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Introduction
When motorized equipment, such as
electric motors, fans or pumps, is
mounted to a solid structure, energy 
can be transferred from the equipment
to the structure in the form of vibration.
This vibration often radiates from 
the structure as audible noise and
potentially reduces performance or
damages equipment. Most portable
electronics, CD drives and vehicle-
mounted electronics are especially 
sensitive to vibration and shock and
must be isolated from that energy to
ensure proper performance. 

Isolation mounts reduce the transmis-
sion of energy from one body to another
by providing a resilient connection
between them. Selecting an improper
mount for an application, however, can
actually make the problem worse. The
incorrect mount may reduce the high
frequency vibration, but resonant condi-
tions at lower frequencies can actually
amplify the induced vibration. During
an impact, the mount deflects and
returns some of the energy by rebound-
ing. Preventing this energy return can
extend product life and prevent perform-
ance problems such as skipping in a CD
drive and read/write errors on a hard
disk drive.

Adding damping to a resilient mount
greatly improves its response. Damping
reduces the amplitude of resonant
vibration by converting a portion of the
energy into low-grade heat. Damping
also dissipates shock energy during an
impact. This reduces the amount of
deflection required to absorb the shock,
providing protection in smaller spaces.

This property is especially significant
when designing shock protection for
portable electronics, which become
increasingly “miniaturized” with each
new model. A highly damped material
can provide the required impact protec-
tion in a smaller envelope than would
be required for an undamped material.

Natural Frequency
All mounting 
systems have a
natural frequency
(fn)—the 
frequency at
which the system
will oscillate if it
is displaced from
its static position
and released. For example, consider a
weight suspended from a rubber band,
similar to the single degree of system
model in Figure 1. If the mass is pulled
down from its resting state, stretching
the rubber band, and then released, the
mass will move up and down at a 
certain frequency. This is the natural 
frequency. The natural frequency, fn, is
dependent upon the stiffness of the
spring, K, and the mass of the load that
it is supporting (M), and can be deter-
mined by the following equations:

fn=1/2 π√K/M

where K is the stiffness in newtons per
meter (N/m) and M is the mass in kilo-
grams (Kg), or

fn=3.13√K/W

where K is the stiffness in pounds per
inch (lb/in) and W is the weight of the
mass in pounds.
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The natural frequency may also be deter-
mined using the static deflection that the
mass induces on the spring in the equation

fn=1/2 π√G/d

where G is the acceleration due to gravity
(9.8 m/s2 or 32.2 ft/s2) and d is the static
displacement in meters or inches. This
equation is true only for an undamped
system.

Damping
Controlling the natural frequency 
provides one means to control vibration.
Damping provides another. Damping 
is the dissipation of energy, usually by
releasing it in the form of low-grade heat.
For example, dry friction, the most com-
mon damping mechanism, is the reason
an  object sliding on a surface will slow
down and stop. Some mechanical devices
use viscous damping as a means of energy
dissipation. In these systems, fluid losses
caused by a liquid being forced through a
small opening provide the necessary
energy loss. The shock absorbers on an
automobile are an example of viscous
dampers. Mathematical models for vis-
cous damping are well established and
provide a means for analysis. Viscous
damping capability is characterized by
the damping ratio, C/Cc or �.

Most elastomeric engineering materials
for vibration isolation use a mechanism
known as hysteretic damping to dissipate
energy. When these materials are
deformed, internal friction causes high
energy losses to occur. The loss factor is
used to quantify the level of hysteretic
damping of a material. The loss factor (η)
is the ratio of energy dissipated from the
system to the energy stored in the system
for every oscillation. It is often useful to
relate the loss factor to the damping ratio

so viscous damping models can be used
for analysis. The damping ratio can be
approximated from the loss factor by 
the following formula, which is more
accurate at lower damping levels than 
at higher ones.

η≈2c/cc≈2ζ

A loss factor of 0.1 is generally considered
a minimum value for significant damp-
ing. Compared to this value, most com-
monly used materials, such as steel, alu-
minum and most rubbers, do not have a
high level of damping. Other specialized
materials can have very high damping.
Here are some materials and their
approximate loss factor. 

