Ropes, Cables and Chains: Theory and Applications Northampton 23rd September 2004

Resonance Phenomena in Tension Members with Time-Varying Characteristics

Stefan Kaczmarczyk School Applied Sciences University College Northampton

Institute of Physics

Overview

- Introduction: elastic tension members in transport applications
- Dynamic features and modelling
- Non-stationary dynamics and resonance phenomena
- Response prediction and analysis methods
- Applications in vertical transportation: deep mine hoists and building elevators
- Conclusions

Introduction

- Long moving continua: ropes, cables, belts, tethers, among the oldest tools/elements used in engineering;
- Low bending and torsional stiffness;
- Ability to resist large axial loads;
- Used in elevators, hoists, cranes, marine installations and space systems;
- Axially moving, their lengths often vary with time when the system is in operation;

Vertical transportation systems (1)

Building elevator roping configurations

Vertical transportation systems (2)

Double drum mine hoists

Dynamic features

- Moving slender continua are inherently non-linear;
- The length variation results in slow variation of the natural frequencies rendering the entire system non-stationary;
- The natural frequencies of the installation change with the speed of the transport motion;
- The dynamic forces and response is qualitatively different from the response which would occur if the characteristics were stationary, with transient resonance and vibration interaction phenomena taking place.

Non-stationary dynamics and rope/cable theories

- Classical rope/cable theory: Irvine (1981), Costello (1997);
- Systems with *slowly* varying parameters, nonstationary oscillations: Mitropolskii (1965), Evan-Iwanowski (1976), Kevorkian (1980), Nayfeh & Asfar (1988), Cveticanin (1991);
- Axially moving continua: Mote Jr. (1966), Perkins & Mote Jr. (1987), Wickert & Mote Jr. (1990), Riedel & Tan (2002).

Modelling procedure

The model of rope with varying length

Dynamic deformation vector:

$$\mathbf{R}(s,t) = \mathbf{R}_{\Omega}(t) + \mathbf{R}^{i}(s) + \mathbf{U}(s,t)$$
$$\mathbf{R}_{\Omega} = [-l,0,0]^{T}$$
$$\mathbf{R}^{i} = [s,0,0]^{T}$$
$$\mathbf{U} = [u(s,t), v(s,t), w(s,t)]^{T}$$
$$\mathbf{R}(s,t) = [s+u(s,t)-l(t), v(s,t), w(s,t)]$$

 $D(t) = \{s : l(t) < s < L_0\}$ $l(t) = l(0) \pm \int_0^t V(\xi) d\xi$

System of PDE of motion

 $\rho(x)\mathbf{U}_{,tt} + \mathbf{C}[\mathbf{U}_{,t}] + \mathbf{L}[\mathbf{U}] = \mathbf{N}[\mathbf{U}] + \mathbf{F}(x,t,\Omega), \quad x \in D(t), \quad 0 \le t < \infty,$

- $\rho(x)$ mass distribution function
- *x* Lagrangian or Eulerian co-ordinate
- $\mathbf{U}(x,t)$ dynamic displacement vector
- **C**, **L** linear operators
- N non-linear operator
- **F** vector of forcing functions with harmonic terms

 $D(t) = \{x: 0 < x < L(t)\}$

The rate of variation of parameters

• The small parameter to assess the the slow variability of the component length:

$$\varepsilon = \frac{V}{\omega_0 L_0}$$

• ϵ is directly related to the ratio of the rate of variation of the length of the member (or its axial velocity) and the respective wave velocity:

• Facilitates the introduction of the slow time scale $\tau = \varepsilon t$ to observe the length variation.

The solution methods

- The PDE model can be discretised by expansion in terms of modes of the corresponding linear stationary system;
- The modal expansion leads to the first-order ordinary differential equation (ODE) system with slowly varying parameters;
- An approximate solution can be sought using asymptotic (perturbation) methods or direct numerical integration techniques;
- In some cases, the system of PDEs can be treated directly without discretization and the method of multiple scales can be applied.

