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Variables 
 

ĉ  = Distance to neutral axis  I = Area moment of inertia 

c = Wave speed in the material  K = Shear factor 

h = thickness  L = Length 

k = 
Spring stiffness or wave 

number depending on context 
 M = Bending moment 

u = Displacement  U = Total energy 

v = Velocity  V = Shear force 

x = Longitudinal Displacement  W  = Base acceleration 

z = Transverse Displacement    = Normal stress 

A = Cross section area    = Shear stress 

 
Ĉ  = Constant of proportionality    = Mass per volume 

D = Plate stiffness factor  ̂  = Mass per length 

E = Elastic modulus    = Phase angle 

G = Shear modulus  n = Natural frequency (rad/sec) 

 

Note that the characteristic impedance is .c    

 
 

Introduction 

Shock and vibration environments produce dynamic stresses which can cause material failure in 

structures.  The potential failure modes include fatigue, yielding, and ultimate stress limit. 
 

F.V. Hunt wrote a seminal paper on this subject, titled “Stress and Stress Limits on the 

Attainable Velocity in Mechanical Vibration,” published in 1960 in Reference 1.  This paper 

gave the relationship between stress and velocity for a number of sample structures. 
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H. Gaberson continued research on stress and modal velocity with a series of papers and 

presentations, as shown in References 2 through 4.  

 

The purpose of this paper is to explore the work of Hunt, Gaberson, and others.  Derivations are 

given relating stress and velocity for a number of structures.  Some of these examples overlap the 

work of previous sources.  Other examples are original.  In addition, this paper presents some 

unique data samples for shock events, with the corresponding spectra plotted in tripartite format. 
 
 

Stress in an Infinite Rod in Longitudinal Free Vibration 
 

Consider an infinitely long longitudinal rod undergoing a traveling wave response.  The stress is 

proportional to the velocity as follows. 

 
 

)t,x(vc)t,x(                                                                                                           (1)    

 

This equation is given in References 1 through 6. 
 

A derivation is given in Appendix A.                                                                         
 

Stress in a Finite, Fixed-Free Rod, in Longitudinal Free Vibration 
 

Consider a fixed-free rod subjected to initial velocity excitation.   
 

The modal stress is proportional to the modal velocity as follows. 
 

 

  max,nûncmax,nvcmaxn 

                                                                         (2)

 

 

A derivation is given in Appendix B.                                                                         

Gaberson showed that this same equation applies to other boundaries conditions of finite rod in 

Reference 2. 

 
Stress in a Finite, Fixed-Free Rod, Longitudinal Response Excited by Resonant Base Excitation 
 

Consider a fixed-free rod subjected to base excitation.  Equation (2) applies as long as the 

excitation is sinusoidal with a frequency equal to the natural frequency of the corresponding 

mode.  The derivation is given in Appendix C.   
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Stress in a Shear Beam in Free Vibration 

Consider the free vibration of a shear beam with a rectangular cross-section. 
 

The modal shear stress is proportional to the modal velocity as follows, from the derivation in 

Appendix D. 
 

max,nv
K

c
5.1max,n




                                                                                  

(3) 

 

Stress due to Bending in a Bernoulli-Euler Beam in Free Vibration 

Consider the bending vibration of a simply-supported beam. The modal stress due to bending is 

proportional to the modal velocity as follows, from the derivation in Appendix E. 
 

max,nv
I

AE
ĉ

max

)t,x(ny
2x

2
ĉEmax





















                                        (4) 

 

Note this equation applies to other boundary condition cases per Reference 1. 

 Equation (4) can be simplified as follows: 

max,nmax vck̂                                                                           (5)                                                        

Values for the k̂ constant for typical cross-sections are:  

Cross-section k̂  

Solid Circular 2 

Rectangular 3  

 

 

Stress due to Bending in a Bernoulli-Euler Beam Excited by Resonant Base Excitation 

Consider the bending vibration of a simply-supported beam subjected to resonant base 

excitation. The modal stress due to bending is proportional to the modal velocity as shown in the 

derivation in Appendix F.  The resulting stress-velocity equation is the same as equations (4) and 

(5). 
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Stress due to Bending in a Plate in Free Vibration 

Consider bending in a rectangular plate with all edges simply-supported.  The following 

intermodal stress equations are derived in Appendix G. 

 

  maxint,v
2

xL2
yL
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21
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c
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
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

                                                 

(6)   

                                                                                                                          

 

  maxint,v
2
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yL

2
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21

3
c

maxyint, 




















                                               

(7)                                                                                                                            

 

 

Complex Equipment 
 

Bateman wrote in Reference 7: 

 

Of the three motion parameters (displacement, velocity, and acceleration) describing a 

shock spectrum, velocity is the parameter of greatest interest from the viewpoint of 

damage potential.  This is because the maximum stresses in a structure subjected to a 

dynamic load typically are due to the responses of the normal modes of the structure, 

that is, the responses at natural frequencies.  At any given natural frequency, stress is 

proportional to the modal (relative) response velocity.   
 

 

Bateman then gave a formula equivalent to the following equation for mode n. 

 

   maxnmaxn VEĈ 

                                                                                               

 (8) 

where 

Ĉ  is a constant of proportionality dependent upon the geometry of the 

structure, often assumed for complex equipment to be 8Ĉ4  . 

Sweitzer, Hull & Piersol also gave equation (8) in Reference 28, with the same constant of 

proportionality limits for complex equipment.  They also noted that 2Ĉ  for all normal modes 

of homogeneous plates and beams.   
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Spring-Mass System Example, Free Vibration 

Consider the system shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

                         Figure 1. 

