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Summary

This paper presents an analysis and sample results
of the lateral buckling and vibration of a com-
pressively loaded column whose cross section is piece-
wise constant along its length. The column is
symmetric about its midspan and consists of three
sections, with the center section having a stiffer cross
section than the two identical outboard sections.
Buckling and vibration characteristics of the column
are determined from a numerical solution of the exact
eigenvalue problems. Parametric structural efficiency
analyses are performed using a nondimensionalized set
of governing equations to determine the optimum ratio
between the lengths of the center section and the
outboard sections based on both buckling load and
vibration frequency requirements. In these analyses two
relationships between cross-sectional mass and bending
stiffness are considered; one is a low-efficiency method
for increasing the bending stiffness of the cross section,
and the other is a high-efficiency method. The effect of
axial load on vibration frequency is also examined and
compared with that of a uniform column.

Introduction

Simply supported columns undergoing lateral vi-
bration and Euler buckling have similar bending-
moment distributions with low values near the ends of
the column.  This suggests that a column with a tapered
cross section that is stiffer in the middle than at the
ends can be more efficient (i.e., have less mass for a
given buckling load) than a uniform column. A
buckling analysis of a midspan-symmetric, uniformly
tapered column is presented in reference 1, and buck-
ling test results for uniformly tapered columns appli-
cable to large erectable space structures are presented
in reference 2.  These results have verified the in-
creased structural efficiency of tapered columns com-
pared with uniform columns.

A disadvantage of the continuously tapered column
is that it is more difficult to fabricate than a uniform
column. The midspan symmetric column with
piecewise constant cross section shown in figure 1 is an
approximation of a tapered column. This geometry
potentially provides some of the increased efficiency of
a tapered column without greatly increased fabrication
complexity. This paper summarizes the results of a
study to quantify the structural efficiency of a midspan
symmetric column with a piecewise constant cross
section based on both buckling load and vibration
frequency considerations.  The results derived herein
are based on solution of a nondimensionalized set of

governing equations and, therefore are generally
applicable to any column of this type.
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Figure 1. Simply supported column with piecewise constant cross
section.

Symbols

Aj cross-sectional area of jth section

Cjk constants in displacement solution for

jth section

(EI)j flexural stiffness of jth section

l1 length of outboard sections

l2 half-length of center section

M normalized mass

P compressive load

P normalized compressive load

Pcr buckling load

Pcr normalized buckling load

r radius of thin-walled circular cross
section

t time

wj lateral displacement of jth section

x, ξ longitudinal position coordinates

(a) ratio of length of center section to
total column length

β ratio of flexural stiffness of center
section to that of outboard sections

γ ratio of mass per unit length of center section
to that of outboard sections

λjk magnitude of kth root of characteristic

polynomial for jth section

ρj mass density of jth section

τ thickness of thin-walled circular cross
section

ψjk kth root of characteristic polynomial for jth

section

ω vibration frequency
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ω normalized vibration frequency

ωo normalized vibration frequency of column
with no axial load

Derivation of Governing Equations

For the present study, it is assumed that the center
section of the column shown in figure 1 is of length 2l2
with flexural stiffness (EI)2, area A2, and density ρ2, the
outboard sections are each of length l1 with flexural
stiffness (EI)1, area A 1, and density ρ1. Because of
symmetry in geometry and loading, it is possible to
consider only one-half of the column for analysis.
Further, since the fundamental vibration and buckling
modes of the column are expected to be symmetric,
symmetry boundary conditions are assumed at the
column midspan.  Figure 2 shows this analysis model
along with the assumed boundary conditions.
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∂2w
∂x2w = = 0 ∂3w

∂ 3
∂w
∂

= = 0

Figure 2. Analysis model.

