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STRUCTURAL DYNAMICS TESTING USING AN IMPULSE FORCE

By Tom Irvine
Email:  tomirvine@aol.com

May 13, 1999

Introduction

A structure can be characterized in terms of its dynamic properties, such as its natural
frequencies, damping ratios, mode shapes.  Modal tests are performed to measure these
parameters.

A modal test is carried out by exciting the structure with a measured force.  The force can be
imparted by an electromagnetic shaker or by an impulse hammer.  The response of the structure
is measured by accelerometers.

The shaker method yields a steady-state response.  The impulse hammer yields a transient
response.

This report focuses on the impulse hammer method.  Specific attention is given to the response
window, which is used to prevent an error source called “leakage.”

Example

Input and Response Time Histories

The following example is generated from analytical functions.  A linear, single-degree-of-
freedom system is considered as the test item.

An impulse force is applied to a structure with a modal hammer.  The force time history is a half-
sine pulse with a 500 Newton amplitude and a duration of 0.002 seconds, as shown in Figure 1.

The displacement response time history is shown in Figure 2.  Assume that the response
transducer was mounted adjacent to the hammer strike location.1

Note that the input force and the response displacement are plotted over different time intervals
in Figures 1 and 2, respectively.

                                                       
1 Accelerometers are typically used to measure the response.  The displacement can be obtained
by double-integrating the acceleration.  Some charge amplifiers have analog integration circuits
for this purpose.  Note that highpass filtering is necessary, however, to remove any baseline
shifts prior to integration.  Again, displacement is the response parameter considered in this
report.  Nevertheless, the methods can be readily adapted to an acceleration response.
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                  Figure 1.
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                 Figure 2.



3

Time Domain Analysis

The natural frequency of the system can be calculated essentially by inspection.  There are
twenty positive peaks over the zero to 0.2 second duration, as shown in Figure 3.  This
corresponds to a natural frequency of 100 Hz.
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              Figure 3.

The “direct count” method is as accurate as any Fourier transform, or any other numerical
method, for determining the natural frequency of a well-behaved system.

Some “real world” systems actually exhibit linear, single-degree-of-freedom behavior.
Nevertheless, the impulse force would be expected to excite a number of vibration modes for a
“general system,” which is a multi-degree-of-freedom system.

Bandpass filtering can be used to view the response of single vibration mode assuming that
adjacent vibration modes have a reasonable frequency separation, say at least a one octave
separation.  Thus, the direct count method can be applied to well-behaved multi-degree-of-
freedom systems.
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Returning to the time history in Figure 2, the next step is to estimate the damping.  There are
several methods for doing this.  For example, Reference 1 gives the “log decrement” method.

The author’s preferred method, however, is to perform a trial-and-error curve fit of the response
envelope, assuming exponential decay.  This method is particularly useful if the response has
some minor non-linearity.

The envelope results are shown in Figure 4.

The displacement response time history y(t) is assumed to follow the equation

( ) ( )φ+ωωξ−= tsintexpA)t(y dn                                                                           (1)

where

angle. phase  theis
frequency, natural damped  theis

frequency, natural  theis
ratio, damping  theis

amplitude,  theisA

d

n

φ
ω
ω
ξ

Note that

2
nd 1 ξ−ω=ω                                                                                                                      (2)

More precisely, equation (1) gives the natural response, which is the response after the force
input permanently, returns to zero.
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                Figure 4.

Now let )t(ŷ  be the envelope function as follows.

( )texpA)t(ŷ nωξ−=                                                                           (3)

( )φ+ω= tsin)t(ŷ)t(y d                                                                           (4)

Again, the natural frequency is simply determined by counting the number of peaks over an
interval.  The natural frequency fn is the number of peaks divided by the time interval.  The
natural frequency has units of Hz if the time interval is in units of seconds.

The natural frequency can also be expressed as nω  in units of radians per second.

nn f2π=ω                                                                                                                         (5)
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Returning to the example in Figure 4, the following envelope equation was determined by trial-
and-error inspection.