The natural frequencies and modes

- Determined from the non-stationary frequency equation for $L = L(\tau)$;
- Lateral:

$$\left(k - \frac{M}{m}T_0\beta_n^2\right)\sin\beta_n L + T_0\beta_n\cos\beta_n L = 0$$
$$\widehat{\omega}_n(\tau) = \overline{c}\beta_n(\tau), \text{ where } \overline{c} = \sqrt{\frac{T_0}{m}}$$

• Longitudinal:

$$\left(\frac{1}{L_p} - \frac{M_e}{m}\gamma_n^2\right) \left(\cos\gamma_n L - \frac{M}{m}\gamma_n\sin\gamma_n L\right) - \gamma_n \left(\frac{M}{m}\gamma_n\cos\gamma_n L + \sin\gamma_n L\right) = 0$$

$$\omega_n(\tau) = c\gamma_n(\tau)$$
, where $c = \sqrt{\frac{EA}{m}}$

The effect of transport speed (1)

• The natural frequencies decrease as the rope speed V increases:

$$\tilde{\omega}_n = \overline{\omega}_n \left(1 - \nu^2 \right)$$

where $v = \frac{V}{\overline{c}} = \pi \varepsilon$ the transport speed parameter

The effect of transport speed (2)

- $v_c = 1$ the critical value (the elevator speed equals the lateral wave speed in the stationary rope);
- The frequency of each mode vanishes and the rope experiences divergent instability;
- In suspension ropes tensions are high $\nu << \nu_c$, the effect is small;
- In compensating ropes tensions are much lower and the speed parameter may exceed the critical value ($v > v_c$)

Simulation model

$$\frac{d\mathbf{y}}{dT} = \mathbf{A}(T,\tau;\varepsilon)\mathbf{y} + \mathbf{N}(\tau,\mathbf{y}) + \mathbf{F}(T,\tau)$$

where:

- y-modal state vector
- A-linear coefficient matrix
- ${\bf N}$ coupling vector with quadratic and cubic nonlinear terms
- F- external excitation vector
- τ slow time ($\tau = \varepsilon T$)

Non-linear couplings

$$\mathbf{N}(\tau, \mathbf{y}) = \begin{bmatrix} \mathbf{0}_{[1 \times (2N_{lat} + N_{long})]}, \mathbf{N}^{v^{T}}(\tau, \mathbf{y}), \mathbf{N}^{w^{T}}(\tau, \mathbf{y}), \mathbf{N}^{u^{T}}(\tau, \mathbf{y}) \end{bmatrix}^{T}$$
$$\mathbf{N}^{v}(\tau, \mathbf{y}) = \begin{bmatrix} N_{k}^{v} \end{bmatrix}_{(N_{lat} \times 1)} = -\left(\frac{c}{c}\right)^{2} \left\{ \hat{\omega}_{k}^{2}(\tau) \begin{bmatrix} \frac{1}{L_{c}} \sum_{n=1}^{N_{long}} z_{n} + \sum_{n=1}^{N_{lat}} \beta_{n}^{2}(p_{n}^{2} + q_{n}^{2}) \end{bmatrix} p_{k} \right\},$$
$$\mathbf{N}^{w}(\tau, \mathbf{y}) = \begin{bmatrix} N_{k}^{w} \end{bmatrix}_{(N_{lat} \times 1)} = -\left(\frac{c}{c}\right)^{2} \left\{ \hat{\omega}_{k}^{2}(\tau) \begin{bmatrix} \frac{1}{L_{c}} \sum_{n=1}^{N_{long}} z_{n} + \sum_{n=1}^{N_{lat}} \beta_{n}^{2}(p_{n}^{2} + q_{n}^{2}) \end{bmatrix} q_{k} \right\},$$
$$\mathbf{N}^{u}(\tau, \mathbf{y}) = \begin{bmatrix} N_{r}^{u} \end{bmatrix}_{(N_{long} \times 1)} = -\frac{EA}{\omega_{0}^{2}} \begin{bmatrix} \frac{1}{m_{r}^{v}(\tau)} \sum_{n=1}^{N_{lat}} \beta_{n}^{2}(p_{n}^{2} + q_{n}^{2}) \end{bmatrix}.$$

Transient non-linear interactions

The natural frequencies are slowly-varying: $\omega_n = \omega_n(\tau)$, $\tau = \varepsilon t$

