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Two-degree-of-freedom System, Modal Analysis

The method of generalized coordinates is demonstrated by an example. Consider the system

in Figure 1.
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Figure 1.

The system also has damping, but it is modeled as modal damping.



A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given
in Figure 3.
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Figure 2.

Determine the equation of motion for mass 1.

Y F=mq X1 1)

my X1 = k3(x2 —x1)—k1(x1-y) 2)

my X1 +kg X —k3(x2 —x1)=kpy (3)

my Xq +kgxq +k3(xg —x2)=k1y (4)

my Xq + (k1 +k3)xg —kaxp =kgy (5)
ka2 (X2-Y)

Figure 3.



Derive the equation of motion for mass 2.

Y F=mjyX> (6)
mg %2 =—k3(x2 —x1)-k2 (x2 ~y) (7)
mg X2 +kp x2 +k3(x2 —x1)=kay 8)
ma %2 +(k2 +k3g)x2 —k3x1 =k2y 9)

Assemble the equations in matrix form.
m 0 || X k1 +k -k k
1 X1 LM +K3 3 XLi_| X1y (10)
0 mo| Xo -k3z ko +kz|| x2 koy
Define a relative displacement z such that

X1=21+Y (11)

X2 =22+Y (12)

Substitute equations (11) and (12) into (10).

m 0\ n+y| (kitky kg fz+yl (ki (13)

0 my|lZp+V —k3 Ko+Kk3|lzo+y Koy
mp 0 jfzg) {miy ), ki+kz3 -k3 |21 . ki+kz  -k3 |ly|_|kiy
0 mypllzo| [moy —-k3 ko +kz||z2 —k3z  ka+k3]ly] [k2y
(14)
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mp 0 || Z +k1+k3 -k3
0 mollZp -k3z ko +k3

(16)

Equation (16) is coupled via the stiffness matrix. An intermediate goal is to decouple the

Decoupling
equation.
Simplify,
M7+KZ=F
where
m 0
% e
0 my
ki +k -k
Ko |K1TK3 3
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Consider the homogeneous form of equation (17).

M7+KzZ=0

Seek a solution of the form
z=qexp(jot)

The g vector is the generalized coordinate vector.

(17)
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Note that

z=jogexp(jot) (24)

i=—0° gep(jot) (25)

Substitute equations (23) through (25) into equation (22).

~o’M gexp(jot)+ Kgexp(jot)=0 (26)
Fo?M g+ Kgjep(jot)=0 (27)
—on’M G+Kg=0 (28)
%&M +K>q:6 (29)
{K—mzlvl }qzﬁ (30)

Equation (30) is an example of a generalized eigenvalue problem. The eigenvalues can be
found by setting the determinant equal to zero.

det |K—2M [=0 (31)

o O S Y

det {(k1+k3)‘°’2m1 ks }: 0 (33)
—k3 (ko +k3)-o’m;

[(k1+k3)—032m1“(k2 +k3)—602m2J— ks =0 (34)

m4m1m2 —coz[ml(kz +k3)+ m2(k1+k3)]—k32 =0 (35)



The eigenvalues are the roots of the polynomial.

2 —b- b2 — dac

36
Q] 23 (36)
2 “b+Vb2 —4ac
0r° = (37)
2a
where
a=mimy (38)
b=—[my (k2 +k3)+ma(ky +k3)] (39)
c=—kg? (40)
The eigenvectors are found via the following equations.
{K—mle }q1=6 (41)
{K-0y2M fq,=0 (42)
where
_ q
a1 = { “} (34)
a12
_ q
G2 = { 21} (44)
422

Q=[d | Ty ] (45)
Q{Qll Q21} (46)
di12 Q22



The eigenvectors represent orthogonal mode shapes.

Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized
eigenvector matrix Q can be obtained such that the following orthogonality relations are
obtained.

QTMG =1 (47)
and
A T A _
Q' KQ=Q (48)
where
superscript T represents transpose
| is the identity matrix
Q is a diagonal matrix of eigenvalues
Note that
G=|ju 2 (492)
421 Y22
aT = ?11 ?21 (49b)
12 Q22

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.
Further discussion is given in the references.

