
TECHNICAL NOTE

Joseph F. Murphy1

Transverse Vibration of a Simply Supported
Frustum of a Right Circular Cone*

REFERENCE: Murphy, J. F., “Transverse Vibration of a Sim-
ply-Supported Frustum of a Right Circular Cone,” Journal of
Testing and Evaluation, JTEVA, Vol. 28, No. 5, September 2000,
pp. 415–419.

ABSTRACT: Presently. there is no efficient mechanical method in
the United States to sort small-diameter logs. This paper explores the
problem theoretically using transverse vibration as one such method.
The numerical solution to the frequency equation for the transverse
vibration of a simply-supported frustum of a right circular cone is
found. We refer to this solid as a tapered cylinder with constant ta-
per. The numerical solution is found as a function of cylinder taper,
and an approximation to the solution of the frequency equation for
slight taper is presented and compared with the numerical solution.
This simple yet accurate approximation is most useful to determine
the tapered cylinder’s flexural stiffness or modulus of elasticity by
freely vibrating a simply supported tapered cylinder.
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Presently there is a need to remove small-diameter trees from
forests to restore and sustain forest ecosystem health. To provide an
economic incentive and reduce costs associated with small-diame-
ter tree removal in the form of small-diameter logs, a low-cost
method to sort the logs for appropriate end use is needed. Modulus
of elasticity E is now used in machine stress rating (MSR) of lum-
ber. One possible sorting method for logs is to vibrate the logs trans-
versely to determine flexural stiffness EI and modulus of elasticity.
In this report, the vibration of a tapered cylinder is investigated nu-
merically, an approximate formula for the solution of the frequency
equation for slight taper is proposed, and the results are compared.

Overview of Solution

We first approximate a tapered cylinder of length L (Fig. 1) by a
connected series of constant cross-section cylinders (Fig. 2), each
with a slightly smaller radius than the one on its left. Timoshenko
et al. [1] and Seto [2] provide equations of vibration for members
with constant cross section. Each sub-cylinder has a particular set
of equations reflecting its particular constant cross section. We
then match deflection, slope, moment, and shear at the boundaries
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between sub-cylinders, knowing that the frequency of vibration of
each sub-cylinder is the same. This takes the form of a large matrix.
Finally, the solution to the frequency equation in the form of a
transformed fundamental root is obtained as a function of taper.
The frequency equation is the expanded determinant of the matrix,
and the numerical solution is obtained when setting the determinant
to zero. (Readers not interested in the equations and computational
method may proceed to the Results section.)

Method of Solution

To solve the title problem, we first partitioned the tapered cylin-
der into a stepped cylinder consisting of n equal length cylinders (δ
= L/n) of decreasing radii (ri, see Fig. 2). The start of each tapered
sub-cylinder has the larger radius at the left. Each of the stepped
sub-cylinders has a constant cross section and therefore constant
moment of inertia I = πri

4/4 and constant area A = πr i
2. Deflection.

slope, moment, and shear are matched across the interface between
sub-cylinders. What should the radii of the stepped sub-cylinders
be? We look at three possible ways to determine these radii, posi-
tioned ui* from the right end of the tapered sub-cylinder (Fig. 3):

1. Use the radii at midlength of the tapered sub-cylinder (mid-
length radii), i.e., ui1/δ = 0.5. Note: ui1 is constant for all sub-
cylinders, all tapers.

2. Use the radii at ui2/δ the centroid of the tapered sub-cylinder
(centroid radii). Note: ui2 depends on taper, n, and i (see Ap-
pendix).

3. Use the radii at ui3/δ that give equal volume to the stepped
sub-cylinder and tapered sub-cylinder (equivolume radii).
Note: ui3 depends on taper, n, and i (see Appendix).

As calculated, the centroid radii are slightly larger than equivol-
ume radii, which in turn are slightly larger than midlength radii. For
clarity, we present the method of solution to the stepped cylinder
using the midlength radii. The method is also valid for the centroid
radii and equivolume radii. Results and conclusions are valid for all
three positions of radii, and for large n they are indistinguishable.

To reduce the number of variables, we use normalized radii at a
stepped cylinder. thus

where
i = the ith cylinder, i = 1, . . . , n,

n = the number of stepped cylinders,
ri = the radius of the ith cylinder, constant cross section,
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FIG. 1—Simply supported frustum of a right circular cone.

