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Abstract 
Fatigue damage is traditionally determined from time signals of loading, usually in the form of stress or 
strain. This approach is satisfactory for periodic loading but requires very large time records to accurately 
describe random loading processes. These may prove prohibitive for many finite element analyses especially 
when modelling dynamic resonance. Alternatively, a compact frequency domain fatigue calculation can be 
utilised where the random loading and response are categorised using Power spectral density (PSD) 
functions and the dynamic structure is modelled as a linear transfer function. This paper will review the 
available methods for performing fatigue analysis from PSDs and shows that the Dirlik method gives the 
best comparable results with the traditional time domain approaches. It also demonstrates how these 
techniques can be implemented in the Finite Element environment to rapidly identify critical areas in the 
structure. 
 

1. Introduction 

It is often easier to obtain a PSD of stress rather 
than a time history. Take, for instance, the dynamic 
analysis of complicated finite element models. Here 
it is often beneficial to carry out a rapid frequency 
response (transfer function) analysis instead of a 
computationally intensive transient dynamic 
analysis in the time domain. The offshore oil 
industry faced this problem in the early 1980’s. An 
offshore oil platform is a hugely complex structure 
that is subjected to random wind and wave loading. 
A typical design analysis may have to consider over 
70 load combinations on the structure. The analysis 
is further complicated because the imposed loads 
are random and dynamically excite the structure. A 
transient dynamic analysis in the time domain 
proves impossible to carry out in this case. 
 
A Finite Element analysis based in the frequency 
domain can simplify the problem considerably. The 
designer can now carry out a frequency response 
analysis on the FE model to determine the transfer 
function between wave height and stress in the 
structure. Using this, he simply multiplies the PSD 
of wave height by the transfer function to arrive at 

the PSD of stress. A review of this method is 
presented. 
 
To take advantage of the fast frequency domain 
techniques for fatigue analysis, we require a method 
of deducing damage from the PSD of stress. 
 
In this paper we will briefly review the technology 
behind time domain S-N analysis and then draw a 
parallel approach in the frequency domain. A 
comparison study between the different fatigue 
analysis techniques is presented. The paper 
concludes by describing the Finite Element 
approach for computing fatigue damage on 
vibrating components. 
 

2. Review of S-N analysis in the 
time domain 

The starting point for any fatigue analysis is the 
response of the structure or component. In the time 
domain this is usually expressed as a stress or strain 
time history. Fatigue occurs as a result of stress or 
strain reversals in the time history. These are known 
as cycles. The significant aspects of these are the 



ranges of stress in the cycle and also there mean 
stress. Today the range and mean information is 
usually extracted from the time history using a 
procedure known as ‘Rainflow Cycle Counting’. 
Matsuishi and Endo first introduced the concept of 
rainflow ranges to the scientific community over 
twenty years ago. An example of the way rainflow 
ranges are extracted from a time signal is given by 
Downing [1]. 
 
The output from a rainflow cycle counting exercise 
is usually expressed as a range mean histogram such 
as that shown in Figure 1†. The stress range of each 
cycle is given along the x axis, its mean stress is 
shown on the y axis and the z axis gives the number 
of cycles contained in the time history for each 
particular range and mean. This data was taken from 
the Howden HWP330 wind turbine; Bishop [2] 
discusses the analysis.  
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Figure 1 Range-mean histogram derived from 

time history by rainflow cycle counting 

 
Each cycle will induce a certain amount of fatigue 
damage on the component. The total damage caused 
by the time history can therefore be obtained by 
summing the damage caused by each cycle shown 
in the stress range histogram. This approach is 
known as the Palmgren-Miner accumulated damage 

                                                      
† This data was analysed and displayed using the nSoft 
modules; cyc and rqp. 

rule after the two independent people who proposed 
it. 
 