An exact solution of this problem requires the
solution of two fourth-order differential equations, one
governing section 1 (0 † x † l1) and the other governing
section 2 (l1 † x † l 1 + l2).  In addition to the four
boundary conditions given in figure 2, four more
conditions arise from enforcement of displacement,
slope, moment, and shear continuity at the interface
between sections 1 and 2 (x = l1).  For convenience, a

second coordinate axis (ξ) is located with its origin at
the column midspan, and the displacement in section 2
is described as a function of this coordinate.  The
governing differential equation in the jth section is

∂4wj

∂x 4
 + P

(EI)j
 
∂2wj

∂x 2
 + 

ρjAj

(EI)j
 
∂2wj

∂t2
  =  0 (1)

The left-end boundary conditions in section 1 are

w1(0)  =  
∂2w1

∂x 2
(0)  =  0 (2)

Similarly, the right-end boundary conditions in section
2 are

∂w2

∂ξ
(0)  =  

∂3w2

∂ξ 3
(0)  =  0 (3)

Finally, the continuity conditions between sections 1
and 2 are

w1(l1)  =  w2(l2) (4)

∂w1

∂x
(l1)  =  - 

∂w2

∂ξ
(l2) (5)

(EI)1 
∂2w1

∂x2
(l1)  =  (EI)2 

∂2w2

∂ξ 2
(l2) (6)

(EI)1 
∂3w1

∂x3
(l1)  =  - (EI)2 

∂3w2

∂ξ 3
(l2) (7)

Notice that the minus signs exist in equations (5) and
(7) because the x and ξ coordinate axes are in opposite
directions.

Equation (1) is a homogeneous partial differential
equation with constant coefficients. Assuming
harmonic motion and applying separation of variables
gives the following form for the lateral displacement:

wj(x,t)  =  Ceiωteψjx (8)

where C is an arbitrary constant.  Substituting equation
(8) into equation (1) gives the following characteristic
polynomial in ψj.:

ψj
4  + P

(EI)j
ψj

2 -  
ρjA jω2

(EI)j
  =  0 (9)

so that

 
ψj1  = ± i 

P + P2 + 4ρjAj(EI)jω2 1/2

2(EI)j
 (10)

ψj2  =  ± 
-P + P2 + 4ρjAj(EI)jω2 1/2

2(EI)j
 (11)

The right-hand side of equation (10) yields two
purely imaginary conjugate roots.  The right-hand side
of equation (11) yields either a pair of real roots having
the same magnitude and opposite signs or, in the static
case (ω=0), a pair of repeated roots equal to zero.

Solutions

The equations of the previous section can be solved
to determine the critical buckling load of the column by
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assuming the vibration frequency to be zero, or they
can be solved to determine the fundamental vibration
frequency for a fixed value of axial load.  First, the
solution of the buckling problem will be presented
along with numerical examples to assess the structural
efficiency of this type of column.  Then the solution of
the vibration problem will be presented along with
similar numerical examples for the case of no applied
axial load as well as a range of axial loads.

Solutions for Column Buckling

For ω   = 0, ψ12 =  ψ22 = 0 and the general solution
can be written as follows for the two sections of the
column.

w1(x)  =  C11sin(λ11x) + C12cos(λ11x) + C13x + C14          (0 ≤ x ≤ l1)

(12)

w2(ξ)  =  C21sin(λ21ξ) + C22cos(λ21ξ) + C23ξ + C24          (0 ≤ ξ ≤ l2)

(13)

where C11, C12, C21, and C22 are arbitrary constants and
λ11 and λ 21 are the magnitudes of the roots of the
characteristic polynomial ψ11 and ψ21 given, respect-
ively, by

λ11  =  P
(EI)1

(14a)

and

λ21  =  P
(EI)2

(14b)

Application of the boundary conditions in equations (2)
and (3) reduces the solutions to

w1(x)  =  C11sin (λ11x) + C13x           (0 ≤ x ≤ l1) (15)

w2(ξ)  =  C22cos(λ21ξ) + C24          (0 ≤ ξ ≤ l2) (16)

 Substituting equations (15) and (16) into the four
continuity conditions (equations (4) - (7)) gives the
following system of equations for C11, C13, C22, and
C24:

C11sin (λ11l1) + C13l1  =  C22cos (λ21l2) + C24  (17)

C11λ11cos (λ11l1) + C13  =  C22λ21sin (λ21l2) (18)

(EI)1C11λ11
2

sin(λ11l1)  =  (EI)2C22λ21
2

cos (λ21l2) (19)

(EI)1C11λ11
3

cos(λ11l1)  =  (EI)2C22λ21
3

sin(λ21l2) (20)

The existence of a nontrivial solution of equations
(17) - (20) requires that

 sin(λ11l1) sin(λ21l2)  -  λ11

λ
 cos(λ11l1) cos(λ21l2)  =  0

(21)

which agrees with the result presented in reference 1.
Substituting the definitions for λ1 1  and λ21 from
equation (14) into equation (21) gives the following
transcendental equation for the buckling load, Pcr.

