mainly from literature published in the
United States. Foreign sources, obtained from laboratory tests with different test standards, are excluded.

* * Pores per linear inch

* For Nos. 1, 2, 4 and 7 mountings, (laboratory tests) see figures below:

:_.:A..._...6. z._._: _....

No. 1 MOUNTING

Cemented to plaster board with 1/8"
air space. Considered equivalent to
cementing to plaster or concrete
ceiling.

i! i!iili!i!i
No. 2 MOUNTING

Nailed to nominal l"x 3" (3/4" x
2 - 5/8" actual) Wood furring 12" o.c.

No. 4 MOUNTING

Laid directly on laboratory floor.

-_', :I" A...._" "_'-v'.._.

-ot_

e-

_L

No. 7 MOUNTING

Mechanically mounted on special
metal supports.



DataonSoundTransrnisslonLoss 12-33
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One-Thlrd Octave Band Center Frequencies - Hz

1/4 in. Plywood on Woad Framework. Surface Density 0.7

Ib/sq.ft. From Reference 60. (STC = 20 dB)

Wood-Shaving (PortJand-Cement Binder) Board Core, 2 in. Thick

3/4 in. Gypsum Plaster on Both Sides. Surface Density 16

Ib/sq.ft. From Reference 57. (STC = 33 dB)

3/8 in. Plasterboard on Wood Frame. Surface Density 1.9

Ib/sq.ft. From Reference 55. (SIC = 29 dB)

0.7 Ib/sq. ft. Mass Line

(0)

(b)

(c)

(d)
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•oo _ -o oe._o ov_oo o_ oooo o oo oo oo o oo

One-Thlrd Octave Band Center Frequencies - Hz

3/4 in. Chipboard on Wood Framework. Surface Density 3.2

Ib/sq.ft. From Reference 60. (STC = 26 dB)

2in. Solid Plaster With Expanded Metal-Lath .Core. Surface

Density 18.4 Ib/sq.ft. From Reference 57. (STC = 39 dB)

3/8 in. Laminated Building Board on Wood Frame. Surface

Density 0.78 Ib/sq.ft. From Reference 55. (STC = 27 dB)
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18.4 Ib/sq. ft. Mass Line
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One-Third Octave Band Center Frequencies - Hz

(a) 16 Gage (1/16 in.) Steel Plate in Steel Frame. Surface

Density 2.5 Ib/sq.ft. From Reference 55. (STC = 30 dB)

(b) 3/8 in. Steel Covered on One Side With 1/4 in. Lino on

1/2 in. Cork Bonded to Surface. Surface Density 20

Ib/sq.ft. From Reference 60. (STC = 42 dB)

(c) 2.5 Ib/sq.ft. Mass Line
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One-Thlrd Octave Band Center Frequencies - Hz

2-1/2 in. Sandwich Panet -0.041n. Lead, 1.96in. Resin

Bond Wood-Wool, and 0.5 in. Compressed Shavings. Surface

Density 6.1 Ib/sq.ft. (STC = 46 dB)

(b) 6.1 Ib/sq.ft. Mass Line

FIGURE 12,7a Sound Transmission Loss Through Single Partitions
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One-Thlrd Octave Band Center Frequencies - Hz

1/2 in. Gypsum Board Nailed on One Side of 2 x 4 Wood

Studs. From Reference 57. (STC = 29 dB)

1/2 in. Gypsum Wallboard, on Both Sides of 2 x 4 Wood

Studs, 16 in. o.c. TotaITh_ckness 4-1/2 in. Surface

Density 5.9 Ib/sq.ft. From Reference 57. (STC =37dB)

(c) 5.9 Ib/sq.ft. Mass Line

(a)

(b)

(c)
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One-Thlrd Octave Band Center Frequencies - Hz

1/2 in. Gypsum Plaster on Wood Lath; 2 x 4 Wood Studs,

16 in. o.c. Surface Density 17.1 Ib/sq.ft. From Reference

55. (STC = 35 dB)

1/2 in. Lime Plaster on Wood Lath; 2 x 4 Wood Studs, 16 in. o.c.

Surface Density 15.6 Ib/sq.ft. From Reference 55. (STC=44dB)

15.6 Ib/sq.ft. Mass Line
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One-Thlrd Octave Band Center Frequencies - Hz

7/8 in. Gypsum Plaster on Metal Lath; 2 x 4 Wood Studs,

Staggered. Surface Density 19.8 Ib/sq.ft. From Reference

55. (STC = 51 dB)

3/4 in. Gypsum Plaster on Paper-Backed Wire-Mesh Lath;

2x 4 Wood Studs, 16 in. o.c. Surface Density 12.6

Ib/sq.ft. From Reference 55. (STC = 36 dB)

5O

i

4O

30
a

20

o

I0

(a)

Cb)

(c) 19.8 Ib/sq.ft. Mass Line
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One-Thlrd Octave Band Center Frequencies - Hz

Dense Fiberboard on Both S;des of 2 x 4 Wood Studs, 16 in.

o.c., F_berboardJolntsat Studs. Total Thickness 4-1/2 in.

