STRING VIBRATION

By Tom Irvine
Email: tomirvine@aol.com
February 8, 1999

The lateral displacement $u(x, t)$ of a string is governed by

$$
\begin{equation*}
T \frac{\partial^{2} u}{\partial x^{2}}=\rho \frac{\partial^{2} u}{\partial t^{2}} \tag{1}
\end{equation*}
$$

where
ρ is the mass per unit length,
T is the tension.

Furthermore, the string has length L.
Equation (1) is taken from Reference 1. It assumes that the lateral displacement is small so that T is constant.

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\left(\frac{\rho}{T}\right) \frac{\partial^{2} u}{\partial t^{2}} \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
c=\sqrt{\frac{T}{\rho}} \tag{3}
\end{equation*}
$$

Note that c is the wave propagation velocity. Substitute equation (3) into (2).

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\left(\frac{1}{c^{2}}\right) \frac{\partial^{2} u}{\partial t^{2}} \tag{4}
\end{equation*}
$$

Separate the variables. Let

$$
\begin{equation*}
u(x, t)=U(x) G(t) \tag{5}
\end{equation*}
$$

Substitute equation (4) into (3).

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}}[U(x) G(t)]=\left(\frac{1}{c^{2}}\right) \frac{\partial^{2}}{\partial t^{2}}[U(x) G(t)] \tag{6}
\end{equation*}
$$

Perform the partial differentiation.

$$
\begin{equation*}
\mathrm{U}^{\prime \prime}(\mathrm{x}) \mathrm{G}(\mathrm{t})=\left(\frac{1}{\mathrm{c}^{2}}\right) \mathrm{U}(\mathrm{x}) \mathrm{G}^{\prime \prime}(\mathrm{t}) \tag{7}
\end{equation*}
$$

Divide through by $\mathrm{U}(\mathrm{x}) \mathrm{G}(\mathrm{t})$.

$$
\begin{align*}
& \frac{U^{\prime \prime}(x)}{U(x)}=\left(\frac{1}{c^{2}}\right) \frac{G^{\prime \prime}(t)}{G(t)} \tag{8}\\
& c^{2} \frac{U^{\prime \prime}(x)}{U(x)}=\frac{G^{\prime \prime}(t)}{G(t)} \tag{9}
\end{align*}
$$

Each side of equation (9) must equal a constant. Let ω be a constant.

$$
\begin{equation*}
\mathrm{c}^{2} \frac{\mathrm{U}^{\prime \prime}(\mathrm{x})}{\mathrm{U}(\mathrm{x})}=\frac{\mathrm{G}^{\prime \prime}(\mathrm{t})}{\mathrm{G}(\mathrm{t})}=-\omega^{2} \tag{10}
\end{equation*}
$$

The time equation is

$$
\begin{align*}
& \frac{G^{\prime \prime}(t)}{G(t)}=-\omega^{2} \tag{11}\\
& G^{\prime \prime}(t)=-\omega^{2} G(t) \tag{12}\\
& G^{\prime \prime}(t)+\omega^{2} G(t)=0 \tag{13}
\end{align*}
$$

Propose a solution

$$
\begin{align*}
G(t) & =a \sin (\omega t)+b \cos (\omega t) \tag{14}\\
G^{\prime}(t) & =a \omega \cos (\omega t)-b \omega \sin (\omega t) \tag{15}\\
G^{\prime \prime}(t) & =-a \omega^{2} \sin (\omega t)-b \omega^{2} \cos (\omega t) \tag{16}
\end{align*}
$$

Verify the proposed solution. Substitute into equation (13).

$$
\begin{gather*}
-a \omega^{2} \sin (\omega t)-b \omega^{2} \cos (\omega t)+\omega^{2}\left[\sin (\omega t)+\omega^{2} \cos (\omega t)\right]=0 \tag{17}\\
0=0 \tag{18}
\end{gather*}
$$

