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Two-degree-of-freedom System

Consider a two-degree-of-freedom system, as shown in Figure 1. Free-body diagrams are
shown in Figure 2.
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Determine the equation of motion for mass 2.

> F=mjy %Xy (1)
mp X2 =kp (X1 -x2) (2)
mp X2 +k2 (x2-x1)=0 3)

Determine the equation of motion for mass 1.

DY F=mxq (4)
mp X1 =—k2 (X1 -%X2)+Kj (=Xx1) (5)
m1 X1 +Kko (X1 -%2)+kyx1 =0 (6)
mq X1+ (K +k2)x| —kox2 =0 (7)

Assemble the equations in matrix form.

m 0 || X1 N k1+k2 —ko2|l X1 _ 0 ®)
0 mo||Xp -ko ko || x2 0

Represent as

MX+KX=F (9)
0 my
Kk _
K :{ 1+ k2 kz} (11)
ka2 kg
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Consider the undamped, homogeneous form of equation (9).
MX+Kx=0 (13)

Seek a solution of the form

X = gexp(jot) (14)

The q vector is the generalized coordinate vector.
Note that
X = jo gexp(jot) (15)

2

X = -o° gexp(jot) (16)

Substitute these equations into equation (14).

- M Gexp(jot)+ K gexp(jot) = 0 (17)
{—m2M+ K}qexp(jmt):ﬁ (18)
{—m2M+K}q=6 (19)
K- |q=0 (20)

Equation (20) is an example of a generalized eigenvalue problem. The eigenvalues can
be found by setting the determinant equal to zero.



det] K~ 2M | =0

The eigenvectors are found via the following equations.

K-02M|g;=0

{K—mZZM}aZ 0

where

SH
V2 W3

The eigenvectors represent orthogonal mode shapes.

Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized
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eigenvector matrix Q can be obtained such that the following orthogonality relations are

obtained.
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where
superscript T represents transpose

I is the identity matrix

Q is a diagonal matrix of eigenvalues

Note that
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System with Three-degrees-of-freedom
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The mass and stiffness matrices are given in equations (32) and (33), respectively. Both

matrices are symmetric.

m 0 O
M = m O
m3

(32)

(33)



System with n degrees-of-freedom

Consider a system with n > 5.

The mass and stiffness matrices are given in equations (34) and (35), respectively. Both

matrices are symmetric.

m 0 O
mo O
m3
kg +ko -k
ko +k3

(34)

(35)



