THE VIBRATION RESPONSE OF SOME SPRING-DAMPER SYSTEMS WITH AND WITHOUT MASSES

By Tom Irvine
Email: tomirvine@aol.com
April 26, 2012

Introduction
Consider the single-degree-of-freedom system subjected to an applied force in Figure 1.

Figure 1.
where

$$
\begin{aligned}
\mathrm{F}(\mathrm{t}) & =\text { Applied force } \\
\mathrm{c} & =\text { viscous damping coefficient } \\
\mathrm{k} & =\text { stiffness } \\
\mathrm{x} & =\text { displacement }
\end{aligned}
$$

Summation of forces in the vertical direction yields the equation of motion.

$$
\begin{equation*}
\mathrm{c} \dot{\mathrm{x}}+\mathrm{kx}=\mathrm{F}(\mathrm{t}) \tag{1}
\end{equation*}
$$

Derive the transfer function by taking the Laplace transform.

$$
\begin{equation*}
\mathrm{L}\{\mathrm{c} \dot{\mathrm{x}}+\mathrm{kx}\}=\mathrm{L}\{\mathrm{~F}(\mathrm{t})\} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{csX}(\mathrm{s})-\mathrm{cx}(0)+\mathrm{kX}(\mathrm{~s})=\mathrm{F}(\mathrm{~s}) \tag{3}\\
& {[\mathrm{cs}+\mathrm{k}] \mathrm{X}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})+\mathrm{cx}(0)} \tag{4}\\
& \mathrm{X}(\mathrm{~s})=\frac{\mathrm{F}(\mathrm{~s})+\mathrm{cx}(0)}{\mathrm{cs}+\mathrm{k}} \tag{5}
\end{align*}
$$

Now assume that the initial displacement is zero.

$$
\begin{equation*}
X(s)=\frac{F(s)}{c s+k} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{X(s)}{F(s)}=\frac{1}{c s+k} \tag{7}
\end{equation*}
$$

The dynamic stiffness in the Laplace domain is

$$
\begin{equation*}
\frac{F(s)}{X(s)}=c s+k \tag{7}
\end{equation*}
$$

The dynamic stiffness in the frequency domain is

$$
\begin{equation*}
\frac{F(\omega)}{X(\omega)}=k+j c \omega \tag{8}
\end{equation*}
$$

The initial value problem for the free response is

$$
\begin{equation*}
X(s)=\frac{c x(0)}{\operatorname{cs}+k} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
X(s)=\frac{x(0)}{s+(k / c)} \tag{10}
\end{equation*}
$$

The inverse Laplace transform yields the time domain response.

$$
\begin{equation*}
\mathrm{x}(\mathrm{t})=\mathrm{x}(0) \exp [(\mathrm{k} / \mathrm{c}) \mathrm{t}] \tag{11}
\end{equation*}
$$

APPENDIX A

Consider the single-degree-of-freedom system subjected to an applied force.

Figure A-1.

The equation of motion is

$$
\begin{equation*}
\mathrm{m} \ddot{\mathrm{x}}+\mathrm{c} \dot{\mathrm{x}}+\mathrm{kx}=\mathrm{F}(\mathrm{t}) \tag{A-1}
\end{equation*}
$$

Derive the transfer function by taking the Laplace transform.

$$
\begin{gather*}
\mathrm{L}\{\mathrm{~m} \ddot{\mathrm{x}}+\mathrm{c} \dot{\mathrm{x}}+\mathrm{kx}\}=\mathrm{L}\{\mathrm{~F}(\mathrm{t})\} \tag{A-2}\\
\mathrm{ms}^{2} \mathrm{X}(\mathrm{~s})-\mathrm{m} \dot{\mathrm{x}}(0)-\operatorname{msx}(0)+\operatorname{csX}(\mathrm{s})-\mathrm{cx}(0)+\mathrm{kX}(\mathrm{~s})=\mathrm{F}(\mathrm{~s}) \tag{A-3}
\end{gather*}
$$

$$
\begin{align*}
& \mathrm{ms}^{2}+\mathrm{cs}+\mathrm{k} \int \mathrm{X}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})+\mathrm{cx}(0)+\mathrm{m} \dot{\mathrm{x}}(0)+\mathrm{msx}(0) \tag{A-4}\\
& \mathrm{X}(\mathrm{~s})=\frac{\mathrm{F}(\mathrm{~s})+\mathrm{cx}(0)+\mathrm{m} \dot{\mathrm{x}}(0)+\mathrm{msx}(0)}{\mathrm{ms}^{2}+\mathrm{cs}+\mathrm{k}} \tag{A-5}
\end{align*}
$$

Now assume that the initial displacement is zero.

$$
\begin{align*}
& X(s)=\frac{F(s)}{\mathrm{ms}^{2}+\mathrm{cs}+\mathrm{k}} \tag{A-6}\\
& \frac{X(\mathrm{~s})}{\mathrm{F}(\mathrm{~s})}=\frac{1}{\mathrm{~ms}^{2}+\mathrm{cs}+\mathrm{k}} \tag{A-7}
\end{align*}
$$