 

The energy equation is 

   2maxxk
2

12
maxvm

2

1
U 

                                                                                         

 (9) 

 

The velocity is thus square root of twice the peak energy per unit mass that is stored in the 

oscillator.  The relationship does not directly depend on the natural frequency. 

 

m

U2
vmax 

                                                                                                                     

 (10) 

 

Examples 
 

Numerical examples using the formulas derived in this paper are given in Reference 27. 
 

Conclusion 

Stress-Velocity Relationship 

 

Modal stress is directly proportional to modal velocity for both free vibration and resonant 

excitation.  The proportionality equation does not depend on frequency, although the velocity 

itself depends on frequency. 

 

There are limitations to any stress-velocity equation, however.  Crandall noted in Reference 26 

that stress and velocity may each have concentrations, particularly for nonuniform structures. 

  m 

     k 

x  
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Shock Response Spectra Dynamic Range 

 

Six shock pulses were considered in terms of their respective shock response spectra.  One was 

an analytical half-sine shock pulse.  Another was an earthquake strong-motion time history.  The 

other four were measured shock events from rocket vehicles or motors.  The dynamic range for 

the velocity ranged from 12 to 33 dB among these six samples.  In each case the amplitude range 

for velocity was less than or equal to that for the corresponding displacement and acceleration.    
 

Thus, the response velocity is frequency-dependent, although less so than either displacement or 

acceleration.   

 

The natural frequency of any component attached to the base structure must still be considered 

with respect to the velocity spectrum.  

 

Shock response spectra should be plotted in tripartite format so that the effect of displacement, 

velocity and acceleration can be considered together on a single plot.  This plot may be in 

addition to separate plots of each of the three amplitude metrics. 

 

Again, modal stress is directly proportional to modal velocity.  But other failure modes may have 

better correlation with either displacement or acceleration.  Loss of sway space must be 

considered with respect to relative displacement, for example.  Thus attention should be given to 

each of the three amplitude metrics.  
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Table 2.  Appendix Organization 

Appendix Topic 

A Stress in an Infinite Rod in Longitudinal Free Vibration 

B Stress in a Finite, Fixed-Free Rod, in Longitudinal Free Vibration 

C 
Stress in a Finite, Fixed-Free Rod, Longitudinal Response Excited by 

Resonant Base Excitation 

D Stress in a Shear Beam in Free Vibration 

E Stress due to Bending in a Bernoulli-Euler Beam in Free Vibration 

F 
Stress due to Bending in a Bernoulli-Euler Beam Excited by Base 

Excitation 

G Stress in a Rectangular Plate in Free Vibration 

H MIL-STD-810E & Morse Chart 

I MIL-STD-810G 

J Pseudo Velocity Shock Response Spectrum 

K Half-Sine Pulse 

L El Centro Earthquake 

M Re-entry Vehicle Separation Shock 

N SR-19 Motor Ignition 

O Space Shuttle Solid Rocket Booster Water Impact 

P V-band/Bolt-Cutter Shock 

Q Maximum Velocity Summary 

R Velocity Limits of Materials 
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Table 2.  Appendix Organization (Continued) 

Appendix Topic 

S Characteristic Impedance Values 

T Velocity Limits for Buildings 

U Velocity Limits for Vibration Sensitive Equipment 
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APPENDIX A 

 

 

 

Stress in an Infinite Rod in Longitudinal Free Vibration 
 

The following derivation is based on Reference 8. 
 

Consider the free longitudinal vibration in a rod.  The governing equation is 

 









2

2 2

2

2

1u

x c

u

t









                                                                          (A-1) 

 

Now consider that the rod has an infinite length. 
 

A proposed traveling wave solution to equation (A-1) is  

 

 )tkxsin(A)t,x(u                                                                     (A-2) 

 

Taking derivatives of the proposed traveling-wave solution 

 )tkxcos(kA
x

u





                                                                   (A-3) 

)tkxsin(Ak
x

u 2

2

2





                                                            (A-4) 

 )tkxcos(A
t

u





                                                               (A-5) 

)tkxsin(A
t

u 2

2

2





                                                           (A-6) 

 

By substitution, 

 )tkxsin(A
c

1
)tkxsin(Ak 2

2

2 







                                        (A-7) 
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The following constraint results from the substitution    

k
c

2
2

2



                                                                                                  (A-8) 

The wavenumber is thus 

c
k


                                                                                                       (A-9) 

Thus, 
 

 
















 t

c

x
sinA)t,x(u                                                                                   (A-10) 

 


























t

c

x
cosA

c
)t,x(u

x
                                                                        (A-11) 

 
 























t

c

x
cosA)t,x(u

t
                                                                        (A-12) 

 

 

)t,x(u
tc

1
)t,x(u

x 







                                                                                          (A-13) 

 

 

The axial stress )t,x(  is 

 

  





























 t

c

x
cosA

c

E
)t,x(u

tc

1
)t,x(u

x
E)t,x(                                   (A-14)                                                                                                                                        

 
Define the velocity as v(x, t). 

 

)t,x(u
t

)t,x(v



                                                                                                            (A-15)                                                                                                                                        

 
The axial stress can thus be calculated from the velocity 

 

)t,x(v
c

E
)t,x(                                                                                                           (A-16)      
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Or equivalently, 
 

)t,x(vc)t,x(                                                                                                           (A-17)      

 

where c  is the characteristic specific impedance of the rod material. 
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APPENDIX B 

 
Stress in a Finite, Fixed-Free Rod, in Longitudinal Free Vibration 

The following derivation is taken from Reference 9. 

Consider a long, slender, free-free rod that is dropped such that it has a uniform initial velocity of 

V as it strikes the ground.  Further assume that the rod becomes attached to the ground at impact 

such that its boundary conditions become fixed-free. 