The damage caused by each cycle is calculated by 
reference to the material life curve, in this case the 
SN curve. The SN curve shows the number of 
cycles to failure, Nf, for a given stress range, S. The 
total damage caused by N number of cycles is 
therefore obtained as the ratio of cycles to the 
number of cycles to failure. The Palmgren-Minor 
rule can therefore be expressed as Equation (1). 
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Where, Ni is the number of cycles with a particular 
stress range and mean; i is a ranging variable 
covering all the possible range and mean 
combinations; and Nf is the number of cycles to 
failure for a particular stress range and mean.  
 
The accumulated damage is expressed as a 
proportion of the damage required to fail the 
material. Therefore the fatigue life for the 
component can be determined from Equation (2). 
 

DamagedAccumulate
historytimeofLengthLifeFatigue =  (2) 

 
The fatigue life for the data shown in figure 1 was 
found to be 0.2 years based on an aluminium alloy 
2024_HV_T4. 
 

3. Simple fatigue analysis using 
time history recreation 

The most obvious method for calculating fatigue 
from a PSD is to regenerate a characteristic time 
history and proceed as described above. This 
section describes the theory of time history 
regeneration from PSDs and highlights some of the 
fundamental assumptions involved. 
 
The frequency domain is simply another domain in 
which to view a time signal; the x-axis now 
represents frequency instead of time. To convert a 
time signal into the frequency domain we 
effectively split it up into a number of discrete 
sinusoidal waves of varying amplitude, frequency 
and phase. When these are added together they form 
the original time signal. The algorithm used to split 



the time history into its constituent sinusoidal 
components is the ‘Fourier Transform’. This returns 
a complex vector of values where each value 
represents the amplitude and phase of the particular 
sinusoidal wave at a particular frequency. The 
amplitude can be obtained from the modulus of the 
complex number while the phase is determined 
from the argument. 
 
In practice we usually represent the frequency 
domain as a ‘Power Spectral Density (PSD)’ plot. 
This is a normalised density plot describing the 
mean square amplitude of each sinusoidal wave 
with respect to its frequency. A typical PSD plot is 
show in Figure 2. The mean square amplitude of a 
constituent sinusoidal wave can be determined by 
measuring the area under the PSD over the desired 
frequency range. The amplitude can then be 
estimated using Equation 3. The PSD does not 
contain any phase data. 
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Figure 2 Typlical PSD of a random time history 

 
 SquareMeanAmplitude ⋅= 2   (3) 
 
To regenerate a time signal from the frequency 
domain we would usually perform an ‘Inverse 
Fourier Transformation’ on the complex vector of 
frequency domain results. This would yield exactly 
the same time history as we started with. When 
starting with a PSD this method is inappropriate 
because the PSD does not contain any of the 
original phase information. For certain time 
histories, however, we are able to make assumptions 
about the original phase content and therefore 
regenerate a statistically equivalent time history. If 
the time history is taken from an ‘ergodic stationary 
Gaussian random process’, it is found that the phase 
is purely random between –π and +π radians. 
A process is said to be stationary if its statistics are 

not affected by a shift in the time origin. (I.e. the 
statistics of a time history X(t) are the same as a 
time history X(t + τ) for all values of τ.) To test for 
stationarity we take a number of recordings of the 
random process at different times. The process is 
stationary if the probability distributions of the 
ensemble are the same for all points in time. If the 
ensemble probability density function is Gaussian 
then the process is known as a Gaussian random 
process. A stationary process is called an ergodic 
process if statistics taken from one sample are the 
same as those obtained for the ensemble. With an 
ergodic stationary random process, therefore, we 
can effectively take a single sampled time history 
from the process and safely assume that this 
contains all the required statistical properties of the 
parent process. For nonstationary processes the 
statistics obtained from a sampled time history 
would not be representative of those of the whole 
random process as these would be continuously 
changing. In practice we see that many time signals 
obey this criterion. Naturally occurring phenomena 
like wind speed, wave height, etc. usually obey this 
along with vibrations from generators and engines. 
Strictly speaking, the later examples are not random 
processes, however, the vibrations occur as a result 
of many deterministic sources and the central limit 
theorem tends to make them behave in the desired 
fashion. 
 