The dynamic stiffness in the Laplace domain is

$$
\begin{equation*}
\frac{\mathrm{F}(\mathrm{~s})}{\mathrm{X}(\mathrm{~s})}=\mathrm{ms}^{2}+\mathrm{cs}+\mathrm{k} \tag{A-8}
\end{equation*}
$$

The dynamic stiffness in the frequency domain is

$$
\begin{equation*}
\frac{\mathrm{F}(\omega)}{\mathrm{X}(\omega)}=\mathrm{k}-\mathrm{m} \omega^{2}+\mathrm{jc} \omega \tag{A-9}
\end{equation*}
$$

The mechanical impedance in the frequency domain is

$$
\begin{equation*}
\frac{F(\omega)}{V(\omega)}=\frac{k-m \omega^{2}+j c \omega}{j \omega} \tag{A-10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{F(\omega)}{V(\omega)}=c+j\left[-\frac{k}{\omega}+m \omega\right] \tag{A-11}
\end{equation*}
$$

The apparent mass in the frequency domain is

$$
\begin{equation*}
\frac{F(\omega)}{A(\omega)}=\frac{c+j\left[-\frac{k}{\omega}+m \omega\right]}{j \omega} \tag{A-12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{F(\omega)}{A(\omega)}=\left[m-\frac{k}{\omega^{2}}\right]-j \frac{c}{\omega} \tag{A-13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{F(\omega)}{A(\omega)}=m\left\{\left[1-\frac{k}{m \omega^{2}}\right]-j \frac{c}{m \omega}\right\} \tag{A-14}
\end{equation*}
$$

Note that

$$
\begin{align*}
& \omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \tag{A-15}\\
& \mathrm{c}=2 \xi \omega_{\mathrm{n}} \mathrm{~m} \tag{A-16}\\
& \eta=2 \xi \tag{A-17}
\end{align*}
$$

By substitution,

$$
\begin{align*}
& \frac{F(\omega)}{A(\omega)}=m\left\{\left[1-\frac{\omega_{n}^{2}}{\omega^{2}}\right]-j \frac{2 \xi \omega_{n}}{\omega}\right\} \tag{A-18}\\
& \frac{F(\omega)}{A(\omega)}=m\left\{\left[1-\frac{\omega_{n}^{2}}{\omega^{2}}\right]-j \frac{\eta \omega_{n}}{\omega}\right\} \tag{A-19}
\end{align*}
$$

APPENDIX B

Consider the following two-degree-of-freedom system subjected to an applied force.

Figure B-1.

The free-body diagrams are

Figure B-2.

The equations of motion are

$$
\begin{align*}
& \mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\mathrm{F}(\mathrm{t})=0 \tag{B-1}\\
& \mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\mathrm{F}(\mathrm{t}) \tag{B-2}\\
& \mathrm{c} \dot{\mathrm{x}}_{1}+\mathrm{k}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \tag{B-3}
\end{align*}
$$

Solve for x_{2} using Equation (B-2).

$$
\begin{equation*}
x_{2}=\frac{F(t)}{k}+x_{1} \tag{B-4}
\end{equation*}
$$

By substitution,

$$
\begin{align*}
& c \dot{x}_{1}+k\left(x_{1}-x_{2}\right)=0 \tag{B-5}\\
& c \dot{x}_{1}+k\left(x_{1}-\frac{F(t)}{k}-x_{1}\right)=0 \tag{B-6}\\
& c \dot{x}_{1}+k\left(-\frac{F(t)}{k}\right)=0 \tag{B-7}\\
& c \dot{x}_{1}=F(t) \tag{B-8}
\end{align*}
$$

Take the Laplace transform.

$$
\begin{equation*}
\mathrm{L}\left\{\mathrm{c} \dot{\mathrm{x}}_{1}\right\}=\mathrm{L}\{\mathrm{~F}(\mathrm{t})\} \tag{B-9}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{csX_{1}}(\mathrm{s})-\mathrm{cx}_{1}(0)=\mathrm{F}(\mathrm{~s}) \tag{B-10}\\
& \operatorname{csX_{1}}(\mathrm{s})=\mathrm{F}(\mathrm{~s})+\mathrm{cx}_{1}(0) \tag{B-11}\\
& \mathrm{X}_{1}(\mathrm{~s})=\frac{\mathrm{F}(\mathrm{~s})+\mathrm{cx}_{1}(0)}{\mathrm{cs}} \tag{B-12}
\end{align*}
$$

Recall

$$
\begin{equation*}
\mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\mathrm{F}(\mathrm{t}) \tag{B-13}
\end{equation*}
$$

Take the Laplace transform.

