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Introduction

A sound wave is a longitudinal wave, which alternately pushes and pulls the material
through which it propagates.  The amplitude disturbance is thus parallel to the direction
of propagation.

Sound waves can propagate through the air, water, Earth, wood, metal rods, stretched
strings, and any other physical substance.

The purpose of this tutorial is to give formulas for calculating the speed of sound.
Separate formulas are derived for a gas, liquid, and solid.

General Formula for Fluids and Gases

The speed of sound c is given by

o

B
c

ρ
=                                                                                      (1)

where
B is the adiabatic bulk modulus,

oρ  is the equilibrium mass density.

Equation (1) is taken from equation (5.13) in Reference 1.  The characteristics of the
substance determine the appropriate formula for the bulk modulus.

Gas or Fluid

The bulk modulus is essentially a measure of stress divided by strain.  The adiabatic bulk
modulus B is defined in terms of hydrostatic pressure P and volume V as

 
V/V

PB
∆−
∆=                                                                                         (2)

Equation (2) is taken from Table 2.1 in Reference 2.
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An adiabatic process is one in which no energy transfer as heat occurs across the
boundaries of the system.

An alternate adiabatic bulk modulus equation is given in equation (5.5) in Reference 1.

o

P
B o

ρ






ρ∂
∂ρ=                                                                                  (3)

Note that

ρ
γ=





ρ∂
∂ PP                                                                                  (4)

where

γ is the ratio of specific heats.

The ratio of specific heats is explained in Appendix A.

The speed of sound can thus be represented as

 
o

oP
c

ρ
γ=                                                                                  (5)

Equation (5) is the same as equation (5.18) in Reference 1.

Perfect Gas

An alternate formula for the speed of sound in a perfect gas is

kT
M
R

c 




γ=                                                                                  (6a)

where
   γ is the ratio of specific heats,
  M is the molecular mass,
   R is the universal gas constant,
  Tk is the absolute temperature in Kelvin.

Molecular mass is explained in Appendix A.  The speed of sound in the atmosphere is
given in Appendix B.

Equation (6a) is taken from equations (5.19) and (A9.10) in Reference 1.

The speed of sound in a gas is directly proportional to absolute temperature.
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T

c
c =                                                                                  (6b)

Liquid

A special formula for the speed of sound in a liquid is

o

TB
c

ρ
γ=                                                                                      (7)

where
γ is the ratio of specific heats,
BT is the isothermal bulk modulus,

oρ  is the equilibrium mass density.

Equation (7) is taken from equation (5.21) in Reference 1.

The isothermal bulk modulus is related to the adiabatic bulk modulus.

B =  γ BT                                                                                    (8)

Solid

The speed of sound in a solid material with a large cross-section is given by

c
B G

=
+ 





4
3

ρ                                                                                        (9)

where
G is the shear modulus, 
ρ is the mass per unit volume.

Equation (9) is taken from equation (6.41) in Reference 1.  The c term is referred to as the
bulk or plate speed of longitudinal waves.

The shear modulus can be expressed as

)1(2
EG

ν+
=                                                                                            (10)

where

E is the modulus of elasticity,
ν is Poisson’s ratio.
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Equation (10) is taken from Table 2.2 in Reference 2.

Substitute equation (10) into (9).

( )
ρ







ν+




+

= 12
E

3
4B

c                                                                                 (11a)

ρ








ν+




+

= 1
E

3
2B

c                                                                                 (11b)

The bulk modulus for an isotropic solid is

)21(3
EB

ν−
=                                                                                  (12)

where

E is the modulus of elasticity,
ν is Poisson’s ratio.

The modulus of elasticity is also called Young’s modulus.

Equation (12) is taken from the Definition Chapter in Reference 3.  It is also given in
Table 2.2 of Reference 2.

Substitute equation (12) into equation (11b).

( )
ρ








ν+




+





ν−= 1
E

3
2

213
E

c                                                                      (13)

The next steps simplify the algebra.

( ) 







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
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
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
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2
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( ) ( )
( )( ) 





ν+ν−
ν−+ν+






ρ

=
1213

2121Ec                                                                     (15)

( )( )





ν+ν−
ν−






ρ

=
1213

33Ec                                                                     (16)

( )( )





ν+ν−
ν−






ρ

=
121

1Ec                                                                     (17)

Equation (17) is also given in Chapter 2 of Reference 4.

