## THE STEADY-STATE RESPONSE OF A TWO-DEGREE-OF-FREEDOM-SYSTEM TO A SINGLE HARMONIC FORCE

By Tom Irvine
Email: tomirvine@aol.com
May 23, 2011

## Two-degree-of-freedom System

The method of generalized coordinates is demonstrated by an example. Consider the system in Figure 1.


Figure 1.

A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given in Figure 3.


Figure 2.

Determine the equation of motion for mass 1 .

$$
\begin{align*}
& \sum \mathrm{F}=\mathrm{m}_{1} \ddot{\mathrm{x}}_{1}  \tag{1}\\
& \mathrm{~m}_{1} \ddot{\mathrm{x}}_{1}=\mathrm{f}_{1}(\mathrm{t})+\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)-\mathrm{k}_{1} \mathrm{x}_{1}  \tag{2}\\
& \mathrm{~m}_{1} \ddot{\mathrm{x}}_{1}-\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{k}_{1} \mathrm{x}_{1}=\mathrm{f}_{1}(\mathrm{t})  \tag{3}\\
& \mathrm{m}_{1} \ddot{\mathrm{x}}_{1}+\mathrm{k}_{2}\left(-\mathrm{x}_{2}+\mathrm{x}_{1}\right)+\mathrm{k}_{1} \mathrm{x}_{1}=\mathrm{f}_{1}(\mathrm{t})  \tag{4}\\
& \mathrm{m}_{1} \ddot{\mathrm{x}}_{1}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{x}_{1}-\mathrm{k}_{2} \mathrm{x}_{2}=\mathrm{f}_{1}(\mathrm{t}) \tag{5}
\end{align*}
$$



Figure 3.

Derive the equation of motion for mass 2 .

$$
\begin{align*}
& \sum \mathrm{F}=\mathrm{m}_{2} \ddot{\mathrm{x}}_{2}  \tag{6}\\
& \mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}=-\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)-\mathrm{k}_{3} \mathrm{x}_{2}  \tag{7}\\
& \mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}+\mathrm{k}_{2}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{k}_{3} \mathrm{x}_{2}=0  \tag{8}\\
& \mathrm{~m}_{2} \ddot{\mathrm{x}}_{2}+\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right) \mathrm{x}_{2}-\mathrm{k}_{2} \mathrm{x}_{1}=0 \tag{9}
\end{align*}
$$

Assemble the equations in matrix form.

$$
\left[\begin{array}{cc}
\mathrm{m}_{1} & 0  \tag{10}\\
0 & \mathrm{~m}_{2}
\end{array}\right]\left[\begin{array}{l}
\ddot{\mathrm{x}}_{1} \\
\ddot{\mathrm{x}}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \mathrm{k}_{2}+\mathrm{k}_{3}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{f}_{1}(\mathrm{t}) \\
0
\end{array}\right]
$$

## Decoupling

Equation (10) is coupled via the stiffness matrix. An intermediate goal is to decouple the equation.

Simplify,

$$
\begin{equation*}
M \overline{\ddot{x}}+K \bar{x}=\overline{\mathrm{F}} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
& M=\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]  \tag{12}\\
& K=\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right]  \tag{13}\\
& \bar{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]  \tag{14}\\
& \bar{F}=\left[\begin{array}{c}
f_{1}(t) \\
0
\end{array}\right] \tag{15}
\end{align*}
$$

Consider the homogeneous form of equation (11).

$$
\begin{equation*}
\mathrm{M} \overline{\mathrm{x}}+\mathrm{K} \overline{\mathrm{x}}=\overline{0} \tag{16}
\end{equation*}
$$

Seek a solution of the form

$$
\begin{equation*}
\overline{\mathrm{x}}=\overline{\mathrm{q}} \exp (\mathrm{j} \omega \mathrm{t}) \tag{17}
\end{equation*}
$$

The q vector is the generalized coordinate vector.
Note that

$$
\begin{align*}
& \overline{\mathrm{x}}=j \omega \bar{q} \exp (j \omega t)  \tag{18}\\
& \overline{\mathrm{x}}=-\omega^{2} \overline{\mathrm{q}} \exp (j \omega t) \tag{19}
\end{align*}
$$

Substitute equations (17) through (19) into equation (16).