Non-linearity: Resonance:	Quadratic	Cubic	
Internal	$\omega_n \approx 2\omega_m \text{ or } \omega_n \approx \omega_m \pm \omega_k$	$\omega_n \approx \omega_m, \omega_n \approx 3\omega_m$ $\omega_n \approx \pm 2\omega_m \pm \omega_k $ $\omega_n \approx \pm \omega_m \pm \omega_k \pm \omega_l $	
External/ Parametric	$\Omega = \omega_m$ $p\Omega = q\omega_m$ $\Omega = \pm \omega_m \pm \omega_k $	$\Omega = \pm \omega_m \pm \omega_k \pm \omega_l $ $\Omega = \pm 2\omega_m \pm \omega_k $ $2\Omega = \pm \omega_m \pm \omega_k $	

Vibrations of long moving ropes

- High-rise elevators: ropes over 500 m in length;
- Deep mines: ropes over 2000 m in length;
- Severe vibration problems;
- Rope whirling, miscoiling and/or jumping out of the sheave groove;
- Ride quality compromised;
- Excessive friction wear reducing safe service life;
- Excessive dynamic tension fluctuations leading to high level dynamic stresses.

Double-drum Blair Multi-Rope winder with twin rope compartment drums

Winding house

Headsheave

Vertical rope and skip in the shaft

Hoist Rope Force (1)

Hoist Rope Force (2)

Sources of excitation

- Inertial load caused by the acceleration/deceleration profile (results in transient longitudinal response);
- Sheave/pulley irregularities and rope sheave/pulley interactions;
- Rope storage (coiling) mechanism (drum drive systems);
- Guide rail irregularities/ deformations and joint steps;
- Roller guide irregularities;
- Aerodynamic (air flow) effects;
- Building sway;
- Rotating unbalance/ car (conveyance) unbalance;
- Internal (autoparametric) excitations.

The catenary cable - vertical rope model

Rope coiling pattern

Crossover zones of the Lebus drum

Excitation functions

$$v_{l} = \begin{cases} \frac{1}{2} v_{0}^{n} [1 - \cos(2vt)], & 0 \le t \le t_{\beta} \\ 0, & t_{\beta} \le t \le \tau \end{cases}$$
$$w_{l} = \begin{cases} \frac{1}{2} w_{0} [1 - \cos(vt)], & 0 \le t \le t_{\beta} \\ \frac{d}{2}, & t_{\beta} \le t \le \tau \end{cases}$$
$$u_{l} = \begin{cases} \frac{1}{2} u_{0} [1 - \cos(vt)], & 0 \le t \le t_{\beta} \\ u_{0} (\tau - t) / (\tau - t_{\beta}), & t_{\beta} \le t \le \tau \end{cases}$$
$$t_{\beta} = \beta / \omega_{d} \\ \tau = 2\pi / \Omega \\ \Omega = 2\omega_{d} \\ v = \pi / t_{\beta} \end{cases}$$

Hoist parameters

Parameter	Value	
Time interval s	156	
Nominal speed m/s	15	
Total payload kg	17584	
Sheave inertia kgm ²	15200	
Drum radius m	2.14	
Crossover arc rad	0.2	
Cable diameter mm	48	
Cable density kg/m	8.4	
Cable effective area m ²	$1.028 \cdot 10^{-3}$	
Cable Young's modulus N/m ²	$1.1 \cdot 10^{11}$	
Catenary length m	74.95	
Maximum shaft depth m	2100	

Simulation results

- Relationship between the crossover excitation frequency, the lateral and longitudinal natural frequencies: $\Omega_k, \overline{\omega}_m, \omega_n$, respectively
- Displacement response
- Cable/rope tensions

Frequency map: V = 15 m/s

$$\varepsilon = \frac{V}{\omega_{\min} L_{\max}} <<1$$
$$\omega_{\min} = \omega_1 |_{L_{\max}} = 1.5 \ rad / s$$
$$L_{\max} = 2100 \ m$$
$$\varepsilon = 0.005$$