Surface Density 3.8 Ib/sq.ft. (STC =31 dB)

1/4 in. Plywood Glued to Both Sides of lx 3 Studs, 16in.

o.c. Total Thickness 3 in. Surface Density 2.5 Ib/sq.ft.

From Reference 57. (STC = 27 dB)

(c) 3.81b/sq.ft. Mass Line

FIGURE 12.7b Sound Transmission LossThrough Wood and Metal Partitions
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(a)
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One-Thlrd Octave Band Center Frequencies - Hz

1/161n. Lead Core Faced Each Side With 3/16 in. Wood

Between 2x 4 Vertical Wood Studs. Surface Density 5.1

Ib/sq.ft. From Reference 60. (STC =38dB)

7/8 in. Gypsum Plaster on Expanded Metal Lath on Both Sides

of 3-1/4 in. Metal Studs, 16 in. o.c. Total Thickness 5 in.

Surface Density 19.6 Ib/sq.ft. From Reference 57.

(STC= 37 dB)

(c) 5.1 Ib/sq .ft. MassLine
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One-Thlrd Octave Band Center Frequencies - Hz

Steel Stud Partition - 5/8 in. Gypsumboard on Both Sides of

2-1//2 in. Steel Stud, 24 in. o.c. Joints Taped (STC =35 dB)

FIGURE 12.7b Sound Transmission Loss Through Wood and Metal Partitions (Continued)
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One-Third Octave Band Center Frequencies - Hz

4 in. Reinforced Concrete Floor Isolated From Support Structure

With Fiverglass. Surface Density 53.21b/sq.ft. From

Reference 57. (SIC = 49 dB)

2x 8Joints, 16 in. o.c.. Floor: 1 in. Pine Subfloor, 1 in.

Pine Finish Floor. Ceiling: 1/2 in. Fiberboard, 1/2in.

Gypsum Plaster. Surface Density 14.3 Ib/sq.ft. From

Reference 57. (STC = 45 dB)
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One-Thlrd Octave Band Center Frequencies - Hz

9 in. Wood--Joist Floor, Plaster Ceiling, 7/8 in. T and G

Wood Floor Boards. Total Thickness 10-1/4 in. Surface

Density 12.5 Ib/sq.ft. From Reference 59. (STC =39dB)

8 _n. Wood-,Jolst Floor, 3/8 in. Plaster Board Ceiling, 7/8

in. T and G Wood Floor Boards. Total Thickness 9-1/4 in.

Surface Density 71b/sq.ft. From Reference 59. (STC = 33dB)

.5O

i

40

30

p-
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(a)
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(c) 12.5 Ib/sq.ft. Mass Line

FIGURE12.7c SoundTransmissionLossThroughFloor and Ceiling
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One-Thlrd Octave Band Center Frequencies - Hz

(a) Solid Concrete 6 ;n. I/2 in. Plaster on Both Sides. Surface

Density 80 Ib/sq.ft. (STC = 52 dB)

(b) - Solid Concrete 3 in. All Surface Cavities Sealed With Mortar

Mix. Surface Density 391b/sq.ft. (STC =47dB)

(c) 39 Ib/sq.ft. Mass Line
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One-Th;rd Octave Band Center Frequencles - Hz

Double ConcreteWaJl, 121n.-41n.-12in. (STC=67dB)

ConcreteWal[, 12in. (STC-62dB)

Concrete Wall, 6 in. (STC = 54 dB)
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One-Thlrd Octave Band Center Frequencles - Hz

Solid Brick Walls.

(a) 12 in. Thick. Surface Density 121 lb/sq.ft. From

Reference 57. (STC = 54 dB)

{b) 10 in. Thick. Surface Density 100 Ib/sq.ft. From

Reference 59. (STC =53dB)

(c) 4-1/2 in. Brick, 1/2 in. Plaster on Both Sides. Total

Thickness 5-1/2 in. Surface Density 55 Ib/sc I.ft. From

Reference 59. (STC = 35 dB)

(d) 55 Ib/sq.ft. MassLine
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One-Thlrd Octave Band Cente, F,equencles - Hz

Cinder Block,Hollow, 4 in. x 8 ;n. x 16 in., 5/8 in. Gypsum

Plaster on Both Sides. Total Thickness 5-I/4 in. Surface

Density 35.8 Ib/sq.ft. From Reference 57. (STC = 46dB)

Clay Tile, Hollow, 41n. x 121n. x 12 in., 5/8 in. Gypsum

Plaster on Both Sides. Total Thickness 5-1/'4 _n. Surface

Density 27.5 Ib/sq.ft. From Reference 57. (STC = 39dB)
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FIGURE 12.7d Sound Transmission Loss Through Bricks, Concrete, Tiles, and Glass Blocks
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4 in. Reinforced Concrete Slab. From Reference 57.

