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Two-degree-of-freedom System, Modal Analysis

The method of generalized coordinates is demonstrated by an example. Consider the system

in Figure 1.
|
my

Figure 1.

The system also has damping, but it is modeled as modal damping.



A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given
in Figure 3.
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Figure 2.

Determine the equation of motion for mass 1.

> F=mq X1 1)

my Xg = k3(x2 —x1)—k1(x1-y) 2)

my X1 +kg X —k3(x2 —x1)=kpy (3)

my Xq +kg xg +k3(xg —x2)=k1y (4)

my Xq + (k1 +k3)xg —kaxp =kgy (5)
ka2 (X2-Y)

/Ixz

l K3 (X2-X1)

Figure 3.



Derive the equation of motion for mass 2.

YF=mjyX> (6)
mg %2 =—k3(x2 —x1)-k2 (x2 ~Y) (7)
mg %2 +kp x2 +k3(x2 —x1)=kay 8)
ma %2 +(k2 +k3)x2 —k3xy =k2y 9)

Assemble the equations in matrix form.
m 0 || X k1 +k -k X k
1 ’ 1], |*17K3 3 1(_[X1Y (10)
0 mo| X2 -k3  ko+k3z||x2 Koy
Define a relative displacement z such that

X1=21+Y (11)

X2 =22+Y (12)

Substitute equations (11) and (12) into (10).

m 0 ||Z1+Vy N k1 +Ks -kj3 Z1+Yy _ kiy (13)

0 my|lZp+V -k3  ko+kz|zo+y koy
mp 0 12} ymy | \ki+kg  —kg jizy)| tki+ky  —k3 iyl Tkiy
0 mollZo moy -k3 ko +k3 || z2 —k3 ko +k3 ||y koy
(14)

0z v [ki+k —k K K
e ST A e [T Pid B e B
0 myo|[Z2] M2y -k3  ko+ksz|zo]| |koy]| |koy



m 0 || Z1 +k1+k3 -k3
0 mallZp -k3z ko +k3

(16)

Equation (16) is coupled via the stiffness matrix. An intermediate goal is to decouple the

Decoupling
equation.
Simplify,
M7+KZ=F
where
m 0
T e
0 my
ki +k -k
K _|K1TK3 3
—k3 k2+k3
z
3]
Z2
T
g
—may

Consider the homogeneous form of equation (17).

M7+KzZ=0

Seek a solution of the form
z=qexp(jot)

The g vector is the generalized coordinate vector.

(17)

(18)

(19)

(20)

(21)

(22)

(23)



Note that

Zz=jogexp(jot) (24)

2

7 =-0° gexp(jot) (25)

Substitute equations (23) through (25) into equation (22).

~o’M gexp(jot)+ Kgexp(jot)=0 (26)
Fo?M g+ Kgjep(jot)=0 (27)
—on’M G+Kg=0 (28)
Lo?M +Kfg=0 (29)
K-0?M [§=0 (30)

Equation (30) is an example of a generalized eigenvalue problem. The eigenvalues can be
found by setting the determinant equal to zero.

det |K—02M | =0 (31)
k1 +k -k
det]| L TH3 3 _p2l™ Ol (32)
—k3 k2+k3 0 mo
2
det (k1+k3)—0) m1 —k3 , -0 (33)
—k3 (k2+k3)—0) mo
[(kl + k3)—0)2m1“(k2 + k3)—032m2J— k32 =0 (34)

0)4m1m2 —0)2[m1(k2 +k3)+ m2(k1+k3)]—k32 =0 (35)



The eigenvalues are the roots of the polynomial.

2 —b- b2 — dac

36
@] >3 (36)
2 —b+4 b2 — 4ac
0" = (37)
2a
where
a=mimy (38)
b=—[my (k2 +k3)+ma(ky +k3)] (39)
c=—kg? (40)
The eigenvectors are found via the following equations.
K-02M f4,=0 (41)
2 - A
{K=02M [d2 =0 (42)
where
_ q
41 = { ”} (34)
412
_ q
G2 = { 21} (44)
422

Q=[d | a2 ] (45)
Q{Qll Q21} (46)
d12 d22



The eigenvectors represent orthogonal mode shapes.

Each eigenvector can be multiplied by an arbitrary scale factor. A mass-normalized
eigenvector matrix Q can be obtained such that the following orthogonality relations are
obtained.

O™™MGO=1 (47)
and
OTkO=0 (48)
where
superscript T represents transpose
| is the identity matrix
Q is a diagonal matrix of eigenvalues
Note that
q=| 1 (492)
121 Q22
aT = ?11 ‘5121 (49b)
912 Q922

Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.
Further discussion is given in the references.

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial.

