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TRIGONOMETRIC TRANSFORMS

by

frederic j. harris
San Diego State University

SINE WAVES

To start our review of trigonometric transforms we
will present a convenient and often illuminating
representation of the sinusoid and of the co-sinusoid
waveforms. We first recognize that there is a
one-to-one correspondence between an ordered pair
of real numbers, a point on a piane, and a vector
leading to that point on the plane. We wiil reserve
the option to use any of these interchangeably as
the need arises to aid our understanding of the
transforms.

Let us examine the point on the plane R » etif. As
indicated in Figure 1, the point can be decom-
posed into components in each of the two coordi-
nates, X and Y, where

X = Rcos @
Y = R sin 4.
Y
J
_______ Re+i0
R sin & |
R !
|
0 I
X
R cos 8

Figure 1. Mapping of the Point R ¢*I

We use the standard convention that positive angles
are measured counterclockwise (CCW) with respect
to the X axis, and O is identified as an angie in
radians if it appears as the argument of a trigono-
metric function,

We sometimes denote the vector (or point) in the
form of an ordered pair of reali numbers of the
form

Retif = [Rcos(8), Rsin(d)].
Recognizing that the order is important, we some-

times label the ordering and call the complex pair a
complex number of the form

Reti® = Rcos(§) +i R sin (8).
Note the “j'" serves as a label, identifying the
component associated with the second position of
the ordered pair.

We also observe that R e-if can be represented by

R e-if

li

R cos (-0} +| R sin {-9)

it

Rcos (@) - R sin (8},
which is indicated in Figure 2.

Y
\

R cos {8)

-8
-R sin (8)

_ |
x

Figure 2.  Mapping of the Point Re/f



It may happen that § is an angle that varies linearly
with time, that is, 8 = wt, so that at different
points in time the So&nt {or vector) identified by
R eiwt will be found at different places on the
plane. This is indicated in Figure 3.

Y

]

~. 1 )

Figure 3.  Mapping of the Point R elwt for distinct
values of t

The components into which we can decompose the
point R eJWt are also time varying, that is,

Reiw! = Rcos (wt) +j R sin {wt)

Classically, a vector is not allowed to spin, so we call
a spinning vector, a phasor. But for our discussion,
we will use the rather descriptive name of rotating
vector and we will talk about R eiw!t as a vector of
length R and spinning CCW at a fixed rate of w
radians per second. We observe the vectors R etiwt
and R e-iwt spin in opposite directions. By simple
vector addition, we compute the sum and difference
of these counter-rotating vectors as

R ejwt + R e=jwt = 2 Rcos {wt)
Reiwt - R e-jwt = 2jR sin{wt),
Y N4
1
. //\_\
Relwt <Z/ > Rej‘-dt
\\\ \\ \
) : - X = X
F‘Te-iwt Re—jwt
Figure 4.  Sum and Difference of R e /Wt gyg

R e—}wt

from which we have Eulers’form of the trigono-
metric functions

glwt + e~jwt

cos (wt) = —————
2
glwt — e-jwt
sin {wt) = .
2]

From this point, when we say cosine or sine function,
we should visualize a pair of counterrotating
vectors. Thus A cos {wt) is a pair of vectors, each of
length A/2, one rotating CCW (from positive real to
positive imaginary), the other rotating CW {(from
positive real to negative imaginary). A very
convenient scoreboard to assist in this visualization
is presented in Figure 5,

L “
r 2n -

Scorcboard representation of A cos(wt)

Figure 5.
The position of the vectors on the w/2m axis
indicates the rate of spin. Thus the vector at w, /27
is a vector of length A/2, spinning in a CCW
direction at a rate of w, radians/second, and the
Vector at -wgy /27 is the same length vector spinning
in @ CW direction at the same rate. The use of the
w/27 coordinate anticipates work we will be
examining shortly. We also recognize that since the
vectors are rotating, the scoreboard represents a
photograph at a given instant of time. Figure 6 isa
representation of A 'sin (wt).

1
A
i Eal
1—\ 2
by
wWo “
27 2n

Figure 6. Scoreboard representation of A sin(wt)
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We note if we allow the sine vectors to rotate a
quarter of a turn, and then photograph them, we will

have the cosine vectors. Thus, the distinction

between the cosine and the sine wave is our
definition of the time origin and we see time delay
as phase shift applied to a sine wave. See Figure 7,

/. /.
s

Figure 7. Sine and Cosine Wave Distinguished by
Time Origin ‘

Suppose we have a waveshape composed of both a
sine and a cosine wave? Then it is of the form

A cos(wt) + Bsin{wt),

which on our scoreboard has the representation
shown in Figure 8.

2
Figure 8. Scoreboard for Acos(wt) + Bsm(wt)

But we observe that the ordered pair associated with
the rate of change of angle w can be written as

(—%?) oras R cos(®) +] Rsin{¢) = R ei®,

2 2 —ll
where R = (9—) + (%) and ¢ = tan <— —’S—-)

so that an alternate representation for Acos(wt)
+B sin (wt) in terms of the complex amplitude of
the rotating vector is

Rei® ejwl + Re-i¢ e—jwt,

See Figure 9,

Figure 9. Scoreboard for R ejqb ejwt +R e'j¢ g‘jwt
EVENNESS AND ODDNESS

Another useful tool which we wiil be using to our
advantage is the concept of the even part and the
odd part of a function. A

For a real function h(t) to be even, h(t) must satisfy
h{t) = h{(-t). That is, when we rotate the time axis
about the origin, we should see the same function.
See Figure 10 for examples of an even and a
not-even function,

hit)

AN

hi{-t}

EVEN

g(t)

gi-t}

NOT-EVEN

Figure 10. An Even and a Not-Even Function



For a real function h(t) to be odd, h(t) must satisfy
h{t) = -h(~t). That is, when we rotate the time axis
about the origin we should see the negative of the
original function. See Figure 11 for examples of
an odd and a not -odd function.

hit)

A1

L
AN

h{-t)

N

oDo

git)

A

D/

N
NN

NOT-0DD

Figure 11.  An Odd and a Not-Odd Function

Every function can be decomposed uniguely into its
even and its odd parts.

From hi{x) = Ev(x) + Od(x),

h{-x} = Ev{-x} + Qd(-x)

we derive by addition and by subtraction

Evix) = hi{x) + h(—-x)‘
2
Odix} = h(x) ; h{-x) .

See Figure 12 for an example of this decom-
position.

h{t}

h{-1)

hit)+h{-1)
2

h{t)-h (-t}
—

Figure 12. Decomposition to Odd and Even
Parts of h(t)




We observe that if h{t) = elwt, then

jwt + e-jwt '
Ev(t) = El——-—-z—?-l—- = COS(OJt),
gjiwt ~ g-jwt
2

QOdlt) = = jsin{wt),

or that the cosine and sine functions are the even and
the odd parts of the compiex sinusoid.

FOURIER TRANSFORM

We define the Fourier transform by a pair of
integral operators of the form

+o0
Hlw) = [

—o0

Fourier transform hit) e-jwt dt,

oo

Inverse transform  h{t) = [H(w) etiwt dw/27.

ol

We note that since the inverse transform is an
integral with respect to dw/27 (actually df; oh,
that's why the scoreboard has units of w/2w!)
another equivalent form of the transform is

+eo

H{f) = j hit) e- 2Tft dt
+00

hit) = [ H(f) e+ 2t df.

We will use either definition according to our needs
and whims. Naotice that since the argument of the
complex exponential must be dimensioniess, the
two components of the argument must have
reciprocal units such as

t {sec.} - f (sec.—' or Hz)

A {ft} - k {ft.=! or wave number),

In some applications, such as multi-dimensional
transforms with input variables having the same units

such as x, y, and z, the output variables are dencted
wx, wy, and wz.

We note that there are a number of conditions
which must be satisfied to assure existence of the
transform. These conditions are fairly easy to
visualize, and include finite power ({square
integrable}, and finite variation (finite length curve
in a finite interval). The introduction of generalized
functions, such as impuises, relaxes the first
condition. For most applications of engineering
interest, a sufficient condition for existence is simply-
(the barris condition) 'If you can draw a picture of
it, its transform exists!’’ This is a sufficient but not
necessary condition, because there are obviously
functions- we can not draw, such as those with
non-finite support [e.g.e~tu(t)], that do have trans-
forms. Bear in mind, of course, that for any machine
pracessing, all conditions for existence are satisfied.

Now let us examine one of the significant properties
of the Fourier transform , that property related to
even and odd parts of a function. We will use this
information to realize considerable computational
savings in addition to those realized by use of the
fast Fourier transform.