 sin 
Pcr l1

2

(EI)1

1/2

 sin 
Pcr l2

2

(EI)2

1/2

                                     

 

-  
(EI)2

(EI)1

1/2
 cos 

Pcr l1
2

(EI)1

1/2

 cos 
Pcr l2

2

(EI)2

1/2

  =  0 (22)

We now define the dimensionless parameters, α, β, and

cr, respectively, as follows:

α  =  l2
l  + l (23)

β  =  
(EI)2

(EI)1
(24)

Pcr  =  Pcr

π 2(EI)1/4(l1 + l2)2  
(25)

Notice that α  is the ratio of the length of the center
section to the total column length, β is the ratio of the
bending stiffness of the center section to that of the
outboard sections, and P  is the buckling load of the
complete column normalized to that of a column
having the same length and a uniform bending stiffness
equal to that of the outboard sections.  Using these
nondimensional parameters, equation (22) can be
rewritten in the following form.

 sin 
π(1-α) Pcr

 

2
 sin 

πα Pcr
 

2 β
                         

-  β cos 
π(1-α) Pcr

 

2
 cos 

πα Pcr
 

2 β
   =  0 (26)

Numerical Examples and Illustration of
Mass Savings

Due to its transcendental form, equation (26), with α
and β prescribed, must be solved for P  numerically.
The secant method (ref. 3) is selected due to its
simplicity and stable convergence characteristics.  To
insure the lowest root is found, a search is performed to
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determine an initial interval in which the solution
exists.  During this search, the left-hand side of
equation (26) is evaluated for successively larger
values of P  (starting with the lowest possible value,
1.0) until a sign change is detected.  The initial solution
interval is then bounded by the last two values selected
for P .  Further iteration yields the solution to the
desired accuracy.

In order to evaluate the structural efficiency of the
column, it is necessary to calculate not only its
normalized buckling load but also its normalized mass.
For this, two additional dimensionless parameters γ and
M are defined, respectively, as

γ  =  
ρ2A2

ρ1A1
 (27)

which is the ratio of mass per unit length in the center
section of the column to that of the outboard sections,
and

M  =  
ρ1A1l1 + ρ2A2l2

ρ1A1(l1 + l2)
  =  1 + α (γ  - 1) (28)

which is the mass of the column normalized to that of a
column having the same total length and a uniform
cross section equal to that of the outboard sections.

To illustrate the mass savings possible with this type
of column, two different relationships between mass
and bending stiffness are considered. The first is a low-
efficiency method for increasing the bending stiffness
of the cross section; the second is a high-efficiency
method.  In both cases it is assumed for simplicity that
a single material is used throughout the column. In the
first case mass and bending stiffness are assumed to be
proportional, thus γ = β in equation (28).  To illustrate
this case, equations (29) and (30) give the approximate
relationships for the area and moment of inertia of a
thin walled cylinder, where r is the radius and τ is the
thickness:

Area  ≈  2πrτ  (29)

Moment of inertia  ≈  πr3τ (30)

Increasing the thickness while holding the radius
constant increases both the area and moment of inertia
proportionally, thus γ = β.

Figure 3 presents plots of the normalized column
mass versus normalized buckling load determined from
equation (26) for an array of length ratios (0.2 ≤ α ≤ 0.6
for fig. 3(a), and 0.6 ≤ α ≤ 1.0 for fig. 3(b)) and bending
stiffness ratios (1.0 ≤ β ≤ 6.0). The dotted-line curves in
these figures show the increase in mass necessitated by
the increase in buckling load of a uniform column (α =

1.0).  Therefore, points that lie below these dotted-line
curves represent columns that are more efficient (lower
in mass) than the uniform column.  The data are
separated into two parts for clarity.  Notice that every
curve of constant α is vertically asymptotic to the
buckling load of a uniform column with a length 1 - α
times the length of the original column, i.e., 2l1.  This is
consistent with the fact that when the bending stiffness
of the center section is very large, it behaves like a rigid
section.
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(a) 0.2 ≤ α ≤ 0.6.
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(b) 0.6 ≤ α ≤ 1.0.