$$
\begin{align*}
& -\omega^{2} M \bar{q} \exp (j \omega t)+K \bar{q} \exp (j \omega t)=\overline{0}  \tag{20}\\
& \left\{-\omega^{2} M \bar{q}+K \bar{q}\right\} \exp (j \omega t)=\overline{0}  \tag{21}\\
& -\omega^{2} M \bar{q}+K \bar{q}=\overline{0}  \tag{22}\\
& \left\{-\omega^{2} M+K\right\} \bar{q}=\overline{0}  \tag{23}\\
& \left\{K-\omega^{2} M\right\} \bar{q}=\overline{0} \tag{24}
\end{align*}
$$

Equation (24) is an example of a generalized eigenvalue problem. The eigenvalues can be found by setting the determinant equal to zero.

$$
\begin{align*}
& \operatorname{det}\left\{\mathrm{K}-\omega^{2} \mathrm{M}\right\}=\overline{0}  \tag{25}\\
& \operatorname{det}\left\{\left[\begin{array}{cc}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \mathrm{k}_{2}+\mathrm{k}_{3}
\end{array}\right]-\omega^{2}\left[\begin{array}{cc}
\mathrm{m}_{1} & 0 \\
0 & \mathrm{~m}_{2}
\end{array}\right]\right\}=0  \tag{26}\\
& \operatorname{det}\left\{\left[\begin{array}{cc}
\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)-\omega^{2} \mathrm{~m}_{1} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)-\omega^{2} \mathrm{~m}_{2}
\end{array}\right]\right\}=0  \tag{27}\\
& \left.\left[\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)-\omega^{2} \mathrm{~m}_{1}\right]\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)-\omega^{2} \mathrm{~m}_{2}\right]-\mathrm{k}_{2}^{2}=0 \tag{28}
\end{align*}
$$

$$
\begin{equation*}
\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)-\omega^{2} \mathrm{~m}_{1}\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)-\omega^{2} \mathrm{~m}_{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)+\omega^{4} \mathrm{~m}_{1} \mathrm{~m}_{2}-\mathrm{k}_{2}^{2}=0 \tag{29}
\end{equation*}
$$

$$
\mathrm{m}_{1} \mathrm{~m}_{2} \omega^{4}+\left[-\mathrm{m}_{1}\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)-\mathrm{m}_{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right] \omega^{2}+\mathrm{k}_{1} \mathrm{k}_{3}+\left(\mathrm{k}_{1}+\mathrm{k}_{3}\right) \mathrm{k}_{2}+\mathrm{k}_{2}^{2}-\mathrm{k}_{2}^{2}=0
$$

$$
\begin{equation*}
\mathrm{m}_{1} \mathrm{~m}_{2} \omega^{4}+\left[-\mathrm{m}_{1}\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)-\mathrm{m}_{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right] \omega^{2}+\mathrm{k}_{1} \mathrm{k}_{3}+\mathrm{k}_{1} \mathrm{k}_{2}+\mathrm{k}_{2} \mathrm{k}_{3}=0 \tag{30}
\end{equation*}
$$

The eigenvalues are the roots of the polynomial.

$$
\begin{align*}
& \omega_{1}^{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 \mathrm{a}}  \tag{32}\\
& \omega_{2}^{2}=\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \tag{33}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{a}=\mathrm{m}_{1} \mathrm{~m}_{2}  \tag{34}\\
& \mathrm{~b}=\left[-\mathrm{m}_{1}\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)-\mathrm{m}_{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)\right]  \tag{35}\\
& \mathrm{c}=\mathrm{k}_{1} \mathrm{k}_{2}+\mathrm{k}_{1} \mathrm{k}_{3}+\mathrm{k}_{2} \mathrm{k}_{3} \tag{36}
\end{align*}
$$

The eigenvectors are found via the following equations.

$$
\begin{align*}
& \left\{\mathrm{K}-\omega_{1}^{2} \mathrm{M}\right\} \overline{\mathrm{q}}_{1}=\overline{0}  \tag{37}\\
& \left\{\mathrm{~K}-\omega_{2}^{2} \mathrm{M}\right\} \overline{\mathrm{q}}_{2}=\overline{0} \tag{38}
\end{align*}
$$

where

$$
\begin{gather*}
\overline{\mathrm{q}}_{1}=\left[\begin{array}{l}
\mathrm{v}_{1} \\
\mathrm{v}_{2}
\end{array}\right]  \tag{39}\\
\overline{\mathrm{q}}_{2}=\left[\begin{array}{l}
\mathrm{w}_{1} \\
\mathrm{w}_{2}
\end{array}\right] \tag{40}
\end{gather*}
$$

An eigenvector matrix $Q$ can be formed. The eigenvectors are inserted in column format.

