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This paper includes a simple historical method for calculating sine and random vibration 

fatigue damage using instantaneous amplitudes.  A more accurate method is rainflow 

cycle counting to identify peak-cycles pairs which can then be input to the Palmgren-

Miner summation.  See ASTM E 1049-85. 

 
 

Introduction 
 

There is no true equivalence between sine and random vibration.  There are several 

fundamental differences between these types.  Sine vibration has a bathtub-shaped 

histogram.  On the other hand, random vibration has a bell-shaped histogram. 
 

A single frequency is excited by sine vibration in terms of the steady-state response.  A 

system undergoing steady-state vibration will vibrate at the base input frequency 

regardless of its natural frequency.   
 

A broad spectrum of frequency components is present in random vibration, however. The 

differences are particularly significant if the test item is a multi-degree-of-freedom 

system. 
 

Nevertheless, an occasional need arises to compare sine and random test levels or 

environments.  The purpose of this paper is to present a comparison method, which is 

based on Reference 1.  The method assumes that the test item is a single-degree-of-

freedom system. 
 
 

Time Scaling Equation 
 

One vibration test may be substituted for another test using a time scaling equation.   The 

following time scaling equation is taken from Reference 1, section 8.25, page 238. 

 

b
2

G2T
b
1

G1T                                                                                    (1) 

 

where  

    

 T is the duration 

 G is the acceleration level 

 b is an empirical constant 
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Equation (1) assumes that fatigue is the sole damage mechanism.  
 

Random Damage 

 

Random vibration is considered in terms of its 3 and 2 instantaneous amplitude values.  

Note that 1 is equivalent to the RMS value for random vibration, assuming a zero mean. 

 

The fatigue damage for random vibration can be expressed using equation (1) as follows: 

  

          

random damage = b
2

b
3 )G()271.0()G()0433.0(                             (2)   

 

Furthermore, note the G values are response values rather than input values.  These 

response values can be calculated from Miles equation. 

 

Equation (1) assumes that the random vibration has a normal distribution.   Let x be the 

instantaneous amplitude.   The amplitude probabilities are shown in the following table. 

 

 

Limits Probability 

1 x 2     27.1% 

2 x 3     4.33% 

 

 
 

Equation (2) can be simplified as follows: 

 
 

random damage = b
1

b
1 )G2()271.0()G3()0433.0(                                (3)         

 
 

random damage = b
1

bb
1

b )G()2()271.0()G()3()0433.0(                 (4) 

 

 

random damage = b
1

bb )G(])2()271.0()3()0433.0([                           (5) 
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Sine Damage 
 

The sine fatigue damage is expressed as follows: 

 

 sine damage = b)outG(b)QinG(                                                                (6) 

 

where  
 

inG  and outG  are each in terms of a peak G level 
 

Q is the amplification factor (typically Q=10) 

 

 
 

Equation (6) assumes that the sine amplitude is at its peak level extremes 100% of the 

time.  This assumption is reasonably accurate.  The sine wave would behave as a 

rectangular wave if the assumption were completely accurate, however. 

 

Equivalent Damage 
 

Assume that the sine and random tests have equal duration. 

 

 

 random damage = sine damage                                                               (7) 

 

 
b

out
b

1
bb )G()G(])2()271.0()3()0433.0([                            (8) 

 

 

)G()G(])2()271.0()3()0433.0[( out1
b/1bb                          (9) 

 

 

)G(])2()271.0()3()0433.0[()G( 1
b/1bb

out                       (10) 

 

 

The exponent b is taken as 6.4 in Reference 1.   

 

Thus, the peak sine response value is 

 

 

)G(95.1)G( 1peakout   ,   for  b = 6.4                                                  (11) 
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The RMS sine response value is 

 

 

)G(38.1)G( 1RMSout   ,   for  b = 6.4                                                  (12) 

 
 

The peak sine input value is 

 

 
Q

)G(95.1
)G(

1
peakin


  ,   for  b = 6.4                                                 (13) 

 

 

Again, 1G  is the single-degree-of-freedom response to the random vibration base 

input.  It is equal to the GRMS response, assuming a zero mean.  This response value can 

be calculated using the methods in References 2 and 3. 

 

An approach using Reference 3 is given in Appendix A. 

 

The equivalence method is extended with additional terms in Appendix B. 
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APPENDIX A 

 

 

Equivalence Formula using Miles Equation 

 

The equivalence formula from the main text is 

 

 

Q

)G(95.1
)G(

1
peakin


  ,   for  b = 6.4                                                   (A-1) 

 

 

Miles equation from Reference 3 is 

 

 

 1 nG f QA
2


 

  
 

                                                                                          (A-2) 

 

where 

 

fn = natural frequency in (Hz) 

 

A = power spectral density level in (G^2/Hz) 

 

 

There is a rule-of-thumb for using Miles equation. The power spectral density should be 

flat within one octave on either side of the natural frequency. Otherwise, the method in 

Reference 2 should be used instead of Miles equation. 

 

Substitute equation (A-2) into (A-1). 

 

 

 
n

in peak

1.95 f Q A
2

G
Q

 
 
 

                                                                        (A-3) 

 

 

  in npeak
G 1.95 f A

2Q

  
  

 
                                                                        (A-4) 

 

 

Now solve for A. 
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 
2

in npeak
G 3.80 f A

2Q

          
                                                              (A-5) 

 

 

 
2

in npeak
G 1.90 f A

Q

          
                                                              (A-6) 

 

 

 
2

in peak

n

G
A

1.90 f
Q

 
  


  
 
 

                                                                               (A-7) 

 

 

 
2

in peak

n

G
A

1.90 f
Q

 
  


  
 
 

                                                                                (A-8) 

 

 

 
2

in peak

n

Q G
A

1.90 f

 
  




                                                                              (A-9) 

 

 

 

Note that these equations assume that the sinusoidal frequency is fn. 
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APPENDIX B 
 

 

Effect of Adding Terms 
 

 

 

Limits Probability 

0 x 1    68.3% 

1 x 2     27.1% 

2 x 3     4.33% 

3 x 4     0.26% 

4 x 5     0.0063% 

 

 

The random damage D r is  

 

 

  
b5

b
r 1 i

i 1

D ( G ) P i


  
  

  

                                                                   (B-1) 

 

                        

where Pi is the probability for level i 

 

 

The equivalent peak response sine level is  

 

 

  
b5

1/b
out peak i 1

i 1

(G ) P i ( G )


  
  

  

                                                          (B-2) 
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The peak sine input value is 

 

 

 
1

in peak

2.0 ( G )
(G )

Q


  ,   for  b = 6.4                                                 (B-3) 

 

 

This approach gives a conservative estimate for the random vibration damage due to the 

upward rounding which takes place in the summation equation.   For example, all the 

amplitudes between zero and 1σ are counted as 1σ.   The sine damage also has an upward 

rounding to its peak value. 

 


