NATURAL FREQUENCIES OF SPRING-MASS SYSTEMS IN SERIES

By Tom Irvine
Email: tomirvine@aol.com
February 17, 2009

Two-degree-of-freedom System

Consider a two-degree-of-freedom system, as shown in Figure 1. Free-body diagrams are shown in Figure 2.

Figure 1.

Figure 2.

Determine the equation of motion for mass 2 .

$$
\begin{align*}
& \sum \mathrm{F}=\mathrm{m}_{2} \ddot{\mathrm{x}}_{2} \tag{1}\\
& \mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}=\mathrm{k}_{2}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \tag{2}\\
& \mathrm{m}_{2} \ddot{\mathrm{x}}_{2}+\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=0 \tag{3}
\end{align*}
$$

Determine the equation of motion for mass 1.

$$
\begin{align*}
& \sum \mathrm{F}=\mathrm{m}_{1} \ddot{\mathrm{x}}_{1} \tag{4}\\
& \mathrm{~m}_{1} \ddot{\mathrm{x}}_{1}=-\mathrm{k}_{2}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\mathrm{k}_{1}\left(-\mathrm{x}_{1}\right) \tag{5}\\
& \mathrm{m}_{1} \ddot{\mathrm{x}}_{1}+\mathrm{k}_{2}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\mathrm{k}_{1} \mathrm{x}_{1}=0 \tag{6}\\
& \mathrm{~m}_{1} \ddot{\mathrm{x}}_{1}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{1}-\mathrm{k}_{2} \mathrm{x}_{2}=0 \tag{7}
\end{align*}
$$

Assemble the equations in matrix form.

$$
\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \tag{8}\\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{\mathrm{x}}_{1} \\
\ddot{\mathrm{x}}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Represent as

$$
\begin{align*}
& M \overline{\mathrm{x}}+\mathrm{K} \overline{\mathrm{x}}=\mathrm{F} \tag{9}\\
& \mathrm{M}=\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right] \tag{10}\\
& \mathrm{K}=\left[\begin{array}{cc}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right] \tag{11}
\end{align*}
$$

$$
\mathrm{F}=\left[\begin{array}{l}
0 \tag{12}\\
0
\end{array}\right]
$$

Consider the undamped, homogeneous form of equation (9).

$$
\begin{equation*}
\mathrm{M} \overline{\mathrm{x}}+\mathrm{K} \overline{\mathrm{x}}=\overline{0} \tag{13}
\end{equation*}
$$

Seek a solution of the form

$$
\begin{equation*}
\overline{\mathrm{x}}=\overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{14}
\end{equation*}
$$

The q vector is the generalized coordinate vector.
Note that

$$
\begin{align*}
& \overline{\mathrm{x}}=\mathrm{j} \omega \overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{15}\\
& \overline{\mathrm{x}}=-\omega^{2} \overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{16}
\end{align*}
$$

Substitute these equations into equation (14).

$$
\begin{align*}
& -\omega^{2} M \bar{q} \exp (j \omega t)+K \bar{q} \exp (j \omega t)=\overline{0} \tag{17}\\
& \left\{-\omega^{2} M+K\right\} \overline{\mathrm{q}} \exp (j \omega t)=\overline{0} \tag{18}\\
& \left\{-\omega^{2} M+K\right\} \overline{\mathrm{q}}=\overline{0} \tag{19}\\
& \left\{K-\omega^{2} M\right\} \overline{\mathrm{q}}=\overline{0} \tag{20}
\end{align*}
$$

Equation (20) is an example of a generalized eigenvalue problem. The eigenvalues can be found by setting the determinant equal to zero.

$$
\begin{equation*}
\operatorname{det}\left\{K-\omega^{2} \mathrm{M}\right\}=0 \tag{21}
\end{equation*}
$$

The eigenvectors are found via the following equations.

$$
\begin{align*}
&\left\{K-\omega_{1}^{2} M\right\} \bar{q}_{1}=\overline{0} \tag{22}\\
&\left\{K-\omega_{2}^{2} M\right\} \bar{q}_{2}=\overline{0} \tag{23}
\end{align*}
$$

where

$$
\begin{gather*}
\overline{\mathrm{q}}_{1}=\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2}
\end{array}\right] \tag{24}\\
\overline{\mathrm{q}}_{2}=\left[\begin{array}{l}
\mathrm{w}_{1} \\
\mathrm{w}_{2}
\end{array}\right] \tag{25}
\end{gather*}
$$