Now define a modal coordinate n(t) such that

A

z=Qn (50a)
z7=0Q1qam + Gi2mp (50b)
Zp= Qo1m + Qu2mp (50c)



Recall
X1=21+Y (51a)

X2 =22 +Y (51b)

The displacement terms are

Xp=Yy + 0um + G2m2 (51a)

Xo=y + Gaam + Gd22m2 (52b)
The velocity terms are

Xp=Y + Guam + G272 (53a)

Xo=y + G + G272 (53b)
The acceleration terms are

X1=9 + 01 + Q22 (54a)

Xo=Vy + Qo1in + Q212 (54b)

Substitute equation (50a) into the equation of motion, equation (17).
MQ #7+KQ f=F (55)

Premultiply by the transpose of the normalized eigenvector matrix.
Q"MQH + Q'kQn=Q'F (56)
The orthogonality relationships yield
IR +Qn=Q'F (57)

For the sample problem, equation (57) becomes

{1 0} {m} L |o? o {m}{fm qzlﬂ—mly} 58)
0 1][fi2 0 wp?|lm2] lb12 a22][-m2y



Note that the two equations are decoupled in terms of the modal coordinate.

Now assume modal damping by adding an uncoupled damping matrix.

{1 0}{ﬁ1} +{2€1®1 0 }{ﬁ1}+ 0 0 {nl}:{dll q21}{—ﬁny}
0 1][f2 0 2% 2] |n2 0 wp?|ln2] [G12 G22][-m2y

(59)
Now consider the initial conditions. Recall
z=Qm (60)
Thus,
2(0)=Q 7(0) (61)
Premultiply by QT M
Q" M2z(0)=Q" MQn(0) (62)
Recall
OTMO =1 (63)
Q" M2(0)=11(0) (64)
A T _ _
Q' Mz(0)=n(0) (65)
Finally, the transformed initial displacement is
o1 M
n(0)=Q" Mz(0) (66)
Similarly, the transformed initial velocity is
. A T =
1(0)=Q" Mz(0) (67)

The product of the first two matrices on the left side of equation (59) equals a vector of
participation factors.



-Tp :Pu QZl}[mll} (68)
-T2] G2 G22]|m22

{1 0} {m} +{2i1601 0 Hm}r mZ 0 {m}{—rly}
0 1][f2 0 285w2]|n2 0 wp?|lm2] |~T2V

(69)
Equation (69) can be solved in terms of Laplace transforms.
Wavelet Excitation
The base excitation function is:
Asin{27T ft} sinfarnft], 0<t<T
y(t) =
0, t>T
(70)
where
A = wavelet acceleration amplitude
f = wavelet frequency
N = number of half-sines, odd integer > 3
T = N/(@2F1)

10



The base excitation may also be expressed as:

—écos{(N +1)27T ft} +écos{(N —1)27C ft} , 0<t<T
2 N 2 N

y(t) =
0, t>T
(71)
The equation of motion becomes
24 I e [ [ ]
0 1][ii 0 25 02] N2 0 wy?|ln2) [~T2¥
(72)

The equation of motion for mode i is:

AT AT
fij+ 2§wnﬁi+wn2ni=7'008{(N +1)2an? —Tlcos{(N —1)2an1 . 0<t<T

(73)
Let
o = (N +1)% (74)
2rnf
B=(N-D=~ (75)
B=AT; /2 (76)
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By substitution,

flj+ 280 p M+ @n 2nj= Bcos (at) —Bcos(Bt) , 0<t<T 7)

The solution to equation (77) is given in Reference 1. Excerpts are given as follows.

Define the following coefficients. Note that there is a set of coefficients for each mode. The
subscript i is omitted for brevity.

_(o@_@n?j
C1=B 5
{(o@_wﬁ) +(2§amn)2] (78)
2
Co =B 2§2 ®n (79)
[(azmrzlj +(2§0L0)n) }
(o@_mﬁj
C3=8B > (80)
[(oc —oarzl) +(2§amn)}
3
Cyq=B —250n (81)
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C10=C3+C7y

C11=Cy4+Cg

C20 =C11-EonC10

13

(82)

(83)

(84)

(85)

(86)

(87)

(88)



The total modal relative displacement for 0 <t < T s

m(t)=exp<—amnt%n<o>cos<mdt>+{*"i“’)+(§°°“)”(")}sin(wdt)}

g

+ Cqcos(at) + C—2sin(oct) + Cgecos(Bt) + C—;sin([}t)
(08

+ exp(—amnt){ C10 cos(mgt) + =l Cop sin(mdt)}
g
(89)

The relative displacement for t > T is found by adding a delay into equation (89).