$$
\begin{align*}
& \mathrm{L}\left\{\mathrm{k}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right\}=\mathrm{L}\{\mathrm{~F}(\mathrm{t})\} \tag{B-14}\\
& \mathrm{k} X_{2}(\mathrm{~s})-\mathrm{k} X_{1}(\mathrm{~s})=\mathrm{F}(\mathrm{~s}) \tag{B-15}\\
& \mathrm{k} X_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})+\mathrm{k} \mathrm{X}_{1}(\mathrm{~s}) \tag{B-16}\\
& \mathrm{kX}_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})+\mathrm{k}\left\{\frac{\mathrm{~F}(\mathrm{~s})+\mathrm{cx}_{1}(0)}{\mathrm{cs}}\right\} \tag{B-17}\\
& \mathrm{k} X_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})\left[1+\frac{\mathrm{k}}{\mathrm{cs}}\right]+\frac{\mathrm{k}}{\mathrm{~s}} \mathrm{x}_{1}(0) \tag{B-18}\\
& \mathrm{X}_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})\left[\frac{1}{\mathrm{k}}+\frac{1}{\mathrm{cs}}\right]+\frac{1}{\mathrm{~s}} \mathrm{x}_{1}(0) \tag{B-19}
\end{align*}
$$

Now assume the initial displacement is zero.

$$
\begin{align*}
& X_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})\left[\frac{1}{\mathrm{k}}+\frac{1}{\mathrm{cs}}\right] \tag{B-20}\\
& \mathrm{X}_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})\left[\frac{\mathrm{cs}+\mathrm{k}}{\mathrm{cks}}\right] \tag{B-21}
\end{align*}
$$

The receptance in the Laplace domain is

$$
\begin{equation*}
\frac{X_{2}(\mathrm{~s})}{\mathrm{F}(\mathrm{~s})}=\frac{\mathrm{cs}+\mathrm{k}}{\mathrm{cks}} \tag{B-22}
\end{equation*}
$$

The dynamic stiffness in the Laplace domain is

$$
\begin{equation*}
\frac{F(s)}{X_{2}(s)}=\frac{c k s}{c s+k} \tag{B-22}
\end{equation*}
$$

The dynamic stiffness in the frequency domain is

$$
\begin{equation*}
\frac{F(\omega)}{X_{2}(\omega)}=\frac{\mathrm{jck} \omega}{\mathrm{k}+\mathrm{jc} \omega} \tag{B-22}
\end{equation*}
$$

The initial value problem for the free response is

$$
\begin{equation*}
X_{2}(s)=\frac{1}{s} x_{1}(0) \tag{B-23}
\end{equation*}
$$

The inverse Laplace transform yields the time domain response in terms of the unit step function $u(t)$.

$$
\begin{equation*}
x_{2}(t)=x_{1}(0) u(t) \tag{B-24}
\end{equation*}
$$

This can be simplified as

$$
\begin{equation*}
x_{2}(t)=x_{1}(0) \tag{B-25}
\end{equation*}
$$

Likewise

$$
\begin{equation*}
\mathrm{x}_{1}(\mathrm{t})=\mathrm{x}_{1}(0) \tag{B-26}
\end{equation*}
$$

APPENDIX C

Consider the following two-degree-of-freedom system subjected to an applied force.

Figure C-1.

Figure C-2.

The equations of motion are

$$
\begin{gather*}
\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)-\mathrm{k}_{2} \mathrm{x}_{2}+\mathrm{F}(\mathrm{t})=0 \tag{C-1}\\
\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{2}-\mathrm{k}_{1} \mathrm{x}_{1}=\mathrm{F}(\mathrm{t}) \tag{C-2}\\
\mathrm{c} \dot{\mathrm{x}}_{1}+\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \tag{C-3}
\end{gather*}
$$

Solve for x_{2} using Equation (C-2).

$$
\begin{equation*}
\mathrm{x}_{2}=\frac{\mathrm{F}(\mathrm{t})}{\mathrm{k}_{1}+\mathrm{k}_{2}}+\left[\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right] \mathrm{x}_{1} \tag{C-4}
\end{equation*}
$$

By substitution,

$$
\begin{align*}
& c \dot{x}_{1}+k_{1}\left(x_{1}-x_{2}\right)=0 \tag{C-5}\\
& c \dot{x}_{1}+k_{1}\left(x_{1}-\frac{F(t)}{k_{1}+k_{2}}-\left[\frac{k_{1}}{k_{1}+k_{2}}\right] x_{1}\right)=0 \tag{C-6}\\
& c \dot{x}_{1}+k_{1}\left(1-\left[\frac{k_{1}}{k_{1}+k_{2}}\right]\right) x_{1}-\left(\frac{k_{1}}{k_{1}+k_{2}}\right) F(t)=0 \tag{C-7}\\
& c \dot{x}_{1}+k_{1}\left(\frac{k_{1}+k_{2}-k_{1}}{k_{1}+k_{2}}\right) x_{1}-\left(\frac{k_{1}}{k_{1}+k_{2}}\right) F(t)=0 \tag{C-8}
\end{align*}
$$

$$
\begin{equation*}
c \dot{x}_{1}+\left(\frac{k_{1} k_{2}}{k_{1}+k_{2}}\right) \mathrm{x}_{1}=\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right) \mathrm{F}(\mathrm{t}) \tag{C-9}
\end{equation*}
$$

Take the Laplace transform.