$$
\begin{align*}
& \mathrm{Q}=\left[\begin{array}{ll}
\overline{\mathrm{q}}_{1} & \overline{\mathrm{q}}_{2}
\end{array}\right]  \tag{41}\\
& \mathrm{Q}=\left[\begin{array}{ll}
\mathrm{v}_{1} & \mathrm{w}_{1} \\
\mathrm{v}_{2} & \mathrm{w}_{2}
\end{array}\right] \tag{42}
\end{align*}
$$

The eigenvectors represent orthogonal mode shapes.
Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized eigenvector matrix $\hat{Q}$ can be obtained such that the following orthogonality relations are obtained.

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}}=\mathrm{I} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~K} \hat{\mathrm{Q}}=\Omega \tag{44}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\text { I } & \text { is the identity matrix } \\
\Omega & \text { is a diagonal matrix of eigenvalues }
\end{array}
$$

The superscript T represents transpose.

Note the mass-normalized forms

$$
\begin{align*}
& \hat{\mathrm{Q}}=\left[\begin{array}{cc}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{w}}_{1} \\
\hat{\mathrm{v}}_{2} & \hat{\mathrm{w}}_{2}
\end{array}\right]  \tag{45}\\
& \hat{\mathrm{Q}}^{\mathrm{T}}=\left[\begin{array}{ll}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{v}}_{2} \\
\hat{\mathrm{w}}_{1} & \hat{\mathrm{w}}_{2}
\end{array}\right] \tag{46}
\end{align*}
$$

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial. Further discussion is given in References 1 and 2.

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial.

Now define a generalize coordinate $\eta(t)$ such that

$$
\begin{equation*}
\overline{\mathrm{x}}=\hat{\mathrm{Q}} \bar{\eta} \tag{47}
\end{equation*}
$$

Substitute equation (47) into the equation of motion, equation (11).

$$
\begin{equation*}
M \hat{Q} \bar{\eta}+K \hat{Q} \bar{\eta}=\bar{F} \tag{48}
\end{equation*}
$$

Premultiply by the transpose of the normalized eigenvector matrix.

$$
\begin{equation*}
\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{M} \hat{\mathrm{Q}} \overline{\ddot{\eta}}+\hat{\mathrm{Q}}^{\mathrm{T}} \mathrm{~K} \hat{\mathrm{Q}} \bar{\eta}=\hat{\mathrm{Q}}^{\mathrm{T}} \overline{\mathrm{~F}} \tag{49}
\end{equation*}
$$

The orthogonality relationships yield

$$
\begin{equation*}
\mathrm{I} \overline{\ddot{\eta}}+\Omega \bar{\eta}=\hat{\mathrm{Q}}^{\mathrm{T}} \overline{\mathrm{~F}} \tag{50}
\end{equation*}
$$

The equations of motion along with an added damping matrix become

$$
\begin{align*}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\ddot{\eta}_{1} \\
\ddot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
2 \xi_{1} \omega_{1} & 0 \\
0 & 2 \xi_{2} \omega_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{\eta}_{1} \\
\dot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\omega_{1}^{2} & 0 \\
0 & \omega_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{cc}
\hat{v}_{1} & \hat{v}_{2} \\
\hat{w}_{1} & \hat{w}_{2}
\end{array}\right]\left[\begin{array}{c}
f_{1}(t) \\
0
\end{array}\right]}  \tag{51}\\
& \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\ddot{\eta}_{1} \\
\ddot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
2 \xi_{1} \omega_{1} & 0 \\
0 & 2 \xi_{2} \omega_{2}
\end{array}\right]\left[\begin{array}{l}
\dot{\eta}_{1} \\
\dot{\eta}_{2}
\end{array}\right]+\left[\begin{array}{cc}
\omega_{1}^{2} & 0 \\
0 & \omega_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{l}
\hat{v}_{1} \\
\hat{w}_{1}
\end{array}\right] \mathrm{f}_{1}(\mathrm{t}) \tag{52}
\end{align*}
$$

Note that the two equations are decoupled in terms of the generalized coordinate. Equation (51b) yields two equations

$$
\begin{align*}
& \ddot{\eta}_{1}+2 \xi_{1} \omega_{1} \dot{\eta}_{1}+\omega_{1}^{2} \eta_{1}=\hat{v}_{1} f_{1}(t)  \tag{53}\\
& \ddot{\eta}_{2}+2 \xi_{2} \omega_{2} \dot{\eta}_{2}+\omega_{2}^{2} \eta_{2}=\hat{w}_{1} f_{1}(t) \tag{54}
\end{align*}
$$