SIGNIFICANCE OF ODDNESS AND EVENNESS
Let h(t) be decomposed into its even and odd parts

hit) = E{t} + 0(t),

then its Fourier transform is easily seen to be

+oo

/' h(t) e~iwt dt

—00

H{jw)

oo

= j [E(t) + O(t)] [ cos{wt) - j sin{wt)] dt

e ]

+oo

= f [E(1) coslwt) Ot} sinlwt) +

—o0

O(t) cos(wt) - jE(t) sin{wt)] dt.



But O(t) cos(wt) is an odd function, Also,
E(t} sin{wt) is an odd function,

. ‘ +oo
then the integrals ) ) ‘
Holiw) = < [ 0 sin (wt) dt
+oo -
f E(t) sim{wt) dt = 0
. - ) 400
Hol-iw) = =i [ Ot sin (~wt) dt
+co oo
f O{t) cos(wt) dt-= 0
-0 +00
=+ j O(t) sin {wt) dt, 7
and H{jw} = —o0
+o0 +o0 i ‘ ' *
| B costwn dt - [ O sinfwy gr, o which we see that Holjw) = -Hol-j) or
HO(](.J) is alsc odd.

Since the transforméAaireTiné'ar,' multiplication by a
it follows, then, that the transform of a real even constant in one domain is equivalent to muitiptying
function is real and that the transform of a real, odd by the same constant in the other domain. If the
function is imaginary. constant is j(\/-T), then when we move a real function
into the imaginary plane, its transforms similarly
move! These relationships are depicted quite graph-
ically in Figure 13, after Bracewell (Reference 1,

Observe pg. 15).

But there is more (much more)!

Given h{t), we can find H{jw) by

+o0
+oo Hijw) = [ h{t) e—iwt dt.
Heliw) - = fE(t) cos{ct)dt —co
- -
N Now, suppose we examine the even part of h(t),
o o)
Het-iw) = [ E( cos(-wnidt nelt), then the real part of "
- Hiiw) = | helt) e-jet dt
+o0
= f E(1) cos{wt)dt i
U cos{wtidt, Heliw) = | he(t) cosfert) dt.
-~
-0

Again, our instructions: for each value w, say

w = wy, take the product of helt) with coslw,t),
from which we see that HE({jw) = HE(—jw) or  find the area under the product; that area is exactly
HE{jw) is also even. equal to Heljw,).
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Figure 13a. Even, Odd Relationsbips of the Fourier Transform



R1 R1

Complex, Even Complex, Even

R1 R1

i
Complex, Odd Complex, Odd
R1 R1
1
Im t w
Real Hermitian™
R1
t
Im w
Imaginary Anti-Hermitian™™
*Hermitian Real part EVEN **Anti-Hermitian  Real part QDD
Imaginary part QDD Imaginary part EVEN

Figure 13b. Even, Odd Relationships of the Fourier Transform



For example:

Figure 14a. Product Term, h,(t)cos(wqt)

We can see that as w increases, the product
he(t) ® cos wt has vanishingly small area. {This is
related to the convergence of the integral and hence
to the existence of the transform.)

For real worid functions, the area for large w does

h (th ecos w,t

hg(t)

Figure 14b. Product Term bel(t) cos (w t)

go to zero; hence, the Fourier transform goes to zero
for large w.

Again, after Braceweil, we present in Figure 15 a
graphical interpretation of an evolving (with w)
transform (Reference 1, page 20}.

Figure 15. Area Under Product as a Functioit of w



A similar sequence can be drawn for the odd part of
the function; hence the imaginary part of the
transform.

Let us examine the Fourier transform of a very
simple function, the rectangle pulse. We use this
function as an example because we will need this
transform for later work.

Let h{t) be the time function indicated in Figure 16,

| hit}

1.0

a1

~T/2 0 T/2
Figure 16. Rectangle Puise

then the Fourier transform of h(t), H{w), is seen to
be

+o0

[ o et

+T/2 )

= j hit)e @ty
-T/2
+T/2 )

= 1.0e 19 4
~T/2

H{w)

1 —jwt
— e

fw
e+jr.aT/2 _e-;‘wT/2 .

jo

t = T/2
-T/2

t

Multiplying and dividing by T/2, we have

+wT/2 -jwT/2
Hiw) g —=

[}

T

2] wT/2

sin (wT/2)
wT/2

10

We note for later use that this function is called the
sinc kernel. The kernel has zeros at each value of w
for which the numerator has a zero, except the
values corresponding to zeros of the denominator,
The numerator has zeros at those values of w

satisfying
T .
wy = k w for all integer k.,
_ 2
orw = T k
27 27 2n
= +2_ + —_— + -
T 2 T +3 T

At k = 0, both the numerator and the denominator
have zeros which make the evaluation indeter-
minant. But we can resort to Taylor series or to

L'Hospital’s rule to determine that S'%‘ evaluated

at the origin is unity, so that the kernel evaluvated at

the origin is T, the average value of the pulse. A
typical sinc kerne! has the form shown in Figure 17.

T

N | N o
B R A N ! 2 3 $
T T T T T T T T

Figure 17. Transform of Rectangle Pulse,
Sinc Kernel

FOURIER SERIES
If h{t) is pericdic in T, that is, if h{t+T) = h(t) for

all t, then at each point of continuity h{t) can be
expressed by

+co
hit) = ch etlwnt,
e ]
where wn = 2—.;{71.
+T/2

I
—i—
—

and where Ch




We note that cp is the complex coefficient of our
scoreboard which associates an ordered pair of real
numbers with each value of wn/27. We also note
that the above integral is of the form defining H{w)
for the Fourier transform. Thus for real hit), cn
also decomposes into real and imaginary
components with the real part exhibiting even
symmetry and the imaginary part exhibiting odd
symmetry,; that is,

RE[Cn] RE{C...n]

Im(cn] = =Imlc_,},
which is equivaient to

cn = an + jbn

C-n = an - jbn:

See Figure 18.

C3
L
o
Figure 18. Fourier Series Coefficients on Frequency
Axis
By simply reading the real and imaginary

compaonents of the complex coefficients, we have an
alternate, but equivalent definition of the Fourier
series;

h{t) = ag + 21 2 a, cos{wpt)
n =
+ Z 2 by, sin{w,t),
n=1
1 +T/2
where a, = T h{t) cos {wyt} dt
-T/2
+T/2
bh = h(1) sin lw, ) dt.
-T/2

Returning to the first definition of the Fourier
series and applying it to the simple periodic square
wave as shown in Figure 19,

A hit)
1.0
: = —=
-T -7/2 0 7/2 +T
Figure 19. Periodic Rectangle Pulses
: +T/2 ‘
th =T h(t) e7Jent gt
-T/2
: +7/2
- -jcont
= f h(t) e7)«nt gt
-1/2
. t=7/2
1 e-iwnt
T T —jwn
t = -1/2

1 e+iwn1’/2 - e—j(-dnf/’2
Tr_ jwn .
Multiplying and dividing by 7/2, we have
Hwnr/2 _ g-iwnt/2

T e
T 2jwnT

Ch =

r sinlwnt/2)
? i(.dnT/2
sin[m{r/TInj
T —_—
[m{r/T)n]

For {#/T) = 0.1, the scoreboard representation of
the Fourier series coefficients is presented in
Figure 20,

\Re

o

=
2n
Figure 20. Fourier Series Coefficients for 10%
Duty Cycle Square Wave of Figure 19

1



SAMPLING THEOREM

The two integrals defining entries for our scoreboard
were the Fourier transform

+o0

Flw) = f h(t) e-I@t 4t

-0

and the Fourier series coefficients

1 +T/2
ch =— f h{t) e=jwnt dt,
T
-T/2

We observed from the two exampies that the
application of the two integrals lead to functions
and to sequences which bear a striking similarity. In
fact, we will now concentrate on this similarity and
construct the details of the sampling theorem.

p— i

-2 0 7/2

Notice we can write the second integral (from
above} in the form

+T/2
[ hiw emjot dt]

TCn =

-T/2 27

In this form it is apparent that the Fourier series
coefficients of a periodic wave are merely the
uniformly spaced samples of the Fourier transform
of the nonperiodic version of the same waveshape.
We further note that for periodic replicates
separated by intervals of T seconds, the
corresponding sampling of the Fourier transform
occurs at uniform spacing of multiples of 1/T. See
Figure 21,

We can play this game from a number of starting
places, We can have a nonperiodic function, h(t},
and its Fourier transform H(f). We can then sample
H{f) and recognize that the sequence of samples
corresponds to the Fourier series of the periodically
extended version of h(t). See Figure 22.