$$
\begin{align*}
& L\left\{\operatorname{cix}_{1}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right) \mathrm{x}_{1}\right\}=\mathrm{L}\left\{\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right) \mathrm{F}(\mathrm{t})\right\} \tag{C-10}\\
& \operatorname{csX_{1}}(\mathrm{s})-\mathrm{c} \mathrm{x}_{1}(0)+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right) \mathrm{X}_{1}(\mathrm{~s})=\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right) \mathrm{F}(\mathrm{~s}) \tag{C-11}\\
& \left(\operatorname{cs}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)\right) \mathrm{X}_{1}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})+\mathrm{cx}_{1}(0) \tag{C-12}\\
& X_{1}(\mathrm{~s})=\frac{\mathrm{F}(\mathrm{~s})+\mathrm{cx}_{1}(0)}{\mathrm{cs}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)} \tag{C-13}
\end{align*}
$$

Recall

$$
\begin{equation*}
\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{2}-\mathrm{k}_{1} \mathrm{x}_{1}=\mathrm{F}(\mathrm{t}) \tag{C-14}
\end{equation*}
$$

Take the Laplace transform.

$$
\begin{align*}
& \mathrm{L}\left\{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{2}-\mathrm{k}_{1} \mathrm{x}_{1}\right\}=\mathrm{L}\{\mathrm{~F}(\mathrm{t})\} \tag{C-15}\\
& \left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{X}_{2}(\mathrm{~s})-\mathrm{k}_{1} \mathrm{X}_{1}(\mathrm{~s})=\mathrm{F}(\mathrm{~s}) \tag{C-16}\\
& \left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{X}_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})+\mathrm{k}_{1} \mathrm{X}_{1}(\mathrm{~s}) \tag{C-17}\\
& \left(k_{1}+k_{2}\right) X_{2}(s)=F(s)+k_{1}\left\{\frac{F(s)+\mathrm{cx}_{1}(0)}{c s+\left(\frac{k_{1} k_{2}}{k_{1}+k_{2}}\right)}\right\} \tag{C-18}\\
& X_{2}(s)=\frac{1}{\left(k_{1}+k_{2}\right)} F(s)+\frac{k_{1}}{\left(k_{1}+k_{2}\right)}\left\{\frac{F(s)+\mathrm{cx}_{1}(0)}{c s+\left(\frac{k_{1} k_{2}}{k_{1}+k_{2}}\right)}\right\} \tag{C-19}\\
& X_{2}(s)=\frac{1}{\left(k_{1}+k_{2}\right)} F(s)+\frac{k_{1}}{\left(k_{1}+k_{2}\right)}\left\{\frac{F(s)}{c s+\left(\frac{k_{1} k_{2}}{k_{1}+k_{2}}\right)}\right\}+\frac{\mathrm{k}_{1}}{\left(k_{1}+\mathrm{k}_{2}\right)}\left\{\frac{\mathrm{cx}_{1}(0)}{\operatorname{cs+}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)}\right\}
\end{align*}
$$

(C-20)

$$
X_{2}(s)=\left\{\frac{1}{\left(k_{1}+k_{2}\right)}+\frac{k_{1}}{\left(k_{1}+k_{2}\right)}\left\{\frac{1}{\operatorname{cs}+\left(\frac{k_{1} k_{2}}{k_{1}+k_{2}}\right)}\right\}\right\} F(s)+\frac{k_{1}}{\left(k_{1}+k_{2}\right)}\left\{\frac{\operatorname{cx}_{1}(0)}{\operatorname{cs}+\left(\frac{k_{1} k_{2}}{k_{1}+k_{2}}\right)}\right\}
$$

$$
\mathrm{X}_{2}(\mathrm{~s})=\frac{1}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}\left\{1+\left\{\frac{\mathrm{k}_{1}}{\operatorname{cs}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)}\right\}\right\} \mathrm{F}(\mathrm{~s})+\frac{\mathrm{k}_{1}}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}\left\{\frac{\mathrm{cx}_{1}(0)}{\mathrm{cs}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)}\right\}
$$

Now assume the initial displacement is zero.

$$
\begin{equation*}
X_{2}(s)=\frac{1}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}\left\{1+\left\{\frac{\mathrm{k}_{1}}{\operatorname{cs}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)}\right\}\right\} \mathrm{F}(\mathrm{~s}) \tag{C-23}
\end{equation*}
$$