The displacement is 




 














 




,5,3,1n
n22

)tsin(
L2

xn
sin

n

1

c

Lv8
)t,x(u                                                 (B-1) 

 




 














 







 








,5,3,1n
n2

)tsin(
L2

xn
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n

1

L2c

Lv8
)t,x(u

x
                                       (B-2) 

 




 














 








,5,3,1n
n )tsin(

L2

xn
cos

n

1

c

v4
)t,x(u

x
                                                (B-3) 

where 

L2

cn
n


                                                                                                         (B-4) 

 




 














 







 







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n2

)tcos(
L2

xn
sin

n

1

L2

c

c

Lv8
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t
                                   (B-5) 




 














 








,5,3,1n
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L2

xn
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n

1v4
)t,x(u

t
                                             (B-6) 
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Now let 
 






















,5,3,1n
n2

)t,x(û
c

Lv8
)t,x(u                                                                           (B-7) 

 

The modal displacement is 

 

)tsin(
L2

xn
sin

n

1
)t,x(û n2n 







 
                                                                                        (B-8) 
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)t,x(û

x
nn 







 



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 







 



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max

n

max

n

t

û

x

û












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










                                                                                                 (B-11) 

 

 

The maximum stress per mode n is thus proportional to the maximum modal velocity.   
 

Note that the maximum stress location will vary from that of the maximum velocity.   
 

The peak values of harmonic displacement, velocity and acceleration have their maxima at the 

antinodes of motion, whereas the peak values of stress and strain have their maxima at the nodes, 

per Reference 1.  This statement applies to a finite rod undergoing standing wave oscillations. 
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Note    
 

 maxnn
max

n û
t

û













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The maximum stress is thus 

 

                                  

   maxnn
max

n
maxn û

c

E

t

û

c

E













  

(B-15) 
 

Or in terms of the characteristic impedance, 

 

                                  

   maxnn
max

n
maxn ûc

t

û
c 












  

(B-16) 
 
 

The advantage of calculating stress from velocity is that the natural frequency term is not 

required, as it is for calculating stress from displacement. 
 

Furthermore the characteristic impedance c  plays the role of a transfer impedance which expresses 

the ratio of the stress at a node of motion to the velocity at an associated antinode, per Reference 1.  

Again, this applies to a finite rod undergoing standing wave oscillations. 
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APPENDIX C 

 

 

Stress in a Finite, Fixed-Free Rod, Longitudinal Response Excited by Resonant Base Excitation 

The following derivation is taken from Reference 10. 

 

 

 



















p

1n n
22

n

nn

2j)(

)x(Û
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The mode shape is 
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The strain is 
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On a modal basis, 

 
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1
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x 
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
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The phase can be ignored. 
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The velocity v in the frequency domain is 
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
 











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
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






 
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The phase can be ignored. 
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A further development of the relationship between velocity and stress for this case requires that 

the excitation be at the natural frequency, = n . 
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The maximum stress is 
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APPENDIX D 

 

Stress in a Shear Beam in Free Vibration 

The following derivation is based on Reference 11. 

 

Consider a beam which undergoes shear displacement only.  Note that a shear beam model is 

used for seismic analysis of certain civil engineering structures. 

 

 

 

 

 

Assume a uniform cross-section and mass density. 

The transverse shear displacement u(x, t) is governed by the equation  

 

2

2

2

2

x

u
KGA

t

u
A









                                                                        (D-1) 

 

2

2

2

2

x

uKG

t

u



















                                                                          (D-2) 

By substitution, 

 

   )t(T)x(U
t

)t(T)x(U
x

KG

2

2

2

2



















                                                  (D-3) 

 

Perform the partial differentiation. 

 

L 

x u (x, t) 



 

20 
 

)t(T)x(U)t(T)x(U
KG











                                                                  (D-4) 

 

Divide through by U(x)T(t). 

 

)t(T

)t(T

)x(U

)x(UKG 













                                                                         (D-5) 

                                                                     

Each side of equation (C-6) must equal a constant.  Let  be a constant. 

 

2

)t(T

)t(T

)x(U

)x(UKG
















                                                              (D-6) 

The time equation is 


 

T t

T(t

( )

)
2                                                                                (D-7) 

 

  T t T(t( ) )2                                                                           (D-8) 

 

  T t T(t( ) )2 0                                                                        (D-9) 

 

Propose a solution 

   T(t a t b t) sin cos                                                                    (D-10) 

 

     T t a t b t( ) cos sin                                                             (D-11) 

 

      T t a t b t( ) sin cos   2 2                                                 (D-12) 
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Verify the proposed solution.  Substitute into equation (D-9). 

 

            a t b t t t       2 2 2 2 0sin cos sin cos                          (D-13) 

                               

                 0 = 0                                                                        (D-14) 

 

Equation (D-10) is thus verified as a solution. 

There is not a unique  , however, in equation (D-9).  This is demonstrated later in the 

derivation.  Thus a subscript n must be added as follows. 

 

   T t a t b tn n n n n( ) sin cos                                                       (D-15) 

 

The spatial equation is 

 

2

)x(U

)x(UKG













                                                                           (D-16) 

 

The shear wave speed is 

                c = 


KG
                                                                                            (D-17) 

)x(U
2c

2
)x(U


                                                                              (D-18) 

 

0)x(U
2c

2
)x(U 


                                                                      (D-19) 
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The displacement solution is 

U x d
x

c
e

x

c
( ) sin cos


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




 
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

 
                                                              (D-20) 

The slope equation is 


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











 
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


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

 










c

x
sine

c

x
cosd

c
)x(U                                                     (D-21) 

 

Now consider that the shear beam is fixed-free. 