( )t28.6exp0.1ŷ −=                                                                                                              (6)

Now apply equation (6) to equation (3).

( ) ( )t28.6exp0.1texpA n −=ωξ−                                                                           (7)

The equality requires that

sec/rad28.6n =ωξ                                                                                                (8)

Divide through by the frequency variable.

n

28.6
ω

=ξ                                                                                                             (9)

Substitute equation (5) into equation (9).

nf2
28.6

π
=ξ                                                                                                           (10)

Again, the natural frequency is 100 Hz.

( ) sec/rad1002
sec/rad28.6

π
=ξ                                                                                                 (11)

The damping ratio is thus

01.0=ξ                                                                                                             (12)

Time Domain Analysis with a Window Applied

Consider that an exponential window is to be applied to the data.  The need for such an envelope
in certain cases will be demonstrated later in this tutorial.

Assume that the window has the decay parameter σ such that the response equation is modified
as follows.

( ) ( ) ( )φ+ωωξ−σ−= tsintexptexpA)t(y dne                                                       (13)
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The subscript e denotes exponential window.

Equation (13) can be simplified as

( )[ ] ( )φ+ωωξ+σ−= tsintexpA)t(y dne                                                              (14)

Now let )t(ŷ e  be the envelope function for the exponential window method as follows.

( )[ ]texpA)t(ŷ ne ωξ+σ−=                                                                                   (15)

( )φ+ω= tsin)t(ŷ)t(y dee                                                                                                        (16)

Now assume that the data acquisition system is set at a sample rate of 10,000 samples per second
and that it is limited to 2048 samples.  The duration is thus 0.2048.  Choose

sec/rad734.33=σ                                                                                               (17)

The formula for choosing this value is explained later in this report.  The single-degree-of-
freedom system from the previous example would then have the displacement response shown in
Figure 5.
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The natural frequency in Figure 5 remains at 100 Hz.  The response with an exponential-decay
curve-fit of the envelope is shown in Figure 6.
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               Figure 6.

The envelope equation in Figure 6 is

( )t0.40exp0.1ŷ e −=                                                                                        (18)

Again, this equation was obtained by trial-and-error.

Compare equations (15) and (18).

( )[ ] ( )t0.40exp0.1texpA n −=ωξ+σ−                                                                            (19)
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By inspection,

sec/rad0.40n =ωξ+σ                                                                                        (20)

σ−=ωξ 0.40n                                                                                                   (21)

n

0.40
ω

σ−=ξ                                                                                                        (22)

nf2
0.40
π

σ−=ξ                                                                                                        (23)

( )
sec/rad)100(2

sec/rad734.330.40
π
−=ξ                                                                                  (24)

The damping ratio is thus

01.0=ξ                                                                                                             (25)

This is the same value that was calculated for the initial case, in which a window was not
applied.

The reader should be wondering, “Why bother with an exponential window?”

A real-world system may have several modes which are spaced closely in frequency.  A
frequency-domain method is thus required to identify the natural frequencies and damping ratios.
There are several potential error sources associated with frequency domain processing.  One is
called leakage.  The purpose of the exponential window is to prevent leakage as discussed in the
following section.

Frequency Domain Analysis

Fourier Transforms

Another method for evaluating the data is the frequency domain method.  The measured time-
domain data is converted to frequency-domain data via the Fourier transform.  The Fourier
transform of the input force is shown in Figure 7.  The Fourier transform of the response
displacement is shown in Figure 8.
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Compliance or Receptance Function

The compliance function is the ratio of the output displacement to the input force, expressed over
the frequency domain.  The compliance function is also called the receptance function.  A third
name is the admittance function.  The compliance function is shown in Figure 9.
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                     Figure 9.

Note that the compliance value converges to 2.5(10-6) m/N as the frequency decreases to zero.
The static stiffness is simply the reciprocal value, 400,000 N/m.  This value can be used as a
scale factor to render the compliance function in a normalized form, as shown in Figure 10.