The Poisson terms in equation (17) account for a lateral effect, which can be neglected if
the cross-section dimension is small, compared to the wavelength.  In this case, equation
(17) simplifies to

ρ
= E

c                                                                                      (18)

String

Consider a string with uniform mass per length Lρ . The string is stretched with a tension
force T.  The phase speed c is given by

L

T
c

ρ
=                                                                               (19)

This speed is the phase speed of transverse traveling waves.

Equation (19) is taken from equation (2.6) in Reference 1.
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Membrane

Consider a membrane with uniform mass per area aρ .   The membrane is assumed to be
thin, with negligible stiffness.

The membrane is stretched with a tension force per length LT .   The tension is assumed
to be uniform throughout the membrane.

The transverse phase speed c is given by

a

T
c L

ρ
=                                                                                 (20)

This speed is the phase speed of transverse traveling waves.

Equation (20) is the same as equation (4.3) in Reference 1.

Special Topics

Appendix B gives the variation of the speed of sound in the atmosphere with altitude.

Appendix C gives the speed of sound in seawater.

Properties

Pertinent properties of solids, liquids, and gases are given in Tables 1a, 1b, 2, and 3,
respectively.

Table 1a.  Solids
Speed of Sound

(m/sec)
Solid Density

(kg/m3)
Elastic

Modulus
(Pa)

Shear
Modulus

(Pa)

Poisson’s
Ratio Bar Bulk

Aluminum 2700 7.0 (1010) 2.4 (1010) 0.33 5100 6300

Brass 8500 10.4 (1010) 3.8 (1010) 0.37 3500 4700

Copper 8900 12.2 (1010) 4.4 (1010) 0.35 3700 5000

Steel 7700 19.5 (1010) 8.3 (1010) 0.28 5050 6100

Ice 920 - - - - 3200

Glass (Pyrex) 2300 6.2 (1010) 2.5 (1010) 0.24 5200 5600
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Table 1b.
Solids (Extreme Values from Reference 7)

Solid Speed of Sound
(m/sec)

Granite 6000

Vulcanized Rubber at 0 °C 54

Table 2.  Liquids
Liquids Temperature

(°C)
Density
(kg/m3)

Adiabatic
Bulk
Modulus
(Pa)

Ratio of
Specific
Heats

Speed of
Sound
(m/sec)

Water (fresh) 20 998 2.18(109) 1.004 1481

Water (sea) 13 1026 2.28(109) 1.01 1500
Mercury 20 13,600 25.3(109) 1.13 1450

Table 3.  Gases at a pressure of 1 atmosphere
Gases Molecular

Mass
(kg/kgmole)

Temperature
(°C)

Density
(kg/m3)

Ratio of
Specific
Heats

Speed of
Sound
(m/sec)

Air 28.97 0 1.293 1.402 332
Air 28.97 20 1.21 1.402 343

Oxygen ( O2 ) 32.00 0 1.43 1.40 317

Hydrogen ( H2 ) 2.016 0 0.09 1.41 1270

Steam - 100 0.60 - 404.8

Note:  1 (kg/kgmole) = 1 (lbm/lbmole)

Examples

Air

Calculate the speed of sound in air for a temperature of 70 degrees F (294.26 K).

The properties for air are

γ = 1.402
M =  28.97 kg/kgmole

The universal gas constant is
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R =8314.3 J/(kgmole⋅K)

The specific heat ratio is taken from Appendix 10 of Reference 1.  The molecular mass
and gas constant values are taken from Reference 5.

The formula for the speed of sound is

kT
M
R

c 




γ=

( )K26.294
Kkgmole

J
3.8314

kg97.28
kgmole

402.1c 





⋅



=

c = 344 m/sec

c =1130 ft/sec

Solid, Aluminum Rod

Calculate the speed of sound in an aluminum rod.  Assume that the diameter is much
smaller than the wavelength.

The material properties for aluminum are:

E = 70(109) Pa
ρ = 2700 kg/m3

These properties are taken from Reference 6.  The speed of sound is

ρ
= E

c

3

9

m/kg2700

Pa)10(70
c =

c = 5100 m/sec

c = 16,700 ft/sec
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APPENDIX A

Ratio of Specific Heats

The ratio of specific heats is defined as

Cv
Cp=γ                                                                                   (A-1)

where

Cp is the heat capacity at constant pressure,
Cv is the heat capacity at constant volume.