The left boundary conditions is 

 

u t( , )0 0         (zero displacement)                                                             (D-22)         

  

U T t( ) ( )0 0                                                                                                 (D-23) 

 

U( )0 = 0                                                                                                      (D-24) 

 

The right boundary condition is 

 



x
u x t

x L

( , )


 0           (zero stress)                                                         (D-25) 

 

 U L T(t( ) ) 0                                                                                             (D-26) 

 

 U L( ) 0                                                                                                    (D-27) 

 

Substitute equation (D-22) into (D-20). 
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e = 0                                                                                                    (D-28) 

 

Thus, the displacement equation becomes 

U x d
x

c
( ) sin












                                                                                     (D-29) 
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U x
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d
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                                                                          (D-30) 

 

Substitute equation (D-27) into equation (D-30). 

0
c

L
cosd 







 
                                                                                (D-31) 

 

The constant d must be non-zero for a non-trivial solution.  Thus, 

 

...,3,2,1n,
2

1n2

c

Ln 



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

 
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L

c
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1n2
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
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

 
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The   term is given a subscript n because there are multiple roots. 
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The displacement function for the fixed-free beam is 

U x d
x
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The modal shear stress for a rectangular beam is 
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(D-49) 

 

 

The shear factors for two cross-sections are given in Table D-1, as taken from Reference 11. 
 

 

Table D-1.  Thomson’s Shear Factors 

Cross-Section Shear Factor K 

Rectangular 2/3 

Circular 3/4 
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APPENDIX E 

 

 

Stress due to Bending in a Bernoulli-Euler Beam in Free Vibration 

Consider a simply-supported beam as shown in Figure E-1. 

 

 

 

 

 

 

 

Figure E-1. 

 

Recall that the governing differential equation is  

 

2
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4

4

t

y
ˆ

x

y
EI









                                                                                  (E-1) 

 

The spatial solution from Reference 12 is 

 

       Y x a x a x a x a x( ) sinh cosh sin cos   1 2 3 4                                        (E-2) 

 

       
d Y x

dx
a x a x a x a x

2

2 1
2

2
2

3
2

4
2( )

sinh cosh sin cos                        (E-3) 

  

̂,EI  

L 
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The boundary conditions at the left end x = 0 are 

 

Y(0) = 0            (zero displacement)                                                             (E-4) 

 

d Y

dx
x

2

2
0

0



         (zero bending moment)                                                (E-5) 

 

The boundary conditions at the free end x = L are 

 

Y(L) = 0            (zero displacement)                                              (E-6) 

 

d Y

dx
x L

2

2
0



         (zero bending moment)                                   (E-7)                    

 

Apply boundary condition (E-4) to (E-2). 

 

a a2 4 0                                                                                  (E-8) 

a a4 2                                                                                     (E-9) 

 

Apply boundary condition (E-5) to (E-3). 

 

a a2 4 0                                                                               (E-10) 

 

a a2 4                                                                                   (E-11) 

Equations (E-8) and (E-10) can only be satisfied if 
 

a2 0                                                                                   (E-12) 
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and 

a4 0                                                                                   (E-13) 

 

The spatial equations thus simplify to 
  

   Y x a x a x( ) sinh sin 1 3                                                                  (E-14) 

 

   
d Y x

dx
a x a x

2

2 1
2

3
2( )

sinh sin                                                        (E-15) 

 

Apply boundary condition (E-6) to (E-14). 
 

   a L a L1 3 0sinh sin                                                                    (E-16) 

 

Apply boundary condition (E-7) to (E-15). 
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   a L a L1 3 0sinh sin                                                                      (E-18) 
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                                                         (E-19) 

 

By inspection, equation (E-19) can only be satisfied if a1 = 0 and a3 = 0.  Set the determinant to 

zero in order to obtain a nontrivial solution. 

 

         sin sinh sin sinh   L L L L 0                                                           (E-20) 
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    2 0sin sinh L L                                                                        (E-21) 

 

   sin sinh L L  0                                                                           (E-22) 

 

Equation (E-22) is satisfied if 

 

 n L n n , , , ,....1 2 3                                                                          (E-23) 
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The natural frequency term n is  
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Normalized Eigenvectors 

The eigenvector and its second derivative at this point are 
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The eigenvector derivation requires some creativity.  Recall 
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The sin( n ) term is always zero.  Thus 1a = 0. 

The eigenvector for all n modes is 
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Mass normalize the eigenvectors as follows 
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The complete solution is thus 
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Let cL be the longitudinal wave speed in the material. 
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APPENDIX F 

 

Stress due to Bending in a Bernoulli-Euler Beam Excited by Base Excitation 
 

Consider a beam simply-supported at each end subjected to base excitation. 

 

 

 

 

 

 

 

 

 

Figure F-1. 

 

The following is taken from Reference 16. 

The governing differential equation is  
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The mass-normalized mode shapes are 
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The eigenvalues are 
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The relative displacement response Y(x, ω) to base acceleration is 
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On a modal basis, 
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The phase can be ignored. 
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The relative velocity v in the frequency domain is 
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On a modal basis, 
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The phase can be ignored. 
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The second derivative and velocity are related by 
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The bending moment is 
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The bending stress is 
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ĉE max

max

nn2

2

max 





















                                              (F-21)        

 

This concept can be extended to the multi-modal response for the special case of simply-

supported beam. 
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Now consider a fixed-free beam subjected to base excitation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F-2. 

