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Two-degree-of-freedom System, Modal Analysis  
 

The method of generalized coordinates is demonstrated by an example.  Consider the system 

in Figure 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 

 
 

 

The system also has damping, but it is modeled as modal damping. 
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A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given 

in Figure 3. 

 

 
 

 

 

 

 

 

 

 

 
 
 

Figure 2. 

 

 

 

Determine the equation of motion for mass 1. 

 

11 xmF                                                                                                      (1) 

 

   y1x1k1x2x3k1x1m                                                                   (2) 

 

  y1k1x2x3k1x1k1x1m                                                                 (3) 

 

  y1k2x1x3k1x1k1x1m                                                                 (4) 

 

  y1k2x3k1x3k1k1x1m                                                                 (5) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. 
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Derive the equation of motion for mass 2. 

 

22 xmF                                                                                       (6) 

 

   y2x2k1x2x3k2x2m                                               (7) 

 

  y2k1x2x3k2x2k2x2m                                              (8) 
 

  y2k1x3k2x3k2k2x2m                                                (9) 

 
 

Assemble the equations in matrix form. 
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Define a relative displacement z such that 

 
 

y1z1x                                                                                          (11) 
 

y2z2x                                                                                         (12) 

 

 

Substitute equations (11) and (12) into (10). 
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Decoupling  

 

Equation (16) is coupled via the stiffness matrix.  An intermediate goal is to decouple the 

equation. 

 

Simplify, 
 

FzKzM                                                                                             (17) 

 

where 
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Consider the homogeneous form of equation (17). 
 

  0zKzM                                                                                               (22) 
 

 

Seek a solution of the form 

 

 tjexpqz                                                                                                  (23) 

 

The q vector is the generalized coordinate vector. 
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Note that 
 

 tjexpqjz                                                                                            (24) 
 
 

 tjexpq2z                                                                                         (25) 

 
Substitute equations (23) through (25) into equation (22). 
 

 

    0tjexpqKtjexpqM2                                                              (26) 

 

    0tjexpqKqM2                                                                          (27) 

  

0qKqM2
n                                                                                         (28) 

 

  0qKM2                                                                                         (29) 

 

  0qMK 2                                                                                         (30) 

 

 

Equation (30) is an example of a generalized eigenvalue problem.  The eigenvalues can be 

found by setting the determinant equal to zero. 
 

 

  0MKdet 2                                                                                   (31) 
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The eigenvalues are the roots of the polynomial. 
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where 
 

21mma                                                                                                      (38) 

 

    312321 kkmkkmb                                                              (39) 

 

2
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The eigenvectors are found via the following equations. 
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An eigenvector matrix Q can be formed.  The eigenvectors are inserted in column format. 

 

 

 21 q|qQ                                                                                        (45) 
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The eigenvectors represent orthogonal mode shapes.   
 

Each eigenvector can be multiplied by an arbitrary scale factor.  A mass-normalized 

eigenvector matrix Q̂ can be obtained such that the following orthogonality relations are 

obtained. 

 

IQ̂MQ̂T                                                                                   (47) 
 

and 
 

Q̂KQ̂T                                                                                  (48) 

 

where 
 

  superscript T represents transpose 

 I is the identity matrix 

    is a diagonal matrix of eigenvalues 

 

Note that 
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q̂q̂
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Q̂                                                                                       (49a) 

 











2212

2111T

q̂q̂

q̂q̂
Q̂                                                                                       (49b) 

 

 

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.  

Further discussion is given in the references. 
 

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial. 
 

Now define a modal coordinate )t(  such that 

 

 Q̂z                                                                                      (50a) 

 

 

2121111 q̂q̂z                                                                (50b) 

 

2221212 q̂q̂z                                                              (50c) 
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Recall 

y1z1x                                                                                          (51a) 
 

y2z2x                                                                                        (51b) 

 

The displacement terms are 

 

2121111 q̂q̂yx                                                                (51a) 
 

2221212 q̂q̂yx                                                               (52b) 

 

The velocity terms are 

 

2121111 q̂q̂yx                                                                 (53a) 
 

2221212 q̂q̂yx                                                                (53b) 

 

The acceleration terms are 

 

2121111 q̂q̂yx                                                                 (54a) 
 

2221212 q̂q̂yx                                                               (54b) 

 

 

Substitute equation (50a) into the equation of motion, equation (17). 

 

FQ̂KQ̂M                                                                                   (55) 

 

Premultiply by the transpose of the normalized eigenvector matrix. 
 

 

FQ̂Q̂KQ̂Q̂MQ̂ TTT                                                                (56) 

 

 

The orthogonality relationships yield 

 

FQ̂I T                                                                                (57) 

 
For the sample problem, equation (57) becomes 
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Note that the two equations are decoupled in terms of the modal coordinate. 
 

Now assume modal damping by adding an uncoupled damping matrix. 
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Now consider the initial conditions.  Recall 

 

  Q̂z                                                                                               (60) 
 

Thus, 

   0Q̂0z                                                                                          (61) 

Premultiply by MQ̂T . 