!

'

\
Al
| T A "T‘x w/2n

AN i
Wl
pem—
t N /\—w/Zn
N o 1\_/ *

r

Figure 21. Relation Between Sample Spacing and Replicate Spacing

= /\ |
0 -t AN w2
| I.(
Y = AN U
1
} 3 N ,-"T?\_‘ ,'T r\; ,’TT\\ — /2T
-T

T EM’:)'?

Figure 22. Relation Between Replicate Spacing and Sample Spacing
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We observe that the two spacings are reciprocally
related; that is, if we increase the spacing in one
domain, we decrease it in the other domain.

Thus by taking samples in one domain which are
arbitrarily close, the replicates in the other domain
are arbitrarily far apart. Then, by increasing the
spacing between samples in one domain, the
replicates in the other domain move closer together.
We may wish to control the sampie rate so that the
replicates do not overlap. This is accomplished by
simply requiring the replicate spacing to exceed the
width of the ‘function being replicated; that is
equivalent to requiring the sample spacing to be

h{t}) SAMPLED
. ) Re

N

hit) REPLICATED
‘ Re

m ""lhh‘.

smaller than the reciprocal width of the repiicating
wave. Note, it may not be possible to avoid overlap
because the function being replicated is not of finite
width. The overlap between periodic replicates is

known as aliasing, or foldback of the replicates.

Finally we note, given a Fourier transform pair, we
can sample in either domain, and those sampies will
be the Fourier series coefficients of the periodic
extension in the other domain. Also, the samples
may be taken sufficiently close together to avoid
unacceptable overlap of the periodic replicates. An
exampie of this operation is shown in Figure 23.

1 H{f} REPLICATED
) Re

e
&

o~ : l
im # % :S
W

H{f} SAMPLED

\ Re

f

Figure 23. Sampling and Replicating in the Two Domains
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We note that for every sequence of numbers (real or
complex), there corresponds a periodic waveshape
which can be constructed with that sequence being
the Fourier series coefficients. Then, given a signal
h(t), with transform H(f), we can uniformly sample
h{t) to obtain the sequence h{(nT) which is the
Fourier transform coefficients of the periodically
extended version of H(f), denoted HT{(f), where
HT(f) is

FINITE FOURIER TRANSFORM

We observed that the periodic and coordinate
normalized Fourier transform associated with a set
of time samples, h{nT), or simply h(n), could be
written as HT(B), where

+oa
HTO) = > hin) e7ion

N=-00

-Tt< 0 <7

Of course, for machine computation of the

[2m(#-£) T/2] [2m{f+ ) T/2]

where the window for this example is the unit
rectangle of width T, for which the transform is

sin(27fT7/2) )
(27fT/2)

We see that the original unwindowed transform
{Faurier series) scoreboard was a set of real
numbers located at *f;. See Figure 25a. The
transform of the window was of the form sin x /x,
see Figure 25b, and the windowed transform was
af tha form two <in v /% each transiated to £f~ and

e (T transform we must limit the number of sampies h{n) -
= Z h{nT} e-i27f(nT}. to some manageabie finite number. So we now
n=—co define a finite Fourier transform by
+T/2
: —j2mwft
H(f) = f cos(2nf.t) e dt
-T/2
+T/2
_ j e+121rfct . e—]27rfct e—;Zﬁftdt T
-T/2
+T/2 +T/2 f
—j2r{f-f )t T -i2m(f+f it ¢
l a ! Cdr + l e ¢ gt
2 2 f
~T/2 -T/2
Figure 25a. Unwindowed Transform
- _; T sin (2w {(f-f)T/2] 1 T sin[21r(f+fC)T/2]’

Figure 25b. Window




The Fourier series spectral scoreboard of this signal
is presented in Figure 26.

50.0

Figure 26. Fourier Spectra of Costne and Windowed
Cosine

~ When we examine a finite amount of the signal, say

T secands worth, through the rectangle window, the
transform becomes the pair of sin x /x located at
each spectral line location. Obviously, if f; resides in
one of the side lobes of the window located at f,,
there is no hope of finding it! The solution, of course,
is to select windows whaose Fourier transform have
low side-lobe levels. But this leads to an interesting
conflict. It is easy to demonstrate that the rate at
which the envelope of a Fourier transform can fail
is related to discontinuities of the criginal function.
if the n-th derivative of a function has a discon-
tinuity, then the transform of that function falls

like One approach to good window

—_
w(n+1')‘
selection is to pick windows with discontinuities in
the higher derivatives.

The rules of the game are:

1. Windows with smoother behavior in
the time domain exhibit smoother
behavior in the frequency domain.

2. Windows that are smoother in the time
domain tend to have narrower time
duration (i.e. smaller rms time width).

3. Windows that are narrower in the time
domain tend to have wider bandwidths
{(i.e. greater rms bandwidth),

4, Convolving with wider spectrai width
windows will impair the ability to
resolve close spectral components.

See Figure 27.

Specific examples and performance of classic
windows will be presented after the details of the
fast Fourier transform are examined.

DISCRETE FOURIER TRANSFORM

We have gone through a sequence of manipulations
on a signal h{t} and its transform H(f). These
include, windowing, so that a finite amount of data
is processed, and sampling, so that a certain type of
machine can perform the processing. These
considerations lead us to the finite Fourier
transform , which is of the form

N—1
H{d) = Z h(n) e-ifn,
n=0

N-1
or Hif) = Z h(nT) i Tn.
n=0

Notice that H(f) or H{d) is still a continuous and
periodic function. But for machine computation, we
must select the values of & or f for which the
computation is to be performed. In fact we have to

17




-T ) T 4]

T o T o ° 3&‘30 f

=T 0 T‘_t 0

Figure 27.

sample the continuous and periodic Fourier trans-
form. A reasonable set of 8's or f's at which to
sample the Fourier transform are N equally spaced
samples over one period of the transform. Thus
a8 = -zlk, k=2012,...N-1,orf =f—s k, same
N N
k’s, so that the sampled finite Fourier transform
has the form

HiBK) = H(=Z k)

1]

= —'-2lk n
z h{nT} e N .
n=0

Now, denoting h(nT) by h(n) or hp to suppress
dependence upon time, but not upon the index n,

18

Sequence Showing Smoother Windows, Smootber But Wider Transforms Hence Increased
Difficulty in Separating Spectral Lines

and denoting H(dk) by H(k) ar Hk to suppress
dependence upon angle, but not upon the index k,
we have the form

N-1 Lom,
H(k) = z hin) e ' N
n=0

Before we sampled H{#) to obtain H{f8k),we had a

vehicle to return from the periodic Fourier
transform to the time samples; it was the integral
transform of the Fourier series. We now address the
question, given the N samples of H(8), is it still
possible to return to the original time samples? And
the answer is yes! This is one reason for selecting
N samples of the transform. Since we started with N
samples of data, the transformation is invertible.

o



One way to arrive at the inverse transformation is

through a simple matrix inverse of the original

transformation. We note that for each value of
2

8 =0k = £\ \we have one equation of the form

N

N--1 21
-k
Z hn e .

n=Q

-]
For the benefit of the typist, we defineW = e N,
so that the summation has the form

N-1
Z hp WRK
n=0

The collection of equations can be represented in
compact form as a vector matrix equation of the
form

Hy wl w0 WO e w0 (N=1) n
Hy wo Wl WS iivieaens Wl (h=1) hy
? ? 4 2(N=1)
Hy v W W h,
0 =) 2Nl L (N-1) (N-1)
| Fy-1 W W W ] Ly
2w

where W = enli\I .

This collection of equations represents a mapping
from a point in N space to another point in N space.
The mapping is represented compactly as H = Y h.
If we were to invert this mapping, we would be
solving for the hp's in terms of the Hi's. The inverse
mapping is represented compactly as h = y! H.
The ¥ matrix has some very unusual properties;
these include orthogonat rows and columns. From
the matrix theory, we find the inverse is {within a
muitipiicative constant) equal to the original matrix,
conjugated and transposed. But since the matrix is
symmetric, all we need to do is conjugate and divide
by a constant, The constant happens to be the
determinant of the matrix.

Then,
hy 101 T L 1 HJ
- - -{N=
hy 1 t WL W N-1) Hy
h 1 -2 L 2=l Hy
2 N
- il :
H N 3 .
h N w-(N-l) W-Z(N-lt _____ w*(N-l) {N~1) Hy
-1 L ?

