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Two-degree-of-freedom System 
 
Consider a two-degree-of-freedom system, as shown in Figure 1.  Free-body diagrams are 
shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 1.  
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Figure 2.  
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Determine the equation of motion for mass 2. 
 

 

  22 xmF                                                                                                (1) 
 

 
 2x1x 2k2x2m                                                                             (2) 

 
01x2x 2k2x2m                                                                       (3) 

 
 

Determine the equation of motion for mass 1. 
 

 

  11 xmF                                                                                                      (4) 
 

 
   x k 2xx 2k 1x1m                                                            (5) 

 
 0x k 2xx 2k 1x1m                                                               (6) 

 
   0 2x2kx 2kk  1x1m                                                                (7) 

 
 
Assemble the equations in matrix form. 
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Represent as 
 

FxKxM                                                                                        (9) 
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Consider the undamped, homogeneous form of equation (9). 
 
 

0xKxM                                                                                     (13) 
 
 

Seek a solution of the form 
 

 tjexpqx                                                                                   (14) 
 
 

The q vector is the generalized coordinate vector.   
 
Note that 
 

 tjexpqjx                                                                                            (15) 
 

 tjexpq2x                                                                                         (16) 
 
 

Substitute these equations into equation (14). 
 
 

    0tjexpqKtjexpqM2                                                                (17) 
 
 

    0tjexpqKM2                                                                              (18) 

 
  0qKM2                                                                                          (19) 

 
  0qMK 2                                                                                             (20) 

 
 
Equation (20) is an example of a generalized eigenvalue problem.  The eigenvalues can 
be found by setting the determinant equal to zero. 
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  0MKdet 2                                                                                    (21) 
 

 
 

The eigenvectors are found via the following equations. 
 

  0qMK 1
2

1                                                                              (22) 
 

  0qMK 2
2

2                                                                              (23) 
 

 

where 
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An eigenvector matrix Q can be formed.  The eigenvectors are inserted in column format. 
 

 

 21 q|qQ                                                                                  (26) 
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The eigenvectors represent orthogonal mode shapes. 
 
Each eigenvector can be multiplied by an arbitrary scale factor.  A mass-normalized 

eigenvector matrix Q̂   can be obtained such that the following orthogonality relations are 
obtained. 

 

IQ̂MQ̂T                                                                                        (28) 
 

Q̂KQ̂T                                                                                      (29) 
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where  
   superscript T represents transpose 

   I is the identity matrix 

  is a diagonal matrix of eigenvalues 

 

Note that 
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System with Three-degrees-of-freedom 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mass and stiffness matrices are given in equations (32) and (33), respectively.  Both 
matrices are symmetric. 
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System with n degrees-of-freedom 
 
Consider a system with n > 5. 
 
The mass and stiffness matrices are given in equations (34) and (35), respectively.  Both 
matrices are symmetric. 
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