 

The eigenvalues are 

 

n Ln  

1 1.875104 

2 69409.4  

3 7.85476 

4 10.99554 

5 (2n-1)/2 

 

Note that the root value formula for n > 5 is approximate. 

 

The natural frequencies are  
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The mass-normalized mode shapes can be represented as 
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n Ln  )L(Yi  

1 1.875104 2 L  

2 69409.4  -2 L  

3 7.85476 2 L  

4 10.99554 -2 L  

 

 

 

Thus, 
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The relative displacement response Y(x, ω) to base acceleration is 
 

   
 


 
















m

1n nn
22

n

nn

2j)(

xY
W,xY                                                       (F-34)                                                                                                  

 

   
 




































m

1n nn
22

n

n2

2

n

2

2

2j)(

xY
dx

d

W,xY
x

                                                   (F-35)    

                                                                     

 

 

On a modal basis, 
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The maximum occurs at x=0.  Solve for the first mode. 
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The phase can be ignored. 
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The relative velocity v in the frequency domain is 

 

   
 


 


















m

1n nn
22

n

nn

2j)(

xY
Wj,xv                                                       (F-40)                                                                                                  

                                                                                                                               

The first modal velocity is 
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The phase can be ignored. 
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The maximum velocity occurs at x=L. 
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The bending moment is 
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The bending stress is 
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APPENDIX G 

 

 

Stress in a Rectangular Plate in Free Vibration 
 

Consider the rectangular plate in Figure 1. 

 

 

 

 

 

 

 

  Figure G-1. 

 
 

The governing equation of motion from Reference 14 is 
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Assume a harmonic response. 
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The modal displacement for a plate simply-supported on all four edges is 
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The natural frequencies are  
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The partial derivates are 
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The modal bending moments are 
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The maximum modal stress at any given cross section is 
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The total maximum modal stress for any mode is 
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For free vibration,     mn  
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The velocity is 
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Intermodal Segment 

Consider a higher mode.  The vibration mode for an intermodal segment can be represent with 

n=m=1. 

Hunt in Reference 1 notes: 

It is relatively more difficult to establish equally general relations between antinodal 

velocity and extensionally strain for a thin plate vibrating transversely, owing to the 

more complex boundary conditions and the Poisson coupling between the principal 

stresses.  One can deal, however, with the velocity strain relations in the interior of such 

a plate by invoking again the fact that conditions along an interior nodal line correspond 

to those of a simple edge support.  Each intermodal segment can, therefore, be treated as 

if it were a simply supported rectangular plate of dimensions Lx, Ly vibrating in its 

fundamental mode, where Lx and Ly are the nodal separations along the X and Y axes, 

as shown in Figure G-2.  
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Figure 2.  Rectangular Plate Vibrating in a Higher-order Model 

The dashed lines are the nodal lines.  An intermodal segment is isolated for analysis as a plate of 

dimension Lx, Ly with simply-supported edges vibrating in its intermodal fundamental mode. 

 

 

The subscript int is used to denote intermodal segment. 
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The plate stiffness factor is 
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APPENDIX H 

 

MIL-STD-810E 
 

An empirical rule-of-thumb in MIL-STD-810E states that a shock response spectrum is 

considered severe only if one of its components exceeds the level  

 

Threshold = [ 0.8 (G/Hz) * Natural Frequency (Hz) ]                                      (H-1) 
 

For example, the severity threshold at 100 Hz would be 80 G.   
 

This rule is effectively a velocity criterion. 
 

MIL-STD-810E states that it is based on unpublished observations that military-quality 

equipment does not tend to exhibit shock failures below a shock response spectrum velocity of 

100 inches/sec (254 cm/sec). 
 

Equation (H-1) actually corresponds to 50 inches/sec.  It thus has a built-in 6 dB margin of 

conservatism. 
 

Note that this rule was not included in MIL-STD-810F or G, however. 
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Morse Chart 

 
Figure H-1. 

 

The curves in Figure H-1 are taken from Reference 30. The curves are defined by the following 

formulas. 

 

Threshold Formula 

300 ips [ 4.8 (G/Hz) * Natural Frequency (Hz) ]                                                    

100 ips [ 1.6 (G/Hz) * Natural Frequency (Hz) ]                                                    

50 ips [ 0.8 (G/Hz) * Natural Frequency (Hz) ]                                                    

 

The 100 ips threshold is defined in part by the observation that the severe velocities which cause 

yield point stresses in mild steel beams turn out to be about 130 ips, per Reference 29. 
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APPENDIX I 

 

 

MIL-STD-810G, METHOD 516.6 

A  more  complete description  of  the  shock  (potentially  more  useful  for  shock  damage  

assessment,  but  not  widely accepted)  can  be  obtained  by  determining  the  maximax  

pseudo-velocity  response  spectrum  and plotting this on four-coordinate paper where, in pairs of 

orthogonal axes, the maximax pseudo-velocity response  spectrum  is  represented  by  the  

ordinate,  with  the  undamped  natural  frequency  being  the abscissa and the maximax absolute 

acceleration along with maximax pseudo-displacement plotted in a pair  of  orthogonal  axes,  all  

plots  having  the  same  abscissa.     
 

The  maximax  pseudo-velocity  at  a particular  SDOF  undamped  natural  frequency  is  

thought  to  be  more  representative  of  the  damage potential  for  a  shock  since  it  correlates  

with  stress  and  strain  in  the  elements  of  a  single  degree  of freedom system (paragraph 6.1, 

reference f). If the testing is to be used for laboratory simulation, use 516.6-8 a Q value of ten 

and a second Q value of 50 in the processing.  Using two Q values, a damped value and  a  value  

corresponding  to  light  damping,  provides  an  analyst  with  information  on  the  potential 

spread of materiel response.   
 