Figure 3. Mass versus buckling load where mass is proportional to
bending stiffness.
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β = γ = 2
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α = .2
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For increases in buckling load up to a factor of 3, it
appears that the optimum value for the length ratio α is
approximately 0.7 because this corresponds to the
lowest curve on the plot.  Mass savings is calculated by
determining the percent difference between the lowest
curve and the uniform column curve (α = 1.0) at any
given buckling load. It is seen that a mass savings of 10
to 12 percent can be realized by increasing the bending
stiffness of the center 70 percent of the column rather
than the entire length of the column. Again, this
conclusion is based on the assumption that mass and
bending stiffness are proportional.

The second relationship considered between mass
and bending stiffness, the  mass  is  assumed  to  be pro-

portional to the cube root of the bending stiffness (i.e.
γ = β3  in equation (28)). This case is representative of
high-efficiency methods for increasing the bending
stiffness of the cross section, and it is illustrated by a
thin-walled circular cross section in which the radius is
increased while the thickness is held constant (See eqs.
(29) and (30).)

Figures 4 presents plots of the normalized column
mass versus normalized buckling load for this case.  As
before, the dotted-line curves in this figure show the
increase in mass using a uniform column (α = 1.0), and
the data points below these curves represent columns
that are more efficient (less massive) than the uniform
column.

N
or

m
al

iz
ed

 m
as

s

 

6
.7

 = 3 = 4 = .3

.4

.5
.6

8

2.0

1.5

1.0

0.0 1.0 2.0 3.0 4.0 5.0

Normalized buckling load

(a) 0.3 ≤ α ≤ 0.7.
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(a) 0.7 ≤ α ≤ 1.0.

Figure 4  Mass versus buckling load where mass is proportional to the cube root of the bending stiffness.

As was determined in the first case, it appears that the optimum value for the length ration α is approximately
0.7. In this case a mass savings of about 6 to 8 percent is realized by increasing the bending stiffness of the center
70 percent of the column rather than the entire length of the column. Again, this conclusion is based on the
assumption that mass is proportional to the cube root of the bending stiffness.

Solution for Column Vibration

For vibration of the column under a specified axial load P, the general solutions are as follows:

w1(x,t)  =  eiωt C11sin (λ11x) + C12cos (λ11x) + C13sinh (λ12x) + C14cosh (λ12x)         (0 ≤ x ≤ l1) (31)

w2(ξ,t)  =  eiωt C21sin(λ21ξ) + C22cos(λ21ξ) + C23sinh(λ22ξ ) + C24cosh(λ22ξ)       (0 ≤ ξ ≤ l2) (32)

Uniform
column

Uniform
column

β = γ 3= 2
β = γ 3= 2

α = .8
α = .3
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where, as before, C11, C12, C21, C22, C13, C23, C14, and C24 are arbitrary constants and λ11, λ12, λ21, and λ22 are
defined as

λ11  =  
P + P2 + 4ρ1A1(EI)1ω2 1/2

2(EI)1
  (33a)

λ21  =  
P + P2 + 4ρ2A2(EI)2ω2 1/2

2(EI)2
  (33b)

λ12  =  
-P + P2 + 4ρ1A1(EI)1ω2 1/2

2(EI)1
  (34a)

λ22  =  
-P + P2 + 4ρ2A2(EI)2ω2 1/2

2(EI)2
  (34b)

Upon application of the boundary conditions in equations (2) and (3), the general solutions reduce to

w1(x,t)  =  eiωt C11sin(λ11x) + C13sinh(λ12x)           (0 ≤ x ≤ l1) (35)

w2(ξ,t)  =  eiωt C22cos(λ21ξ)+ C24cosh(λ22ξ)            (0 ≤ ξ ≤ l2) (36)

Substituting equations (35) and (36) into the continuity conditions (eqs. (4)-(7)) gives the following system of
equations that are written here in matrix form:

sin λ11l1 sinh λ12l1 - cos λ21l2 - cosh λ22l2

cos λ11l1
λ12

λ11

 cosh λ12l1 - λ2 1

λ1 1

 sin λ21l2
λ2 2

λ1 1

 sinh λ22l2

- sin λ11l1
λ12

λ11

2
sinh λ12l1 β λ2 1

λ1 1

2
cos λ21l2 - β λ22

λ11

2
cosh λ22l2

- cos λ11l1
λ12

λ

3
cosh λ12l1 β λ21

λ

3
sin λ21l2 β λ2 2

λ

3
sinh λ22l2

 

C1 1

C1 3

C2 2

C2 4

   =   0 (37)

where β  is the bending stiffness ratio defined in
equation (24).

