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INTRODUCTION

The power spectral density calculation has associated error sources.

The purpose of this report is to discuss the statistical stability of sampled time history data
with respect to power spectral density calculation.  The stability is expressed in terms of
the statistical degrees of freedom parameter and in terms of standard error.  Other error
sources discussed in this report are smear, leakage, and bias.

POWER SPECTRAL DENSITY BACKGROUND

Power spectral density functions may be calculated via three methods:

1. Measuring the RMS value of the amplitude in successive frequency bands, where the
signal in each band has been bandpass filtered.

2. Taking the Fourier transform of the autocorrelation function.  This is the Wierner-
Khintchine approach.

3. Taking the limit of the Fourier transform X(f) times its complex conjugate divided by
its period T as the period approaches infinity.  Symbolically, the power spectral density
function XPSD(f) is

X f
T

X f X f
TPSD ( )

lim ( ) * ( )= → ∞                                                                       (1)

These methods are summarized in Reference 1.  Only the third method is considered in
this report.  The following equations are taken from Reference 2.

The discrete Fourier transform is
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The inverse transform is
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These equations give the Fourier transform values X(m) at the N discrete frequencies m ∆f
and give the time series x(n) at the N discrete time points n ∆t.
The total period of the signal is thus

T=N∆t                                                                                                      (4)

where
N=number of samples in the time function and in the Fourier transform
T=record length of the time function
∆t=time sample separation

Consider a sine wave with a frequency such that one period is equal to the record length.
This frequency is thus the smallest sine wave frequency which can be resolved.  This
frequency ∆f is the inverse of the record length.

∆f = 1/T                                                                                                    (5)

This frequency is also the frequency increment for the Fourier transform.

STATISTICAL DEGREES OF FREEDOM

Signal Analysis Approach

The statistical degree of freedom parameter is defined from References 3 and 4 as follows:

  dof = 2BT                                                                                            (6)

where dof is the number of statistical degrees of freedom and B is the bandwidth of an
ideal rectangular filter.  This filter is equivalent to taking the time signal “as is,” with no
tapering applied.  Note that the bandwidth B equals ∆f, again assuming an ideal
rectangular filter.

The 2 coefficient in equation (6) appears to result from the fact that a single-sided power
spectral density is calculated from a double-sided Fourier transform.  The symmetries of
the Fourier transform allow this double-sided to single-sided conversion.
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For a single time history record, the period is T and the bandwidth B is the reciprocal so
that the BT product is unity, which is equal to 2 statistical degrees of freedom from the
definition in equation (6).

A given time history is thus worth 2 degrees of freedoms, which is poor accuracy per Chi-
Square theory, as well as per experimental data per Reference 3, as shown in Appendix A.
Note that the Chi-Square theory is discussed later.

Breakthrough

The breakthrough is that a given time history record can be subdivided into small records,
each yielding 2 degrees of freedom, as discussed in Reference 5 for example.  The total
degrees of freedom value is then equal to twice the number of individual records.  The
penalty, however, is that the frequency resolution widens as the record is subdivided.
Narrow peaks could thus become smeared as the resolution is widened.

An example of this subdivision process is shown in Table 1.  The process is summarized in
equations (7) through (11).

Table 1.   Example:  4096 samples taken over 16 seconds, rectangular filter.
Number of
Records

NR

Number of
Time
Samples per
Record

Period of
Each
Record Ti
(sec)

Frequency
Resolution
Bi=1/Ti
(Hz)

dof
per
Record
=2Bi Ti

Total dof

1 4096 16. 0.0625 2 2
2 2048 8. 0.125 2 4
4 1024 4. 0.25 2 6
8 512 2. 0.5 2 16
16 256 1. 1. 2 32
32 128 .5 2. 2 64
64 64 .25 4. 2 128

Notes:

1.  The subscript “i” is used to denote “individual” in Table 1.
2.  The rows in the table could be continued until a single sample per record remained.

Also note that:

Total dof = 2 NR                                                                                                      (7)

NR = T / Ti                                                                                                         (8)

Bi = 1 / Ti                                                                                                            (9)

NR = Bi T                                                                                                          (10)
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Total dof = 2 Bi T                                                                                                    (11)

CHI-SQUARE THEORY

Assumptions

The Chi-Square distribution is a distribution of squared values.  It is thus particularly
suited to the estimation of the confidence interval of squared functions.  This distribution
is suited for stationary, random signals.  It does not apply to stationary, deterministic
signals or to non-stationary signals.

