LONGITUDINAL VIBRATION OF A TAPERED ROD

By Tom Irvine
Email: tomirvine@aol.com
October 5, 2003

Introduction
Consider a thin, tapered rod.

$$
\mathrm{E}, \mathrm{~A}, \mathrm{~m}
$$

L

Figure 1.

E is the modulus of elasticity
L is the length
$\mathrm{A}_{0} \quad$ is the cross-section area at $\mathrm{x}=0$
$\mathrm{A}_{\mathrm{L}} \quad$ is the cross-section area at $\mathrm{x}=\mathrm{L}$
m is the mass per length
$\rho \quad$ is the mass per volume

The product of the elastic modulus and area is

$$
\begin{align*}
& \mathrm{EA}(\mathrm{x})=\mathrm{E}\left\{\mathrm{~A}_{0}\left[1-\frac{\mathrm{x}}{\mathrm{~L}}\right]+\mathrm{A}_{\mathrm{L}}\left[\frac{\mathrm{x}}{\mathrm{~L}}\right]\right\} \tag{1}\\
& \mathrm{EA}(\mathrm{x})=\mathrm{E}\left\{\mathrm{~A}_{0}+\frac{\mathrm{x}}{\mathrm{~L}}\left(\mathrm{~A}_{\mathrm{L}}-\mathrm{A}_{0}\right)\right\} \tag{2}\\
& \mathrm{EA}(\mathrm{x})=\mathrm{EA}_{0}\left\{1+\frac{\mathrm{x}}{\mathrm{~L}}\left(\frac{\mathrm{~A}_{\mathrm{L}}}{\mathrm{~A}_{0}}-1\right)\right\} \tag{3}
\end{align*}
$$

Let

$$
\begin{align*}
& \alpha=\frac{\mathrm{A}_{\mathrm{L}}}{\mathrm{~A}_{0}}-1 \tag{4}\\
& \mathrm{EA}(\mathrm{x})=\mathrm{EA}_{0}\left\{1+\alpha \frac{\mathrm{x}}{\mathrm{~L}}\right\} \tag{5}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\mathrm{m}(\mathrm{x})=\rho \mathrm{A}_{0}\left\{1+\alpha \frac{\mathrm{x}}{\mathrm{~L}}\right\} \tag{6}
\end{equation*}
$$

The longitudinal displacement $u(x, t)$ is governed by the equation

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{x}}\left[\mathrm{EA}(\mathrm{x}) \frac{\partial \mathrm{u}}{\partial \mathrm{x}}\right]=\mathrm{m}(\mathrm{x}) \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}} \tag{7}
\end{equation*}
$$

This equation is taken from Reference 1.
Separate the variables. Let

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{U}(\mathrm{x}) \mathrm{T}(\mathrm{t}) \tag{8}
\end{equation*}
$$

Substitute equation (8) into (7).

$$
\begin{equation*}
\frac{\partial}{\partial x}\left[E A(x) \frac{\partial}{\partial x}[U(x) T(t)]\right]=\frac{\partial^{2}}{\partial t^{2}}[m(x) U(x) T(t)] \tag{9}
\end{equation*}
$$

Perform the partial differentiation.

$$
\begin{equation*}
T(t) \frac{\partial}{\partial x}\left[E A(x) \frac{\partial}{\partial x}[U(x) T(t)]\right]=[m(x) U(x)] \frac{\partial^{2}}{\partial t^{2}} T(t) \tag{10}
\end{equation*}
$$

Divide through by $\mathrm{U}(\mathrm{x}) \mathrm{T}(\mathrm{t})$.

$$
\begin{equation*}
\frac{1}{[m(x) U(x)]} \frac{\partial}{\partial x}\left[E A(x) \frac{\partial}{\partial x} U(x)\right]=\frac{1}{T(t)} \frac{\partial^{2}}{\partial t^{2}} T(t) \tag{11}
\end{equation*}
$$

Each side of equation (11) must equal a constant. Let ω be a constant.

$$
\begin{equation*}
\frac{1}{[m(x) U(x)]} \frac{\partial}{\partial x}\left[E A(x) \frac{\partial}{\partial x} U(x)\right]=\frac{1}{T(t)} \frac{\partial^{2}}{\partial t^{2}} T(t)=-\omega^{2} \tag{12}
\end{equation*}
$$