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial.

Now define a modal coordinate n(t) such that

~n

z=Q 7 (50a)
7= 0Qam + Gi2mp (50b)
Zp= Qo1m + Q2mp (50c)



Recall
X1=21+Y (51a)

X9 =22 +Y (51b)

The displacement terms are

Xp=Yy + 0um + G2m (51a)

Xo=Yy + Gaam + G22m2 (52b)
The velocity terms are

X1=y + 0um + Gq2m2 (53a)

Xo=y + Gaam + G272 (53b)
The acceleration terms are

X1=9 + 01 + Q22 (54a)

Xp=9Y + Q11 + Qo212 (54b)

Substitute equation (50a) into the equation of motion, equation (17).
MQ #7+KQ f=F (55)

Premultiply by the transpose of the normalized eigenvector matrix.
Q"MQH + Q'kQn=Q'F (56)
The orthogonality relationships yield
- —  ATE
I+ QnM=Q F (57)

For the sample problem, equation (57) becomes

{l 0} [m} N w? 0 {m}{fm QZ1M—m1V} (56)
0 1]|#2 0 w2 |[n2) [G12 G22][-m2y



Note that the two equations are decoupled in terms of the modal coordinate.

Now assume modal damping by adding an uncoupled damping matrix.

{1 0} {m} {2&1@1 0 Mm} 0° 0 {m}{fm Gm“—mﬂ}
0 1][f2 0 252 (M2 0 w2 |ln2] [G12 G22][-m2y

(59)
Now consider the initial conditions. Recall
z=Qn (60)
Thus,
2(0)=Q m(0) (61)
Premultiply by QT M.
Q" M2(0)=Q" MQn(0) (62)
Recall
Q™M =1 (63)
Q" M2(0)=1n(0) (64)
A T _ .
Q' Mz(0)=n(0) (65)
Finally, the transformed initial displacement is
_OT vz
n(0)=Q" mMz(0) (66)
Similarly, the transformed initial velocity is
. A T =
1(0)=Q" Mz(0) (67)

The product of the first two matrices on the left side of equation (59) equals a vector of
participation factors.



{—Fl}:{fm @I21Mm11} (68)
-1 d12 G22 || m22

I o [ A [ e
0 1][iip 0 28w [12 0 p?|[m2] |~T2¥
(69)

Equation (69) can be solved in terms of Laplace transforms.

Half-Sine Base Input

The base excitation function is:

Asin{n—t} , 0<t<T
T

y(t) =
0, t>T

(70)
where

acceleration amplitude

—
1

duration
The equation of motion becomes

3| RS R M R s
0 1|2 0 25|12 0 wy?|lm2] [~T2¥

(71)
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L o|[n] | [2er O T[], e o |[m]_[-TaAsinGt/T)
0 1]|ii; 0 28wp][M2] | 0 ?|ln2) | -T2 Asin(nt/T)

(72)
The equation of motion for mode i is:
fli+ 280+ on2ni=—T; Asin(x t/T), 0<t<T (73)
Let
o=71/T (74)

The solution to equation (73) is given in Reference 2.

AT;

{(@2 —mi2)2 + (2§i OOj )2

ni=

} [(2<§icooai )cos (et )+ ((02 - o; 2 )sin(oot)]

Ariof;)i[e)(p(_&imit)]

_ {(@2 —oaiz)2 +(2¢; cooai)z} [(Zaimimohi)COS(COol,it)Jr((D —Oi (1_2‘§i ))Sin(wd:it)]’
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(DAFi

" {(wz —(Diz)2 +(2¢; wwi)z}

AT ofexp(-Ejoit )]

[— (2§iwwi )Sin(wt)+ (w2 — O 2 )Cos(cot)]

. } |- (28004 ;Jsinfoog,it)+ (02 - w2l 262 )eos(owg it

{(wz —coiz)z + (2§i OO; )2

Wjo

Al &j [exp(—&jojt)]

O, i

+ } [(Zﬁiwiwd,i Joos(g it)+ (wz - @iz(l— Ziiz))sm(@d,it)] !