Equation (14) is thus verified as a solution.
There is not a unique ω, however, in equation (10). This is demonstrated later in the derivation. Thus a subscript n must be added as follows.

$$
\begin{equation*}
G_{n}(t)=a_{n} \sin \left(\omega_{n} t\right)+b_{n} \cos \left(\omega_{n} t\right) \tag{19}
\end{equation*}
$$

The spatial equation is

$$
\begin{align*}
& c^{2} \frac{U^{\prime \prime}(x)}{U(x)}=-\omega^{2} \tag{20}\\
& c^{2} U^{\prime \prime}(x)=-\omega^{2} U(x) \tag{21}\\
& c^{2} U^{\prime \prime}(x)+\omega^{2} U(x)=0 \tag{22}\\
& U^{\prime \prime}(x)+\frac{\omega^{2}}{c^{2}} U(x)=0 \tag{23}
\end{align*}
$$

Equation (23) is similar to equation (13). Thus, a solution can be found by inspection.

$$
\begin{equation*}
U(x)=d \sin \left(\frac{\omega x}{c}\right)+e \cos \left(\frac{\omega x}{c}\right) \tag{24}
\end{equation*}
$$

The slope equation is

$$
\begin{equation*}
U^{\prime}(x)=\left[\frac{\omega}{c}\right]\left[d \cos \left(\frac{\omega x}{c}\right)-e \sin \left(\frac{\omega x}{c}\right)\right] \tag{25}
\end{equation*}
$$

Now consider boundary condition cases.

Case I. Fixed-Fixed

The left boundary condition is

$$
\begin{align*}
& \mathrm{u}(0, \mathrm{t})=0 \quad \text { (zero displacement) } \tag{26}\\
& \mathrm{U}(0) \mathrm{G}(\mathrm{t})=0 \tag{27}\\
& \mathrm{U}(0)=0 \tag{28}
\end{align*}
$$

The right boundary condition is

$$
\begin{align*}
& u(L, t)=0 \quad \text { (zero displacement }) \tag{29}\\
& U(L) G(t)=0 \tag{30}\\
& U(L)=0 \tag{31}
\end{align*}
$$

Substitute equation (28) into (24).

$$
\begin{equation*}
\mathrm{e}=0 \tag{32}
\end{equation*}
$$

Thus, the displacement equation becomes

$$
\begin{equation*}
\mathrm{U}(\mathrm{x})=\mathrm{d} \sin \left(\frac{\omega \mathrm{x}}{\mathrm{c}}\right) \tag{33}
\end{equation*}
$$

Substitute equation (31) into (33).

$$
\begin{equation*}
\mathrm{d} \sin \left(\frac{\omega L}{\mathrm{c}}\right)=0 \tag{34}
\end{equation*}
$$

The constant d must be non-zero for a non-trivial solution. Thus,

$$
\begin{equation*}
\frac{\omega_{\mathrm{n}} \mathrm{~L}}{\mathrm{c}}=\mathrm{n} \pi, \quad \mathrm{n}=1,2,3, \ldots \tag{35}
\end{equation*}
$$

The ω term is given a subscript n because there are multiple roots.

$$
\begin{equation*}
\omega_{\mathrm{n}}=\mathrm{n} \pi \frac{\mathrm{c}}{\mathrm{~L}}, \quad \mathrm{n}=1,2,3, \ldots \tag{36a}
\end{equation*}
$$

The natural frequency f_{n} is given by

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}=\frac{\mathrm{nc}}{2 \mathrm{~L}}, \mathrm{n}=1,2,3, \ldots \tag{36b}
\end{equation*}
$$

Typically,
ω is in units of radians/sec,
f_{n} is in units of Hertz.
The displacement function the fixed-fixed string is

$$
\begin{align*}
& \mathrm{U}_{\mathrm{n}}(\mathrm{x})=\mathrm{d}_{\mathrm{n}} \sin \left(\frac{\omega_{\mathrm{n}} \mathrm{x}}{\mathrm{c}}\right) \tag{37}\\
& \mathrm{U}_{\mathrm{n}}(\mathrm{x})=\mathrm{d}_{\mathrm{n}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~L}}\right) \tag{38}
\end{align*}
$$

