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Variables 

 
 

F Excitation frequency 

f r Natural frequency for mode r 

N Total degrees-of-freedom 

)f(H ji  The steady state displacement at coordinate i due to a harmonic force 

excitation only at coordinate j 

r  Damping ratio for mode r 

ri  Mass-normalized eigenvector for physical coordinate i and mode number r   

  Excitation frequency (rad/sec) 

r  Natural frequency (rad/sec) for mode r 

 

 

Receptance 
 

The steady-state displacement at coordinate i due to a harmonic force excitation only at 

coordinate j is: 
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Note that the phase angle is typically represented as the angle by which force leads 

displacement.  In terms of a C++ or Matlab type equation, the phase angle would be 

 

 

Phase  =  - atan2(imag(H), real(H))                                                         (4) 

 

 

Note that both the phase and the transfer function vary with frequency.  

 

A more formal equation is 
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Mobility 
 

The steady-state velocity at coordinate i due to a harmonic force excitation only at 

coordinate j is 
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Accelerance 
 

The steady-state acceleration at coordinate i due to a harmonic force excitation only at 

coordinate j is 
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Relative Displacement 
 

Consider two translational degrees-of-freedom i and j.  A force is applied at degree-of-

freedom k. 
 

The steady-state relative displacement transfer function Rij between i and j due to an applied 

force at k is 
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The steady-state relative displacement transfer function Rij between i and j due to an applied 

force at k is 
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APPENDIX A 

 

EXAMPLE 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the system in Figure A-1.  Assign the values in Table A-1. 

 

 

Table A-1.  Parameters 

Variable Value Unit 

m  1.0 lbf sec^2/in 

k  3.946e+05 lbf/in 

Damping Ratio 0.05 - 
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Figure A-1. 

 

 

This is the phase angle by which the force leads the response. 
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Figure A-2. 
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APPENDIX B 

 

EXAMPLE 2 

 

 

Normal Modes Analysis 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1. 

 

 

 

Consider the system in Figure B-1.  Assign the values in Table B-1. 

 

Table B-1.  Parameters 

Variable Value Unit 

1m  3.0  lbf sec^2/in    

2m  2.0 lbf sec^2/in  

1k  400,000    lbf/in    

2k  300,000 lbf/in 

3k  100,000 lbf/in 

 
Furthermore, assume 

 

1. Each mode has a damping value of 5%. 

2. Zero initial conditions 
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The homogeneous, undamped problem is 
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The eigenvalue problem is  
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The analysis is performed using Matlab script:   transfer_from_modes.m    
 

 

 

>> transfer_from_modes 

 transfer_from_modes.m   ver 1.4   June 4, 2010  

 by Tom Irvine  

  

 This program calculates a transfer function (displacement/force)  

 for each degree-of-freedom in a system based on the mode shapes,  

 natural frequencies, and damping ratios.  

  

 Select input method  

  1=mass & stiffness matrices  

  2=natural frequencies and mass-normalized eigenvectors  

 1 

  

 Select output metric  

  1=displacement/force  

  2=velocity/force  

  3=acceleration/force  

 1 

  

 Enter the mass matrix name:  mm 

 

mass = 

 

     3     0 

     0     2 

 

  

 Divide mass by 386?  

 1=yes 2=no  

 2 

  



 10 

 Enter the stiffness matrix name:  kk 

 

stiffness = 

 

      500000     -100000 

     -100000      400000 

 

  

  Natural Frequencies (Hz)  

     59.39  

      75.9  

  

  Modes Shapes (column format) 

 

QE = 

 

   -0.4792   -0.3220 

   -0.3943    0.5869 
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Figure B-2. 
 

 

The curve is the steady-state displacement at coordinate 1 due to a harmonic force excitation 

only at coordinate 1. 
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Figure B-3. 
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Figure B-4. 
 

 

The curve is the steady-state displacement at coordinate 1 due to a harmonic force excitation 

only at coordinate 2. 

 

Due to reciprocity, it is also the steady-state displacement at coordinate 2 due to a harmonic 

force excitation only at coordinate 1. 
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Figure B-5. 
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Figure B-6. 
 

 

The curve is the steady-state displacement at coordinate 2 due to a harmonic force excitation 

only at coordinate 2. 
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Figure B-7. 