## Harmonic Force

Now consider the special case of harmonic forcing functions

$$
\begin{equation*}
\mathrm{f}_{1}(\mathrm{t})=\mathrm{B} \exp (\mathrm{j} \omega \mathrm{t}) \tag{55}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& \ddot{\eta}_{1}+2 \xi_{1} \omega_{1} \dot{\eta}_{1}+\omega_{1}^{2} \eta_{1}=\hat{v}_{1} B \exp (j \omega t)  \tag{56}\\
& \ddot{\eta}_{2}+2 \xi_{2} \omega_{2} \dot{\eta}_{2}+\omega_{2}^{2} \eta_{2}=\hat{w}_{1} B \exp (j \omega t) \tag{57}
\end{align*}
$$

Assume response functions

$$
\begin{gather*}
\eta_{1}=N_{1} \exp (j \omega t)  \tag{58}\\
\eta_{2}=N_{2} \exp (j \omega t)  \tag{59}\\
\left\{-\omega^{2}+j 2 \xi_{1} \omega \omega_{1}+\omega_{1}^{2}\right\}_{1} \exp (j \omega t)=\hat{v}_{1} B \exp (j \omega t)  \tag{60}\\
\left\{-\omega^{2}+j 2 \xi_{2} \omega \omega_{2}+\omega_{2}^{2}\right\}_{2} \exp (j \omega t)=\hat{w}_{1} B \exp (j \omega t)  \tag{61}\\
\left\{\omega_{1}^{2}-\omega^{2}+j 2 \xi_{1} \omega \omega_{1}\right\} N_{1} \exp (j \omega t)=\hat{v}_{1} B \exp (j \omega t)  \tag{62}\\
\left\{\omega_{2}^{2}-\omega^{2}+j 2 \xi_{2} \omega \omega_{2}\right\}_{2} \exp (j \omega t)=\hat{w}_{1} B \exp (j \omega t) \tag{63}
\end{gather*}
$$

Take the Fourier transform of each side.

$$
\begin{align*}
& \left\{\omega_{1}^{2}-\omega^{2}+j 2 \xi_{1} \omega \omega_{1} \hat{\jmath} \hat{\eta}_{1}(\omega)=\hat{v}_{1} \hat{B}(\omega)\right.  \tag{64}\\
& \left\{\omega_{2}^{2}-\omega^{2}+j 2 \xi_{2} \omega \omega_{2} \hat{\jmath}_{2}(\omega)=\hat{w}_{1} \hat{B}(\omega)\right.  \tag{65}\\
& \hat{\eta}_{1}(\omega)=\left\{\frac{\hat{v}_{1}}{\omega_{1}^{2}-\omega^{2}+j 2 \xi_{1} \omega \omega_{1}}\right\} \hat{B}(\omega)  \tag{66}\\
& \hat{\eta}_{2}(\omega)=\left\{\frac{\hat{w}_{1}}{\omega_{2}^{2}-\omega^{2}+j 2 \xi_{2} \omega \omega_{2}}\right\} \hat{B}(\omega) \tag{67}
\end{align*}
$$

The Fourier transforms of the physical displacements are found via

$$
\begin{align*}
& \bar{X}=\hat{Q} \bar{\eta}  \tag{68}\\
& \hat{\mathrm{Q}}=\left[\begin{array}{ll}
\hat{\mathrm{v}}_{1} & \hat{\mathrm{w}}_{1} \\
\hat{\mathrm{v}}_{2} & \hat{\mathrm{w}}_{2}
\end{array}\right]  \tag{69}\\
& \bar{X}=\left[\begin{array}{cc}
\hat{v}_{1} & \hat{w}_{1} \\
\hat{v}_{2} & \hat{w}_{2}
\end{array}\right]\left[\begin{array}{c}
\frac{\hat{v}_{1}}{\omega_{1}^{2}-\omega^{2}+j 2 \xi_{1} \omega \omega_{1}} \\
\frac{\hat{w}_{1}}{\omega_{2}^{2}-\omega^{2}+j 2 \xi_{2} \omega \omega_{2}}
\end{array}\right] \hat{B}(\omega)  \tag{70}\\
& X_{1}(\omega)=\left\{\frac{\hat{\mathrm{v}}_{1}{ }^{2}}{\omega_{1}^{2}-\omega^{2}+\mathrm{j} 2 \xi_{1} \omega \omega_{1}}+\frac{\hat{\mathrm{w}}_{1}{ }^{2}}{\omega_{2}^{2}-\omega^{2}+\mathrm{j} 2 \xi_{2} \omega \omega_{2}}\right\} \hat{\mathrm{B}}(\omega)  \tag{71}\\
& X_{2}(\omega)=\left\{\frac{\hat{v}_{1} \hat{v}_{2}}{\omega_{1}^{2}-\omega^{2}+\mathrm{j} 2 \xi_{1} \omega \omega_{1}}+\frac{\hat{\mathrm{w}}_{1} \hat{\mathrm{w}}_{2}}{\omega_{2}^{2}-\omega^{2}+\mathrm{j} 2 \xi_{2} \omega \omega_{2}}\right\} \hat{\mathrm{B}}(\omega) \tag{72}
\end{align*}
$$