FIG. 2—Partitioned tapered cylinder into a stepped cylinder (n = 4) .

FIG. 3—Geometric variables for radii of sub-cylinder.

rO = the radius at start of tapered cylinder (that is, large end),
b  = rL/rO, radii ratio of small end to large end (tapered cylin-

der), a measure of degree of taper,
rL  = the radius of tapered cylinder at L (that is, small end), and
½ = the normalized location for ri of midlength radii (see pre-

vious) (can use ui2/δ or ui3/δ, the centroid or equivolume
radii location, respectively).

After setting up the radii of each of the stepped cylinders, we turn
to the methodology used by Timoshenko et al. [1], Seto [2]. and Mur-
phy [3], and for brevity we refer the reader to these publications. We
assume the large diameter is small in comparison to its length,
thereby ignoring any effects of rotary inertia and shearing deforma-
tions.’ Basically, after we divide the tapered cylinder into n divi-

2 Referring to the section in Timenshenko et al. [1 ] on Effects of Rotary Iner-
tia and Shearing Deformations, using a shear coefficient of k´ = 0.9 for a circu-
lar cross section, and assuming a shear modulus equal to 1/16 (0.0625) times the
modulus of elasticity for wood, the measured frequency of vibration is reduced
by 1 - (2.4d/L)2. If the diameter of a wood cylinder is 0.1 times its length, then
the effect on frequency is 0.94; if d/L = 0.0625, then the effect is 0.98.

sions, each with its particular origin, then substitute “equivalent”
stepped sub-cylinders, we solve the vibration equation for each sub-
cylinder and match boundary conditions at the interfaces of the sub-
cylinders. Each sub-cylinder has a unique and constant cross section.

The deflection at any location of the ith sub-cylinder varies har-
monically with time t as

yi = Xi(A cos 2π ft + B sin 2πft)

where Xi is strictly a function, called a normal function, of distance
xi along the length of the ith sub-cylinder and satisfies a fourth-or-
der ordinary differential equation, Xi

iv - ki
4 Xi = 0 [1]. The general

solution to this differential equation has the form

X i(x i) = Ci1 cos kixi + Ci2 sin kixi + Ci3 cosh kixi + Ci4 sinh kixi

where

where
f = cylinder natural frequency,
E = cylinder modulus of elasticity,
It = cylinder moment of inertia,
ρ = cylinder mass density, and

Ai = cylinder cross-sectional area.

The previous equation is significant because although each sub-
cylinder has its particular value of ki, the ki are a constant k times a
function of b, i, and n. This allows us to formulate the matrix in
terms of b, i, and n and determine how the frequency of vibration
is reduced as a function of taper.
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We now have n normal functions Xi with 4n unknown constants
Cij. The necessary 4n boundary conditions come from zero moment
and zero deflection at the ends of the tapered cylinder and 4( n - 1 )
matching conditions at the n - 1 interfaces (that is, matching de-
flection, slope, moment, and shear). This 4n × 4n matrix is a
banded matrix with an 11-element bandwidth (see Appendix for
Matrix Formulation). This set of 4n boundary condition equations
will have nontrivial solutions only if the determinant of the matrix
multiplying the 4n coefficients Cij is zero, Thus, the expansion of
the 4n × 4n determinant is the frequency equation for free trans-
verse vibrations of an n-stepped cylinder. Roots of the frequency
equation. forcing the determinant to vanish. correspond to the nat-
ural frequencies. We are interested in the first nonzero root, which
corresponds to the fundamental frequency.

The elements of the 4n × 4n matrix consist of trigonometric and
hyperbolic terms with arguments kLαi and multiplied by 1, αi, αi

2 ,
or αi

3 for deflection. slope. moment. and shear. respectively (see
Matrix Formulation in the Appendix). The term αi is defined as

As in Murphy [3]. we define K1 as the transformed fundamental
root of the frequency equation:

As can be seen, we define the solution K1 in reference to a cylinder
without taper.