(STC= 46 dB)

Lighthweight Aggregate, Pumice and Portland Cement Tile,

Hollow. 12 in. Thick. Surface Density 38.71b/sq.ft.

From Reference 57. (STC = 22dB)
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3-3/4 in. Glass Brick Partltlon. 3-3/4 in. x 4-7/8 in. x 8 in.

Brick. From Reference 58. (STC =43 dB)

FIGURE 12.7d Sound Transmission Loss Through Bricks, Concrete, Tiles, and Glass Blocks (Continued)
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Plate Glass. From Reference 57.

(a) I/4 in. Thick. Surface Density Approximately 3.2

Ib/sq.ft. (STC = 30 dB)

(b) 1/8 in. Thick. Surface Density Approximately 1.6

Ib/sq.ft. (STC= 30 dB)

(c) 3.2 Ib/sq.ft. Mass Line
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One-Thlrd Octave Band Center Frequencies - Hz

Laminated Glass. From Reference 57.

(a) 0.80 in. Thick, 4Ply. Surface Density Approximately

10 Ib/sq.ft. (STC= 41 dB)

(b) 0.62 in. Thick, 4Ply. Surface Density Approximately

8 Ib/sq.ft. (STC =39dB)

(c) 0.45 in. Thick, 3 Ply. Surface Density Approximately

5.5 Ib/sq.ft. (STC= 37 dB)

(d) 8 Ib/sq.ft. Mass Line

FIGURE 12.7e Sound Transmission Loss Through Glass and Windows
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Wood Frame Double Hung Windows

(a) With Storm Window, Screen. (STC =32dB)

Cb) Modern, With 3/8 in. Insulating Glass. (STC = 24 dB)
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One-Thlrd Octave Band Center Frequencles - Hz

Wood Frame Old Double Hung Window With 3/32 in. Glass.

(a) With Caulked Storm Window. (STC =30 dB)

(b) With Storm Window. (STC = 29dB)

(c) Locked. (STC = 23dB)

(d) Unlocked. (STC = 21 dB)
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One-Third Octave Band Center Frequencies - Hz

Steel Frame Casement Window With 3/32 in. Glass

Caulked in Place. (STC = 29 dB)

Steel Frame Casement Window With 3/32 in. Glass

Normal Installation (STC = 21 dB)
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One-Thlrd Octave Band Center Frequencies - Hz

1 in. Glass in Wood Frame. Surface Density 13tb/sq.ft.

From Reference 60. (STC =34riB)

Aluminum Frame Jalousie Window, 1/4 in. Window Glass.

From Reference 56. (STC = 17dB)

FIGURE 12.7e Sound Transmission Loss Through Glass and Windows CContinued)
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One-Thlrd Octave Band Center Frequencies - Hz

Wood, Heavy, Approximately 2-1/2 in. Thick, Rubber Gaskets

Around Sides and Top; Special Felt Strip Pushed Down as Door

Closes, Eliminating Any Crack Under Door. Surface Density

12.5 Ib/sq.ft. From Reference 57. (STC = 26 dB)

1-3/4 in. Solid Oak Door, With Crasks, as Ordinarily Hung.

From Reference 55. (STC = 20 dB)

12.5 Ib/sq.ft. Mass Line
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One-Thlrd Octave Band Center Frequencies - Hz

1-3/4 in. Hollow-Core Flush Wood Doors

(a) Weatherstripped. (STC = 19dB)

(b) 1/1'6 in. Undercut. (STC = 17dB)

(c) 5/16 in. Undercut. (STC = 16 dB)
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One-Thlrd Octave Band Center Frequencies - Hz

Weatherstripped Wood Doors

(o) 1-3/4 in. Sotld-Core Flush, 95 Ibs. (STC = 26 dB)

(b) Solid Panel, Wood Frame, 60 lbs. (STC = 23 dB)

(c) 1-3/4 in. Hollow-Core Flush, 30 Ibs. (STC = 19 dB)

(d) Same as (a) except without Weatherstrlpping, 1/16 in.

Undercut (STC = 19 dB)
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One-Thlrd Octave Band Center Frequencies - Hz

From Reference 58.

(a) Solid Core Door, Gasketed (STC = 39 dB)

(b) Hollow Core Door, Gasketed (STC = 33 dB)

(c) Ungasketed Door (STC = 18 dB)

(d) Door Open (STC = 9 dB)

FIGURE12.7f SoundTransmissionLossThroughDoors
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