Note that experimental determination of the static stiffness value can be challenging, particularly
if there is any low-frequency error in the data.

A close-up view of the peak is shown in Figure 11, along with the half-power points.
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Peak Value Damping Calculation

The 100 Hz natural frequency is evident in Figures 9 through 11.  The peak value is Figure 11 is
50.  The damping ratio is determined as follows

50
2
1 =
ξ

                                                                                                        (26)

01.0=ξ                                                                                                         (27)

This is the same value that was obtained in the time-domain analysis.

Half-power Bandwidth Damping Calculation

An alternate method is half-power bandwidth method.  The half-power points are the points at –3
dB with respect to the peak value.  This is equivalent to (1/√ 2) times the peak value.  These
points are shown in Figure 11.

Let hf∆  be the frequency separation between the two half-power points.  The damping and
natural frequency are related to the frequency separation as follows

hn f2f2 ∆π=ξ                                                                                       (28)

This equation is appropriate for cases where 1.0<ξ .

The damping is thus

n

h
f2
f∆=ξ                                                                                             (29)

The frequency separation is 2 Hz in the example, as shown in Figure 11.  Again, the natural
frequency is 100 Hz.  Thus

( )Hz1002
Hz2=ξ                                                                                       (30)

01.0=ξ                                                                                                (31)
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Comparison

The half-power method has several advantages over the peak method.  The peak method requires
proper amplitude normalization.  On the other hand, the half-power method is independent of the
amplitude scale factor.

Furthermore, the peak method is only valid for single-degree-of-freedom systems.  The half-
power method, however, may be applicable to more complex systems, as discussed in Reference
2.

Data Concerns

There are some obvious pitfalls to these approaches.  First, the frequency resolution must be
sufficiently narrow to characterize the peak.  This becomes increasingly difficult as the damping
value decreases.  This concern is related to the leakage error.

In addition, a more appropriate method of testing would be to measure perhaps ten sets of
response and input pairs.  A frequency response function is calculated for each pair.  The overall
frequency response function is the arithmetic average of the individual functions.  This approach
yields more a more reliable estimate of the true frequency response function.

Leakage Concern

The data in the frequency domain example was considered out to a duration of 6.5536 seconds.
The reciprocal is equal to the frequency resolution, which is 0.153 Hz.  The frequency separation
between the two –3 dB points is 2 Hz.  Thus, there are about thirteen points inside the segment
between the –3 dB points.  This is a sufficient number to characterize the peak.

On the other hand, a data acquisition system might not have enough memory to capture and store
a time history signal with 65,536 samples in a data segment.

This limitation is disappearing due to technology advances in computer memory.  Nevertheless,
consider that a system is limited to a smaller sample set, say 2048 points.  This sample size
would correspond to a duration of 0.2048 seconds, at a sample rate of 10,000 samples per
second. 2

As a result, the time history would be truncated before the signal decayed to zero, as shown in
Figure 12.

                                                       
2  Note that the sample rate must be high enough to accurately measure both the force input and
the response.
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                     Figure 12.

There are two problems from this truncation.  Both are symptoms of leakage.

The first problem is that a spurious ripple effect might appear on the Fourier transforms and
frequency response function plots.  This is shown in Reference 3.

The second problem is that the frequency resolution would become too coarse.  The reciprocal of
0.2048 second sample duration is 4.883 Hz.  This reciprocal is also the frequency resolution for
the Fourier transform.  This resolution would be more than twice as wide as the 2.0 Hz half-
power bandwidth.   The resulting frequency response function is shown in Figure 13.

The half-power bandwidth method yields a damping value of 039.0=ξ for the 2048 sample
curve in Figure 13.  This is nearly four times the true damping ratio.