Substitute the natural frequency term into the time equation.

$$
\begin{equation*}
\mathrm{G}_{\mathrm{n}}(\mathrm{t})=\mathrm{a}_{\mathrm{n}} \sin \left(\frac{\mathrm{n} \pi \mathrm{ct}}{\mathrm{~L}}\right)+\mathrm{b}_{\mathrm{n}} \cos \left(\frac{\mathrm{n} \pi \mathrm{ct}}{\mathrm{~L}}\right) \tag{39}
\end{equation*}
$$

The displacement function is thus

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\left[d_{n} \sin \left(\frac{n \pi x}{L}\right)\right]\left[a_{n} \sin \left(\frac{n \pi c t}{L}\right)+b_{n} \cos \left(\frac{n \pi c t}{L}\right)\right]\right\} \tag{40}
\end{equation*}
$$

The coefficients can be simplified as follows

$$
\begin{align*}
& \mathrm{A}_{\mathrm{n}}=\mathrm{d}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \tag{41}\\
& \mathrm{~B}_{\mathrm{n}}=\mathrm{d}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}} \tag{42}
\end{align*}
$$

By substitution, the displacement equation is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\left[\sin \left(\frac{n \pi x}{L}\right)\right]\left[A_{n} \sin \left(\frac{n \pi c t}{L}\right)+B_{n} \cos \left(\frac{n \pi c t}{L}\right)\right]\right\} \tag{43a}
\end{equation*}
$$

An equivalent form is

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}=1}^{\infty}\left\{\left[\sin \left(\mathrm{k}_{\mathrm{n}} \mathrm{x}\right)\right]\left[\mathrm{A}_{\mathrm{n}} \sin \left(\omega_{\mathrm{n}} \mathrm{t}\right)+\mathrm{B}_{\mathrm{n}} \cos \left(\omega_{\mathrm{n}} \mathrm{t}\right)\right]\right\} \tag{43b}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{k}_{\mathrm{n}}=\left(\frac{\mathrm{n} \pi}{\mathrm{~L}}\right) \tag{43c}
\end{equation*}
$$

The velocity equation is

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=\sum_{n=1}^{\infty}\left\{\left(\frac{n \pi c}{L}\right)\left[\sin \left(\frac{n \pi x}{L}\right)\right]\left[A_{n} \cos \left(\frac{n \pi c t}{L}\right)-B_{n} \sin \left(\frac{n \pi c t}{L}\right)\right]\right\} \tag{44a}
\end{equation*}
$$

The equivalent form is

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=\sum_{n=1}^{\infty}\left\{\left(\omega_{n}\right)\left[\sin \left(k_{n} x\right)\right]\left[A_{n} \cos \left(\omega_{n} t\right)-B_{n} \sin \left(\omega_{n} t\right)\right]\right\} \tag{44b}
\end{equation*}
$$

Now consider that the string is given an initial displacement of $u(x, 0)$ and initial velocity of $\mathrm{v}(\mathrm{x}, 0)$.

Solve for the coefficients in equation (43).
The initial displacement equation is

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty}\left\{B_{n} \sin \left(\frac{n \pi x}{L}\right)\right\} \tag{45}
\end{equation*}
$$

Multiply each side by $\sin \left(\frac{m \pi x}{L}\right)$. Then integrate with respect to x, from 0 to L.

$$
\begin{equation*}
\int_{0}^{L} u(x, 0) \sin \left(\frac{m \pi x}{L}\right) d x=\int_{0}^{L}\left\{\sum_{n=1}^{\infty}\left\{B_{n} \sin \left(\frac{n \pi x}{L}\right)\right\} \sin \left(\frac{m \pi x}{L}\right)\right\} d x \tag{46}
\end{equation*}
$$