It is rather simpie to demonstrate that this is the
correct inverse from which we arrive at the
interesting expression

1 NZ +J—kn
n = 2

We thus have the discrete Fourier transform pair
which we compare now to the continuous Fourier
transform pair;

N-1 27
ke

Z hne

n=0

Discrete <
1 N=T +j—2—7-r kn
hp = N Hge N
\_ k=0
Hiw) = [ hit) et ae
Continuous

— _1_ +iwt
h() = >~ fH(w)e jwt ge,

INTERESTING SIMILARITY!

We also note that except for the scale factor (1/N or
1/27), the forward and the inverse transforms are

identical, if we consider the conjugation as a trivial
operation.
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Notice the evolution of our development!

which  corresponds to one aperiodic discrete .
sequence and to ane periodic continuous function.
Fourier transform pair:
;= , ' h{n)
ht =~ [ H(w) e*iwt do, |
27
—00
+oo i I
Hlw) = f hit) e=iwt dr, ] = n
—_—0
. . . . Chi@)
which corresponds to two aperiodic continuous
functions.
h{t} _
: Discrete Fourier transform pair:
J/\}\ t " : |\Jz—’1 Hek) ﬂN ni
R - - —— n T e e
7 o U N
k=0
=T -—j-gN?I nk
'h(w) H{k) = hin} e )
: n=0
| -t which corresponds to two periodic discrete ’
0 sequences!
Fourier series pair:
+T ~oN _N 0 N 2N
! +j6
hin) = —— f H(9) etifn dg
27 o - hik)

H(B) = Z h(n) e-ifn,




We can determine the number of computations
required for the discrete Fourier transform by
examining the matrix description of the transform.

Fﬂa ] M 1 1. . . . .1 i how
1 2 -1

Hy 1 W w WN hl

1, L w2 4 w2 o1 n,

iy - i W wt W (-1 hy
. - (n-1) tN-1) | |

Hyy 1 w=1)y2 -1 W N o1

L - - L P,

Each element of the output column vector (Hm)
requires N complex multiplications and N complex
additions. There are N elements in the output
vector, hence we require N?* complex additions and
N? complex multiplications.

Recall that a compiex multiply is of the form
{a,b) ®{c,d} = (ac-bd,ad+bc);

hence a complex multiply is actually 4 real
multiplications and two real additions.

Similarty, a comptex addition is of the form
{a,b) + (e, d} = (a+c,btd);
hence a complex add is actually two reai additions.

The total computation load is then N? complex
multiplications and N2 compiex additions, or 4N?2
real multiplications and 4N? real additions.

Now, let us examine the discrete Fourier transform
of the sample set hin) = 1.0, n = 0, 1,...N-1.
This is effectively the DFT of the sampled rectangle
window.

=

HOY =
ya
n=0

h{n) e-ifn

N-1

z g-ifn

n=0

1+ei0n 4 e-j20n 4 4 e-i(N-1)6n

H

1+e-i0n+ 4 e"j(N—”Bn.g.fe—-jNﬂn.,. .
~[e=iNOn+

. . 1
but 1 +e—ifn + g-120n 4+ = T eio- the closed

form of the geometric series,

1—e-if
so that
Hig) = 1= i
1 —e-if

il

e—j(N/2>e\/e+j(N/2>e _ o-i{N/2}6
o-il1/2)6 )\ e4i(1/206 _ o-i{172)8 /.

s sin[(N/2)6]
=<e-l[ 2 ] 8) (sin[(‘l/.?)@] )

i)

Note e j[ 2 6 is the phase-shift term of the
transform, and the sin[{N/2)8)/sin[(1/2)6] is the
amplitude term. Let us examine the amplitude term.
We note here that this term is cailed the Dirichiet
kernel. The kernel has zeros at each value of 8 for
which the numerator has a zero, except at those
values corresponding to zeros of the denominator.
The numerator has zeros at those values of 4
satisfying

N : .
-2-9 = k. for ail integer k,
2T 27 1
or 6 = —Kk,oratw ={—] (—k]|
N T N
Wsg
where 8§ = —= |,
N
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The denominator has zeros at the values of #
satisfying

A==
1]

kw,

N =

or 6 27 k.

Thus the Dirichlet kernel has zeros at equally spaced
increments g& apart, except at the origin and

multiples of 2 away. |f we recail our concept of the
periodic function being defined on the unit circle,
we see the points 2m apart are the same point. We
can resort to Taylor series or to L'Hospital’s rule to
determine that sin(Nx}/sin x evaluated at the
origin is N, the number of points in the original
sequence. The kernel has the form presented in
Figure 29.

kAAidaasase

Figure 29. Dirichlet Kernel

We note that the kernel is the periodic replication of
the sinc kernel.

Now we must sampie H(8) at 9 =—2'\1:k to obtain the

output of the discrete Fourier transform. But the
sample points at %}-T-k coincide (except at the origin)

with the zeros of the kernel. Thus the sampie set
H(k) is the collection of points shown in
Figure 30. Note that linear interpolation between
sample points does not properly reflect the function
between these sample points.
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1|l Compare with figure 29
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Figure 36.  Discrete Fourier Transform Sample
Points

Now consider the DFT of sampies of the sinusoid
defined by

h{n) = cos(nw,T) = cos{n@,) where 0, = w,T.
Thus, N-1
H(G) = Sﬁ cos{ng, ) e-ind :
P
n=0
N-1 1 N-1 1
= 7ejn60 e=ind + z _2_6_,—;;16U e=inf
n=0 n=0
N-1 N-1 1 .
= -Le—jn(O—O(;.) -+ z —— e—in(0+0[)) )
n=0 2 n=0 2 '
. N
N= = (9=
2 sin[‘% {0-04)]
IN=-1 ' sin[N (0+60,4)]
Aoy (e,
—2- e .

sin[-;— (0+8,)]

which is a pair of kernels scaled by 1/2 and located
at +6,. See Figure 31,

-t

0
Figure 31. Transform of Windowed and Sampled .

Cosine




Now note,if 6, is any multiple ongE which we call
a DFT bin, then the sample set taken at k%r

coincides exactly with the zeros of the kernels. The
sample set will be of the farm shown in Figure 32,
But if the angle 8, is not a multiple of %}T, say

midway between DFT bins, then the sample set will
coincide with the local extrema of the kernel. The
magnitude of the samples will have the form shown
in Figure 33.
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Figure 32. DFT of Sinusoid Harmonically Related
to Sample Rate
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Figure 33. DFT of Sinusoid Not Harmomnically Re-
lated to Sample Rate

We note that a small shift in the sinusoidal
frequency reiative to sample rate causes all the zero
samples of the kernei to come up apparently out of
nowhere. We recognize that the kernel always
exhibits the side-lobe structure and for certain
frequencies we are fortunate to sample the side lobes
at their zero crossing. Often though, we are not so
fortunate and the samples of the side lobes impart
misleading information to the observer as to the
actual spectra. So, what do we do? I'm glad you
asked! We apply a different window to the data, one
which has significantly lower side-lobe levels.

WINDOWS REVISITED

Windows are an often misunderstood and misappiied
stepchild of spectral analysis. Many windows are
used in machine processing,not because they are in
some way superior, but rather because they are easy
to visualize; or are simply generated; or someone
thinks that they perform well; or "we’ve always done
it this way”. We will first examine classic windows
and then demonstrate their performance in 2
spectral resolution application.

A word of caution, windows are even functions
about their point of symmetry. |f the point of
symmetry is the origin, the evenness requires an odd
number of points. The transform sequences,
however, will have an even number of points, How
do we resolve the discrepancy? Easy, we have 10
remember that the windows are periodically
extended under the DFT sampling. Thus the two
end points are the same point! The triangle wave
shown bhelow demonstrates that one end point
belongs to the beginning of the waveshape and that
the other end point is the beginning of the next
replicate {Figure 34),

o s

Figure 34. Periodic Extension of Window
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Fignre 35. An Even Sequence, on the Circle +7 = =7

Thus the sequence presented in Figure 35 is an
even sequence under the DFT. Since the sequence is
periodic, it can be shifted so that the end point
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coincides with the origin. The shift, of course, oniy
contributes linear phase shift and does not affect the
magnitude response of the window transform. All of
the descriptions of the windows will assume even
sequences about the origin. When used as a window,
the sequence may be shifted and one end point
_deleted. All of the windows now discussed will have
N+1 points with N being even.

Rectangle Window: W(n} = 1.0 See Figure 36.

n=-=-N/2...,-1,01,...,N/2

Triangle Window: (Fejer or Parzen) See Figure 37.