The receptance in the Laplace domain is

$$
\begin{equation*}
\frac{\mathrm{X}_{2}(\mathrm{~s})}{\mathrm{F}(\mathrm{~s})}=\frac{1}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}\left\{1+\left\{\frac{\mathrm{k}_{1}}{\operatorname{cs}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)}\right\}\right\} \tag{C-24}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\mathrm{X}_{2}(\mathrm{~s})}{\mathrm{F}(\mathrm{~s})}=\left\{\frac{1}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}+\left\{\frac{\mathrm{k}_{1}}{\mathrm{c}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{s}+\mathrm{k}_{1} \mathrm{k}_{2}}\right\}\right\} \tag{C-25}\\
& \frac{\mathrm{X}_{2}(\mathrm{~s})}{\mathrm{F}(\mathrm{~s})}=\frac{\mathrm{c}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{s}+\mathrm{k}_{1} \mathrm{k}_{2}+\mathrm{k}_{1}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}{\mathrm{c}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)^{2} \mathrm{~s}+\mathrm{k}_{1} \mathrm{k}_{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)} \tag{C-26}
\end{align*}
$$

$$
\frac{X_{2}(s)}{F(s)}=\frac{c\left(k_{1}+k_{2}\right) s+k_{1}\left(k_{1}+2 k_{2}\right)}{c\left(k_{1}+k_{2}\right)^{2} s+k_{1} k_{2}\left(k_{1}+k_{2}\right)}
$$

The dynamic stiffness in the Laplace domain is

$$
\begin{equation*}
\frac{\mathrm{F}(\mathrm{~s})}{\mathrm{X}_{2}(\mathrm{~s})}=\frac{\mathrm{c}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)^{2} \mathrm{~s}+\mathrm{k}_{1} \mathrm{k}_{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}{\mathrm{c}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{s}+\mathrm{k}_{1}\left(\mathrm{k}_{1}+2 \mathrm{k}_{2}\right)} \tag{C-28}
\end{equation*}
$$

The initial value problem for the free response is

$$
\begin{align*}
& X_{2}(\mathrm{~s})=\frac{\mathrm{k}_{1}}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}\left\{\frac{\mathrm{cx}_{1}(0)}{\operatorname{cs}+\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)}\right\} \tag{C-29}\\
& X_{2}(\mathrm{~s})=\frac{\mathrm{k}_{1}}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}\left\{\frac{\mathrm{x}_{1}(0)}{\mathrm{s}+\frac{1}{\mathrm{c}}\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right)}\right\} \tag{C-30}
\end{align*}
$$

The inverse Laplace transform yields the time domain response.

$$
\begin{equation*}
\mathrm{x}_{2}(\mathrm{t})=\mathrm{x}_{1}(0)\left[\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right] \exp \left\{-\frac{1}{\mathrm{c}}\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right) \mathrm{t}\right\} \tag{C-31}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{2}-\mathrm{k}_{1} \mathrm{x}_{1}=0 \tag{C-32}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{k}_{1} \mathrm{x}_{1}=\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{2} \tag{C-33}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{x}_{1}=\left[\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{k}_{1}}\right] \mathrm{x}_{2} \tag{C-34}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}(t)=x_{1}(0) \exp \left\{-\frac{1}{c}\left(\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right) \mathrm{t}\right\} \tag{C-35}
\end{equation*}
$$

APPENDIX D

Consider the following two-degree-of-freedom system subjected to an applied force.

Figure D-1.

$\varlimsup_{i} \mathrm{k}_{1}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$

Figure D-2.

The equations of motion are

$$
\begin{gather*}
m \ddot{x}_{2}=F(t)+k_{1}\left(x_{1}-x_{2}\right)-\mathrm{k}_{2} \mathrm{x}_{2} \tag{D-1}\\
\mathrm{~m} \ddot{\mathrm{x}}_{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{2}-\mathrm{k}_{1} \mathrm{x}_{1}=\mathrm{F}(\mathrm{t}) \tag{D-2}\\
\mathrm{c} \dot{\mathrm{x}}_{1}+\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \tag{D-3}
\end{gather*}
$$

Take the Laplace transform of equation (D-2).

$$
\begin{align*}
& \mathrm{L}\left\{\mathrm{~m}_{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{2}-\mathrm{k}_{1} \mathrm{x}_{1}\right\}=\mathrm{L}\{\mathrm{~F}(\mathrm{t})\} \tag{D-4}\\
& \mathrm{ms}^{2} \mathrm{X}_{2}(\mathrm{~s})-\mathrm{m} \dot{\mathrm{x}}_{2}(0)-\mathrm{ms} \mathrm{x}_{2}(0)+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{X}_{2}(\mathrm{~s})-\mathrm{k}_{1} \mathrm{X}_{1}(\mathrm{~s})=\mathrm{F}(\mathrm{~s}) \tag{D-5}\\
& \left\{\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right\} \mathrm{X}_{2}(\mathrm{~s})-\mathrm{k}_{1} \mathrm{X}_{1}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})+\mathrm{m}_{2}(0)+\mathrm{msx}_{2}(0) \tag{D-6}
\end{align*}
$$

Take the Laplace transform of equation (D-3).

$$
\begin{align*}
& \mathrm{L}\left\{\mathrm{c}_{1}+\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\right\}=0 \tag{D-7}\\
& \operatorname{csX_{1}}(\mathrm{~s})-\mathrm{cx}_{1}(0)+\mathrm{k}_{1} \mathrm{X}_{1}(\mathrm{~s})-\mathrm{k}_{2} \mathrm{X}_{2}(\mathrm{~s})=0 \tag{D-8}\\
& \left\{\mathrm{cs}+\mathrm{k}_{1}\right\} \mathrm{X}_{1}(\mathrm{~s})-\mathrm{k}_{2} \mathrm{X}_{2}(\mathrm{~s})=\mathrm{cx}_{1}(0) \tag{D-9}
\end{align*}
$$