An eigenvector matrix Q can be formed. The eigenvectors are inserted in column format.

$$
\begin{align*}
& \mathrm{Q}=\left[\begin{array}{ll}
\overline{\mathrm{q}}_{1} \mid & \overline{\mathrm{q}}_{2}
\end{array}\right] \tag{26}\\
& \mathrm{Q}=\left[\begin{array}{ll}
\mathrm{v}_{1} & \mathrm{w}_{1} \\
\mathrm{v}_{2} & \mathrm{w}_{2}
\end{array}\right] \tag{27}
\end{align*}
$$

The eigenvectors represent orthogonal mode shapes.
Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized eigenvector matrix \hat{Q} can be obtained such that the following orthogonality relations are obtained.

$$
\begin{align*}
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}}=\mathrm{I} \tag{28}\\
& \hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~K} \hat{\mathrm{Q}}=\Omega \tag{29}
\end{align*}
$$

where
superscript T represents transpose
I is the identity matrix
Ω is a diagonal matrix of eigenvalues

Note that

$$
\begin{align*}
\mathrm{Q} & =\left[\begin{array}{ll}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{w}}_{1} \\
\hat{\mathrm{v}}_{2} & \hat{\mathrm{w}}_{2}
\end{array}\right] \tag{30}\\
\mathrm{Q}^{\mathrm{T}} & =\left[\begin{array}{ll}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{v}}_{2} \\
\hat{\mathrm{w}}_{1} & \hat{\mathrm{w}}_{2}
\end{array}\right] \tag{31}
\end{align*}
$$

System with Three-degrees-of-freedom

The mass and stiffness matrices are given in equations (32) and (33), respectively. Both matrices are symmetric.

$$
\begin{align*}
& \mathrm{M}=\left[\begin{array}{ccc}
\mathrm{m}_{1} & 0 & 0 \\
& \mathrm{~m}_{1} & 0 \\
& & \mathrm{~m}_{3}
\end{array}\right] \tag{32}\\
& \mathrm{K}=\left[\begin{array}{ccc}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} & 0 \\
& \mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{3} \\
& & \mathrm{k}_{3}
\end{array}\right] \tag{33}
\end{align*}
$$

System with n degrees-of-freedom

Consider a system with $\mathrm{n} \geq 5$.
The mass and stiffness matrices are given in equations (34) and (35), respectively. Both matrices are symmetric.
$\mathrm{M}=\left[\begin{array}{ccccccc}\mathrm{m}_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\ & \mathrm{~m}_{2} & 0 & \cdots & 0 & 0 & 0 \\ & & \mathrm{~m}_{3} & \cdots & 0 & 0 & 0 \\ & & & \ddots & \vdots & \vdots & \vdots \\ & & & & \mathrm{~m}_{\mathrm{n}-2} & 0 & 0 \\ & & & & & \mathrm{~m}_{\mathrm{n}-1} & 0 \\ & & & & & & \mathrm{~m}_{\mathrm{n}}\end{array}\right]$
$\mathrm{K}=\left[\begin{array}{ccccccc}\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} & 0 & \cdots & 0 & 0 & 0 \\ & \mathrm{k}_{2}+\mathrm{k}_{3} & -\mathrm{k}_{3} & \cdots & 0 & 0 & 0 \\ & & \mathrm{k}_{3}+\mathrm{k}_{4} & \cdots & 0 & 0 & 0 \\ & & & \ddots & \vdots & \vdots & \vdots \\ & & & & \mathrm{k}_{\mathrm{n}-1}+\mathrm{k}_{\mathrm{n}-2} & -\mathrm{k}_{\mathrm{n}-1} & 0 \\ & & & & & \mathrm{k}_{\mathrm{n}-1}+\mathrm{k}_{\mathrm{n}} & -\mathrm{k}_{\mathrm{n}} \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \end{array}\right]$