The solution for the leakage error is an exponential window.
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Exponential Window

Again, the concern is that a transient signal might not decay to a negligible value within a data
block.  An example would be the response of a lightly damped structure to an impulsive load.  A
leakage error would then result in the Fourier transform.

An exponential window can be applied to suppress leakage.  The following formula is
recommended in Reference 4 for a time-domain exponential window:
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)t(u                                                                           (32)



17

where T is the data block duration.

The equivalent frequency-domain magnitude function is:

                           
( ) ( )2Tf2269078.0

T69078.0
)f(U

π+
=                                                                   (33)

This window decays from a value of unity at the start of the block to a value of 0.001 (-60 dB) at
the end of the block.

This exponential window is desirable because it appears in the resulting Fourier spectrum as
additional, well-defined linear damping of the structural response. It thus offers the opportunity
to correct estimates of structural damping made from the Fourier spectrum for window effects.

Returning to the example problem, the exponential window in equation (32) was previously
applied to the time history as shown in Figures 5 and 6.

The corresponding compliance function is shown in Figure 14.  A close-up view of the peak is
shown in Figure 15, along with the –3 dB points.
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First, calculate the apparent damping ratio .aξ

hn f2fa2 ∆π=ξ                                                                                                     (34)

The apparent damping is thus

n

h
f2
f

a
∆=ξ                                                                                               (35)

The frequency separation is 14 Hz in the example, as shown in Figure 15.  Again, the natural
frequency is 100 Hz.  Thus

( )Hz1002
Hz14

a=ξ                                                                                       (36)

070.0a =ξ                                                                                              (37)
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The true damping ratio is estimated through the following steps.

nn a ωξ=ωξ+σ                                                                                                 (38)

σ−ωξ=ωξ nn a                                                                                                   (39)

n

na
ω

σ−ωξ=ξ                                                                                                        (40)

n

n
f2

a
π

σ−ωξ=ξ                                                                                                        (41)

n

n
f2
fa2

π
σ−ξπ=ξ                                                                                                   (42)

( )[ ]
sec/rad)100(2

sec/rad734.33)100(070.02
π

−π=ξ                                                                      (43)

The damping ratio is thus estimated as

016.0=ξ                                                                                                             (44)

This is 60% higher than the true value 01.0=ξ .

This error is partially due to the fact that there were only three points inside the half-power
bandwidth in Figure 15.  Furthermore, numerical error may result when the apparent damping is
much greater than the true damping.

Greater resolution is needed.  This requires a longer duration.

Now repeat the example with a window of 0.4096 seconds duration, with 4096 samples.  The
exponential window decay value is calculated from equation (32).

sec/rad865.16=σ                                                                              (45)

The time history is shown in Figure 16.  The compliance function is shown in Figure 17.  A
close-up view showing the half-power points is given in Figure 18.
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Again, the apparent damping is

n

h
f2
f

a
∆=ξ                                                                                               (46)

The frequency separation is 7.6 Hz in the example shown in Figure 18.  Again, the natural
frequency is 100 Hz.  Thus

( )Hz1002
Hz6.7

a=ξ                                                                                       (47)

038.0a =ξ                                                                                              (48)

The true damping ratio is estimated as

n

n
f2
fa2

π
σ−ξπ=ξ                                                                                                   (49)
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Substitute equations (45) and (48) into (49).

( )[ ]
sec/rad)100(2

sec/rad865.16)100(038.02
π

−π=ξ                                                                      (50)

011.0=ξ                                                                                                                                          (51)

This is only 10% higher than the true value 01.0=ξ .

The exponential window was thus a successful tool in identifying the damping ratio given a
limited time window.   The ideal approach, however, would be to use a sufficiently long
sampling duration to obviate the need for the exponential window.

Again, the half-power bandwidth method can be used without normalizing or scaling the
frequency response function.

Advanced Methods

Reference 5 discusses some of the methods covered in this tutorial, as well as advanced
techniques.  An example is the complex exponential method which is appropriate for multi-
degree-of-freedom methods.
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