Consider equations (D-6) and (D-9) for the case of zero initial conditions.

$$
\begin{equation*}
\left\{\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right\} \mathrm{X}_{2}(\mathrm{~s})-\mathrm{k}_{1} \mathrm{X}_{1}(\mathrm{~s})=\mathrm{F}(\mathrm{~s}) \tag{D-10}
\end{equation*}
$$

$$
\begin{gather*}
\left\{\mathrm{cs}+\mathrm{k}_{1}\right\} \mathrm{X}_{1}(\mathrm{~s})-\mathrm{k}_{2} \mathrm{X}_{2}(\mathrm{~s})=0 \tag{D-11}\\
\left\{\mathrm{cs}+\mathrm{k}_{1}\right\} \mathrm{X}_{1}(\mathrm{~s})=\mathrm{k}_{2} \mathrm{X}_{2}(\mathrm{~s}) \tag{D-12}\\
\mathrm{X}_{1}(\mathrm{~s})=\left[\frac{\mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right] \mathrm{X}_{2}(\mathrm{~s}) \tag{D-13}\\
{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right] \mathrm{X}_{2}(\mathrm{~s})-\mathrm{k}_{1}\left[\frac{\mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right] \mathrm{X}_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s})} \tag{D-14}\\
\left\{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]\right\} \mathrm{X}_{2}(\mathrm{~s})=\mathrm{F}(\mathrm{~s}) \tag{D-15}\\
 \tag{D-16}\\
\mathrm{X}_{2}(\mathrm{~s})=\frac{\mathrm{F}(\mathrm{~s})}{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]}
\end{gather*}
$$

The receptance in the Laplace domain is

$$
\begin{equation*}
\frac{\mathrm{X}_{2}(\mathrm{~s})}{\mathrm{F}(\mathrm{~s})}=\frac{1}{\left[\mathrm{~ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]} \tag{D-17}
\end{equation*}
$$

The initial value problem for the free response is

$$
\begin{align*}
& \mathrm{m} \ddot{\mathrm{x}}_{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{2}-\mathrm{k}_{1} \mathrm{x}_{1}=0 \tag{D-18}\\
& \mathrm{c} \dot{\mathrm{x}}_{1}+\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \tag{D-19}
\end{align*}
$$

The corresponding Laplace transforms are

$$
\begin{align*}
& \left\{\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right\} \mathrm{X}_{2}(\mathrm{~s})-\mathrm{k}_{1} \mathrm{X}_{1}(\mathrm{~s})=\mathrm{m} \dot{\mathrm{x}}_{2}(0)+\mathrm{msx}_{2}(0) \tag{D-20}\\
& \left\{\mathrm{cs}+\mathrm{k}_{1}\right\} \mathrm{X}_{1}(\mathrm{~s})-\mathrm{k}_{2} \mathrm{X}_{2}(\mathrm{~s})=\mathrm{cx}_{1}(0) \tag{D-21}
\end{align*}
$$

$$
\begin{equation*}
X_{1}(s)=\frac{\mathrm{k}_{2} \mathrm{X}_{2}(\mathrm{~s})+\mathrm{cx}_{1}(0)}{\mathrm{cs}+\mathrm{k}_{1}} \tag{D-22}
\end{equation*}
$$

$$
\begin{equation*}
\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right] \mathrm{X}_{2}(\mathrm{~s})-\mathrm{k}_{1}\left[\frac{\mathrm{k}_{2} \mathrm{X}_{2}(\mathrm{~s})+\mathrm{cx}_{1}(0)}{\mathrm{cs}+\mathrm{k}_{1}}\right]=\mathrm{m} \dot{\mathrm{x}}_{2}(0)+\mathrm{msx}_{2}(0) \tag{D-23}
\end{equation*}
$$

$$
\begin{equation*}
\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right] \mathrm{X}_{2}(\mathrm{~s})-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right] \mathrm{X}_{2}(\mathrm{~s})-\mathrm{k}_{1}\left[\frac{\mathrm{cx}(0)}{\mathrm{cs}+\mathrm{k}_{1}}\right]=\mathrm{m} \dot{\mathrm{x}}_{2}(0)+\mathrm{ms} \mathrm{x}_{2}(0) \tag{D-24}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]\right\} \mathrm{X}_{2}(\mathrm{~s})=\mathrm{m} \dot{\mathrm{x}}_{2}(0)+\mathrm{msx}_{2}(0)+\left[\frac{\mathrm{ck}_{1} \mathrm{x}_{1}(0)}{\mathrm{cs}+\mathrm{k}_{1}}\right] \tag{D-25}
\end{equation*}
$$

$$
\left\{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mid\left[\mathrm{cs}+\mathrm{k}_{1}\right]-\mathrm{k}_{1} \mathrm{k}_{2}\right\} \mathrm{X}_{2}(\mathrm{~s})=\right.
$$