Change the partial derivatives to ordinary derivatives

$$
\begin{equation*}
\frac{1}{[m(x) U(x)]} \frac{d}{d x}\left[E A(x) \frac{d}{d x} U(x)\right]=\frac{1}{T(t)} \frac{d^{2}}{\mathrm{dt}^{2}} T(t)=-\omega^{2} \tag{13}
\end{equation*}
$$

The spatial equation is

$$
\begin{equation*}
\frac{1}{[m(x) U(x)]} \frac{d}{d x}\left[E A(x) \frac{d}{d x} U(x)\right]=-\omega^{2} \tag{14}
\end{equation*}
$$

$$
\begin{gather*}
\frac{1}{T(t)} \frac{d^{2}}{d t^{2}} T(t)=-\omega^{2} \tag{15}\\
\frac{d}{d x}\left[E A(x) \frac{d}{d x} U(x)\right]+\omega^{2} m(x) U(x)=0 \tag{16}\\
{\left[E A(x) \frac{d^{2}}{d x^{2}} U(x)\right]+\left[\frac{d}{d x} E A(x)\right]\left[\frac{d}{d x} U(x)\right]+\omega^{2} m(x) U(x)=0} \tag{17}
\end{gather*}
$$

Recall

$$
\begin{align*}
& \mathrm{EA}(\mathrm{x})=\mathrm{EA}_{0}\left\{1+\alpha \frac{\mathrm{x}}{\mathrm{~L}}\right\} \tag{18}\\
& \mathrm{m}(\mathrm{x})=\rho \mathrm{A}_{0}\left\{1+\alpha \frac{\mathrm{x}}{\mathrm{~L}}\right\} \tag{19}
\end{align*}
$$

$$
\begin{align*}
& E A_{0}\left\{1+\alpha \frac{x}{L}\right\} \frac{d^{2}}{d x^{2}} U(x)+\left[\frac{d}{d x} E A_{0}\left\{1+\alpha \frac{x}{L}\right\}\right]\left[\frac{d}{d x} U(x)\right] \\
&+\omega^{2} \rho A_{0}\left\{1+\alpha \frac{x}{L}\right\} U(x)=0 \tag{20}
\end{align*}
$$

$$
\mathrm{E}\left\{1+\alpha \frac{\mathrm{x}}{\mathrm{~L}}\right\} \frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} \mathrm{U}(\mathrm{x})+\mathrm{E}\left[\frac{\mathrm{~d}}{\mathrm{dx}}\left\{1+\alpha \frac{\mathrm{x}}{\mathrm{~L}}\right\}\right]\left[\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}(\mathrm{x})\right]
$$

$$
\begin{equation*}
+\omega^{2} \rho\left\{1+\alpha \frac{x}{L}\right\} U(x)=0 \tag{21}
\end{equation*}
$$

$$
\begin{align*}
\left\{1+\alpha \frac{x}{L}\right\} \frac{d^{2}}{d x^{2}} \mathrm{U}(\mathrm{x})+\left[\frac{\mathrm{d}}{\mathrm{dx}}\left\{1+\alpha \frac{\mathrm{x}}{\mathrm{~L}}\right\}\right] & {\left[\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}(\mathrm{x})\right] } \\
& +\frac{\omega^{2}}{\mathrm{c}^{2}}\left\{1+\alpha \frac{x}{L}\right\} \mathrm{U}(\mathrm{x})=0
\end{aligned} \quad \begin{aligned}
\left\{1+\alpha \frac{x}{L}\right\} \frac{d^{2}}{d x^{2}} \mathrm{U}(\mathrm{x})+\frac{\alpha}{L}\left[\frac{d}{d x} \mathrm{U}(\mathrm{x})\right] & +\frac{\omega^{2}}{\mathrm{c}^{2}}\left\{1+\alpha \frac{x}{L}\right\} \mathrm{U}(\mathrm{x})=0
\end{align*}
$$

Let

$$
\begin{align*}
& v=\left\{1+\alpha \frac{x}{L}\right\} \tag{24}\\
& d v=\frac{\alpha}{L} d x \tag{25}\\
& \frac{d v}{d x}=\frac{\alpha}{L} \tag{26}
\end{align*}
$$

