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The lateral displacement u(x, t) of a string is governed by
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where

ρ is the mass per unit length,
T is the tension.

Furthermore, the string has length L.

Equation (1) is taken from Reference 1.  It assumes that the lateral displacement is small
so that T is constant.
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Let

ρ
= T

c                                                                                      (3)

Note that c is the wave propagation velocity.  Substitute equation (3) into (2).
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Separate the variables.  Let

)t(G)x(U)t,x(u =                                                                           (5)

Substitute equation (4) into (3).
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Perform the partial differentiation.
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Divide through by U(x)G(t).
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Each side of equation (9) must equal a constant.  Let ω be a constant.
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The time equation is
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Propose a solution
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Verify the proposed solution.  Substitute into equation (13).
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Equation (14) is thus verified as a solution.

There is not a unique ω , however, in equation (10).  This is demonstrated later in the
derivation.  Thus a subscript n must be added as follows.

( ) ( )tcosbtsina)t(G nnnnn ω+ω=                                                       (19)

The spatial equation is
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Equation (23) is similar to equation (13).  Thus, a solution can be found by inspection.
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Now consider boundary condition cases.

Case I.  Fixed-Fixed

The left boundary condition is

u t( , )0 0=         (zero displacement)                                                             (26)

0)t(G)0(U =                                                                                                (27)

U( )0 = 0                                                                                                      (28)
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The right boundary condition is

u L t( , ) = 0         (zero displacement)                                                             (29)

0)t(G)L(U =                                                                                                (30)

U L( ) = 0                                                                                                      (31)

Substitute equation (28) into (24).
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Thus, the displacement equation becomes
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Substitute equation (31) into (33).
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The constant d must be non-zero for a non-trivial solution.  Thus,
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The ω  term is given a subscript n because there are multiple roots.
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The natural frequency nf  is given by
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Typically,
 ω is in units of radians/sec,
 nf is in units of Hertz.

The displacement function the fixed-fixed string is
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Substitute the natural frequency term into the time equation.
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The displacement function is thus
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The coefficients can be simplified as follows

A d an n n=                                                                (41)

B d bn n n=                                                                (42)

By substitution, the displacement equation is
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An equivalent form is
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The velocity equation is
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The equivalent form is
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Now consider that the string is given an initial displacement of u(x,0) and initial velocity of
v(x,0).

Solve for the coefficients in equation (43).

The initial displacement equation is
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Multiply each side by 
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Now consider the case where n = m,
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Now consider n ≠ m,
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The left-hand side may be nonzero, however.  Thus, n must equal m, as shown in
equations (47) through (51).

The initial velocity equation is
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The initial velocity equation (55) is very similar to the initial displacement equation (45).
Thus the solution can be written by inspection.
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