Vibration Isolation
The performance of an isolation system
is determined by the transmissibility of
the system—the ratio of the energy
going into the system to the energy
coming from the system. This can be
expressed in terms of acceleration, force
or vibration amplitude. Transmissibility
(T) is equal to

T=|A out /A in|=                  1+( 2ζ fd/fn)2√ [1-( fd/fn)  2]  2+[ 2ζ fd/fn]  2

Where:  T= Transmissibility
Aout= Energy out of system

(transmitted force)
Ain= Energy into system

(Disturbing force)
ζ= Damping ratio
fd= Driving frequency
fn= Natural frequency

Material Approximate Loss Factor
Aluminum .007-.005
Steel .05-.10
Neoprene .1
Butyl Rubber .4
ISODAMP® C-1002 1.0
thermoplastic
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Figure 2 shows two typical transmissi-
bility curves, one for a highly damped
material (ζ≈0.5), another for a material
with much lower damping (ζ≈ 0.05)

At very low frequencies (fd/fn << 1), the
input vibration virtually equals output
(the transmissibility is equal to 1), and
input displacement essentially equals
that of output.

If the driving frequency equals the nat-
ural frequency (fd/fn = 1), the system
operates at resonance. If damping is
ignored in the equation for transmissi-
bility that was given earlier, a system
that is operating at resonance will have
a transmissibility approaching infinity.
As damping increases, the transmissibili-
ty at resonance decreases. Figure 3
shows the relationship between peak
natural frequency at resonance and loss
factor. Of course, all real world systems
have some level of inherent damping,
but this demonstrates the important role
that damping can play in vibration 
isolation. When a vibration isolation
mount with very little damping is 
used at or near resonance, the energy
amplification can create many 
problems, ranging from a simple
increase in noise levels to catastrophic
damage to mechanical equipment. 

When the frequency ratio equals the
square root of two (fd/fn =√2), transmis-
sibility will once again drop to 1. This is
known as the crossover frequency, and the
area below this frequency is known as
the amplification region. Above this fre-
quency lies the isolation region, where
transmissibility is less than 1. As a goal,
the isolator designer tries to design a
mounting system that puts the primary
operating frequencies of the system in
the isolation region. Many systems must
operate at a number of primary frequen-
cies or must frequently go through a
startup or slowdown as part of the oper-
ation cycle. For these systems, damping
in the mount becomes increasingly
important when it must function at or
near resonance.

As frequency continues to increase
above the crossover frequency, the level
of isolation, or the isolation efficiency,
increases. Figure 4 shows this relation-
ship. Designers must know the isolation
efficiency of the mounting system when
transferred energy must be below a
specified level, in devices such as 
CD-ROM or hard disk drives.
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Mount Design Using Elastomeric
Materials
There are many material options for pro-
ducing resilient elastomeric mounts.
Thermoplastic materials (ones that can
be melted and formed), such as many
vinyl and rubber elastomers, can be
injection-molded into cost efficient and
detailed parts. Thermosets (materials
that react in the mold and cannot be
remelted) offer another option, and must
be molded through other methods, com-
monly compression or transfer molding.
Due to longer cycle times, thermoset
piece prices often exceed that of thermo-
plastics, but the materials can also offer
chemical and strength properties that can
not be met by thermoplastics. Damping
and stiffness can also vary greatly with
different materials. (E-A-R Specialty
Composites manufactures several 
isolation materials with a variety of 
stiffnesses and damping properties.
Information on these materials can be
found on the company’s Website or by
contacting E-A-R. See back page.)

The following section outlines several
key points to be considered when
designing isolation systems. 

Design Guide
Here are guidelines that will assist in the
design of axially loaded isolation mounts
and pads from sheet materials.

1.  Optimize load. Proper performance
depends on proper loading. Referring 
to the natural frequency equation,
fn=3.13√K/W , if the mass of the load 
is very small for the stiffness of the
selected mount, the natural frequency 
of the system will be high, reducing the
isolation performance. An overloaded
mount, can compress completely, or 
bottom out, increasing the effective stiff-
ness of the mount. This also increases the
natural frequency. Overloading an elas-
tomeric mount can also cause internal
stresses that can reduce the useful life of
the mount. Generally, a 5% static com-
pression of the mount is appropriate for
most materials, although static compres-
sions of up to 15% may provide adequate
isolation and part life. For homogeneous
elastomers with a durometer (hardness)
of around 50-60 shore A, ideal loading is
generally around 50 pounds per square
inch (psi), although loading of anywhere
from 10 - 100 psi may still be effective.
Softer elastomers should be loaded less
than stiffer elastomers. 

