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OverviewOverview

• Introduction: elastic tension members 
in transport applications

• Dynamic features and modelling
• Non-stationary dynamics and 

resonance phenomena
• Response prediction and analysis 

methods
• Applications in vertical transportation: 

deep mine hoists and building elevators
• Conclusions
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IntroductionIntroduction

• Long moving continua: ropes, cables, belts, tethers, 
among the oldest tools/elements used in 
engineering;

• Low bending and torsional stiffness;
• Ability to resist large axial loads;
• Used in elevators, hoists, cranes, marine 

installations and space systems;
• Axially moving, their lengths often vary with time 

when the system is in operation;
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Vertical transportation systems (1)Vertical transportation systems (1)
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Vertical transportation systems (2)Vertical transportation systems (2)
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Dynamic features Dynamic features 
• Moving slender continua are inherently non-linear;
• The length variation results in slow variation of the natural 

frequencies rendering the entire system non-stationary;
• The natural frequencies of the installation change with the 

speed of the transport motion;
• The dynamic forces and response is qualitatively different 

from the response which would occur if the characteristics 
were stationary, with transient resonance and vibration 
interaction  phenomena taking place.
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NonNon--stationary dynamics and stationary dynamics and 
rope/cable theoriesrope/cable theories

• Classical rope/cable theory: Irvine (1981), 
Costello (1997);

• Systems with slowly varying parameters, non-
stationary oscillations: Mitropolskii (1965), 
Evan-Iwanowski (1976), Kevorkian (1980), 
Nayfeh & Asfar (1988), Cveticanin (1991);

• Axially moving continua: Mote Jr. (1966), 
Perkins & Mote Jr. (1987), Wickert & Mote Jr. 
(1990), Riedel & Tan (2002).



8

Modelling procedureModelling procedure
Assemblage of one-dimensional continuous components

Non-stationaryTime-variant length
Lateral and longitudinal motions
Constraints at boundaries

Hamilton Principle

Numerical or approximate analytical methods to solve the model

Non-linear

Coupled

PDE system
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The model of rope with varying The model of rope with varying 
lengthlength
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System of PDE of motionSystem of PDE of motion

( ) ( ), ,( ) [ ] [ ] [ ] , , ,   ,  0 ,tt tx x t x D t tρ + + = + Ω ∈ ≤ < ∞U C U L U N U F

ρ (x) mass distribution function
x Lagrangian or Eulerian co-ordinate
U(x,t) dynamic displacement vector
C, L linear operators
N non-linear operator
F vector of forcing functions with harmonic terms
D(t) = {x: 0 < x < L(t)}
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The rate of variation of parametersThe rate of variation of parameters

• The small parameter to assess the the slow variability of the component length:

• ε is directly related to the ratio of the rate  of variation of the length of the member (or 
its axial velocity) and the respective wave velocity:
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• Facilitates the introduction of the slow time scale τ = εt to observe the length variation. 
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The solution methodsThe solution methods
• The PDE model can be discretised by expansion in terms of 

modes of the corresponding linear stationary system;
• The modal expansion leads to the first-order ordinary 

differential equation (ODE) system with slowly varying 
parameters;

• An approximate solution can be sought using asymptotic 
(perturbation) methods or direct numerical integration 
techniques;

• In some cases, the system of PDEs can be treated directly 
without discretization and the method of multiple scales can be 
applied.



13

The natural frequencies and modesThe natural frequencies and modes

• Determined from the non-stationary frequency equation for L = L(τ);
• Lateral: 

• Longitudinal:
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The effect of transport speed (1)The effect of transport speed (1)
• The natural frequencies decrease as the rope speed V

increases: 
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The effect of transport speed (2)The effect of transport speed (2)

• νc = 1 the critical value (the elevator speed equals the 
lateral wave speed in the stationary rope);

• The frequency of each mode vanishes and the rope 
experiences divergent instability;

• In suspension ropes tensions are high ν << νc , the effect 
is small;

• In compensating ropes tensions are much lower and the 
speed parameter may exceed the critical value (ν > νc)
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Simulation modelSimulation model

( , ( ) ( , )

where:
- modal state vector
- linear coefficient matrix
 - coupling vector with quadratic and cubic nonlinear terms
- external excitation vector
- slow time ( )
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NonNon--linear couplingslinear couplings
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Transient nonTransient non--linear interactionslinear interactions
The natural frequencies are slowly-varying: ωn = ωn(τ), τ = εt

Non-linearity:

Resonance:
Quadratic Cubic

Internal

External/ 
Parametric

n ≈ 2m or n ≈ m  k

n ≈ m , n ≈ 3m

n ≈ |2m  k |
n ≈ |m  k   l |

  m

p  qm

  |m  k |

  |m  k   l |

  |2m  k |

2  |m  k |
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Vibrations of long moving ropesVibrations of long moving ropes