$$
\begin{equation*}
\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{dv}}{\mathrm{dx}} \frac{\mathrm{~d} \mathrm{U}}{\mathrm{dv}} \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}=\frac{\mathrm{dv}}{\mathrm{dx}} \frac{\mathrm{~d}}{\mathrm{dv}} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}=\frac{\alpha}{\mathrm{L}} \frac{\mathrm{~d}}{\mathrm{dv}} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{dU}}{\mathrm{dx}}=\frac{\alpha}{\mathrm{L}} \frac{\mathrm{dU}}{\mathrm{dv}} \tag{30}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \mathrm{U}}{\mathrm{dx}^{2}}=\frac{\alpha}{\mathrm{L}} \frac{\mathrm{~d}}{\mathrm{dv}}\left[\frac{\alpha}{\mathrm{~L}} \frac{\mathrm{dU}}{\mathrm{dv}}\right] \tag{31}\\
& \frac{d^{2} U}{d x^{2}}=\frac{\alpha^{2}}{L^{2}} \frac{d^{2} U}{d v^{2}} \tag{32}\\
& \frac{\alpha^{2}}{L^{2}} v \frac{d^{2}}{d v^{2}} U+\frac{\alpha^{2}}{L^{2}} \frac{d}{d v} U+\frac{\omega^{2}}{c^{2}} v U=0 \tag{33}\\
& v \frac{d^{2}}{d v^{2}} U+\frac{d}{d v} U+\left(\frac{\omega L}{c \alpha}\right)^{2} v U=0 \tag{34}\\
& v^{2} \frac{d^{2}}{d v^{2}} U+v \frac{d}{d v} U+\left(\frac{\omega L}{c \alpha}\right)^{2} v^{2} U=0 \tag{35}\\
& \beta=\left(\frac{\omega \mathrm{L}}{\mathrm{c} \alpha}\right) \tag{36}\\
& v^{2} \frac{d^{2}}{d v^{2}} U+v \frac{d}{d v} U+\beta^{2} v^{2} U=0 \tag{37}\\
& v^{2} \frac{d^{2}}{d v^{2}} U+v \frac{d}{d v} U+(\beta v)^{2} U=0 \tag{38}\\
& v^{2} \frac{d^{2}}{d v^{2}} U+v \frac{d}{d v} U+(\beta v)^{2} U=0 \tag{39}
\end{align*}
$$

Let

$$
\begin{array}{rl}
z & =\beta v \\
v & =\frac{z}{\beta} \\
d v & =\frac{1}{\beta} d z \\
\frac{d v}{d z} & =\frac{1}{\beta} \\
\frac{d z}{d v} & =\beta \\
\frac{d}{d v} U & =\frac{d z}{d v} \frac{d U}{d z} \\
\frac{d}{d v} U & =\beta \frac{d U}{d z} \\
\frac{d^{2}}{d v^{2}} U & =\frac{d z}{d v} \frac{d}{d z}\left[\frac{d z}{d v} \frac{d}{d z} U\right] \\
\frac{d^{2}}{d v^{2}} U & =\beta \frac{d}{d z}\left[\beta \frac{d}{d z} U\right] \\
d v^{2} & U \tag{49}
\end{array}
$$

$$
\begin{align*}
& \frac{z^{2}}{\beta^{2}} \beta^{2} \frac{d^{2} U}{d z^{2}}+\frac{z}{\beta} \beta \frac{d U}{d z}+z^{2} U=0 \tag{50}\\
& z^{2} \frac{d^{2} U}{d z^{2}}+z \frac{d U}{d z}+z^{2} U=0 \tag{51}
\end{align*}
$$

The solution is a Bessel function of order zero.

$$
\begin{align*}
U(z)= & B_{1} J_{0}(z)+B_{2} Y_{0}(z) \tag{52}\\
\frac{d}{d z} U(z)= & \frac{1}{2} B_{1}\left[J_{-1}(z)-J_{1}(z)\right] \\
& +\frac{1}{2} B_{2}\left[Y_{-1}(z)-Y_{1}(z)\right] \tag{53}
\end{align*}
$$

B_{1} and B_{2} are constant coefficients.

The Bessel functions are

$$
\begin{align*}
& J_{o}(x)=1-\frac{(x / 2)^{2}}{(1!)^{2}}+\frac{(x / 2)^{4}}{(2!)^{2}}-\frac{(x / 2)^{6}}{(3!)^{2}}+\ldots \tag{54}\\
& Y_{o}(x)=\frac{2}{\pi}\left[\left(\ln \frac{x}{2}+C\right) J_{0}(x)+\frac{2}{1} J_{2}(x)-\frac{2}{2} J_{4}(x)+\frac{2}{3} J_{6}(x)-\ldots\right] \tag{55}
\end{align*}
$$

where $C=0.577215665$

$$
\begin{align*}
& J_{n}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(x / 2)^{2 k+n}}{k!\Gamma(k+1+n)} \tag{56}\\
& \Gamma(x)=\lim _{n \rightarrow \infty}\left\{\frac{n^{x} n!}{x(x+1)(x+2) \ldots(x+n)}\right\} \tag{57}
\end{align*}
$$

The eigenvalues are calculated by applying the boundary conditions. A special case is considered in Appendix A.