Now consider the case where $\mathrm{n}=\mathrm{m}$,

$$
\begin{gather*}
\int_{0}^{L} u(x, 0) \sin \left(\frac{m \pi x}{L}\right) d x=\int_{0}^{L}\left\{B_{m} \sin ^{2}\left(\frac{m \pi x}{L}\right)\right\} d x \tag{47}\\
\int_{0}^{L} u(x, 0) \sin \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} \int_{0}^{L}\left\{B_{m}\left[1-\cos \left(\frac{2 m \pi x}{L}\right)\right]\right\} d x \tag{48}\\
\int_{0}^{L} u(x, 0) \sin \left(\frac{m \pi x}{L}\right) d x=\left.\frac{1}{2}\left\{B_{m}\left[x-\left(\frac{L}{2 m \pi}\right) \sin \left(\frac{2 m \pi x}{L}\right)\right]\right\}\right|_{0} ^{L} \tag{49}
\end{gather*}
$$

$$
\begin{align*}
& \int_{0}^{L} u(x, 0) \sin \left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} B_{m} L \tag{50}\\
& B_{m}=\frac{2}{L} \int_{0}^{L} u(x, 0) \sin \left(\frac{m \pi x}{L}\right) d x \tag{51}
\end{align*}
$$

Now consider $\mathrm{n} \neq \mathrm{m}$,

$$
\begin{equation*}
\int_{0}^{\mathrm{L}} \mathrm{u}(\mathrm{x}, 0) \sin \left(\frac{\mathrm{m} \pi \mathrm{x}}{\mathrm{~L}}\right) \mathrm{dx}=\sum_{\mathrm{n}=1}^{\infty}\left\{\frac{1}{2} \mathrm{~B}_{\mathrm{n}} \int_{0}^{\mathrm{L}}\left[\cos \left(\frac{(\mathrm{n}-\mathrm{m}) \pi \mathrm{x}}{\mathrm{~L}}\right)-\cos \left(\frac{(\mathrm{n}+\mathrm{m}) \pi \mathrm{x}}{\mathrm{~L}}\right)\right] \mathrm{dx}\right\} \tag{52}
\end{equation*}
$$

$$
\begin{align*}
\int_{0}^{L} u(x, 0) & \sin \left(\frac{m \pi x}{L}\right) d x \\
\quad= & \sum_{n=1}^{\infty}\left\{\left.\frac{1}{2} B_{n}\left[\left(\frac{L}{(n-m) \pi}\right) \sin \left(\frac{(n-m) \pi x}{L}\right)-\left(\frac{L}{(n+m) \pi}\right) \sin \left(\frac{(n+m) \pi x}{L}\right)\right]\right|_{0} ^{L}\right\} \tag{53}
\end{align*}
$$

$$
\begin{equation*}
\int_{0}^{L} u(x, 0) \sin \left(\frac{m \pi x}{L}\right) d x=0 \quad \text { for } n \neq m \tag{54}
\end{equation*}
$$

The left-hand side may be nonzero, however. Thus, n must equal m, as shown in equations (47) through (51).

The initial velocity equation is

$$
\begin{equation*}
\mathrm{v}(\mathrm{x}, 0)=\sum_{\mathrm{n}=1}^{\infty}\left\{\mathrm{A}_{\mathrm{n}}\left(\frac{\mathrm{~L}}{\mathrm{n} \pi}\right) \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~L}}\right)\right\} \tag{55}
\end{equation*}
$$

The initial velocity equation (55) is very similar to the initial displacement equation (45). Thus the solution can be written by inspection.

$$
\begin{equation*}
A_{m}=\frac{2}{m \pi} \int_{0}^{L} v(x, 0) \sin \left(\frac{m \pi x}{L}\right) d x \tag{56}
\end{equation*}
$$

REFERENCE

1. W. Thomson, Theory of Vibration with Applications, Second Edition, Prentice-Hall, New Jersey, 1981.