• High-rise elevators: ropes over 500 m in length;
• Deep mines: ropes over 2000 m in length;
• Severe vibration problems;
• Rope whirling, miscoiling and/or jumping out of the 

sheave groove;
• Ride quality compromised;
• Excessive friction wear reducing safe service life;
• Excessive dynamic tension fluctuations leading to 

high level dynamic stresses.
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Double-drum Blair Multi-Rope winder with twin 
rope compartment drums
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Winding house
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Headsheave
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Vertical rope and 
skip in the shaft 
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Hoist Rope Force (1)Hoist Rope Force (1)
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Hoist Rope Force (2)Hoist Rope Force (2)
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Sources of excitationSources of excitation
• Inertial load caused by the  acceleration/deceleration profile 

(results in transient longitudinal response);
• Sheave/pulley irregularities and rope – sheave/pulley 

interactions;
• Rope storage (coiling) mechanism (drum drive systems);
• Guide rail irregularities/ deformations and joint steps;
• Roller guide irregularities;
• Aerodynamic (air flow) effects;
• Building sway;
• Rotating unbalance/ car (conveyance) unbalance;
• Internal (autoparametric) excitations.
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The catenary cable The catenary cable -- vertical rope vertical rope 
modelmodel
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Rope coiling patternRope coiling pattern
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Crossover zones of the Lebus drumCrossover zones of the Lebus drum
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Excitation functionsExcitation functions
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Hoist parametersHoist parameters
Parameter Value 
Time interval s 156 
Nominal speed m/s 15 
Total payload kg 17584 
Sheave inertia kgm2 15200 
Drum radius m 2.14 
Crossover arc rad 0.2 
Cable diameter mm 48 
Cable density kg/m 8.4 
Cable effective area m2 1.028⋅10-3 
Cable Young’s modulus N/m2 1.1⋅1011 
Catenary length m 74.95 
Maximum shaft depth m 2100 
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Simulation resultsSimulation results

• Relationship between the crossover excitation 
frequency, the lateral and longitudinal natural 
frequencies:                   , respectively

• Displacement response
• Cable/rope tensions

nmk ωω  , ,Ω
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Frequency map: V = 15 m/sFrequency map: V = 15 m/s
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Resonance conditionsResonance conditions
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Displacement response: V = 15 m/sDisplacement response: V = 15 m/s
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Catenary cable 1Catenary cable 1stst quarter point motionquarter point motion
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Rope tensions: V = 15 m/sRope tensions: V = 15 m/s
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Frequency map: V = 19.5 m/sFrequency map: V = 19.5 m/s
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Displacement response: V = 19.5 m/sDisplacement response: V = 19.5 m/s
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Rope tensions: V = 19.5 m/sRope tensions: V = 19.5 m/s
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Elevator suspension rope modelElevator suspension rope model
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The system parametersThe system parameters
Car mass P 2000 kg 

Mass of rated load Q 1250 kg 

Balance B 40 % 

Equivalent mass of diverter pulley Me 80 kg 

Rope length between traction sheave and pulley Lp 1.04 m 

Travel height H 60 m 

Well height W 70 M 

Car height H 3.2 m 

Hoist rope Young’s modulus E 60.0 kN/mm2 

Hoist rope diameter d 19 mm 

Hoist rope mass per unit length m 1.3 kg/m 

Compensating rope mass per unit length  mc 1.6 kg/m 
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Longitudinal resonance frequenciesLongitudinal resonance frequencies
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Lateral resonance frequencies (1)Lateral resonance frequencies (1)
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Lateral resonance frequencies (2)Lateral resonance frequencies (2)
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External, the lateral and the 1External, the lateral and the 1stst longitudinal longitudinal 
natural frequencies (car side)natural frequencies (car side)
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Resonance: building sway effect Resonance: building sway effect 
A0 sin Ω t

• Building often excited near its own 
natural frequency;

• Periodic sway at low frequencies 
results;

• Elevator ropes strongly affected;
• Resonance conditions occur during 

elevator travel;
• Whirling motions may result.
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Passage through lateral resonancePassage through lateral resonance
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Multiple transient resonancesMultiple transient resonances
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Passage through resonance at various Passage through resonance at various 
speedsspeeds
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ConclusionsConclusions
Despite recent developments in new technologies elastic 
suspension components in vertical transport systems are susceptible 
to oscillations;
The non-linear and non-stationary nature of long moving ropes in 
transport installations is often responsible for adverse dynamic
behaviour of the entire system;
Large dynamic responses occur due to the transient resonance 
phenomena;
The prediction of resonance conditions is of primary importance in 
the design of vertical transport installations;
Subsequently, a suitable control strategy can be sought to minimize 
the resonance effects;
The resonance effects can be reduced/shifted through the speed 
and/or acceleration changes.
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