Resonance conditions

• $(\overline{\omega}_k)_{in-plane} = (\overline{\omega}_k)_{out-of-plane}$ 1:1 autoparametric resonance • 750m: $\omega_2 \approx 2\overline{\omega}_1$ 2:1 autoparametric resonance $\omega_2 \approx \overline{\omega}_2$ 1:1 autoparametric resonance $\Omega_1 \approx \omega_2 \approx \overline{\omega}_2$ and $\Omega_2 \approx \overline{\omega}_4$ primary external resonances $\Omega_1 \approx 2\overline{\omega}_1$ and $\Omega_2 \approx 2\overline{\omega}_2$ principal parametric resonances $\Omega_2 \approx \omega_2 + \overline{\omega}_2$ summed combination resonance

Displacement response: V = 15 m/s

Catenary cable 1st quarter point motion

Rope tensions: V = 15 m/s

Frequency map: V = 19.5 m/sFrequency [rad/s] 0 0∟ 70 $L_v [m]$

Displacement response: V = 19.5 m/s

Rope tensions: V = 19.5 m/s

Elevator suspension rope model

The system parameters

Car mass	Р	2000	kg
Mass of rated load	Q	1250	kg
Balance	В	40	%
Equivalent mass of diverter pulley	M_e	80	kg
Rope length between traction sheave and pulley	L_p	1.04	m
Travel height	H	60	m
Well height	W	70	M
Car height	H	3.2	m
Hoist rope Young's modulus	E	60.0	kN/mm ²
Hoist rope diameter	d	19	mm
Hoist rope mass per unit length	m	1.3	kg/m
Compensating rope mass per unit length	m_c	1.6	kg/m

Longitudinal resonance frequencies

Lateral resonance frequencies (1)

Lateral resonance frequencies (2)

45

External, the lateral and the 1st longitudinal natural frequencies (car side)

Resonance: building sway effect

- Building often excited near its own natural frequency;
- Periodic sway at low frequencies results;
- Elevator ropes strongly affected;
- Resonance conditions occur during elevator travel;
- *Whirling* motions may result.

Passage through lateral resonance

Multiple transient resonances

Passage through resonance at various speeds

----- V = 2.5 m/s

V = 10 m/s

Conclusions

- Despite recent developments in new technologies elastic suspension components in vertical transport systems are susceptible to oscillations;
- □ The non-linear and non-stationary nature of long moving ropes in transport installations is often responsible for adverse dynamic behaviour of the entire system;
- □ Large dynamic responses occur due to the transient resonance phenomena;
- □ The prediction of resonance conditions is of primary importance in the design of vertical transport installations;
- □ Subsequently, a suitable control strategy can be sought to minimize the resonance effects;
- □ The resonance effects can be reduced/shifted through the speed and/or acceleration changes.

Institute of Physics

References

Irvine, H M, (1981), "Cable Structures", Cambridge, Massachusetts, The MIT Press.

Costello, G A, (1990), "Theory of Wire Rope", New York, Springer-Verlag.

Mitropolskii, Y A, (1965), "Problems of the Asymptotic Theory of Nonstationary Vibrations", Jerusalem, Israel Program for Scientific Translations Ltd.

Evan-Iwanowski, R M, (1976) "Resonance Oscillations in Mechanical Systems", Amsterdam, Elsevier Scientific Publishing Company.

Kevorkian, J, (1980), "Resonance in a Weakly Nonlinear System with Slowly Varying Parameters", Studies in Applied Mathematics, 62, p.23-67.

Nayfeh, A H & Asfar, K R, (1988), "Non-Stationary Parametric Oscillations", Journal of Sound and Vibration, Vol.124, No.3, p.529-537.

Cveticanin, L, (1991), "The Oscillations of a Textile Machine Rotor on Which the Textile is Wound up", International Journal of Mechanism and Machine Theory, Vol.26, No.3, p.253-260.

Perkins, N C, Mote Jr., C D, (1987), Three-Dimensional Vibration of Travelling Elastic Cable, Journal of Sound and Vibration, 114, p.325-340.

Wickert, J A, Mote Jr., C D, (1990), Classical Vibration Analysis of Axially Moving Continua, Transactions of the ASME, Journal of Applied Mechanics, 57, p.738-744.

Riedel, C H, Tan C A, (2002), Coupled, forced response of an axially moving strip with internal resonance, International Journal of Non-Linear Mechanics, 37, p.101-116.