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Two-degree-of-freedom System 

 

Consider a two-degree-of-freedom system, as shown in Figure 1.  Free-body diagrams are 

shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.  
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Figure 2.  
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Determine the equation of motion for mass 2. 
 

 

  22 xmF                                                                                                (1) 

 

 

   21221222 xx kxxcxm                                                            (2) 

 

  01x2x 2k1x2x2c2x2m                                                  (3) 

 

 

Determine the equation of motion for mass 1. 
 

 

  11 xmF                                                                                                      (4) 

 

 

       x k 2xx 2k 1x1c2x1x2c1x1m                            (5) 

 

   0x k 2xx 2k 1x1c2x1x2c1x1m                                    (6) 

 

     0 2x2kx 2kk  2x2c1x2c1c1x1m                                     (7) 

 

 

Assemble the equations in matrix form. 
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Represent as 

 

FxKxCxM                                                                              (9) 
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Consider the undamped, homogeneous form of equation (9). 

 

 

0xKxM                                                                                     (14) 

 

 

Seek a solution of the form 

 

 tjexpqx                                                                                   (15) 

 

 

The q vector is the generalized coordinate vector.   

 

Note that 

 

 tjexpqjx                                                                                            (16) 

 

 tjexpq2x                                                                                         (17) 

 

 

Substitute these equations into equation (14). 

 

 

    0tjexpqKtjexpqM2                                                                (18) 

 

 

    0tjexpqKM2                                                                              (19) 

 
  0qKM2                                                                                          (20) 

 
  0qMK 2                                                                                             (21) 
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Equation (21) is an example of a generalized eigenvalue problem.  The eigenvalues can 

be found by setting the determinant equal to zero. 

 

 

  0MKdet 2                                                                                    (22) 
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The eigenvalues are the roots of the polynomial. 
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where 

 

21mma                                                                                             (31) 

 

  21212 kmkkmb                                                                 (32) 

 

21kkc                                                                                               (33) 

 
 

The eigenvectors are found via the following equations. 
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An eigenvector matrix Q can be formed.  The eigenvectors are inserted in column format. 

 
 

 21 q|qQ                                                                                  (38) 
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The eigenvectors represent orthogonal mode shapes. 

 

Each eigenvector can be multiplied by an arbitrary scale factor.  A mass-normalized 

eigenvector matrix Q̂   can be obtained such that the following orthogonality relations are 

obtained. 
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IQ̂MQ̂T                                                                                        (40) 

 

Q̂KQ̂T                                                                                      (41) 

 
 

where  

   superscript T represents transpose 

   I is the identity matrix 

  is a diagonal matrix of eigenvalues 

 

Note that 
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ŵŵ
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Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.  

Further discussion is given in References 1 and 2. 

 

Now define a modal coordinate  t  such that 

 

 Q̂x                                                                                  (44) 

 

Substitute equation (44) into equation (9). 

 

 

FQ̂KQ̂CQ̂M                                                                    (45) 

 

 

Premultiply by the transpose of the normalized eigenvector matrix. 

 

 

FQ̂Q̂KQ̂Q̂CQ̂Q̂MQ̂ TTTT                                                             (46) 
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The orthogonality relationships yield 
 

 

FQ̂Q̂CQ̂I TT                                                                    (47) 

 

 

Furthermore, the following assumption is made. 
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where  i   is the modal damping ratio for mode i. 
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2ŵ1ŵ
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The two equations are now decoupled in terms of the modal coordinate. 
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Take the Laplace transform. 
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Consider the denominator. 
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By substitution, 
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Take the Inverse Laplace transform. 
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Similarly, 
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(67) 

 

 

 Q̂x                                                                                                     (68) 

 

 

The displacements are 

 
 

)t(21w)t(11v)t(1x                                                                                     (69) 

 

)t(22w)t(12v)t(2x                                                                                  (70) 

 

 

 

Now consider the initial conditions.  Recall 

 

 Q̂x                                                                                                (71) 

 

Thus 

 

   0Q̂0x                                                                                         (72) 

 

 

Premultiply by .MQ̂T  

 

   0Q̂MTQ̂0xMTQ̂                                                                       (73) 
 

 

Recall 
 

IQ̂MQ̂T                                                                                           (74) 

 

   0I0xMTQ̂                                                                               (75) 

 

 

   00xMTQ̂                                                                                   (76) 
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Finally, the transformed initial displacement matrix is 

 

   0xMTQ̂0                                                                                   (77) 

 

 

Similarly, the transformed initial velocity is 

 

   0xMTQ̂0                                                                                     (78) 

 

 

A basis for a solution is thus derived. 
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APPENDIX A 

 

 

Alternate System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1. 
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Figure A-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  m1 

 k2 (x 1-x 2) 

  m2 

x2 

 212 xxc    

x1 

 - k2 (x 1-x 2)  212 xxc    

 k1 (-x 1)  1x1c   

 k3 (-x 2)  c3 (- x 2) 



 15 

Determine the equation of motion for mass 2. 
 

 

  22 xmF                                                                                                (A-1) 

 

 

     332122321222 x kxx kxcxxcxm                          (A-2) 

 

    0x kxx kxcxxcxm 331222312222                        (A-3)                                                

 

    0xkxkkxcxccxm 122321223222                                     (A-4)                                                

 

 

Determine the equation of motion for mass 1. 
 

 

  11 xmF                                                                                                      (A-5) 

 

 

       x k xx k xcxxcxm 221121211  
                                 (A-6) 

 

   0x k 2xx 2k 1x1c2x1x2c1x1m                                    (A-7) 

 

     0 2x2kx 2kk  2x2c1x2c1c1x1m                                     (A-8) 

 

 

Assemble the equations in matrix form. 
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(A-9) 

 

The problem can now be solved as shown in the main text. 
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APPENDIX B 

 

 

Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1 = 2.0 lbm 

m2 = 1.0 lbm 

k1 = 15,000 lbf/in 

k2 = 10,000 lbf/in 

 

Assume 5% damping for each mode. 

 

The initial displacement is 

 

x1 = 0.01 in 

x2 = 0.02 in 

 

The initial velocity is zero for each mass. 
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Assemble the equations in matrix form. 
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The results are shown in Figure 1. 
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Figure B-1. 

 

 

The response was calculated using Matlab script:  mdof_free.m 

 

 

 
Natural Frequencies  

 No.      f(Hz) 

 

1.        199.47  

2.        424.51  

 


