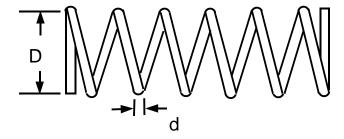
TABLE OF SPRING STIFFNESS Revision B

By Tom Irvine

Email: tomirvine@aol.com

October 5, 1999


Common Variables

k = spring stiffness.

G =shear modulus.

E = elastic modulus.

Circular Wire Helical Spring in Tension or Compression

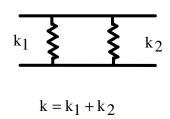
$$k = \frac{d^4 G}{8D^3 N}$$

D = mean diameter.

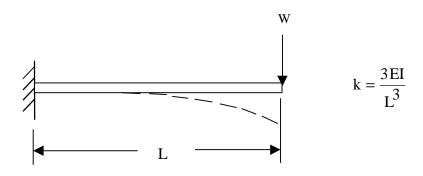
d = wire diameter of spring material.

N = number of active turns of wire.

Circular Wire Helical Spring in Torsion

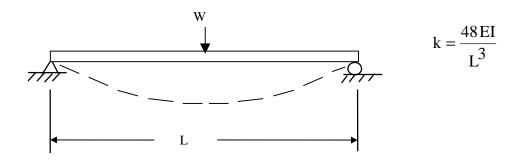

$$k = \frac{d^4 E}{64 D N}$$

Dimensions: [length-force/radian]

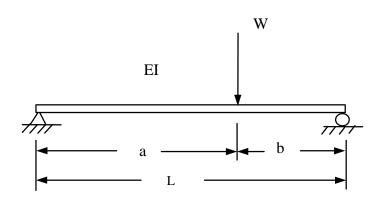

Springs in Series

$$k = \frac{1}{\left[\frac{1}{k_1} + \frac{1}{k_2}\right]}$$

Springs in Parallel

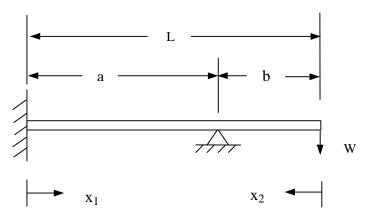


Bending of Fixed-Free Beam with Concentrated Load

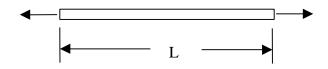


I =the area moment of inertia.

Bending of Beam Simply-Supported at Both Ends with Concentrated Load at Center Location

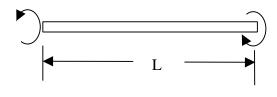


Beam with Simply-Supported at Both Ends with Concentrated Load at an Arbitrary Location


The stiffness at the load point is $k = \left\{ \frac{3EIL}{a^2b^2} \right\}$.

Clamped-Pinned-Free Beam

The stiffness at the free end is $k = \frac{12EI}{b^2 [4b+3a]}$.


Rod or Bar Longitudinal Stiffness

$$k = \frac{EA}{L}$$

A is the cross-sectional area.

Rod or Bar Torsional Stiffness

$$k = \frac{G J}{L}$$

4

J is the torsion constant of the cross-section. Examples are shown in Table 1.

Table 1. Torsion Constants for Torsional Stiffness	
Cross-section Shape	Torsion Constant J
Solid Circular Section 2r	$J = \frac{1}{2}\pi r^4$
Hollow Concentric Circular Section a b	$J = \frac{1}{2}\pi \left[b^4 - a^4 \right]$
Solid Elliptical Section 2b 2a	$J = \frac{\pi a^3 b^3}{a^2 + b^2}$

Cross-section Shape	Torsion Constant J
Solid Square Section	$J = 2.25 a^4$
Solid Rectangular Section	F (, ,)]
	$J = a b^{3} \left[\frac{16}{3} - 3.36 \frac{b}{a} \left(1 - \frac{b^{4}}{12a^{4}} \right) \right], a \ge b$
← 2a →	

- W. Thomson, Theory of Vibration with Applications, 2nd edition, Prentice-Hall, Englewood Cliffs, N.J., 1981.
- W. Young, Roark's Formulas for Stress & Strain, 6th edition, McGraw-Hill, New York, 1989.
- 3. Vibration and Shock Mount Handbook, Product Catalog A-816, Stock Drive Products, New York, 1990.