$$
\mathrm{m}\left(\operatorname{cs}+\mathrm{k}_{1}\right) \dot{\mathrm{x}}_{2}(0)+\mathrm{ms}\left(\mathrm{cs}+\mathrm{k}_{1}\right) \mathrm{x}_{2}(0)+\mathrm{ck}_{1} \mathrm{x}_{1}(0)
$$

$$
\begin{equation*}
\mathrm{X}_{2}(\mathrm{~s})=\frac{\mathrm{m}\left(\mathrm{cs}+\mathrm{k}_{1}\right) \dot{\mathrm{x}}_{2}(0)+\mathrm{ms}\left(\mathrm{cs}+\mathrm{k}_{1}\right) \mathrm{x}_{2}(0)+\mathrm{ck}_{1} \mathrm{x}_{1}(0)}{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]\left[\mathrm{cs}+\mathrm{k}_{1}\right]-\mathrm{k}_{1} \mathrm{k}_{2}} \tag{D-27}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{X}_{2}(\mathrm{~s})=\frac{\left(\mathrm{mcs}^{2}+\mathrm{mk}_{1}\right) \dot{\mathrm{x}}_{2}(0)+\left(\mathrm{mcs}^{2}+\mathrm{msk}_{1}\right) \mathrm{x}_{2}(0)+\mathrm{ck}_{1} \mathrm{x}_{1}(0)}{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right] \mathrm{cs}+\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right] \mathrm{k}_{1}-\mathrm{k}_{1} \mathrm{k}_{2}} \tag{D-28}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{X}_{2}(\mathrm{~s})=\frac{\operatorname{mcs}^{2} \mathrm{x}_{2}(0)+\mathrm{msk}_{1} \mathrm{x}_{2}(0)+\operatorname{mcs} \dot{\mathrm{x}}_{2}(0)+\mathrm{mk}_{1} \dot{\mathrm{x}}_{2}(0)+\mathrm{ck}_{1} \mathrm{x}_{1}(0)}{\mathrm{mcs}^{3}+\mathrm{mk}_{1} \mathrm{~s}^{2}+\mathrm{c}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{s}+\mathrm{k}_{1}^{2}} \tag{D-30}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{X}_{2}(\mathrm{~s})=\frac{\operatorname{mcs}^{2} \mathrm{x}_{2}(0)+\left[\mathrm{k}_{1} \mathrm{x}_{2}(0)+\mathrm{c} \dot{\mathrm{x}}_{2}(0)\right] \mathrm{m} \mathrm{~s}+\mathrm{mk}_{1} \dot{\mathrm{x}}_{2}(0)+\mathrm{ck}_{1} \mathrm{x}_{1}(0)}{\mathrm{mcs}^{3}+\mathrm{mk}_{1} \mathrm{~s}^{2}+\mathrm{c}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{s}+\mathrm{k}_{1}^{2}} \tag{D-31}
\end{equation*}
$$

$$
X_{2}(s)=\frac{s^{2} x_{2}(0)+\left[\frac{k_{1}}{c} x_{2}(0)+\dot{x}_{2}(0)\right] s+k_{1}\left[\frac{1}{c} \dot{x}_{2}(0)+\frac{1}{m} x_{1}(0)\right]}{s^{3}+\left[\frac{k_{1}}{c}\right] s^{2}+\left[\frac{k_{1}+k_{2}}{m}\right] s+\frac{k_{1}^{2}}{m c}}
$$

(D-32)

APPENDIX E

Consider the following two-degree-of-freedom system subjected to base excitation.

Figure E-1.

Figure E-2.

$$
\begin{align*}
& \mathrm{m} \ddot{\mathrm{x}}_{2}=\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)-\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{y}\right) \tag{E-1}\\
& \mathrm{m} \ddot{\mathrm{x}}_{2}+\mathrm{k}_{1}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{y}\right)=0 \tag{E-2}\\
& \mathrm{c}\left(\dot{\mathrm{x}}_{1}-\dot{\mathrm{y}}\right)+\mathrm{k}_{1}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \tag{E-3}
\end{align*}
$$

Let

$$
\begin{align*}
& \mathrm{z}_{1}=\mathrm{x}_{1}-\mathrm{y} \tag{E-4}\\
& \mathrm{z}_{2}=\mathrm{x}_{2}-\mathrm{y} \tag{E-5}\\
& \mathrm{z}_{1}-\mathrm{z}_{2}=\mathrm{x}_{1}-\mathrm{x}_{2} \tag{E-6}
\end{align*}
$$

By substitution,

$$
\begin{align*}
& m \ddot{z}_{2}+k_{1}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\mathrm{k}_{2} \mathrm{z}_{2}=-\mathrm{m} \ddot{ } \tag{E-7}\\
& m \ddot{z}_{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{z}_{2}-\mathrm{k}_{1} \mathrm{z}_{1}=-\mathrm{m} \ddot{\mathrm{y}} \tag{E-8}\\
& \mathrm{c} \dot{\mathrm{z}}_{1}+\mathrm{k}_{1}\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)=0 \tag{E-9}
\end{align*}
$$