Molecular Mass

Molecular mass is also called be the following names:

1. Molecular weight
2. Molal mass

Molecular mass is the mass per mole of a material.

One mole is defined as 6.023(1023) particles.  This is called Avogadro’s number.  It is
also the number of atoms in a “gram atom.”

For carbon 12, the molecular mass is 12 kg/kgmole = 12 g/gmole = 12 lbm/lbmole.  The
mole is defined in such a way that one kgmole of a substance contains the same number
of molecules as 12 kg of carbon 12.  Likewise, one lbmole contains the same number of
molecules as 12 lbm of carbon 12.
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APPENDIX B

Variation of the Speed of Sound in the Atmosphere with Altitude

The pressure, temperature, density and speed of sound for the international standard
atmosphere (ISA) can be calculated for a range of altitudes from sea level upward.  These
parameters are obtained from the hydrostatic equation for a column of air.  The air is
assumed to be a perfect gas.

The atmosphere consists of two regions.

The troposphere is the region between sea level and an altitude of approximately 11 km
(36,089 feet).  In reality, the boundary may be at 10 to 15 km depending on latitude and
time of year.  The temperature lapse rate in the troposphere is taken as L= 6.5 Kelvin/km.
The actual value depends on the season, weather conditions, and other variables.

The stratosphere is the region above 11 km and below 50 km.  The stratosphere is divided
into two parts for the purpose of this tutorial.

The lower stratosphere extends from 11 km to 20 km.  The temperature remains constant
at 217 Kelvin (-69.1 F) in the lower stratosphere.

The upper stratosphere extends from 20 km to 50 km.  The temperature rises in the upper
stratosphere.

Basic Equations

The hydrostatic equation for pressure P and altitude h is

g
dh
dP ρ−=                                                                                     (B-1)

where
ρ = mass density,
g = gravitational acceleration.

The perfect gas equation is

kT
M
R

P ρ=                                                                                  (B-2)

where

R is the universal gas constant,
M is the molecular weight,

  kT  is the absolute temperature in Kelvin.
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Note that for air,

kgmole/kg97.28
)KJ/(kgmole3.8314

M
R ⋅=                                                                     (B-3)

Kkg
J

287
M
R

⋅
=                                                                                        (B-4)

K
sec/m

287
M
R 22

=                                                                                   (B-5)

Troposphere

The temperature lapse equation for the troposphere is

hLTT o−=                                                                                              (B-6)

Recall the formula for the speed of sound in a perfect gas.

kT
M
R

c 




γ=                                                                                        (B-7)

The speed of sound in the troposphere is thus

( )hLT
M
R

c o−




γ=                                                                                (B-8)

The standard sea level temperature is 288To =  Kelvin.  Again, L= 6.5 Kelvin / km for
the troposphere.

Substitute equation (B-6) into (B-2) to obtain the perfect gas law for the troposphere.

[ ]hLT
M
R

P o−ρ=                                                                                              (B-9)
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The density in the troposphere can thus be expressed as

[ ]hLT
M
R

P

o−
=ρ                                                                                   (B-10)

Solve the hydrostatic equation for a constant lapse rate.  The resulting equation gives the
pressure variation with altitude.  Neglect the variation of gravity with altitude.  Rewrite
equation (B-1).

dhgPd ρ−=                                                                                   (B-11)

Substitute equation (B-10) into (B-11).

[ ]
dhg

hLT
M
R

P
Pd

o−
−=                                                                  (B-12)

[ ]
dh

hLT
M
R

g
P
Pd

o−
−=                                                                  (B-13)

The hat sign is added in order to prevent confusion between the integration variables and
the limits.