APPENDIX A

Special Case: Fixed-Free Rod with $\mathrm{A}_{\mathrm{L}}=0$

Figure A-1.

$$
\begin{gather*}
\alpha=\frac{\mathrm{A}_{\mathrm{L}}}{\mathrm{~A}_{0}}-1 \tag{A-1}\\
\mathrm{~A}_{\mathrm{L}}=0 \tag{A-2}\\
\alpha=-1 \tag{A-3}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{U}(\mathrm{z})=\mathrm{B}_{1} \mathrm{~J}_{0}(\mathrm{z})+\mathrm{B}_{2} \mathrm{Y}_{0}(\mathrm{z}) \tag{A-4}
\end{equation*}
$$

$$
\frac{\mathrm{d}}{\mathrm{dz}} \mathrm{U}(\mathrm{z})=\frac{1}{2} \mathrm{~B}_{1}\left[\mathrm{~J}_{-1}(\mathrm{z})-\mathrm{J}_{1}(\mathrm{z})\right]
$$

$$
\begin{equation*}
+\frac{1}{2} \mathrm{~B}_{2}\left[\mathrm{Y}_{-1}(\mathrm{z})-\mathrm{Y}_{1}(\mathrm{z})\right] \tag{A-5}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{z}=\beta \mathrm{v} \tag{A-6}\\
\mathrm{z}=-\left(\frac{\omega \mathrm{L}}{\mathrm{c}} \mathrm{v}\right) \tag{A-7}\\
\mathrm{z}=-\frac{\omega \mathrm{L}}{\mathrm{c}}\left\{1-\frac{\mathrm{x}}{\mathrm{~L}}\right\} \tag{A-8}
\end{gather*}
$$

Consider a fixed-free rod such that

$$
\begin{gather*}
\mathrm{U}(\mathrm{x}=0)=0 \tag{A-9}\\
\left.\frac{\mathrm{~d}}{\mathrm{dx}} \mathrm{U}\right|_{\mathrm{x}=\mathrm{L}}=0 \tag{A-10}\\
\mathrm{z}(\mathrm{x}=0)=-\frac{\omega \mathrm{L}}{\mathrm{c}} \tag{A-11}\\
\mathrm{U}(\mathrm{x}=0)=\mathrm{B}_{1} J_{0}\left(-\frac{\omega L}{\mathrm{c}}\right)+\mathrm{B}_{2} Y_{0}\left(-\frac{\omega L}{\mathrm{c}}\right) \tag{A-12}
\end{gather*}
$$

Note that

$$
\begin{equation*}
\lim _{x \rightarrow 0} Y_{0}(x) \rightarrow-\infty \tag{A-13}
\end{equation*}
$$

Furthermore, $\mathrm{Y}_{0}(\mathrm{x})$ is undefined for $\mathrm{x} \leq 0$.

Thus,

$$
\begin{equation*}
\mathrm{B}_{2}=0 \tag{A-14}
\end{equation*}
$$

$$
\begin{align*}
& U(z)=B_{1} J_{0}(z) \tag{A-15}\\
& \frac{d}{d z} U(z)=\frac{1}{2} B_{1}\left[J_{-1}(z)-J_{1}(z)\right] \tag{A-16}\\
& J_{-1}(z)=-2 J_{1}(z) \tag{A-17}\\
& \frac{d}{d z} U(z)=-B_{1} J_{1}(z) \tag{A-18}\\
& U(x=0)=B_{1} J_{0}\left(-\frac{\omega L}{c}\right) \tag{A-19}\\
& B_{1} \neq 0 \tag{A-20}\\
& J_{0}\left(-\frac{\omega L}{c}\right)=0 \tag{A-21}\\
& J_{0}(x)=J_{0}(-x) \tag{A-22}\\
& J_{0}\left(\frac{\omega L}{c}\right)=0 \tag{A-23}
\end{align*}
$$

Figure A-1.

Table A-1. Roots	
Root	Value
1	2.404826
2	5.520078
3	8.653728

Thus,

$$
\begin{equation*}
\omega_{1}=2.404826 \frac{\mathrm{c}}{\mathrm{~L}} \tag{A-24}
\end{equation*}
$$