It is recommended that the maximax absolute acceleration SRS be the primary  method  of  

display  for  the  shock,  with  the  maximax  pseudo-velocity  SRS  the  secondary method of 

display and useful in cases in which it is desirable to be able to correlate damage of simple 

systems with the shock. 

 

 

(End Quote) 

 

Note that Reference f is: 

 

Harris, C., and C. E. Crede, eds., Shock and Vibration Handbook, 5th Edition, 

NY, McGraw-Hill, 2001. 
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APPENDIX J  

 

 

Pseudo Velocity Shock Response Spectrum 

 

The Shock Response Spectrum (SRS) models the peak response of a single-degree-of-freedom 

(SDOF) system to a base acceleration, where the system’s natural frequency is an independent 

variable.  The SRS method is thoroughly covered in Reference 15.  The purpose of this appendix 

is to present some additional notes. 

 

The absolute acceleration and the relative displacement of the SDOF system can be readily 

calculated. 

 

The velocity, however, is more difficult to calculate accurately. 

 

The “pseudo velocity” is an approximation of the relative velocity. 

   

The peak pseudo velocity is equal to the peak relative displacement multiplied by the natural 

frequency n  which has units of radians per second. 

 

The peak pseudo acceleration is equal to the peak relative displacement multiplied by the natural 

frequency 
2

n . 

 

The peak pseudo acceleration is thus equal to the peak pseudo velocity multiplied by the natural 

frequency n .  There may be little reason if any to calculate pseudo acceleration in practice, 

however, because the absolute acceleration can be calculated directly. 

 

Furthermore, one of the advantages of the pseudo velocity SRS is that it tends to produce a more 

uniform SRS than either acceleration or relative displacement. 

Additional information is given in Reference 16. 
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APPENDIX K 

 

Half-Sine Pulse 

 

 

 

SRS Q=10,  Half-Sine Pulse, 10 G, 11 msec 
 

 
 

Figure K-1. 

 

Table K-1.  SRS Q=10,  Half-Sine Pulse, 10 G, 11 msec, 1 to 1000 Hz 

Parameter Max Min Range (dB) 

Displacement (inch) 4.0 1.1e-04 91 

Velocity (in/sec) 25.2 0.64 32 

Acceleration (G) 16.5 0.41 32 

 

The velocity and acceleration spectra have the same range in terms of decibels. 
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APPENDIX L 

El Centro Earthquake 

 

                 Figure L-1. 

 
El Centro (Imperial Valley) Earthquake 

 

Nine people were killed by the May 1940 Imperial Valley earthquake. At Imperial, 80 percent of 

the buildings were damaged to some degree. In the business district of Brawley, all structures 

were damaged, and about 50 percent had to be condemned. The shock caused 40 miles of surface 

faulting on the Imperial Fault, part of the San Andreas system in southern California. It was the 

first strong test of public schools designed to be earthquake-resistive after the 1933 Long Beach 

quake. Fifteen such public schools in the area had no apparent damage. Total damage has been 

estimated at about $6 million. The magnitude was 7.1. 

 

The El Centro earthquake was the first major quake in which calibrated, strong-motion source 

data was measured which would be useful for engineering purposes.  This data has obvious 

application to the design of building, bridges, and dams in California.  It also has some surprising 

aerospace uses.  Consider a rocket vehicle mounted as a cantilever beam to a launch pad at 

Vandenberg AFB on the central California coast.  Engineers must verify that the vehicle can 

withstand a hypothetical seismic event prior to launch.  The El Centro earthquake data has thus 

been used in some analyses as a modal transient input to the rocket vehicle’s finite element 

model.  
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SRS Q=10  El Centro Earthquake North-South Component 

 

 

Figure L-2. 

 

Table L-1.  SRS, El Centro Earthquake, Results for the Domain 

from 0.1 to 6.4 Hz 

Parameter Max Min Range (dB) 

Displacement (inch) 15.0 0.2 38 

Velocity (in/sec) 31.0 7.4 12 

Acceleration (G) 0.93 0.012 38 

 

The SRS of the time history is shown in Figure L-2 in tripartite format. 

One of the advantages of the pseudo velocity SRS is that it has a smaller amplitude range than 

either the displacement or acceleration.  The pseudo velocity SRS is thus less frequency-

dependent.  
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APPENDIX M 

 

Re-entry Vehicle Separation Shock 

 

 
 

Figure M-1. 

 

 

The time history is a near-field, pyrotechnic shock measured in-flight on an unnamed rocket 

vehicle.  The separation device was linear shape charge.  
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SRS Q=10  RV Separation Shock 

 

 

Figure M-2. 
 

Table M-1.  SRS, RV Separation, Results for the Domain from 

100 to 10,000 Hz 

Parameter Max Min Range (dB) 

Displacement (inch) 0.041 0.0012 31 

Velocity (in/sec) 526 14 31 

Acceleration (G) 20,400 23 59 

 

The SRS of the time history is shown in Figure M-2 in tripartite format. 

The values in Table M-1 begin at 100 Hz because there is some uncertainty regarding the 

accuracy of the data below 100 Hz, which is typically the case for near-field pyrotechnic shock 

events.  The velocity range is 28 dB lower than the acceleration range.  
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APPENDIX N 

 

SR-19 Motor Ignition & Pressure Oscillation 

 

 

Figure N-1. 

 

The SR-19 is a solid-fuel rocket motor.  The combustion cavity has a pressure oscillation at 650 

Hz.  
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SRS Q=10  SR-19 Motor Ignition Forward Dome 

 

Figure N-2. 