 

   0Q̂MTQ̂0zMTQ̂                                                                          (62) 

 

Recall 

IQ̂MQ̂T                                                                                                (63) 

 

   0I0zMTQ̂                                                                                   (64) 

 

   00zMTQ̂                                                                                     (65) 

 

 

Finally, the transformed initial displacement is 

 

   0zMTQ̂0                                                                                       (66) 

 

Similarly, the transformed initial velocity is 

 

   0zMTQ̂0                                                                                        (67) 
  
 

 

The product of the first two matrices on the left side of equation (59) equals a vector of 

participation factors. 
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(69)                            

 

 

Equation (69) can be solved in terms of Laplace transforms. 

 

 

Wavelet Excitation 

 

The base excitation function is: 
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Tt0,tf2sin
N

tf2
sinA

)t(y  

(70) 

 

where 

 

A = wavelet acceleration amplitude 

f = wavelet frequency 

N = number of half-sines, odd integer > 3  

T = N / (2 f) 
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The base excitation may also be expressed as: 
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(71) 

 

 

 

The equation of motion becomes  
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(72)       

 

 

The equation of motion for mode i is:     
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 (73)           

 

Let 

 

N

f2
)1N(


                                                                                                                    (74) 

 

N
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                                                                                                                    (75) 

 

B = A i  / 2                                                                                                    (76)   
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By substitution, 

 

Tt0,)tcos(B)t(cosB2 i
2

nini                                                 (77)  

 

 

 

The solution to equation (77) is given in Reference 1.  Excerpts are given as follows. 
 

 

Define the following coefficients.  Note that there is a set of coefficients for each mode.  The 

subscript i is omitted for brevity. 
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The total modal relative displacement for 0 < t < T is 
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(89) 

 

 

The relative displacement for t > T is found by adding a delay into equation (89). 
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The total modal relative velocity for 0 < t < T is 
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(93) 

 

 

The relative acceleration can then be found from 

 

 

Tt0,)tcos(B)t(cosB2 i
2

nini                                                    (94) 

 

 

0t,2 i
2

nini                                                                                                        (95) 

 

 

The physical relative displacement is then calculated per 

 

 Q̂z                                                                                      (96) 

 

The physical relative velocity and relative acceleration terms can then be calculated using 

the appropriate derivatives. 

 

The physical absolute acceleration is then 

 

yzx ii                                                                                           (97) 
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APPENDIX A 

 

EXAMPLE    

 

 

Normal Modes Analysis 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1. 

 

 

 

Consider the system in Figure A-1.  Assign the values in Table A-1. 

 

Table A-1.  Parameters 

Variable Value Unit 

1m  3.0  lbf sec^2/in    

2m  2.0 lbf sec^2/in  

1k  400,000    lbf/in    

2k  300,000 lbf/in 

3k  100,000 lbf/in 

 
Furthermore, assume 

 

1. Each mode has a damping value of 5%. 

2. Zero initial conditions 

 

Next, assume that the base input function is a 10 G, 10 msec half-sine pulse. 

y 

  m1 

 k 1 

m2 

k 2 x1 

x 2 

k 3 
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Solve for the acceleration response time histories.   The homogeneous, undamped problem is 
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The eigenvalue problem is  
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The analysis is performed using Matlab script:  twodof_wavelet.m.   

 

The results are: 

 
mass = 

 

     3     0 

     0     2 

 

 

stiff = 

 

      500000     -100000 

     -100000      400000 

 

 Natural Frequencies  

 No.      f(Hz) 

 

1.        59.388  

2.          75.9  

 

  

  Modes Shapes (column format) 

 

ModeShapes = 

 

    0.4792   -0.3220 

    0.3943    0.5869 
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 Enter the damping ratio for mode 1 0.05 

 Enter the damping ratio for mode 2 0.05 

  

 Particpation Factors =  

  

     2.226    

    0.2079    

  

 Enter the wavelet amplitude (G) 1 

 Enter wavelet frequency (Hz) 75 

 Enter number of half-sines  11 

  

  

 dof 1  

 maximum acceleration =   2.47 G 

 minimum acceleration =  -2.42 G 

  

 dof 2  

 maximum acceleration =   2.28 G 

 minimum acceleration =  -2.19 G 
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Figure A-2. 
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Figure A-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-3

-2

-1

0

1

2

3

0 0.05 0.10 0.15

dof 2
dof 1
Base Input

TIME (SEC)

A
C

C
E

L
E

R
A

T
IO

N
 (

G
)

ACCELERATION



 22 

 

APPENDIX B 

 

 

Modal Participation Factor 

 

Consider a discrete dynamic system governed by the following equation 

 

 

FxKxM                                                                                            (B-1) 

 

where  

 

M is the mass matrix 

K is the stiffness matrix 

x  is the acceleration vector 

x  is the displacement vector 

F  is the forcing function or base excitation function 

 

 

A solution to the homogeneous form of equation (B-1) can be found in terms of eigenvalues 

and eigenvectors.  The eigenvectors represent vibration modes. 

 

Let   be the eigenvector matrix. 

 

The system’s generalized mass matrix m̂ is given by  

 

 MTm̂                                                                                               (B-2) 

 

Let r  be the influence vector which represents the displacements of the masses resulting 

from static application of a unit ground displacement. 

 

Define a coefficient vector L  as 

 

rMTL                                                                                        (B-3)  

 

The modal participation factor matrix i  for mode i is 

 

iim̂

iL
i                                                                                        (B-4) 
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The effective modal mass i,effm  for mode i is  

                                                                                                                              

iim̂

2
iL

i,effm                                                                           (B-5) 

 