As in the case of the buckling problem, it is of in-
terest to nondimensionalize the vibration eigenvalue
problem to allow general solution curves to be con-
structed.  In addition to the dimensionless length,
bending stiffness, and mass per unit length parame-
ters defined in equations (23) - (25), a dimensionless
vibration frequency ω and compressive load  are
defined, respectively, by

ω  =  ω

π 2 (EI)1

16ρ1A1 l1 + l2 4

(38)

P  =  P
π 2(EI)1/4(l1 + l2)2

(39)

Hence, the vibration frequency and compressive load
are normalized to the fundamental frequency and
buckling load, respectively, of a uniform column of
the same length with bending stiffness and mass per
unit length equal to that of the outboard sections (ref.
4).

All the parameters in equation (37) may now be
written in terms of the five dimensionless quantities:
α, β, γ, , and ω. The resulting expressions are

λ11l1  =  
π (1 - α)

 P + P2
 + ω2

1/2 1/2
(40)

λ12l1  =  
π (1 - α)

 - P + P2
 + ω2

1/2 1/2
(41)
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λ21l2  =  πα
2 β

 P
2

 + P2

4
 + γβω 2 1/2 1/2

(42)

λ22l2  =  πα
2 β

 - P
2

 + P2

4
 + γβω 2 1/2 1/2

(43)

λ12

λ11

  =  
- P

2
 + P2

4
 + ω2

1/2

P + P2
 + ω2

1/2

1/2

(44)

λ21

λ11

  =  1

β

P
2

 + P2

4
 + γβω 2 1/2

P + P2
 + ω2

1/2

1/2

(45)

λ22

λ11

  =  1

β

- P
2

 + P2

4
 + γβω 2 1/2

P + P2
 + ω2

1/2

1/2

(46)

Numerical Examples for Column
Vibration

Equation (37) must be solved numerically to

determine the normalized vibration frequency ω,
given values for the other nondimensional param-
eters. Again, the secant method was used to de-
termine the lowest value of ω that causes the de-
terminant of the matrix in equation (37) to vanish.
The determinant of equation (37) was calculated us-
ing a Gaussian elimination procedure presented in
reference 5.

Natural vibration of columns without axial load.
In the last section, the structural efficiency of columns
with piecewise constant cross sections was quantified
based on buckling performance.  It is also of interest
to determine vibration performance of these columns
with no axial load.  Consequently, equations (37) and
(28) were solved to determine the vibration
frequencies and masses for the same array of length
ratios (0.2 ≤ α ≤ 1.0) and bending stiffness ratios (1.0
≤ β ≤  6.0) considered in the buckling solutions.  As
before, two cases were considered involving the mass
per unit length of the cross section.  In the first case it
was assumed that the mass and bending stiffness of
the cross section are proportion-al (i.e., γ = β). In the
second case it was assumed that the mass is

proportional to the cube root of the bending stiffness
(i.e., γ = β3 ).

Figure 5 presents a plot of the normalized column
mass versus normalized vibration frequency for the
first case (γ = β). It should be noted that for a uniform
column (α = 1.0), there is no change in the frequency
as the bending stiffness and mass are increased
proportionately.  The significant result determined
from figure 5 is that all column geometries considered
exhibit frequencies that are lower than the uniform
column having the same mass.  Therefore, in the case
where the distributed mass of the column is
proportional to its bending stiffness, a column with
piecewise constant cross section is less efficient than a
uniform column, based on vibration frequency, in
contrast to results based on buckling load.
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Figure 5.  Mass versus vibration frequency where mass is propor-
tional to bending stiffness.

Figure 6 presents plots of the normalized column
mass versus normalized vibration frequency for the
second case (γ = β3 ).  The dotted lines in these
figures show the increase in mass for a uniform col-
umn (α = 1.0); thus the data points below these lines
represent columns that are more efficient than the
uniform column based on fundamental vibration
frequency.  Again, the data are separated into two
parts for clarity.

The trends displayed in figure 6 are similar to those
presented in figures 3 and 4 and discussed in the
buckling analysis of the last section.  In this case, the
total column mass can be minimized by stiffening the
center 70 to 80 percent of the column.  Furthermore,

Uniform
column

β = γ = 2

α = .2
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the use of this design results in a mass savings of
approximately 10 to 15 percent relative to a uniform
column with the same vibration frequency.