2n .
Win) = 1.0 —lﬁ =-N/2,..,-1,0,1,.. N/2

cos® Window: (Hanning) See Figure 38.

27
Win) = 0.56+0.5 cos(n-ﬁ )

n=-N/2..,-1,01,...,N/2

Raised cos Window: (Hamming) See Figure 39.

' kg
Win) = 0.54+0.46 cos(n—|\-|- )
n=-N/2..-1,01, ... N2

Gaussian Window: See Figures 40a,b,c,

This window has an adjustable parameter,
effectively the reciprocal standard deviation (.

2n ' B
Wi < (R 3

n=-N/2.,-1,01,...,N/2

Dolph-Tchebyschev Window: See Figures 41a,b,c.

This window has an adjustable parameter, the
side-lobe level, where (8 is the number of decades
that the side-iobe level is down relative to the

26

main lobe. The window is most easily defined
in terms of its frequency response through the
Tchebyschev poiynomials. The window values are
obtained as an inverse FFT.

Win} =

cos {N cos™'{a cos(21r%)l}} 1 :
FFT-! '

coshiN cosh™ (o )]

|n(105 V1028 _ 1y
/2 -tan”' [x/ /1 - x*|

ixt < . 1.0

In{x + Vx* =1y axt > 1.0.

where @ = cosh|

and cos™! (x)

Kaiser-Bessel Window: See Figures 42a,b,c.

This window has an adjustable parameter, the
time-bandwidth product §.

olB V1 -(2n/N)?|

W =
tn) Iy (B)
n=-=N/2,..-101,..,N/2
= [15K]°
where lg(x) = 1+ z -
k=11 k!

We note in all the windows the trade-off between
side-lobe level and main-lobe width. When we push
down on the bumps, the main lobe widens. A good
figure of merit for the width can be derived
according to the foilowing reasoning.

The main-lobe width of any window cannot be less
than 27/N, the width of the Dirichiet kernel or
rectangle window. Examining the various windows
we see that each 20 dB drop in side-lobe level will
cost approximately a single DFT bin width. The
superior windows will exhibit main-lobe widths of
between 3 and 4 DFT bins for side-lobe suppression
exceeding 60 dB.
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Figure 36. Rectangle Window and Transform




T 1.50. ) In!

Win) ]—-—N"
+ 125 ;:: —zhsl,—(N—I) ..... 0,.. . (N-1),N
- 1.00
e
, | B
T
ill””” i i j‘l{ f!f‘“_, .

-25 -20 -15 -10 -5 o 5 10 18 20 25

Linear Scale
_X 1.0
T\ 0.5
f T T T T L T T T 0
- 0 s

1 20 Log,q (Magnitude)
J Scale

Figure 37. Triangle Window and Transform
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Figure 40a. Gaussian Window (8 = 2.5) and Transform
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SPECTRAL RESOLUTION

We now describe a simple experiment. We sample
two sinusoids of freguencies 10—fNiand 16-!{‘5 and of

amplitudes 1.0 and 0.01 respectively, where fg is
the sample frequency. The DFT of the signal is
presented in  Figure 43 and reflects our
description of the signal.

frequency of the larger signal to 10.51-;—which is

midway between two DFT bins. The DFT of this
signal is presented. in Figure 44 from which we
cbserve the total loss of the smaller signal in the
side lobes of the iarger signal.

We now apply different windows so we can observe
the effects on detectability and resolution. The first
window is the triangle window, and as expected, the
side lobes have falien considerably, but not enough.
The second signal is barely detectable (Figure 45).

The Hanning window performs slightly better. The
second signal is positively detected with about a
3 dB notch separating the two main lobes (Figure
46).

The Hamming window realizes a deeper notch
between the lobes of nearly 20 dB, but now the

-0 4

We now shift the .

side-lobe structure obscures the rest of the spectra
(Figure 47}.

The Dolph-Tchebyschev window easily separates the
two signals, The side-lobe structure is disappointing.
The reasoning of selecting a window with the
narrowest main lobefor a given side-lobe leve! seemed
to make great sense. |t makes sense, but it doesn’t
perform well { Figures 48a, b, c).

The Gaussian window does fairly weil. The two
signals are easily separated for reciprocal standard
deviations between 3.0 and 3.5 and the side-lobe
structure is manageabie, Here we can see the
diminishing returns of depressing the side lobes at
the expense of main-iobe width. During the change
from 3.0 to 3.5 to further controi side lobes, the
main-lobe width has increased sufficiently to fill the
notch between the two signals (Figures 49a, b, c).

The Kaiser-Bessel window does an outstanding job
in separating the two signals and holding down the
side-lobe -levels. For time-bandwidth products
exceeding 7.0, the side lobesare more than 60 dB
down and the notch separating the two signals is
20dB. The Kaiser-Bessel window achieves this
superior performance because it is the window
which, for a given time duration, maximizes the
energy concentrated in the main lobe.

FFT Bin ~ Ampi,
Signal 1. 10.0 1.0
Signai 2. 16.0 0.0

0 10 20 3¢ 40 56

T
90 100

Figure 43. Rectangle Window




FAST FOURIER TRANSFORM

The discrete Fourier transform is a well defined
- trigonometric summation relating a pair of periodic
sequences. each of length N. The fast Fourier
transform on the other hand is merely a collection
of aigorithms (or any one of the collection) which
realizes the required computations with a significant
reduction in the actua! number of multiplications
performed. The algorithms effectively factor the
weighted summations into a sequence of shorter
weighted summations. This is done by taking
advantage of the periodicities and the symmetries of
the periodic weighting factors and of the transform
itself. We will first describe the factoring as an
iterative process and we will then interpret the
resultant factoring as a matrix factoring, which we
can describe quite nicely with signal flow graphs.

The discrete Fourier transform is a collection of
equations defined by

N-1 2T
.
fimbe "N fork = 0,1, ..
n=0

Fik) = . N-1,

27
_,—....
For the sake of the typist we define W = e N , and
rewrite the definition of the summation by

N—1
k= > fin) Wk fork = g 1.

=0

n=

. N-1.

it is convenient to recognize that W is a point on the
unit circle, and that WM js aiso a point on the circle

with an angle “m’ times the size of the angle

associated with W. that is, m%. See Figure 51.

12
W &,

W = ¢
N

A

Figzire 31. The Points W [dentified on the
Unit Circle (For N = 16)

[}
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We note that W is periodic in N terms, so that there
are only N distinct points WM. We can actuatly do
better by recognizing that half of the points are
negative of some other point on the circle: for
example, W!? = w2

Returning to the expression for F(k), we now
proceed to factor the summation into  two
summations, each equal to half the original length.

N-1
D fmwnk
n=0

Fik}

"

N2

-1

= 5_ {f(zn)wQ"?k + fl2nenwi2n+1)k
n=0

[z
Iz

-1

fl2mw2nk flan+1)w2nk wk

A"
17

3
[}
o

2
[]
Q

e

But k is selected outside the summation, so we can
factor the Wk term from the second summation.

N
3 -1
Thus F{k) = f(2npwznk 4
n=0
N
5 -1
k nk,
w z f(2n+1)W?
n=0
or F{k) = A(k) + WX gk)

where A(k) is recognized as an N/2 point transform
over the even indexed data points, and B(k) is an
N/2 point transform over the odd indexed data
points. Notice, stepping around the circle to pick




up the compiex coefficients,now steps across every
other angle; that is,

wim = e_l N

which is equivalent to saying that we need only N/2
angles for an N/2 point transform.

Let us also examine W(k+|-;4), the transform point

halfway of output points.

Substituting k+§ for k in F{k) = A(k) + WK B(Kk),

through the list

N .
Ny o N {k+3) N
F(k+2) A(k+2) + WnTo B(k+2).

But A(k) and B(k) are N/2 point transforms and
periodic in N/2 points; thus, Alk+3) = A(k) and

2
N, _
B(k+'2-) = B(k). Also,
N N ,
W(k+2) Wk W(z)
_iTr

= —wk

Alk) - Wk B(k).

Thus Flk+ %)

The pair of equations,

F{k) = Alk) + WK B(k)

and F(k+%) = Alk) - Wk Bk,

is the fundamental operation of the FFT. In fact,it
is the only regquired operation {besides cails to
memory and to the trig tables).