 

Table N-1.  SRS, SR-19 Motor Ignition, Forward Dome,  

Results for the Domain from 10 to 6500 Hz 

Parameter Max Min Range (dB) 

Displacement (inch) 0.73 1.7e-04 73 

Velocity (in/sec) 295 6.8 33 

Acceleration (G) 3224 7.1 53 

 

The peak at 680 Hz is due to the SR-19 motor oscillation which results from a standing pressure 

wave in the combustion cavity. 
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APPENDIX O 

 

Space Shuttle Solid Rocket Booster Water Impact 

 

 

Figure O-1. 

 

The data is from the STS-6 mission.  Some high-frequency noise was filtered from the data.
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                                    SRS Q=10  SRB Water Impact, Forward IEA 

 

Figure O-2. 

 

Table O-1.  SRS, SRB Water Impact, Forward IEA,  

Results for the Domain from 10 to 750 Hz 

Parameter Max Min Range (dB) 

Displacement (inch) 0.76 0.002 52 

Velocity (in/sec) 209 10 26 

Acceleration (G) 259 5.6 33 

 

The velocity SRS has the smallest dynamic range in terms of decibels. 
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APPENDIX P  

 

V-band/Bolt-Cutter Shock 

 

 

Figure P-1. 

 

The time history was measured during a shroud separation test for a suborbital launch vehicle.  
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SRS Q=10   V-band/Bolt-Cutter Shock 

 

 

Figure P-2. 

 

Table P-1.  SRS Q=10,  V-band/Bolt-Cutter Shock 

Parameter Max Min Range (dB) 

Displacement (inch) 0.032 4e-04 38 

Velocity (in/sec) 11.4 2.0 15 

Acceleration (G) 1069 0.4 69 

 

The velocity SRS has the smallest dynamic range in terms of decibels. 
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APPENDIX Q 

 

 

Maximum Velocity Summary 

 

 

Table Q-1.  Maximum Velocity & Dynamic Range of Shock Events 

Event 

Maximum 

Pseudo Velocity 

(in/sec) 

Velocity 

Dynamic Range  

(dB) 

RV Separation, Linear Shape Charge 526 31 

SR-19 Motor Ignition, Forward Dome 295 33 

SRB Water Impact, Forward IEA 209 26 

Half-Sine Pulse, 50 G, 11 msec 125 32 

El Centro Earthquake, North-South Component 31 12 

Half-Sine Pulse, 10 G, 11 msec 25 32 

V-band/Bolt-Cutter Source Shock 11 15 

 

 

The peak velocity comparison is useful, but a consideration of natural frequency is still needed 

because the dynamic range is greater than zero, at least 12 dB, in each case. 
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APPENDIX R 

 

 

Velocity Limits of Materials 
 

Gaberson gave the following limits in Reference 4. 

 

 

Table R-1. Severe Velocities, Fundamental Limits to Modal Velocities in Structures 

Material E (psi)   (psi) 


(lbm/in^3) 

Rod 

Vmax 

(in/sec) 

Beam 

Vmax 

(in/sec) 

Plate 

Vmax 

(in/sec) 

Douglas Fir 1.92e+06 6450 0.021 633 366 316 

Aluminum 

6061-T6 
10.0e+06 35,000 0.098 695 402 347 

Magnesium 

AZ80A-T5 
6.5e+06 38,000 0.065 1015 586 507 

Structural Steel, 

High Strength 
29e+06 

33,000 

 

100,000 

0.283 

226 

 

685 

130 

 

394 

113 

 

342 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The following tables are taken from Reference 29.  The original sources are noted.  The velocity terms are 

“modal velocities at the elastic limit.” 
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 (Values from Sloan, 1985, Packaging Electronics) 

 

Material 
E 

(1e+06 psi) 
μ 

ρ 

(lbm/in^3) 
ult 

(ksi) 

yield 

(ksi) 

vrod 
(in/sec) 

vbeam 

 (sec)  

Aluminum 5052 9.954 0.334 0.098 34 24 477.4 275.9 

Aluminum  

6061-T6 
9.954 0.34 0.098 42 36 716.2 413.9 

Aluminum  

7075-T6 
9.954 0.334 0.1 77 66 1299.8 751.3 

Be 42 0.1 0.066 86 58 684.5 395.7 

Be-Cu 18.5 0.27 0.297 160 120 1005.9 581.5 

Cadmium 9.9 0.3 0.312 11.9 11.9 133.0 76.9 

Copper 17.2 0.326 0.322 40 30 250.5 144.8 

Gold 11.1 0.41 0.698 29.8 29.8 210.4 121.6 

Kovar 19.5 - 0.32 34.4 59.5 468.0 270.5 

Magnesium 6.5 0.35 0.065 39.8 28 846.4 489.3 

Nickel 29.8 0.3 0.32 71.1 50 318.1 183.9 

Silver 10.6 0.37 0.38 41.2 41.2 403.4 233.2 

Solder 63/37 2.5 0.4 0.30008 7 7 158.8 91.8 

Steel 1010 30 0.292 0.29 70 36 239.8 138.6 

Stainless 28.4 0.305 0.29 80 40 273.9 158.3 

Alumina al203 54 - 0.13 25 20 148.3 85.7 

Beryllia Beo 46 - 0.105 20 20 178.8 103.4 

Mira 10 - 0.105 - 5.5 105.5 60.0 

Quartz 10.4 0.17 0.094 27.9 27.9 554.5 320.5 

Magnesia Mgo 10 - 0.101 12 12 234.6 135.6 

EPO GLS G10 

X/Y 
2.36 0.12 0.071 25 35 1680.1 971.1 

EPO GLS G10 Z 2.36 0.12 0.071 25 35 1680.1 971.1 

Lexan 0.379 - 0.047 9.7 9.7 1428.1 825.5 

Nylon 0.217 - 0.041 11.8 11.5 2395.6 1384.8 

Teflon 0.15 - 0.077 - 4 731.3 422.7 

Mylar 0.55 - 0.05 25 25 2962.2 1712.3 
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(Values from Roark, 1965, p 416) 