Vibration of columns under axial load.  The effect
of axial load on the fundamental vibration frequency
of a uniform column is analyzed in reference 6.  The
normalized formula for calculating this frequency can
be written as

ω  =  ωo 1 - P
P (47)

where ωo is the normalized natural frequency of the
column (no axial load), P  is the normalized buckling
load of the column, and  is the normalized axial
compressive load in the column.

Although it appears impossible to establish equa-
tion (47) analytically for a column with a piecewise
constant cross section under axial load, numerical
examples should shed some light on the question of its
applicability.  Table I presents the values of length,
bending stiffness, and distributed mass ratios for five
selected column configurations along with the
numerical solutions for their normalized buckling
loads and natural vibration frequencies.  The sixth row
in table I lists the values selected for the axial load
(P /P ). (Note, negative numbers indicate tension and
positive numbers indicate compression.)  Finally, the
last two rows of table I present the numerical solution
for vibration frequency ( ω /ωo numerical) and the
solution determined from equation (47) ( ω /ωo eq. (47))
for each configuration.  It can be seen that these
solutions agree very well, the differences likely being
attributable to numerical inaccuracies.
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Figure 6  Mass versus vibration frequency where mass is proportional to cube root of bending stiffness.

Figure 7 is a plot of equation (47) superimposed over the data points presented in table I.  Although the set of
configurations considered is certainly not exhaustive, it represents a reasonable range of the dimensionless
parameters.  The results strongly suggest that equation (47) indeed predicts the correct vibration frequency for
columns with piecewise constant cross sections.  If so, then to determine the effect of axial load on vibration
frequency in a column of this type, it is necessary only to calculate the buckling load and natural vibration
frequency of the column, then apply equation (47) to determine its vibration frequency under axial load.
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Uniform
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β = γ 3= 2
α = .2

α = .7

β = γ 3= 2
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Table I.  Numerical Examples of Column Vibration With Axial Load

Configuration

Parameter 1 2 3 4 5
α 0.4 0.4 0.6 0.8 0.8
β 4.0 4.0 2.0 2.0 6.0
γ 4.0 1.5874 1.2599 2.0 1.8171
Pcr 2.0107 2.0107 1.8123 1.9738 5.5849
ωo 0.8463 1.2354 1.2162 0.9970 1.7673
P /P -0.75 -0.5 0.25 0.5 0.75
ω /ωo numerical 1.3167 1.2225 0.8661 0.7050 0.5004
ω /ωo eq. (47) 1.3229 1.2247 0.8660 0.7071 0.5000

1.00.50.0-0.5-1.0

0.5

1.0

1.5

/ o
1

2

3

4

5

P /P

Figure 7.  Effect of axial load on fundamental vibration
frequency.

Concluding Remarks

The results of an analytical study of the buckling
and vibration characteristics of a column with
piecewise constant cross section have been presented.
Parametric structural efficiency analyses determined
that, for increased buckling resistance, the optimum
ratio between lengths of the stiffened center section
and the entire column is approximately 0.7.  Also it
was determined that a column using this ratio of
lengths offers a mass savings of 6 to 12 percent rel-
ative to a uniform column having the same buckling

load.  Furthermore, the magnitude of this mass sav-
ings was shown to be dependent on the relationship
between the bending stiffness and mass per unit length
of the column cross section.

Similar parametric structural efficiency analyses
were performed using a nondimensionalized set of the
governing vibration equations.  From these analyses, it
was determined that the relationship between bending
stiffness and mass per unit length of the column cross
section has a great effect on the efficiency of the
column from a vibration standpoint.  If the mass per
unit length and bending stiffness are proportional, a
column with a piecewise constant cross section is less
efficient than a uniform column, based on
fundamental vibration frequency.  However, if the
mass per unit length is proportional to the cube root of
the bending stiffness, a column with a piecewise
constant cross section is more efficient than a uniform
column, based on either fundamental vibration
frequency or buckling load.

Finally, numerical results strongly suggest that the
relation between axial load and fundamental vibration
frequency for a uniform column also holds for a
column with piecewise constant cross section.

NASA Langley Research Center
Hampton, VA 23665-5225
January 31, 1991
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