This operation is called a “butterfly’ and has a
signal flow representation of the form

Alk) F{k)
N
Btk) Fik+ 2),
which is equivalent to
Alk) Fik)
N
Bk E -
(k) {k+ 2),

which is also equivalent to

B(k)

Now, we ask, “What has the rearrangement and
factoring accomplished?”’ First, we have taken an N
point transform which will narmaily require N?
operations and replaced it with two N/2 point
transforms ~and an additional overhead of N/2
complex muitiplies and N complex additions {one
muitiply and two adds for each of the N/2
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butterflies). The N/2 point transforms each require
(N/2)* operations, so the total work ioad becomes

2(N/2)* + N/2Mult + N Add,

or N%/2 + N/2Mult +N Add.

We observe that if N is large (say 1024) then N2/2is
much greater than N/2, so the total work |oad is
approximately N2/2 which is one half of the work
load of the direct application of the DFT
summation.

Let’s follow an 8 point FFT through this type of
factoring. What we will do is construct an 8 point
transform by two 4 point transforms. But why stop
there? We can construct each 4 point transform as
two 2 point transforms. We will then see that the 2
point transforms are simply butterflies, so we will be
finished. In general, we construct a single N point
transform as N/2 2 point transforms. We then use
the two points to construct N/4 4 point transforms,
and this continues till we have N/N N point
transforms,

A processor that performs the computations for an
8 point discrete Fourier transform is depicted
below. Enght points of data go in, and eight points
of DFT ¢come out.

f° & | F°
f1 O a0 l."I
:E2 O—nd EEm—— 1."‘z
£ , O—={ 8 POINT |—————a0 F .
fh O——+{ DISCRETE|———0 Fu
fs O———=t FOURIER |————=u0 Fs
f‘ O—={ TRANSFORM |————a} Fs
f7 f———0 F7

We look inside the processor and see that someone
has built the 8 point transform as two 4 point:
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transforms and then combined the outputs to realize
the 8 point.

£ 4 POINT

TRANSFORM

4 POINT

TRANSFORM

We now look inside the 4 point processor and see
that the same someone has buiit the 4 point
transform as two 2 point transforms and then
combined_the outputs to realize the 4 point.

4 0T e 3

= O] TRANS FC PM |y 3

| 2 20INT

1
<
k]
I e g S
z X | TPAISTCRH
z 2 fomm
ey § S
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Finally we construct 2 point transforms. A 2 point
transform is defined by

1 ~iZ8 nk
z hinje 2

Hik) =
n=0
ar H{Q) = h{Q) + h{1),
H(1) = h(Q) + e-iTn{1) = h(0) - h(1),

But, of course, we recognize this sum and difference
as a butterfly with a weighting factor of +1.0.

Thus the total 8 point transform with all of the
rearrangements combined is of the form

v(“)h
e

REARRANGEMENT MATRIX

The rearrangement of the input or of the output of
the in-place computation fast Fourier transform
exhibits an interesting symmetry.

When the number of points being processed is 2P,
the rearrangement scheme is called binary reversal.
if the address (as in an array) is written in binary
form, the rearrangement sends the number in a given

address to the address which is the binary number
reversed.

l

2 Pnt
Xform

/
N

2 Pnt
Xform

2 Pnt
xform

2 Pnt

Xform

- o~ - 2o O O O

[ - S = D i = B =
- O = D MO - O

We can now determine the total work count of the
FFT. Each stage of the FFT will require the
computation of N/2 butterflies. This represents N/2
complex multiplies {one for each butterfly) and N
complex adds (two for each butterfly). Since each
complex multiple is 4 real multiplies and 2 real adds,
and a complex add is 2 real adds, we have a total of

N
3[4M+2A]+N[2A],

or N[(2 M + 3 A] Real operations where M denotes a
real muitiply and A denotes a real add.

But there are a total of log, N stages for a totai of
log, N [N] [2M + 3A]}

or Nlog, N [2M + 3A] rea! operations for an N point
complex transform.

Actually for a more precise count, we recognize that
the first 2 stages of the FFT contain no multiplies;
hence the work count is
flog; N - 21 {N] [2M + 3A] + [2]N[2A],
orN {log, N [2M + 3A] - [4M + 2A] ;.
For example, if N = 1024, the work load is

1024(16M + 28A], as opposed to direct DFT
computation work load of (1024)2[4M + 4A].
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RADIX 4 FFT COMPUTATIONS

Again, we start with the expressien for an N point
discrete Fourier transform

= —jzj-rnk
Fiy = > e N
=0 :

Factoring, we have

L
: - 2T an)k
Fik) = z fan) ®
n=0
a4
4. _;%]-7(4n+1)k
+Z flan+1y €
n=0
N
3 -;2—;(4n+2)k
+Z f(4n+2)e
n=0
a,
4 -2 (an+3)k
+z f(an+3) &
n=0
L
4~ . 2n
- == nk
N/4
= frame
n=0 —_————
A (k)
0
N,
2m, 47 . 27
+ -iSTk _ -i§7a Nk
e N z flaneny e N
n=0 ~ i
A1(k)
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b - < ~§ 2L i
e . f(4n+2)e
=0 e——
Az(k)
2. 4T 2n
+ -jT\l—Sk < O, N/4nk
e 2. lan+3y®
n= — 7
A k)

Ay (k) + WK A (k) +W2R AL (k) + WK AL (K,

This expression is true for any k, and in particular is

true for [k+r -Z—J ].

Then,

ktr )

A (ki 4

N N
F(k+rz‘) = Aglk+r=} + W a

4

2 (ktr L) ktr )

3
4 Aatk+r%) + W 4 A‘;(k+r-l}).

N, .
But  Aglk+rz) = Aylk) These are output
N from an—N- point
Arliktr ) = A, (k) 4

transform, hence

Az(k+r%) = A, (k) are periodic in%.

Asticrr 2y = A ()
&= N x

and e N 4-."2 - ( yr
e—jgﬁﬂr%" _ e—j'2'2r -
e—i%Br*— ) e—j53r -




therefore,

Fik) = Aylk) + WK A (k) + w2k A (k) +
WK AL (k)

F(k+%) = Aglk) WK A, k) - WK A (k)
+HWK A, (k)

F(k+2%) = Ag{k} -~ wk A (k) + wk A, (k) -
w3k AL (k)

F(k+3—’}) = Aglk) +HWK A, (k) - wK A, (k)

Wk A, (k)

The basic 4 point butterfly is

' 1

A, (kI O F (k)

A ()

1 N
Flkep)

A (o)

2 N
r AL
e

Sk w3k / -3 .
FEKO-JT)

4 muirt Duttertly

Then to compute F(k}, F(k+bj{), F(k+2%) and

F(k+3%), we need to extract from the four N/4

point transforms the outputs A4k}, A, (k), A, (k)
and A-s{k), and then form the following set of
computations

TEMP 1 = wK A, (k)
TEMP 2 = wk A, (k) 3 complex multiplies,
TEMP 3 = Wk AL tk)

TEMP 4 = A, (k) + TEMP2
TEMP 5 = A,y(k) -~ TEMP2
4 complex adds,
TEMP 6 = TEMP1 + TEMP3
TEMP 7 = TEMP1 — TEMP3
and
Fik) = TEMP4 + TEMP6 3
Fk+ ~N2-) = TEMP4 - TEMPS
> 4 compiex adds,
Flk+ %) = TEMP5 —TEMP7
F(k+3% = TEMP5 +iTEMP7

for a total of 3 complex multiplies and 8 complex
adds, or a total of 12 real multiplies and 22 real
adds. Thus,each stage of the N point transform will
require N/4 groups of 12 real multiplies and 22 real
adds, or

N
Y (12M + 22A),

or N(3M + 5.5A) real operations per.stage,

is a totai ofllogzN stages in the

But there >

transform, for a total of

%!ogzN[N(SM +5.54)]

or N logaN[1.BM + 2.75A] real operations per
transform. '

Again for a more precise count, we recognize that

the first stage of the FFT contains no multiplies;
hence the count is

[% log, N=1] N [3M + 5.5A] + N [4A],

or Nlog, N[1.5M + 2.75A] — N [3M + 1.BA]




or N[log,N(1.5M + 2.75A) - (3M + 1.5A}]

real operations.

Now let us compare the operation count for the
Radix 2 and for the Radix 4 transform. Further, let
us assume the operation (cycle time) for a multiply
is equivalent to 10 operations (cycle times) of an
add. Also assume N = 1024, and log, N = 10.