{(wz - wiz)z + (28 0o; )°

The relative acceleration can then be found from
fli= —2toni—op2ni-Tj Asin(t t/T) , 0<t<T

. ) 2
Hj=—2&opnj—opnj , t>0

The physical relative displacement is then calculated per

z2=Q7

(77)

(78)

(79)

The physical relative velocity and relative acceleration terms can then be calculated using

the appropriate derivatives.

The physical absolute acceleration is then

Xj=2ij+y

12
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The free vibration response for t > T can then be calculated via a similar approach using
Reference 4.
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APPENDIX A

EXAMPLE 1

Normal Modes Analysis

]
mp
s §

Figure A-1.

Consider the system in Figure A-1. Assign the values in Table A-1.

Table A-1. Parameters
Variable Value Unit
my 1158 lbm
3.0 Ibf sec”2/in
mo 772 Ibm
2.0 Ibf sec”2/in
K1 400,000 Ibf/in
ko 300,000 Ibf/in
K3 100,000 Ibf/in
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Furthermore, assume

1. Each mode has a damping value of 5%.
2. Zero initial conditions

Next, assume that the base input function is a 10 G, 10 msec half-sine pulse.

Solve for the acceleration response time histories. The homogeneous, undamped problem is

m 0 ][71] [ki+k ~k z —my
1 2, [kitks 3 A |-y (A2)
0 mp|lZo] -k3z ko+k3z|z2 —moy
3 0|[#] [500000 -100,000\[z [0
e = (A-3)
0 2|2p] [-100,000 400,000 |[zo| |0
The eigenvalue problem is
500,000~ 20 —100,000 {m}zm (A4)
~100,000  400,000-? |92 [0

The analysis is performed using Matlab script: two_dof _frf.m
>> two dof frf

two dof frf.m ver 1.7 October 18, 2011
by Tom Irvine Email: tomirvine@aol.com

This program finds the eigenvalues and eigenvectors for a
two-degree-of-freedom system.
The equation of motion is: M (d*"2x/dt"2) + K x =0

It also finds the frequency response function for base excitation
and the response to applied excitation.

Select units: 1=English 2=metric
1
Assume symmetric mass and stiffness matrices.

Enter mll (lbm)
1158
Enter m22 (lbm)
772
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Enter k11 (lbf/in)

500000
Enter k12 (1lbf/in)
-100000
Enter k22 (lbf/in)
400000

Enter modal damping ratio 1
0.05
Enter modal damping ratio 2
0.05

The mass matrix is

The stiffness matrix is

500000 -100000
-100000 400000
Natural Frequencies =

59.39 Hz
75.9 Hz

Modes Shapes (column format) =

-0.4792 -0.322
-0.3943 0.5869

Participation Factors =

-2.226
0.2079

Effective Modal Mass =

1913 lbm
16.69 lbm
Total Modal Mass = 1930 1lbm

16



Apply half-sine base input pulse?
l=yes 2=no
1
Enter amplitude(G) 10
Enter pulse duration(sec) 0.010
Enter total analysis duration (sec) 0.1
Enter sample rate (samples/sec)

(suggest > 1518)
5000
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Figure A-2.
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Acceleration
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Figure A-3.




APPENDIX B

Modal Participation Factor

Consider a discrete dynamic system governed by the following equation

MX+KX=F (B-1)
where
M is the mass matrix
K is the stiffness matrix
% is the acceleration vector
X is the displacement vector

is the forcing function or base excitation function

A solution to the homogeneous form of equation (1) can be found in terms of eigenvalues
and eigenvectors. The eigenvectors represent vibration modes.

Let ¢ be the eigenvector matrix.
The system’s generalized mass matrix Mmis given by

M= Mo (B-2)

Let 7 be the influence vector which represents the displacements of the masses resulting
from static application of a unit ground displacement.

Define a coefficient vector L as

L=¢"MF (B-3)

The modal participation factor matrix I'j for mode i is

rij= i (B-4)
mij
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The effective modal mass megf j for mode i is

Meff = ——— (B-5)
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