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The lateral displacement u(x, t) of astring is governed by

where

r isthemass per unit length,
T isthetenson.

Furthermore, the string has length L.
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Equation (1) istaken from Reference 1. It assumes that the lateral displacement issmall

so that T is constant.
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Note that c isthe wave propagation velocity. Substitute equation (3) into (2).
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Separate the variables. Let
u(x,t) = U(x)G(t)
Substitute equation (4) into (3).
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Perform the partia differentiation.
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Divide through by U(X)G(t).
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Each side of equation (9) must equal aconstant. Let w be a constant.
The time equation is
‘;’;L((tt)) =W (11)
G&t) =- W2G(t) (12)
G&t) +w*G(t) =0 (13)
Propose a solution
G(t) = asin(wt) + bcos(wt) (14)
G(t) = awcos(wt)- bwsin(wt) (15)
G&t) = - aw? sin(wt) - bw? cos(wt) (16)
Verify the proposed solution. Substitute into equation (13).
- aw? sinfwt) - bw? cos(wt) + w2 sin(wt) +w? cos{ut)] = 0 (17)

0=0 (18)



Equation (14) isthus verified as a solution.

Thereisnot aunique w, however, in equation (10). Thisisdemonstrated later in the
derivation. Thus a subscript n must be added as follows.

Gp(t) =a, sn(w,t)+b,, cosw,t) (19)
The spatial equation is
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c2Udx) = - w2U(x) (21)

c2Ud(x) +w2U(x) = 0 (22)
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U&x) +—2U(x) =0 (23)
C

Equation (23) issmilar to equation (13). Thus, a solution can be found by inspection.
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U(x) = dsing” = +ecosg (24)

The dope equation is

Ugx) = g%ggplcos?%g- esin?%xgg (25)
Now consider boundary condition cases.
Casel. Fixed-Fixed
The left boundary condition is
u(o,t) =0 (zero displacement) (26)
U(0)G(t) =0 (27)
U@)=0 (28)



The right boundary condition is
ulL,t)=0 (zero displacement)
U(L)G(t) =0
U(L) =0
Substitute equation (28) into (24).
e=0

Thus, the displacement equation becomes
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U(x) =dd ng c o
Substitute equation (31) into (33).
dsn %TB =0
The constant d must be non-zero for anon-trivial solution. Thus,
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=np, n=123,...
The w term is given a subscript n because there are multiple roots.
o
wnznpt, n=123,...

The natural frequency f, isgiven by

Typicaly,
W isin units of radiang/sec,
fnisin units of Hertz.

The displacement function the fixed-fixed string is
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Subgtitute the natural frequency term into the time equation.
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The displacement function is thus
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The coefficients can be smplified as follows
An=dpay
=dp by
By subgtitution, the displacement equation is
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The equivalent form is
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Now consider that the string is given an initial displacement of u(x,0) and initial velocity of

v(x,0).
Solve for the coefficients in equation (43).

Theinitial displacement equation is

u(xO)— |B sng—
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Multiply each side by sng—— Then integrate with respect to x, from O to L.
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Now consider the case wheren = m,

X0 WL zaempxou
uxOsn ——¥X = By 9n dx
Q’( ) o Q% m e L
1 Li é a2mpx gul

Q)u(xO)sm(_;—Xtj —Q|B el cosq

Q%dx

L
aampx o 11 é &L o aémx"‘"
p — —x = _IBmeX ¢ §ng P g
g 27 & é2mpg & L 0

Qu(x O)sn

(45)

(46)

(47)

(48)

(49)



&L . aampX o 1
u(x,0)snc——-dx ==B,L 50
QuUIXO)sing= ==t = By (50)
Bm E(‘6u(xO)smaarnpxsjdx (51
L @
Now consider n* m
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Qu(xO)sn —dx 0 forntm (>4

The left-hand side may be nonzero, however. Thus, n must equal m, as shown in
equations (47) through (51).

Theinitial velocity equation is
S 1, b o, anpx ol
v(x,0)=Qa nQ—— ng—% (55)
n= 1I Po

Theinitial velocity equation (55) isvery Smilar to theinitial displacement equation (45).
Thus the solution can be written by ingpection.
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