Radix 2.
1024 (log, 1024) (2M + 3A)
1024 (10) (20+ 3) A

1024 (230} A

Radix 4.
1024 (log, 1024) (1.5M + 2.75A)
1024 (10) (15+ 2.75} A

1024 (177.5) A

Or more precisely;
Radix 2.
1024{10(20 + 3) - (40 + 2} ]A
. 1024[230 -42]A

1024(188]A

Radix 4.
1024[10 (156 + 2.75} - (30 + 1.5} ]A
1024[177.5 - 31.5]A

1024[ 146 ]A

Thus we see that the Radix 4 transform can be
performed in approximately 75% of the time in
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which a given machine performs a Radix 2
transform. Of course, the transform size must be a
power of 4 to be performed as a Radix 4. if the size of
the transform is not a power of 4, say 512 for
instance, the economy of the Radix 4 can be used to
perform two 256 point transforms and then a Radix
2 transform to combine the results for the final
transform.

REARRANGEMENT MATRIX FOR RADIX 4
FFT COMPUTATION

When the number of points being processed is 4P
the rearrangement scheme for the Radix 4 fast
Fourier transform is called Mod 4 address reversai.
If the address {as in the array) is written in base 4,
the rearrangement sends the number in a given
address to the address which is the base 4 number
reversed. The reversals corresponding to a 16 point
transform performed Radix 4 are

0 g0
1 ¢ 1 4 point
2 02 Xform
3 03
4 10
3 L1 4 point
s 12 Xform
7 13
8 20
4 point
9 21
Xform
1o 2 2
11 23
12 30
13 31 4 point
14 32 Xform
15 33 ¢-----=--=--- —t
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SCALING CONSIDERATIONS

The FFT as an aigorithm processes an array of data
by successive passes at the array. At each pass, the
algorithm performs N/2 butterflies, each butterfly
" picking up two compiex numbers and returning two
complex numbers to the same addresses. The
numbers returned to memory by the butterfly are
larger than the numbers picked from memory by the
butterfly. In fact, we will now demonstrate that the
incoherent part of the data has an expected increase
of \/2- per stage,while the coherent part of the data
has an expected increase by 2 per stage with a
maximum increase per stage of 1 + \/5 or 2.414,

A typical butterfly is

A(n) O QO Aln+T)

W{n)

Bin) O B{n+1}

s

At the {n+1)th pass of the data, the butterfly selects
two data points A{n) and B(n) and returns to
memory Ain+1) and B{n+1). Let us examine the
squared magnitude of A(n+1) and of B{n+1)

Aln+1)
B(n+1)

Aln) + W(n) B(n)
A(n) - W{n) B(n)

IAln+1)1* = |A(n)I* + B(n)§?
+ A(n) W*(n) B*(n) + A*(n) W(n) B(n)

B(n+1}1* = |A(n)|* + [B(n)|?
- A(n} W*{n) B*{n}) - A*(n} W(n} B(n)

Adding the pair [A{n+1)]* and [B(n+1)|*, we have
|A{n+1){2 + [B(n+1)[* = 2[|A{n}|* +|B(n}{?].
For random data, the expected value of
[A{n+1}|* is the same as the expected value of

18(n+1)}2 50 that,

IA(N+1)1E = 2 A3,
or |A{n+1)] V2 JAIn}.

MAXIMUM BUTTERFLY GAIN

The square which represents the range of the

complex numbers stored in memory of the FFT
processor is

+1

Largest Magnituce
/ g g

Largest Real
/
) / +1

& RL

-1

Both the real part and the imaginary part of the
complex word is constrained to fall between +1 and
-1, which constrains the magnitude to be between O
and \/2' . The first pass of the FFT performs only
complex addition and subtraction. Since the input
to the butterfly is constrained to a maximum real
and imaginary component of *1, the output is
constrained to a maximum component of 2. Either
a prescale by 1/2 is required prior to entering the
butterfly or an extra bit must be available in
memory to accommodate this potential gain of two,
Automatic prescaling shifts out the least significant
hit and represents significant processing noise,
particularly in the case for which no scaling is
necessary for the pass. Automatic prescaling is better
then no scaling, but not much better, and should be
avoided. A much more desirable form of scaling is
data dependent scaling in which scaling (before or
after the butterfly) is performed oniy if one or more
butterfiies in an FFT pass will (or does) overflow
without the scating.

The second pass of the FFT performs rotations
through compliex multiplications by W(n) of £90°.
Thus again, if the input components are constrained
to *1, the output components are constrained to 2.
Thus, the second stage of the FFT can at most
exhibit a gain of two. The scaling routine must allow
for this possible extra bit.

The third and subsequent passes of the FFT perform
rotations through a larger set of angles which include
the angle 45°. This represents the most stringent
scaling task. A complex number with maximum
magnitude (/2 } can be rotated through 45° and
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added to a maximum real or imaginary component
of +1 for a maximum cutput component of 1+/2 .
This is demonstrated by

m
1r+1

Bin)

-1 oAl
Alnj

-
Aln+1) = Afn}+e~ Ty Bin}
Alnt1) = 1.0+Y37
= 2.4142

-1

Thus the maximum gain per stage is greater than 2.0
and is actually 2.4142.

Prescaling data before the butterfly can represent a
maximum loss of two bits of significance, which is,
of course, undesirable. Post scaling {up to two bits)
after the butterfly upon detection of overflow will
require multiple passes through the array to scale
data aiready returned to the array by previous
butterflies before the detected overflow or
overflows. For very high speed processing, this is
unacceptable. '

DATA DEPENDENT SCALING

Both. the highest speed operation and the best
computational noise performance of the FFT are
realized by an architecture which allows the up to
two overflow bits from the butterfly to be returned
to memory. This requires the 16 bits for data ang 2
extra bits for overflow for memory of 18 bits per
complex component {36 bits per complex word).

If any word in memory has an overflow bit set, ail
words are right shifted (the necessary one or two
bits) as they are called from memory for the next
pass of the FFT. Of course, no scaling is performed
unless the overflow bit(s) have been set by the
previous pass. Then, total number of right shifts, p,
executed during the FFT is available at the output
of the FFT as a scale factor of 2P. This scale factor
must be applied to the output of the FFT so that
total processing gain is properly presented. Right
shifting the entire array when required at each pass
and accumulating the count of the number of shifts
is known as block floating point processing.
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SIMULTANEQUS N POINT
(REAL) TRANSFORMS

Suppose we have two real sequences

fin) ; n=2012...

an) ; n=012,.... N-1,

and we wish to cbtain the transforms of both
sequences. We have seen that the transform of the
real sequence f(n) + j0, that is, F(k) = RLIF(k)]

+ JIM[F(k) ] exhibits the following symmetries;

RLIF{k)] = RL[F{N-k)]

i.e., RL partis even,

it

RL[F{-k]]

IM[F{k)] =-IM[F(N-k)] _
i.e., IM part is odd.
==IM[F(-k)]

Then the transform of the "‘complex”’ sequence f(n)
+ j aln), {the first sequence loaded into the reai
array, and the second sequence loaded into the
imaginary array) can be decomposed into the
complex sequences F(k) and G(k) by virtue of the
even and odd properties of their respective real and
imaginary parts.

If we define the transform of the complex input
sequence as

Z{k) = X{k) +jY(k},

where
Z{k) = FFTIf(n) + jg({n)]
= FFT[fln)]+] FFT[a(n)}]
= Fik) +j G(k).
But F(k) = RL[F(k)]+j IM[F{k)]

EV[F(k}] +j OD[F({k)],




and G{k} = RL[GIk)]+] IMIGIk}]

EV[G(k)] +j OD[G(Kk)],

H

then

Zik) = {RL{FIK)] + j IM{F{K}]} +
i { RLIG(K)] + | IM[G(K)]}

{RLIF(K)] = IM[G(K)]} +
i {IM[F(K)] + RL[G(K}]}

{EV[f(k)] - OD[GIK}]} +

v
Xk}

i {OD(F(kI] = EV[GJfk)]},

Y(k)
from which we obrtain the following;
RL{F(K)] = X(k) + X{~k}; k = o,...%q
RL{F(-k)] = RL[F{k)],
IM[F{k)] = Y(k) = Y(=k) ; k = 0,...—>~1

IM{F{-k}] = ~IM[F{k}]

r

RLIG(K)] = Y(k) + Y(=k) ; k = 0,...%~1
RLIG(-k)] = RL{GK)];
: L IMIGEO] = Xi-k) = X(K) k= 0, H -

IMIG(-k}] = =IM|G(Kk)].

Thus we see 3 method of performing two N point
transforms in the time duration necessary to
perform one N point complex transform plus the
overhead to compute the odd and the even parts of
the real and of the imaginary parts of the resuitant
transform.

