

LAUNCH SERVICES PROGRAM

On the Use of 3dB Qualification Margin for Structural Parts on ELV

Isam Yunis and Damian Ludwiczak NASA Kennedy Space Center

Presented at the Spacecraft and Launch Vehicle Workshop June 21-23, 2005

Introduction

- The standard qualification approach for ELV random vibration qualification is MPE+6dB for 4x life duration
 - Consistent with MIL-STD-1540 (no applicable NASA standard)
 - "Life" is flight + acceptance testing
- This can be a severe environment for fatigue sensitive structure
- Redesigns are costly
- NASA KSC has investigated to determine if the standard qualification requirement can be reduced

- This study includes fatigue sensitive structural elements:
 - Ducts
 - Bellows
 - Hoses
 - Probes needed for tanking only
 - Any other element that is non-functional during flight
- This study does not include:
 - Any item with functional parts, especially electronics
 - Primary structure
 - Secondary structure designed by peak loads or low frequency transient loads

Current Approach

- Current Methodology:
 - Data comes from flight (poor quantity) and test (poor quality)
 - Statistics are used with historical assumptions and small sample size
 - Failure modes and failure limits are not well understood for black boxes
 - Manufacturing repeatability is poorly defined
 - Test fixturing rarely duplicates flight
 - Testing is performed one axis at a time
- Historical data shows that the current methodology works
- The details above show that there is room for negotiation
- In particular, structural elements have unique features:
 - No acceptance testing
 - Failure modes are known: Peak load and fatigue
 - Quality control is achievable to control the failure modes
- Need to develop a method that addresses peak load and fatigue

John F. Kennedy Space Center

Derivation of the Environment

- Launch vehicle environments are created using statistics
- A typical PSD is created as the maximum of 1 second averages
 - Frequency peaks from different times are combined
- The event duration is typically the duration that the environment is within 6dB of the peak
 - The duration considers times at which levels are half of peak

Study Approach

- Flight data from 3 vehicles was obtained
- Multiple locations (5-6 accels) on each vehicle was included
 - Engine region, mid-body, spacecraft
- The flight data encompasses axial and lateral accelerometers
- "Fatigue damage" from flight was calculated by counting the number and magnitude of stress reversals and applying Minor's rule
- Time histories were developed from PSD's of MPE and MPE+3dB
 - Time histories were developed for 1x life (10 sec minimum) at the accel location
 - These are not unique and some variation was observed in the study but not enough to discount the results or change the conclusions
- Fatigue damage was calculated for MPE and MPE+3dB in the same way as flight data.
- Fatigue damage from MPE and MPE+3dB was compared SCLV_2005_Yunis

Study Data

- Red curves are the flight data
- Blue curves are the time histories derived from the MPE
- Blue curves are shown for the 1x life duration over the peak environment that defines life.
- Note that the longer the life (curve 1), the more conservative the MPE becomes because more 1second averages are enveloped.

Time (sec)

Study Data

Accelerations Across Vehicle Starting at Aft and Moving Up: Vehicle 2 بمتسرط ويعتلدان وطلاعين -100 οĒ -10 20 F·· -20 -10 Test Spec -- Flight Data والمراجع والمراجع والمراجع والمراجع والمراجع A DESCRIPTION OF 197 P -2

LAUNCH SERVICES PROGRAM

Study Results: Fatigue

LAUNCH SERVICES PROGRAM

Table 1: Comparison of Fatigue Life Expended by ELV Flight Data, the Associated MPE,and the Associated MPE+3dB

	Configuration 1			Configuration 2			Configuration 3		
Vehicle	Peak	MPE	MPE	Peak	MPE	MPE	Peak	MPE	MPE
Location	Event	Margin	+3dB	Event	Margin	+3dB	Event	Margin	+3dB
	Duration		Margin	Duration		Margin	Duration		Margin
	(sec)			(sec)			(sec)		
1	230	28.0	112	10	4.1	16.3	250	5.7	23.5
2	230	19.2	77	50	6.2	24.7	30	10.0	40.0
3	10	1.0	4.0	40	3.5	13.8	40	28.0	112.0
4	40	3.9	15.8	40	7.9	31.4	10	5.0	20.0
5	40	4.7	18.7	10	2.8	11.1	40	21.7	86.6
6	40	5.6	22.2						

Notes:

MPE Margin = (Fatigue Due to MPE for Peak Event Duration) / (Fatigue Due to Flight Data) MPE+3dB Margin = (Fatigue Due to MPE+3dB for Peak Event Duration) / (Fatigue Due to Flight Data)

- Short duration events have the lowest fatigue margin
- At least 4x fatigue life is demonstrated for MPE+3dB in all cases

Study Results: Peak Loads

LAUNCH SERVICES PROGRAM

Table 2: Comparison of Expected Peak Loads from ELV Flight Data, the Associated MPE,and the Associated MPE+3dB

	Configuration 1			Configuration 2			Configuration 3		
Vehicle	Peak	MPE	MPE	Peak	MPE	MPE	Peak	MPE	MPE
Location	Event	Margin	+3dB	Event	Margin	+3dB	Event	Margin	+3dB
	Duration		Margin	Duration		Margin	Duration		Margin
	(sec)			(sec)			(sec)		
1	230	1.9	2.7	10	1.1	1.5	250	1.4	1.9
2	230	2.0	2.8	50	1.1	1.6	30	1.2	1.7
3	10	1.4	1.9	40	1.3	1.8	40	1.5	2.1
4	40	1.3	1.8	40	1.3	1.8	10	1.3	1.9
5	40	1.1	1.6	10	1.3	1.8	40	1.1	1.6
6	40	1.3	1.9						

Notes:

MPE Margin = (Peak Load Due to MPE for Peak Event Duration) / (Peak Load Due to Flight Data) MPE+3dB Margin = (Peak Load Due to MPE+3dB for Peak Event Duration) / (Peak Load Due to Flight Data)

- Peak load margin is less than fatigue margin
- At least 1.5x peak load is demonstrated for MPE+3dB in all cases

Study Results: SRS

LAUNCH SERVICES PROGRAM

• MPE+3dB SRS shows margin over flight at nearly all frequencies

SCLV_2005_Yunis

Study Results: SRS

John F. Kennedy Space Center

Summary and Conclusions

- Structure and black boxes are different
 - Black boxes have unknown failure modes and have margin only by virtue of test
 - Structure has known failure modes and can have margin by analysis against these modes
- Using standard development of MPE, structure may be qualified by MPE+3dB for 1x life
 - Standard development = max (1 second average) for duration of event
- "Structure" in this study includes: ducts, bellows, tubing, nonfunctional structure, etc.
- "Structure" does not include primary or secondary structure designed by transient peak loads or quasi-static loads