A stationary signal is a signal for which the overall level and the spectral distribution do
not vary with time.  A deterministic signal is a signal such as a sinusoid which can be
completely described by a time-domain equation.

Signal Analysis Approach

Reference 4 gives the Chi-Square relationship as

s
dof

2

2

2

σ
χ=                                                                                    (12)

Now consider the mean square value s2 of a signal measured for a time T.  The true mean
square amplitude σ2  will lie within a confidence interval determined by

σ
χ

2
2

2= dof
s                                                                                    (13)

Reference 4 is a user’s manual approach to signal analysis.

Textbook Approach

On the other hand, Reference 5 gives a textbook approach as follows.

The statistical degrees of freedom parameter arises from a Chi-Square distribution.
Consider a signal with a Gaussian probability density function and a true mean square
amplitude of σ2.  The Chi-Square theorem states:

If s2 is the variance of a random sample of size $n  taken from a normal
population have the true mean square amplitude σ2, then the random
variable
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X
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has a Chi-Square distribution with νdegrees of freedom,
where ν = −$n 1 .

The values of the random variable X2 are calculate from each sample by
the formula

χ
σ

2
2

2
1= −( $ )n s

                                                                              (15)

χ ν
σ

2
2

2= s
                                                                                   (16)

Note that the variance is also called the mean square value.

Reconciliation

A bridge is needed between statistical theory presented in signal processing manuals and
that given in textbooks.

For signal processing, the $n term in equations (14) and (15) does not represent the number
of time history samples.  Rather, $n represents twice the number of non-overlapping power
spectral density records NR, each with period Ti.

Thus, with respect to equation (16),

                               ν = Total dof =2 NR                                                              (17)

ν = 2 Bi T                                                                              (18)

The subscript is used to denote that B is the reciprocal of the individual record time period
rather then the total time period T.

In summary, the number of degrees of freedom can be increased by widening the
frequency resolution.

The textbook approach from Reference 5 can thus be meshed with the user’s manual
approach from Reference 4, by setting ν=dof.
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Confidence Interval Example

Consider three of the cases from the previous example, summarized in Table 1.  Determine
the bounds on the measured mean square value S2 for a 95% confidence interval.  The
results are shown in Table 2, where the calculation is carried out using the values 1 in
Reference 5.

Table 2.  Confidence Interval
Total dof Bounds on S2 for

95% Confidence
Standard
Error

8 0.27 to 2.19 -
16 0.41 to 1.80 -
32 0.57 to 1.55 0.250
64 0.68 to 1.37 0.177

The point of the data in Table 2 is that the boundaries narrow as the number of degrees-
of-freedom is increased, for a given confidence percentage.  The measured mean square
value is thus more likely to represent the true value for a higher number of degrees-of-
freedom.

Note that the Chi-Square distribution approximates a Gaussian distribution for large
degree-of-freedom values.  Reference 3 gives a practical lower limit value of 30 degrees to
make this approximation.  In this case, the approximate standard error ε0 is given by

ε0
1=

B Ti
                                                                                     (19)

( )
ε0

1
1
2

=
Total dof

                                                                           (20)

The standard error values are given in Table 2 for the cases with at least 30 degrees-of-
freedom.  Note that the standard error represents the true standard deviation relative to
the measured value.  Thus, the true standard deviation has bounds of ±17.7% for the case
of 64 degrees-of-freedom, per the Gaussian approximation, as shown in Table 2.

Note that standard deviation refers to the standard deviation of the individual power
spectral density points in this context.  Standard deviation can also refer to the standard
deviation of the time history points in another context.

                                                       
1 A Fortran program was also written to carry out this calculation since the tabular Chi-
Square values in Reference 5 were only given up to 30 degrees-of-freedom.
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FURTHER PROCESSING CONCEPTS

Window

A window is typically applied to each time segment during the power spectral density
calculation, as discussed in Reference 3, 4, and 6.  The purpose of the window is to reduce
a type of error called leakage.  One of the most common windows is the Hanning window,
or the cosine squared window.  This window tapers the data so that the amplitude
envelope decreases to zero at both the beginning and end of the time segment.  The
Hanning window w(t) can be defined as
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The window operation reduces the leakage error but also has the effect of increasing the
effective bandwidth B.  The number of statistical degrees-of-freedom is thus reduced.  The
boundaries associated with the confidence intervals thus widen.