DOUBLE LENGTH (2N)
REAL TRANSFORMS

Suppose we have one real sequence
flm) :n =012 ...., 2N-1

and we only have access to an N point {complex)
transform. We can perform the double length
transform by partitioning the sequence intc two real
sequences of length N, perform the simuitaneous
transforms outlined on the previous page and then
combine the resufts using the following
observations;

v
Alk)
. 2m N-1 27
- ==k -] == nk
e 2N Z fiZn+1) e N
=0

n
— -’

-
B(k)

.2:'1'k

= Alk) e 2N g,

where A(Kk) and B(k} are the transforms of the even
indexed and of the odd indexed data points. If the
even indexed data points are loaded into the real
array and if the odd indexed data points are {oaded
into the imaginary array, then the decomposition of
the previous section must be used to obtain A{k)
and B(k}. If we denote X{k} + j¥Y{(k) as the
transform of the sequence f(2n) +j f{2n+1), we can
obtain the desired transform F{k) from




Fik)

Alk) + [C(k) -iS{k)] B(k)

1]

[X(K)+X (k) [+ Y (k) =Y (<k) ]
HCK)=SIKH{TY (k)+Y (=k) =i X (K)~X(~k) 1}

[X{K)+FX{~k)]+C(k} [Y{k)+Y{-k)]-S(k}
[X1k)-X(-k) ]+i{[Y(k)—Y(—k) }-Cik)}
[X(k)=X (=K} 1S (k) [Y (kMY (=k}]},

In terms of storage, the original 2N data points are
loaded intc the 2N point array (N real, N
imaginary). N complex numbers are generated by
the transform and the linear sum above is used to
generate the first N complex numbers of the 2N
point transform F{k). The second set of N points are
not computed because, one, there is no room for
them without auxiiiary storage, and two, they are
available in terms of the conjugate images of the
first N points;

i.e. F{2N-k) = F{-k) = F*(k),
or RL{F{k)] = RL[F(2N-k}]
IMIF(K)| = —IM[F(2N-k)].-

OTHER VARIANTS OF THE FAST
FOURIER TRANSFORM

The algorithm we derived as the fast Fourier
transform is characterized by the need to re-order
the input data. We called this “decimation in time".
The algorithm was also characterized by ir-place
computations. This is one of many possible
implementations with these characteristics. There
are algorithms which allow. the data to be processed
in  natural order and still allow in - place
computations, These algorithms will have to have
the output rearranged, and the rearrangement is
identical to the one we derived. Other forms of the
algorithm allow input and output data to be
available in natural order, but we then lose the
in-place computation and the symmetries so
implied.

Let us derive (rather rapidly) some of these other
forms of the algorithm. Qur derivation will rely
upon twao observations; first, the reordering matrix
[R1]is its own inverse, i.e. [R] [R] = [!], and second,
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the transform matrix [W] is its own transpose, i.e.

WiT = [w].

Now, starting with the transform in its factored
form

F=(w] s

F = [[Al} (IBII [[CI] [R] T,

we identify this as a Type | algorithm.

Now, since [R] [R] = [l], we can interpose the
identity matrix throughout the Type| aigorithm.
Then F = [RI[R][[A[I[R][R
[ (]
i

iRTIRIIICIIIR] T, :
[

Now,regrouping an [R] as a pre and a post muitiply
to each of [[A]], [[B]], and [{C]],

[{[B]]

= [R] {[RI[[ATIR]}
{[RI{[CII[R]}

{IRINBIIRY)
7.

We identify thisasa Type |1 algorithm.

Now with F = [[W]] |
or F = (w7
F= {[ANHBNIUCHRI T 7
F=(riTucn™usnTianT 57
But [R]T = (R],
thus,  F = [R]{[C)T (tenT (At 7.
We identify this as a Type |11 algorithm. *
Now returning to the Type Il algorithm,
F=[wW]]f
= (qwyT 7
= {[R1(R][[A]] [R]) ([R }{[B]][H]
(RILICIHRD}T 7

(RIUCHIRDT (R ((BII[RDT
(RITAIRDT (RIT /




. But [R]T = [R],

We present the signal flow graphs of the TYPE |

thus F = {{RYIIC]] [R})T ([R]1[B]] [R])T through the TYPE IV algorithms on the next pages.
([R1[IA]] [R])T [R] }-“ Other algorithms can be formed by omitting the [R]
[R] products from any of the interposed positions
or E = ([R][[C”T[R]) ([R}[[B”T[R]) used to construct the Type |l algorithm. These
(IR] [[A]]T (R]) (R] }- forms would not reflect the in-place capabilities of

' the fast Fourier transform. )

We identify this as a Type 1V algorithm.

Figure 54. Type [ Transform
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HIGHEST SIDE WORSE
SIDE LOBE COHERENT | EQUIV. | 3.0048 | SCALLOP CASE 6.0d8
WINCOW LOBE FALL GAIN - NOISE BW LOSS PROCESS BW
LEVEL OFF BW (BINS}) (dB) LOSS {BINS)
{dB) (dB/OCT} {BINS) {dB)
RECTANGLE -13 -6 1.00 1.00 0.33 3.92 3.92 1.21
TRIANGLE -27 -12 0.50 1.33 1.28 1.82 3.07 1.78
oS3 x) a=1.0 -23 -12 0.64 1.23 1.20 2.10 3.01 1.65
a=20 -32 -18 0.50 1.50 1.44 1.42 3.18 2.00
a=30 -39 ~24 0.42 1.73 1.68 1.08 3.47 2.32
a=40 -47 -30 0.38 1.94 1.88 0.86 3.75 2.59
HAMMING ~43 -6 0.54 1.36 1,30 1.78 3.10 1.81
RIESZ -21 -12 0.67 1.20 1.16 2.22 3.01 1.59
RIEMANN -26 -12 0.59 1.30 1.26 1.89 3.03 1.74
DE LA VALLE- -53 -24 0.38 1.92 1.82 0.90 3.72 2.55
POUSSIN
TUKEY a.=0.25 -14 -18 0.88 110 1.0t 2.96 3.39 1.38
= 0.50 ~15 -18 0.75 1.22 1.15 2.24 3t 1.57
a=0.75 -19 -18 0.63 1.36 1.3 1.73 3.07 1.80
BOHMAN -8 -24 0.41 1.79 1.7 1.02 354 2.38
POISSON a=20 =19 -8 0.44 1.30 1.21 2,09 3.23 1.69
a=30 -24 -6 0.32 1.65 1.45 1.46 3.64 2.08
a=40 -3 -4 0.25 2:08 1.75 1.03 4.21 2.58
HANNING- a=08 -35 =18 0.43 1.61 1.54 1.26 3.33 2.14
POISSON a=10 NQONE -18 0.38 1.73 1.84 1.1 250 2.30
a=20 NONE -18 0.29 2.02 1.87 0.87 3.94 2.65
CAUGCHY a=30 -31 -8 0.42 1.48 1.34 1.71 3.40 1.90
a=40 -35 -6 0.33 1.76 1.50 1.38 3.83 2.20
a=50 -30 -6 0.28 2.06 1.68 113 4.28 2.53
GAUSSIAN a=25 -42 -6 Q.51 1.3 1.33 1.68 3.14 1.86
a=3.0 =11 -6 0.43 1.64 1.55 1.5 3.40 2.18
a=135 -89 -6 0.37 1.90 1.79 0.94 3.73 2,82
DOLPH- a=25 -50 0 0.53 1.39 1.33 1.70 312 1.85
TCHEBYSHEV @ =30 -60 0 .48 1.51 1.44 1.44 3.23 2.0
a=35 =70 0 0.45 1.62 1.58 1.2% 3.35 2.17
a=4.0 -80 0 0.42 1.73 1.65 1.10 3.48 2.31
KAISER- a=2.0 -48 -6 0.49 1.50 1.43 1.46 3.20 1.99
BESSEL a=25 -57 -8 .44 1.68 1.87 .20 3.38 2.20
a=30 -69 -8 0.40 1.80 1.71 1.02 3.56 2.39
a=35 -82 -8 0.37 1.93 1.83 0.9 3.74 2.57
BARCILON- a=3.0 =53 -6 0.47 1.58 1.49 1.34 3.27 2.07
TEMES a=35 -58 -8 0.43 1.87 1.59 1.18 3.40 2.23
a =40 -68 -6 0.41 1.77 1.69 1.08 3.52 2.35
TABLE 1. WINDOWS AND FIGURES OF MERIT
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Figure 30. Hannming-Poisson Window, Fourier Transform,
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