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Introduction

Consider athin, tapered rod.
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isthe modulus of elasticity.
isthe length.

is the cross-section area.
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The stiffnessterm is

EA&):E{AOP—{}+AL[

EA(x)=E{Ao+f(AL—Ao) }

EA(X)=EAO 1+1 A_I-_
L{Ap
Let
Q:A_L_]_
Ao
EA(X):EAO{1+O(— }
Similarly

m(x):pA0{1+a% }

The longitudinal displacement u(x, t) is governed by the equation
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This equation is taken from Reference 1.
Separate the variables. Let
u(x,t) = U(x)T(t)

Substitute equation (7) into (6).

(1)

(2

3)

(4)

()

(6)

()



i[EA(x)i[U(x)T(t)]} = i[m(X)U(X)T(t)]
ox ox ot2

Perform the partia differentiation.
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T(1) &[EA(x)&[U(x)T(t)]} =[mE)U(x) at_ZT(t)

Divide through by U(X)T(t).
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Each side of equation (7) must equal aconstant. Let wbe a constant.
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Change the partial derivativesto ordinary derivatives
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[mO)U)] dx
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[EA(x)d—(i U(x)} - %S?T(t) = 2

The spatial equation is

L E[EA(X)EU(X)} = —w?
m(x)U(x)| dx dx
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i[EA(x)i U(x)} +w?m(x)U(x) = 0 (15)
dx dx

2
{EA(x)d— U(x)] + [ﬂ EA(x)Mi U(x)} +w2m(x)U(x) = 0
dx 2 dx dx

(16)

The weighted residual method is applied to equation (16). This method is suitable for
boundary value problems.

There are numerous techniques for applying the weighted residual method. Specifically,
the Galerkin approach is used in this tutorial.

The differential equation (16) is multiplied by a test function ¢(x). Note that the test
function ¢(x) must satisfy the homogeneous essential boundary conditions. The essential
boundary conditions are the prescribed values of U and itsfirst derivative.

Thetest function is not required to satisfy the differential equation, however.

The product of the test function and the differential equation is integrated over the domain.
Theintegral is set equation to zero.

2
J' @(X) { {EA(X)OI—2 U(x)] + [i EA(X)Mi U(x)} + wzm(x)U(x) } dx =0
dx dx dx

(17)

The test function ¢(x) can be regarded as a virtual displacement. The differential equation

in the brackets represents an internal force. This term is also regarded as the residual.
Thus, the integral represents virtual work, which should vanish at the equilibrium
condition.

Define the domain over the limits from ato b. These limits represent the boundary points
of the entire rod.



dx

2
j: (p(x){{EA(x)d—U(x)} [dd EA(X)}{ U(x)} +oo2m(x)U(x) }dx:O

(18)
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+ ja o(x) {oozm(x)U(x)}dx =0

(19)

Integrate the first integral by parts.
b d d

— EA(x)—U d
I, dx{cp(x)[ 09 (x)} }x
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+ j: o(x) {wzm(x)U(x)}dx =0
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:di{tp(x)[EA(X)—U(x)} }dx —jb {EA(X){ (p(x)M U(X)} }

+ j: o(x) {wzm(x)U(x)}dx =0

(21)
d b
@) [EA(x)d— U(x)} - j {EA(x)[ qx)} [ U(x)} }
X a
b 2
+ ja @(x) {w m(x)U(x)}dx =0
(22)
Consider afixed-free rod. The boundary conditions are
U(a) =0 (23)
d
EA(X)— U(x) =0 (24)
dx x=b
Thus, the test functions must satisfy
¢ =0 (25)
The boundary conditions require
q b
{ @(x) [EA(X) - U(X)} } =0 (26)
dx a




Apply the boundary conditions to equation (26). Theresultis

I: {EA( ){ q(X)M U(x)} }dx + ol J':(p(x){m(x)U(x)}dx:O
(27)

Note that equation (27) would also be obtained for other simple boundary condition cases.

Now consider that the rod consists of number of segments, or elements. The elements are
arranged geometrically in series form.

Furthermore, the endpoints of each element are called nodes.

The following equation must be satisfied for each element.

- j {EA(X){ (p(x)M U(x)} }dx + oozj o(x) {m(x)U(x)}dx =0
(28)

1 ool g 0] o

+ wZI(p(X){pAO[1+O( L}U(x)}dx 0

(29)
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+ pAoooZJ' {[1+a }(p(x)U(x)}dx 0

(30)



Furthermore, consider that the stiffness and mass properties are constant for a given
element. Express the displacement function U(x) in terms of nodal displacements u -1

and uj .

UX)=Liuja+Lauj, (j-Dh <x<jh

Note that h isthe element length. In addition, each L coefficientsis afunction of x.

Now introduce a nondimensional natural coordinate & . Thevariable] isthe element

number,j=0,1, ... ,n.
E=j—-x/h
h&=hj-x
x=hj-h¢
X\_.
[EJ_J 3

The derivativeis
dx=-hdg

1
dé = ——dx
: h

Note that h is the segment length.
The displacement function becomes.