Also, a normalization factor of 8 3/  is applied to the Hanned data to compensate for the
lost energy, from Reference 7.

Overlap

The lost degrees-of-freedom can be recovered by overlapping the time segments, each of
which is subjected to a Hanning window.  Nearly 90% of the degrees-of-freedom are
recovered with a 50% overlap, according to Reference 3.

The concept of windows and overlapping is represented in Figure 1.
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Figure 1.

Fast Fourier Transform   

The discrete Fourier transform was given in equation (2).  The solution to this equation
requires a great deal of processing steps for a given time history.  Fast Fourier transform
methods have been developed, however, to greatly reduce the required steps.  These
methods typically require that the number of time history data points be equal to 2 N,
where N is some integer.  The derivation method is via a butterfly algorithm, as shown, for
example, in Reference 8.
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Records with sample numbers which are not equal to an integer power of 2 can still be
processed via the fast Fourier transform method.  Such a record must either be truncated
or padded with zeroes so that its length becomes an integer power of 2.

Padding with zeroes obviously underestimates the true power spectral density amplitudes.
A compensation scaling factor can be applied to account for this, however.

Truncation, on the other hand, sacrifices some of the original signal information.
Nevertheless, most of the original signal can still be used by subdividing the data and by
using overlap techniques.

INTERMEDIATE SUMMARY

Time history data is subdivided into segments to increase the statistical-degrees-of-
freedom by broadening the frequency bandwidth.  Next, a window is applied to each
segment to taper the ends of the data.  Finally, overlapping is used to recover degrees-of-
freedom lost during the window operations.  The effect of these steps is to increase the
accuracy of the power spectral density data.  Nevertheless, there are some tradeoffs as
shown in the following examples.

EXAMPLES

Example 1:  Fixed Bandwidth with Variable Duration

Consider that an engineer is planning a modal test.  A modal shaker will be used to apply
random vibration to a launch vehicle fairing.  The engineer needs to determine the duration
for each data run.

The engineer could first choose the required resolution bandwidth and then determine the
desired accuracy.  These parameters would then dictate a required duration.

For example, consider that a spectral bandwidth of 2 Hz is required.  This corresponds to
a segment duration of 0.5 seconds.  The results of this choice are shown in Table 3, where
the total duration is calculated for several degree cases.

Table 3.
Parameters for Bi=2 Hz Example, Rectangular Filter
Total dof Bounds on S2 for

95% Confidence
Standard
Error

Segment
Duration
(sec)

Number
of
Segments

Total
Duration
(sec)

16 0.41 to 1.80 - 0.5 8 4
32 0.57 to 1.55 0.250 0.5 16 8
64 0.68 to 1.37 0.177 0.5 32 16
128 0.77 to 1.20 0.125 0.5 64 32
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Thus, the standard error is 12.5% for the 128 dof case.  This means that the confidence
value is 95% that the measured standard deviation value is within ±12.5% of the true
value.  Again, this assumes a stationary, random signal.

The 128 dof case is the best choice in this case.  Higher dof could be achieved with a
longer duration, but the accuracy gain would be a diminishing returns effect.

The parameters in Table 3 assume a rectangular filter for simplicity.  In reality, a Hanning
window with 50% overlap would probably be used.

Example 2:  Fixed Bandwidth and Fixed Duration

An engineer must calculate a power spectral density function for a flight time history.  The
required spectral bandwidth is 5 Hz.  The data is stationary, random vibration as shown in
Figure 2.  The duration is 8 seconds.  Note that the flight data in Figure 2 is actually
synthesized data; with an amplitude of approximately 1.0 G 2/Hz over the frequency range
10 Hz to 200 Hz.  The overall level is 15.0 GRMS.

The engineer must choose whether to represent the data in terms of a single segment or in
terms of a family of segments.  Note that the term segment is now being used in a new
context.  The data would be further broken into sub-segments to form the average for
each final segment.  Also note that the dof per segment values are not additive since the
final segments are represented individually rather than averaged.