Computational Solution Steps

1. Select a value for n, divide the cylinder into n parts each with
length L/n.

2. Select a value for b (that is, degree of taper. rL/rO) with 1 ≥ b
> 0.

3. Choose a value for kL.
4. Find the determinant of the 4n × 11 band matrix by

(a) using Gaussian elimination with row pivoting to reduce
the matrix to an upper banded matrix (can do in-place
by adding 2 columns. 4n × 13) and

(b) multiplying the diagonal terms to calculate the deter-
minant.

5. Check the determinant against a very small number and iter-
ate steps 3, 4, and 5 until the determinant is close enough to
zero.

6. Calculate K1 = [(kL)2/(2π)]2; this K1 is specific for the degree
of taper b being investigated.

7. Loop steps 2 to 7, covering degree of taper b from 1 to 0.01.

Results

Numerical Solution

The solid curve in Fig. 4 is K1 computed as described in the pre-
cious section as a function of degree of taper b. This curve is the
overlay of the solutions using midlength, centroid, and equivolume
radii. with the tapered cylinder divided into 512 equal parts ( n =
512), showing no difference resulting from the radius definition
used. The number of equations in the matrix is 2048. We get the
same numerical solution with 32 divisions. The number of divi-
sions, n, was doubled until the solution remained the same. As b ap-
proaches 1 or no taper. K1 numerically converges to 2.367, which
agrees with the analytical solution [ 1 ] of a simply supported beam-
cylinder ([π2/(2π)]2).

Numerical Bounds

The uppermost dashed line of Fig. 4 represents K1 for a no-taper
cylinder with radius rO. The lowermost dashed curve represents K1
for a no-taper cylinder with radius rL but using IO and AO. This re-
sults in K1 times (rL/rO)2 or K1 b2.
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Approximate Solution

The diagonal dashed line of Fig. 4 is an approximation for the
solid line numerical solution for cylinders with small taper, K1 =
2.467rL/rO. Substituting the approximation for K1 for small taper
results in the following equation for small tapered cylinders:

where It and At are calculated using the geometric mean square root
radius

to give

At b = 0.85, the ratio of the approximation to the numerical solu-
tion is 0.996, and at b = 0.80, the ratio is 0.993.

Conclusions

The numerical solution of the frequency equation of the free
transverse vibration of a simply supported frustum of a right circu-
lar cone (that is. a tapered cylinder) divided into stepped cylinders
has been presented. A simple analytic approximation to the numer-
ical solution for a small taper (1 ≥ b ≥ 0.8) was also developed.
This closed-form approximate solution is easier to implement com-
putationally than the numerical solution. From this work, the fol-
lowing conclusions can be stated:

• The numerical solutions using three different radii ri for the
sub-cylinders are indistinguishable.

• The analytic approximation. using the geometric mean square
root radius of the two end radii to calculate the moment of in-
ertia and cross-sectional area of the tapered cylinder, results in
a slightly unconservative estimate of the tapered cylinder’s
stiffness EIt and the modulus of elasticity E.

• Using these equations, transverse vibration can be used as a
method to sort small-diameter logs if frequency f, geometry L,
rO, rL. and mass density ρ are measured.

APPENDIX

Calculation of Centroid Location

The rj are radii at the ends of the tapered sub-cylinder. The dis-
tances ui2 locate the centroid of the tapered sub-cylinder.

Calculation of Equivolume Location

The ri are radii that yield the same volume in the stepped sub-
cylinder as the tapered sub-cylinder. The distances ui3 locate where
these radii occur in the tapered sub-cylinder.

Matrix Formulation

The general normal equations for deflection, slope, moment, and
shear of the i th sub-cylinder are, respectively ( i = 1, . . . , n ),

with the following matching continuity boundary conditions at the
end of one cylinder and the start of the next cylinder ( i = 1, . . . , n
– 1):

If we substitute



and define

The elements enforcing zero deflection and zero moment at the
left end of sub-cylinder 1 are

then we can develop the 4n × 4n matrix, which multiplies the 4n
unknowns Cij.

The elements for adjacent sub-cylinders. matching deflection,
slope, moment, and shear are. respectively ( i = 1, . . . , n - 1 ),
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And finally, the elements enforcing zero deflection and zero mo-
ment at the right end of sub-cylinder n are

These elements form a 4n X 1 I banded matrix. To use row pivot-
ing in place, we added two columns to the upper side of the band-
width for an 4n X 13 banded matrix. We made the matrix elements
double precision (64 bits) with n = 5 12.
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