U@€) =Lyujr+Louj, 0 <¢<1
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The slope equation is

Now Let

Y(x)=L' a, (j-Dhsxsjh, &=j-x/h

where

L=[¢ 1-g]"
a=[ uy oy |

The derivative terms are

iU(x):iLT a, (j-Dh=sx<ijh, &=j-x/h
dx ax —

d dd¢, T - . . )
—UXxX)= ——L a, -Dh<x<jh, =j—-x/h
™ (X) g€ ok (-9 jh, &=j
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iU(x):(—le'T a, (j-Dhs<xs<ijh, &=j-x/h (49)
dx h)—

where
L=[1-1]T (50)

Note that primes indicate derivatives with respect to §. Recall

~EAg | {{1 Ty ﬂ [d—i(p(x)} [d—iU(x)} }dx

+ pAowzj { [1 +d %} @e(x)U(x) }dx =0
(51)

The essence of the Galerkin method is that the test function is chosen as

¢(x) = U(x) (52)

Thus

~EAg | Hhaﬂ {%U(x)} [%U(x)} }dx

+ pAooozj { {1 +a %} U(x)U(x)}dx =0
(53)

Change the integration variable using equation. Also, apply the integration limits.
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_Ethj;{[l aw}[d U(X)Md U(x)} }

+pAgw?h j; { [1 +a (h) 1h E)} U(x)U(x) }dE =0

(54
-EAOIO{ L+ahj)- ahé][ U(x )M U(x)} }
+"ALL°’2E{[(L+ahj)—ahz]u(x)U(X)}dE=0
(55)
EAoIO{ L+ahj)- qha]{( hjL aM( %)Qé} }dE
#2209 1 an-ane] [L Tl T g o
(56)

Lhz'[o{ L+ahj)- ahE][a L a] }dE
+ML“’ZJ;{[(L+ahj)—ahz][aTLLTa]}dz:o
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B0 B ffcvani)-ane T 7] Jo

+"A°—L“‘*’ZI§{[(L+ahJ)—ahz][aTL_LT 3] e =0

éT{—%J.é{[(L+ahj)—ahE][EET] }dz}a

+5T{+PA0_L*“*’ZI;{[(L+ahj)—ahz][L_£T ]}di}é =0
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For a system of n elements,
_ 2. i=
Kj=w’Mj, =12, ...,n

where

Kj = +%E{[L+ahj][££1—] }dE

e LA B

=+ 2200 i canfu L7] e

2
_wg{z[gf”di
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Thefirst stiffness matrix per Reference 1is

+

EAp 11 -1
h [L +thj] { } (65)

The second stiffness matrix per Appendix A.
_ aEAq [1 —1}

2L 1
(66)

The combined stiffness matrix is

sz%{[L +ahij] F ﬂ—%ahr _1} (67)
IR o TR
Kj:${l+ja(%j _%G(H}F _11} (69)

Kj = %{1 + %Gj (2j-1) }F ﬂ (70)
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The first mass matrix is

pAgh 12 1
+ L+ah 71
oL | J]{ ) (71)
The second mass matrix is
Aoh?1 1
- 9P Aol { } (72)
1212 3
The combined mass matrix is

2
2 1} _ap Agh {1 1} 73

Mj= + PAON | L anj)
6L 2 12L 3

-

2 1 1
M= + PRSI L] - ah
121 2 3

= e 28 leluef?) |2 (2] 3} ™
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APPENDIX A
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APPENDIX B
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APPENDIX C

Fixed-Free Rod with A| =0

MNANANANANANAN

Figure C-1.

a=AL_g (C-1a)
Ao

AL=0 (C-1b)

a=-1 (C-lC)

Model the rod with two elements.

h=L/2 (C-2)

Furthermore, the rod isfixed at x=0 and free at x=L.

U@ =0 (C-3)

U'(L) =0 (C-4)
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(C-5)

(C-6)

(C-7)
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(C-10)
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(C-12)

(C-13)

(C-14)

(C-15)

(C-16)

(C-17)

(C-18)
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(C-19)

(C-20)

(C-21)

(C-22)

(C-23)

(C-24)

(C-25)

(C-26)
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The global assembly for the model with two elementsis

0
_, [15 -15 0 2730
detTo 2 —o5|-PRO-W 1 g -0
05 1
(C-27)
15 -15 0 L2l 8o
det I= 2 —o.5—p4§’ 8 1 -0
05 1
(C-28)
15 -15 0 7 30
det 2 —05[-A| 8 1 -0
05 1
(C-29)
2 2
A=PL W (C-30)
48E

Apply the boundary conditions for the fixed-free case. Thefirst row and column are

removed for this purpose.
2 -05 8 1
detH }A{ } } - 0 (31
0.5 1
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Aq= 0122

Ao = 0878

pL—O\)]_ =0.122

w = —2'42 E (FE analysis)

The theoretical value from Reference 2 is

w = 2405 |E (theoretical)

L Ve

Thus, the agreement is excellent, within 1%.
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(C-32)

(C-33)

(C-34)

(C-35)

(C-36)