Take the Laplace transform of equation (E-2).

$$
\begin{align*}
& \mathrm{L}\left\{\mathrm{~m} \ddot{z}_{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{z}_{2}-\mathrm{k}_{1} \mathrm{z}_{1}\right\}=-\mathrm{L}\{\mathrm{my} \ddot{y}\} \tag{E-10}\\
& \mathrm{ms}^{2} \mathrm{Z}_{2}(\mathrm{~s})-\mathrm{m} \dot{z}_{2}(0)-\mathrm{ms} \mathrm{z}_{2}(0)+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{Z}_{2}(\mathrm{~s})-\mathrm{Z}_{1} \mathrm{X}_{1}(\mathrm{~s})=-\mathrm{m} \hat{Y}(\mathrm{~s}) \tag{E-11}\\
& \left\{\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right\} \mathrm{Z}_{2}(\mathrm{~s})-\mathrm{k}_{1} \mathrm{Z}_{1}(\mathrm{~s})=\mathrm{m} \dot{z}_{2}(0)+\mathrm{msz}_{2}(0) \tag{E-12}
\end{align*}
$$

Take the Laplace transform of equation (E-3).

$$
\begin{align*}
& \mathrm{L}\left\{\mathrm{cz}_{1}+\mathrm{k}_{1}\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)\right\}=0 \tag{E-13}\\
& \mathrm{cs}_{1}(\mathrm{~s})-\mathrm{cz}_{1}(0)+\mathrm{k}_{1} \mathrm{Z}_{1}(\mathrm{~s})-\mathrm{k}_{2} \mathrm{Z}_{2}(\mathrm{~s})=0 \tag{E-14}\\
& \left\{\mathrm{cs}+\mathrm{k}_{1}\right\} \mathrm{Z}_{1}(\mathrm{~s})-\mathrm{k}_{2} \mathrm{Z}_{2}(\mathrm{~s})=\mathrm{cz}_{1}(0) \tag{E-15}
\end{align*}
$$

Consider equations (E-6) and (E-9) for the case of zero initial conditions.

$$
\begin{gather*}
\left\{\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right\} \mathrm{Z}_{2}(\mathrm{~s})-\mathrm{k}_{1} \mathrm{Z}_{1}(\mathrm{~s})=-\mathrm{m} \hat{\mathrm{Y}}(\mathrm{~s}) \tag{E-16}\\
\left\{\mathrm{cs}+\mathrm{k}_{1}\right\} \mathrm{Z}_{1}(\mathrm{~s})-\mathrm{k}_{2} \mathrm{Z}_{2}(\mathrm{~s})=0 \tag{E-17}\\
\left\{\mathrm{cs}+\mathrm{k}_{1}\right\} \mathrm{Z}_{1}(\mathrm{~s})=\mathrm{k}_{2} \mathrm{Z}_{2}(\mathrm{~s}) \tag{E-18}\\
\mathrm{Z}_{1}(\mathrm{~s})=\left[\frac{\mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right] \mathrm{Z}_{2}(\mathrm{~s}) \tag{E-19}\\
{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right] \mathrm{Z}_{2}(\mathrm{~s})-\mathrm{k}_{1}\left[\frac{\mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right] \mathrm{Z}_{2}(\mathrm{~s})=-\mathrm{mY}(\mathrm{~s})} \tag{E-20}\\
\left\{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]\right\} \mathrm{Z}_{2}(\mathrm{~s})=-\mathrm{mY}(\mathrm{~s}) \tag{E-21}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{Z}_{2}(\mathrm{~s})=\frac{-\mathrm{m} \hat{\mathrm{Y}}(\mathrm{~s})}{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]} \tag{E-22}
\end{equation*}
$$

The relative acceleration $\hat{Z}_{2}(s)$ is

$$
\begin{gather*}
\hat{Z}_{2}(s)=s^{2} Z_{2} \tag{E-23}\\
\hat{Z}_{2}(\mathrm{~s})=\frac{-\mathrm{ms}^{2} \hat{Y}(\mathrm{~s})}{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]} \tag{E-24}\\
\hat{X}_{2}(\mathrm{~s})=\frac{-\mathrm{ms}^{2} \hat{Y}(\mathrm{~s})}{\left[\mathrm{ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]}+\hat{Y}(\mathrm{~s}) \tag{E-25}\\
\hat{X}_{2}(\mathrm{~s})=\left\{\frac{-m s^{2}}{\left[\mathrm{~ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]}+1\right\} \hat{\mathrm{Y}}(\mathrm{~s}) \tag{E-26}\\
\hat{X}{ }_{2}(\mathrm{~s}) \tag{E-27}\\
\hat{\mathrm{Y}}(\mathrm{~s})
\end{gather*}=\left\{\frac{\mathrm{m}^{2}}{\left[\mathrm{~ms}^{2}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]-\left[\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{cs}+\mathrm{k}_{1}}\right]}+1\right\}
$$