[ ]∫∫
−

−=
h

0
o

P

oP
ĥd

ĥLT
M
R

g
P̂
P̂d                                                              (B-14)

[] [ ]h

0
o

P

oP
ĥLTln

LR
gM

P̂ln −=                                                                  (B-15)

[ ] [ ]{ }oo
o

TlnhLTln
LR

gM
P
P

ln −−=







                                                        (B-16)

















 −=








o
o

o T
hLT

ln
LR

gM
P
P

ln                                                                 (B-17)
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











 −=






 LR

gM

o
o

o T
hLT

P
P

                                                                  (B-18)

The pressure in the troposphere is thus













 −= LR

gM

o
o

o T
hLT

PP                                                                   (B-19)

Note that the sea level pressure is .kPa3.101Po =

The density in the troposphere is obtained from equations (B-10) and (B-19).

[ ]hLT
M
R

T
hLT

P

o

LR
gM

o
o

o

−







 −

=ρ







                                                                                  (B-20)

Lower Stratosphere

Again, the temperature is constant in the lower stratosphere.  The speed of sound is thus
constant in the lower stratosphere.

dhgPd ρ−=                                                                                   (B-21)

Let cT  be the constant temperature in the lower stratosphere.

dhg

M
RT

P
Pd

c
−=                                                                           (B-22)

dh
RT

gM
P
Pd

c
−=                                                                        (B-23)

The hat sign is added in order to prevent confusion between the integration variables and
the limits.
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∫∫ −=
h

1h c

P

1P
ĥd

RT
gM

P̂
P̂d                                                                  (B-24)

[] h

1hc

P

1P
ĥ

RT
gM

P̂ln
−=                                                                   (B-25)

[ ]1
c1

hh
RT

gM
P
P

ln −−=







                                                               (B-26)

[ ]






 −−= 1

c1
hh

RT
gM

exp
P
P                                                            (B-27)

The pressure in the lower stratosphere is thus

[ ]






 −−= 1

c
1 hh

RT
gM

expPP                                                            (B-27)

Note that P1 is the pressure at the lower altitude limit of the stratosphere.

The density in the lower stratosphere is thus

[ ]






 −−=ρ 1

c
1

k
hh

RT
gM

expP
RT
M

                                                             (B-28)

Summary

The pressure, density, and speed of sound are given in Table B-1 for an altitude up to 20
km.
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Table B-1.  Atmospheric Properties
Altitude

(km)
Pressure

(kPa)
Mass Density

(kg/m
3
)

Temp.
(Kelvin)

Temp.
(°C)

Speed of
Sound
(m/sec)

0 101.3 1.226 288 14.9 340.2
1 89.85 1.112 282 8.4 336.3
2 79.47 1.007 275 1.9 332.4
3 70.09 0.9096 269 -4.7 328.5
4 61.62 0.8195 262 -11.2 324.5
5 54.00 0.7365 256 -17.7 320.4
6 47.17 0.6600 249 -24.2 316.3
7 41.05 0.5898 243 -30.7 312.1
8 35.59 0.5254 236 -37.2 307.9
9 30.73 0.4666 230 -43.7 303.7

10 26.43 0.4129 223 -50.2 299.3
11 22.62 0.3641 217 -56.2 295
12 19.33 0.3104 217 -56.2 295
13 16.51 0.2652 217 -56.2 295
14 14.11 0.2266 217 -56.2 295
15 12.06 0.1936 217 -56.2 295
16 10.30 0.1654 217 -56.2 295
17 8.801 0.1413 217 -56.2 295
18 7.519 0.1207 217 -56.2 295
19 6.424 0.1032 217 -56.2 295
20 5.489 0.0881 217 -56.2 295

Again, the values in Table B-1 are approximate.  The actual values depend on the time of
day, season, weather conditions, etc.
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APPENDIX C

The Speed of Sound in Seawater

The speed of sound in seawater at 13 °C is 1500 m/sec, per Table 2.  This is a nominal
value.  The actual value depends on the depth, salinity, and temperature.

A number of empirical equations exist for determining the speed of sound in seawater.
Reference 8 gives the following "Leroy" equation.

61/Z)35S()18T()10(

)35S(2.1)18T)(10(4

)10T()10(6)10T(39.1492c

2

22

23

+−−−

−+−−

−−−+=

−

−

−

(C-1)

where
c is the speed of sound in m/sec
T is the temperature in °C
S is the salinity in parts per thousand
Z is the depth in meters.

Equation (1) is accurate to 0.1 m/sec for T less than 20 °C and Z less than 8000 m.

An alternate equation is the Lovett equation given in Chapter 15 of Reference 6.