M (T) + (Eop i (T)

g

ma):exp(—amna—nﬂlm<T>cos<md<t—T>>+{ }sin«od(t—n)}

(90)

Let

R3(t) = exp(—&cont){ C10 cos(agt) + L C20 Sin(codt)} (91)
od
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The total modal relative velocity for0<t<Tis

Mi(t) = exp (- awnt){mw) COS(COdt)JFZ—Z{— onni(0) —am(O)}sin(wdt)}

— aCqsin(at) + Cocos(at) — BCgsin(Bt) + Cgcos(Bt)
—&op R3(t)

+ exp(—E;oant)[— ®gC1o sin(ogt) + Cog cos((odt)]
(92)

ni (1) = exp(- acon(t—T)){mm cos (g (t—T))+Z—2{—wnn(T)—am(T)}sin(cod(t—T))}

(93)
The relative acceleration can then be found from
fli= —2EonMj— op 2N+ Bcos (at) —Bcos(Bt) , 0<t<T (94)
fij=—26opRi-onn; , >0 (95)
The physical relative displacement is then calculated per
z=07 (96)

The physical relative velocity and relative acceleration terms can then be calculated using
the appropriate derivatives.

The physical absolute acceleration is then

Xi =2i +y ©7)

15



References

1. T. Irvine, The Generalized Coordinate Method for Discrete Systems, Revision D,
Vibrationdata, 2010.

2. T. Irvine, Response of a Single-degree-of-freedom System Subjected to a Classical
Pulse Base Excitation, Vibrationdata, 1999.

3. T. Irvine, The Response of a Single-degree-of-freedom System Subjected to a
Wavelet Pulse Base Excitation, Vibrationdata, 2008.

4. T. Irvine, Effective Modal Mass & Modal Participation Factors, Revision E,
Vibrationdata, 2010.

16



Normal Modes Analysis

APPENDIX A

EXAMPLE

mp

k3

%

Figure A-1.

Consider the system in Figure A-1. Assign the values in Table A-1.

Table A-1. Parameters
Variable Value Unit
mq 3.0 Ibf sec”2/in
mo 2.0 Ibf sec”2/in
K1 400,000 Ibf/in
ko 300,000 Ibf/in
K3 100,000 Ibf/in

Furthermore, assume

1. Each mode has a damping value of 5%.

2. Zero initial conditions

Next, assume that the base input function is a 10 G, 10 msec half-sine pulse.

17




Solve for the acceleration response time histories. The homogeneous, undamped problem is

m O 21_+_k1+k3 —k3 z1 | | —my
0 mp|lZy] _—k3 ko +Kk3 || z2 B —moy

30 21‘+‘5oo,ooo ~100,000][z1] [0
0 2| 7p| |-100,000 400,000 ||z | |0

The eigenvalue problem is

500,000—20°  —100,000 [m}:m
~100,000 400,000 w? |Ld2] [0

The analysis is performed using Matlab script: twodof wavelet.m.

The results are:

mass =
3 0
0 2
stiff =
500000 -100000
-100000 400000

Natural Frequencies

No. f (Hz)
1. 59.388
2. 75.9

Modes Shapes (column format)
ModeShapes =

0.4792 -0.3220
0.3943 0.5869

18
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Enter the damping ratio for mode 1 0.05
Enter the damping ratio for mode 2 0.05

Particpation Factors =

2.226
0.2079

Enter the wavelet amplitude (G) 1
Enter wavelet frequency (Hz) 75
Enter number of half-sines 11

dof 1
maximum acceleration = 2.47 G
minimum acceleration = -2.42 G
dof 2
maximum acceleration = 2.28 G
minimum acceleration = -2.19 G

19



REL DISP (INCH)

0.008

0.006

0.004

0.002

-0.002

-0.004

-0.006

-0.008
0

Figure A-2.

RELATIVE DISPLACEMENT
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0.10

0.05

[
5 ¢
=% ~
c
N \— >
558
< T 0 A
| _ ~
_ 1 ' —
I
~
—
——
//
>
| -
==~
/';
—L_
—_—
. =
\I\||\I\.|\|\/»A.||\|.\|
Naayl —
"l‘l‘lhl\'\\l‘”
< —
e ==
\l’l\’ \k
—_—
< ——
—_ I
It
— |\\\
— -
(/I T
— e
< \\
\\
~)
o~ - o — o~

(9) NOILYHI 13O0V

0.15

TIME (SEC)

Figure A-3.

21



APPENDIX B

Modal Participation Factor

Consider a discrete dynamic system governed by the following equation

MX+KX=F (B-1)
where
M is the mass matrix
K is the stiffness matrix
% is the acceleration vector
X is the displacement vector

is the forcing function or base excitation function

A solution to the homogeneous form of equation (B-1) can be found in terms of eigenvalues
and eigenvectors. The eigenvectors represent vibration modes.

Let ¢ be the eigenvector matrix.
The system’s generalized mass matrix Mmis given by

= Mo (B-2)

Let 7 be the influence vector which represents the displacements of the masses resulting
from static application of a unit ground displacement.

Define a coefficient vector L as

L=¢"MTF (B-3)

The modal participation factor matrix I'j for mode i is

I (B-4)
mij
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The effective modal mass megf j for mode i is

Meff,i=—— (B-5)

23