Table 4.
Parameters for Bi=5 Hz Example, 8 Second Duration, Rectangular Filter
Number of
Final Segments

Duration of each
Final Segment
(sec)

dof per
Segment

Standard Error
per Segment

1 8 80 0.158
2 4 40 0.224
4 2 20     -
8 1 10     -

Recall that a minimum of 30 degrees of freedom is needed to apply the standard error
theory.

The power spectral density for the single-segment choice is shown in Figure 3.  The mean
amplitude of the power spectral density points in Figure 3 is 1.0 G 2/Hz.  Furthermore, the
standard deviation is 0.065, which is actually better than the theoretical standard error
value of 0.158.  Note that the ideal standard deviation for this synthesized case is zero.

All four processing choices are shown in Figure 4.  Obviously, the price of additional
segment curves is less accuracy.

The 1 to 2 second curve from the 8-segment choice is shown in Figure 5.  The mean value
is fine but the standard deviation has climbed to 0.358.  Note the peak at 127 Hz, which
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reaches an amplitude of 2.0 G 2/Hz.  This amplitude is 3 dB higher than the synthesized
amplitude.  The curve in Figure 4 could lead to an erroneous conclusion that the flight
vehicle has a 127 Hz forcing frequency or natural frequency.

Finally, the maximum envelope for the 8-segment choice is shown in Figure 6.  This
maximum envelope clearly overestimates the true amplitude which is 1.0 G 2/Hz.

Thus, the correct choice for this example would be a single 8-second curve, as shown in
Figure 3.

Example 3:  Non-stationary Data

Now repeat example 2 for the time history in Figure 7.  This is the same time history from
Example 3 except that a 20 Hz, 30 G signal is superimposed during the first one-second
interval.

The family of power spectral density curves is shown in Figure 8.  Note that the scaling of
the Y-axis was greatly increased to accommodate the 20 Hz spectral peak, relative to the
scaling in Figure 4.  In particular, note that the peak amplitude increases as shorter
segments are taken.  In other words, a segment duration greater than one second
obfuscates the true amplitude of the 20 Hz spectral peak.  This error is called  bias error.

Bias error has a similar effect as  smear error.  The difference is that bias error results
from lengthening the final segment duration, where as  smear error results from
broadening the frequency resolution.

An individual power spectral density curve taken from 0 to 1 second is given in Figure 9.
This curve is the first from the 8-segment case.  The overall level is 25.7 GRMS which is
close to the expected value of 26.2 GRMS.

Thus, the correct choice for this example would be to represent the data in terms of one-
seconds segments.

DERIVATION OF TEST SPECIFICATIONS FROM FLIGHT DATA

Some vibration data is reasonably stationary.  Real flight data has a non-stationary
tendency, however.

The need for accuracy requires increased segment duration, to minimize  standard error.
On the other hand, a longer segment duration could obfuscate any transient responses,
resulting in  bias error.

MIL-STD-1540C, paragraph 3.3.4, is very concerned with  bias error.  This standard thus
recommends a one-second segment duration for flight data.  Unfortunately, this standard
fails to address the standard error (no pun intended) which results from using brief
segments.
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The proper choice of segment duration for non-stationary flight data remains a dilemma.
The real problem is that a stationary random vibration test specification is sought to
represent a non-stationary flight environment.

This dilemma can be partially solved by separating transient effects from steady-state
vibration.  In other words, multiple specifications can be derived to envelop various flight
events.  Currently, the common practice is to consider some events as shock events and
others as steady-state random vibration.  Nevertheless, certain events fall somewhere in
between these two categories.

Creative but reasonable engineering judgment is thus needed to derive test specifications
to cover real flight data.  For example, the data in Figure 7 could be represented in terms
of a sine-on-random specification.  In addition, the effect of the 20 Hz sinusoid on a
payload could be analyzed in a coupled-loads model.

Now consider that obvious transient events have been removed from the flight data.  A
better method of characterizing the remaining flight data and would be to use a histogram
approach.  This will be the subject of a future report.

CONCLUSION

Engineers use the power spectral density function to represent a signal by a series of
sinusoids at discrete frequencies.  This process has associated  standard error and  bias
error.   Smear error and  leakage error are also considerations.  Engineers must
understand these error sources in order to properly interpret and utilize power spectral
density data.
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APPENDIX A
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