2.  Shape factor (S) of 0.5 to 1.0. Solid
elastomers act as incompressible solids,
and therefore must have room to bulge
in order to deflect. Therefore, the shape
factor, or bulge factor, should be opti-
mized to achieve the expected stiffness.
Shape factor (S) is defined as 
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Example: Consider a mount of  the shape in
Figure 5. Surface A, the loaded surface,
has an area of 2 square inches. Surface B,
free to bulge on all sides of the mount,
has a total area of 3 square inches. The
shape factor is S = 2/3 = 0.66. A high
shape factor produces a stiff mount. With
a low shape factor, the mount may buckle
and be unstable. A shape factor of 0.5 to
1.0 proves appropriate for most materials.
Changing the thickness of the mount or
changing the cross section of the mount
changes the shape factor. Rings, strips, or
other shapes can be useful in creating the
proper shape factor.

3.  Determine the dynamic modulus of
the elastomeric (E).

The dynamic modulus of the material can
be determined using a reduced frequency
nomogram. The dynamic modulus of a
highly damped material will be affected
by temperature and frequency. A nomo-
gram can provide the dynamic modulus
and loss factor information over a range
of temperatures and frequencies. It may
be useful to convert dynes/cm2. To con-
vert to psi, multiply by 1.45 x 10-5. To 
convert to N/m2, multiply by 0.10).

Calculate the effect of the shape 
factor using the following equations.

Disk Shape Block Shape
ECorrected = E (1+2S2) ECorrected = 4/3 E (1+S2)

4.  Calculate stiffness (K).

Calculate stiffness using the following
formulas.

Disk Ring
K=ECorrected πa2 K= ECorrected π(a0

2-ai
2)

t t

Block
K=ECorrected lw

t

a= Disk radius 
ao= Outer ring radius
l= Block length
t= Thickness
ai= Inner ring radius
w= Block width

Combine shapes to determine the stiffness
of complex parts. Many parts can be con-
sidered a combination of two blocks, a
block and a disk, or any other combination
of geometry. Determine the stiffness of
each section as outlined in 4a. Then deter-
mine if the parts are in series or parallel. 

Figure 6 shows some examples. Example
A shows a block in series with a disk
(they are stacked on top of each other).
Example B shows two disks in parallel
(they are next to each other). These two
disks are also in series with the block. To
determine to overall stiffness, use the
equations below to combine the stiffness-
es of the individual shapes.

A

B

Figure 5

Example A Example B
Block and disk in series Disks in parallel

Block and disks in series
Figure 6
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Shapes in series: 
1/KOverall=1/K1+1/K2+1/K3+…+1/Kn

Shapes in parallel:
KOverall=K1+K2+K3+…+Kn

Assume the blocks in Figure 6 have a
stiffness of 20 lb/in and the disks have
a stiffness of 10 lb/in. The total stiffness
of Example A would be

1/KA=1/KBlock+1/KDisk =1/20+1/10=  3/20

KA=20/3=6.66 lb/in

The total stiffness of Example B would be

Stiffness of disks in parallel,

KDisks=KDisk  1+KDisk  2=10+10=20 lb/in.

Stiffness of block and disks in series,

1/KB=1/KBlock+1/KDisks =1/20+1/20=  1/10

KB=10 lb/in

5.  Calculate the natural frequency. Use
the following relationship. W is the
overall weight load in pounds. M is the
overall mass load in kilograms.

English units:   fn=3.13√Koverall/Woverall

Metric units: fn=.16√Koverall/Moverall

Remember, vibration isolation in the
system will occur above √2 fn. Most 
systems have a certain frequency of 
concern from which they must be isolat-
ed. This may be the rotational speed of a
motor, the blade passing frequency of a
fan, and so forth. As a rule of thumb, the
natural frequency of the mounting sys-
tem should be one-third of the frequency
of concern. 

E-A-R Specialty Composites
E-A-R Specialty Composites offers a
wide range of standard molded grom-
mets, bushings and other isolators
molded from ISODAMP C-1000 Series

vinyl thermoplastic, ISOLOSS® HD 
urethane, and VersaDamp™ TPE. These
have been designed with the appropri-
ate geometry and load specifications in
mind, and have been used in many
kinds of products. Please consult 
E-A-R’s “Designing with Isolators”
booklet for more information, including
a worksheet to determine the natural
frequency when using the molded parts.

E-A-R also manufactures several other
propriety materials that can be used 
to solve various vibration and shock 
isolation problems. These include

ISOLOSS VL Low Modulus Urethane
Elastomer

ISOLOSS LS High Density Urethane
Foams

CONFOR® Ergonomic Urethane Foams
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