## References

1. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey, 1982. Section 12.3.1.
2. Weaver and Johnston, Structural Dynamics by Finite Elements, Prentice-Hall, New Jersey, 1987. Chapter 4.
3. T. Irvine, Table of Laplace Transforms, Vibrationdata, 2000.
4. T. Irvine, Partial Fraction Expansion, Rev F, Vibrationdata, 2010.

## APPENDIX A

## Example

Consider the system in Figure 1 with the values in Table 2.
Assume 5\% damping for each mode. Assume zero initial conditions.

| Table 1. Parameters |  |  |
| :---: | :---: | :---: |
| Variable | Value | Unit |
| $\mathrm{m}_{1}$ | 3.0 | $\mathrm{lbf} \mathrm{sec}^{\wedge} 2 / \mathrm{in}$ |
| $\mathrm{m}_{2}$ | 2.0 | $\mathrm{lbf} \mathrm{sec}^{\wedge} 2 / \mathrm{in}$ |
| $\mathrm{k}_{1}$ | 400,000 | $\mathrm{lbf} / \mathrm{in}$ |
| $\mathrm{k}_{2}$ | 300,000 | $\mathrm{lbf} / \mathrm{in}$ |
| $\mathrm{k}_{3}$ | 100,000 | $\mathrm{lbf} / \mathrm{in}$ |
| $\mathrm{B}_{1}$ | 100 | lbf |
| $\mathrm{B}_{2}$ | 200 | lbf |
| $\alpha$ | 55 | Hz |
| $\beta$ | 100 | Hz |

The mass matrix is

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathrm{m}_{1} & 0  \tag{A-1}\\
0 & \mathrm{~m}_{2}
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]
$$

The stiffness matrix is

$$
\mathrm{K}=\left[\begin{array}{cc}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2}  \tag{A-2}\\
-\mathrm{k}_{2} & \mathrm{k}_{2}+\mathrm{k}_{3}
\end{array}\right]=\left[\begin{array}{cc}
700,000 & -300,000 \\
-300,000 & 400,000
\end{array}\right]
$$

The analysis is performed using a Matlab script.

```
>> two_dof_force_steady
```

```
        two_dof_force_steady.m ver 1.0 May 20, 2011
        by Tom Irvine Email: tomirvine@aol.com
    This program finds the eigenvalues and eigenvectors for a
    two-degree-of-freedom system.
    The equation of motion is: M (d^2x/dt^2) + K x = 0
    The program also find the transfer functions for a
    harmonic force applied at mass 1
    Enter units
    1=English 2=metric
    1
    Enter mass unit
    1=lbm 2=lbf sec^2/in
    2
    Assume symmetric mass and stiffness matrices.
    Mass unit is lbf sec^2/in
    Enter m11
    3
    Enter m12
    O
    Enter m22
    2
    Stiffness unit is lbf/in
    Enter kl1
    700000
    Enter k12
    -300000
    Enter k22
    400000
    The mass matrix is
m =
    3 0
    0
    The stiffness matrix is
k =
            700000 -300000
```

```
    Natural Frequencies
    No. f(Hz)
1. 48.552
2. 92.839
    Modes Shapes (column format)
ModeShapes =
        0.3797 -0.4349
        0.5326 0.4651
Particpation Factors =
        2.204
        -0.3746
Effective Modal Mass =
        4.86
        0.1403
Total Modal Mass = 5.0000
Enter the damping ratio for mode 1
0.05
Enter the damping ratio for mode 2
0.05
```



Figure A-1.

The curves represent the response of each mass to a unit harmonic force at mass 1.