Material 
E 

(1e+06 psi) 
μ 

ρ 

(lbm/in^3) 
ult 

(ksi) 

yield 
(ksi) 

vrod 

(in/sec) 

vbeam 
 (sec)  

Aluminum Cast Pure  9 0.36 0.0976 11 11 230.6 133.3 

Al Cast 220-T4  9.5 0.33 0.093 42 22 459.9 265.8 

Al 2014-T6  10.6 0.33 0.101 68 60 1139.4 658.6 

Beryllium Cu 19 0.3 0.297 150 140 1158.0 669.4 

Cast Iron, Gray 14 0.25 0.251 20 37 357.8 224.2 

Mg AZ80A-T5 6.5 0.305 0.065 55 38 1148.7 663.0 

Titanium Alloy 17 0.33 0.161 115 110 1306.5 755.2 

Steel Shapes 29 0.27 0.283 70 33 226.3 130.8 

Concrete 3.5 0.15 0.0868 0.35 0.515 18.4 10.6 

Granite 7 0.28 0.0972 - 2.5 59.6 34.4 
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APPENDIX S 

 

 

Characteristic Impedance Values 
 

Note that:   1 Pa sec/m = 1 kg/(m^2 sec) 

 

 Density 
Elastic 

Modulus 

Speed  

(m/sec) 

Characteristic 

Impedance   

(MPa sec/m) 

Material (kg/m^3) (GPa) Bar Bulk Bar Bulk 

Aluminum 2700 71 5150 6300 13.9 17.0 

Steel 7700 195 5050 6100 39.0 47.0 

 

 Density 
Elastic 

Modulus 

Speed  

(in/sec) 

Characteristic 

Impedance   

[ lbm/(in^2 sec) ] 

Material (lbm/in^3) (psi) Bar Bulk Bar Bulk 

Aluminum 0.1 1e+07 2.03e+05 2.48e+05 2.03E+04 2.48E+04 

Steel 0.285 3e+07 1.99e+05 2.40e+05 5.67E+04 6.84E+04 

 

 

Characteristic 

Impedance   

(psi sec/in) 

Material Bar Bulk 

Aluminum 52.5 64.2 

Steel 147 173 
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APPENDIX T 

 

 
Velocity Limits for Buildings 

 

Recommended limit values for traffic are given in Table T-1, as taken from References 22 

through 24.  The peak value is taken from the velocity time history.   

 

 

Table T-1. Recommended Ground Limit Values for Traffic 

Type of building and foundation 
Recommended Vertical Velocity  

Vmax  

  (mm/sec)  (in/sec) 

Especially sensitive buildings and 

buildings of cultural and historic value 
1 0.039 

Newly-built buildings and/or foundations 

of a foot plate (spread footings) 
2 0.079 

Buildings on cohesion piles 3 0.12 

Buildings on bearing piles or friction piles 5 0.20 

 

 

The vertical velocity is with respect to the ground vibration. 

 

The specification implies that building stress correlates more closely with velocity than with 

either displacement or acceleration. 
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APPENDIX U 

 

 

This appendix is not concerned with vibration stress per se.  It is included to show how velocity 

is the amplitude metric of choice in industries outside of aerospace.  

 

 

Velocity Limits for Vibration Sensitive Equipment 

 

Colin Gordon, Reference 25, has derived generic criterion curves, with an emphasis on 

semiconductor facilities, as shown in Table U-1 and in Figure U-1. The velocity is measured in 

one-third octave bands over the frequency range from 8 Hz to 100 Hz.  The limits are for floor 

measurements. 
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Table U-1. Generic Vibration Criterion Curves 

Criterion 

Curve 

Max Level 

Velocity RMS 

(micrometers/sec) 

Detail 

Size 

(microns) 

Description of Use 

Workshop 

(ISO) 
800 N/A 

Distinctly feelable vibration. Appropriate to 

workshops and nonsensitive areas. 

Office (ISO) 400 N/A 
Feelable vibration. Appropriate to offices and 

nonsensitive areas. 

Residential 

Day (ISO) 
200 75 

Barely feelable vibration. Appropriate to sleep 

areas in most instances. Probably adequate for 

computer equipment, probe test equipment and 

low-power (to 20X) microscopes. 

Theater 

(ISO) 
100 25 

Vibration not feelable. Suitable for sensitive 

sleep areas. Suitable in most instances for 

microscopes to 100X and for other equipment 

of low sensitivity. 

VC-A 50 8 

Adequate in most instances for optical 

microscopes to 400X, microbalances, optical 

balances, proximity and projection aligners, etc. 

VC-B 25 3 

An appropriate standard for optical microscopes 

to 1000X, inspection and lithography 

equipment (including steppers) to 3 micron line 

widths. 

VC-C 12.5 1 
A good standard for most lithography and 

inspection equipment to 1 micron detail size. 

VC-D 6 0.3 

Suitable in most instances for the most 

demanding equipment including electron 

microscopes (TEMs and SEMs) and E-Beam 

systems, operating to the limits of their 

capability. 

VC-E 3 0.1 

A difficult criterion to achieve in most 

instances. Assumed to be adequate for the most 

demanding of sensitive systems including long 

path, laser-based, small target systems and other 

systems requiring extraordinary dynamic 

stability. 
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Figure U-1. 
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