To regenerate a time signal from a PSD we 
therefore assume that the original process was 
‘ergodic stationary Gaussian and random’. We can 
then generate random phase angles and add these to 
the amplitude data given in the PSD. At this point 
we use the Inverse Fourier Transformation to 
determine a statistically equivalent time history.  
 

4. Fast fatigue analysis methods 
in the frequency domain 

This section describes a variety of approaches for 
computing fatigue life, or damage, directly from the 
PSD of stress as opposed to a time history. The 
techniques fall into two broad categories, those that 
estimate fatigue life directly and those that compute 
range mean histograms as an intermediate stage. For 
more background information the reader is referred 
to Bishop [3] and Halfpenny [4]. As before, these 
methods are only applicable for PSDs describing an 
ergodic stationary Gaussian and random process. 
 



In 1964 Bendat [5] proposed the first significant 
step towards a method of determining fatigue life 
from PSDs. Bendat showed that the probability 
density function (pdf) of peaks for a narrow band 
signal tended towards a Rayleigh distribution as the 
bandwidth reduced. Furthermore, for a narrow 
banded time history Bendat assumed that all 
positive peaks in the time history would be followed 
by corresponding troughs of similar magnitude 
regardless of whether they actually formed stress 
cycles. Using this assumption the pdf of stress range 
would also tend to a Rayleigh distribution. To 
complete his solution method, Bendat used a series 
of equations derived by Rice [7] to estimate the 
expected number of peaks using moments of area 
under the PSD. Bendat’s narrow band solution for 
the range mean histogram is therefore expressed in 
Equation (4). 
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Where N is the number of cycles of stress range S 
occurring in T seconds. m0 is the zeroth moment of 
area under the PSD (i.e. the area beneath the curve), 
and E[P] is the expected number of peaks obtained 
by Equation (5). 
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m4 and m2 are the 4th and 2nd moments of area of the 
PSD respectively where the nth moment of area is 
obtained as ( )∫ ⋅= dffGfm n

n  , and G(f) is the 

value of the single sided PSD at frequency f Hz. 
 
The term in brackets in Equation (4) is the Raleigh 
distribution. Figure 3 shows the range-mean 
histogram obtained from the PSD of the time 
history given in Figure 1. The range mean 
histogram given by Bendat contains no cycle mean 
data. 
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Figure 3 Range-mean histogram derived from 

PSD using Bendat's method 

 
The problem with Bendat’s narrow band solution is 
that it is extremely conservative when wider band 
time histories are used. (We now observe a fatigue 
life of only 280.1 hours.) The reason for this lies in 
the assumption that peaks are matched with 
corresponding troughs of similar magnitude. This 
effect is illustrated in Figure 4. A narrow band time 
history is characterised by each peak having a 
corresponding valley of similar magnitude. In 
comparison, a wide band time history is 
characterised by smaller waves riding on a low 
frequency carrier. As Bendat assumes that all 
positive peaks are matched with corresponding 
valleys of similar magnitude, the damage is grossly 
exaggerated for wide band histories as shown. 
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Figure 4 Why Bendat's method is conservative 

 
During the 1980’s the need for a rapid fatigue 
analysis method based in the frequency domain 
became apparent to the offshore oil industry. Large 
jacket platforms were being designed and fatigue 
failures had to be avoided. The transient dynamic 
analysis proved too intensive for the time domain 
software because of the large structural models and 
high number of possible load combinations. The 
dynamic wave and wind load data was already 
provided in the frequency domain and it therefore 
seemed sensible to make use of the speed 
advantages inherent in a frequency domain analysis. 
The problem was how to calculate a reasonably 
accurate fatigue life using the resultant PSDs from 
the frequency domain analyses. 
 
Sea state spectra are relatively wide banded and this 
effectively rules out the use of Bendat’s narrow 
band fatigue analysis because the results prove too 
conservative. Several methods were developed to 
address this problem, the notable ones being 
Wirsching , Kam & Dover  and Hancock. These are 
semi-empirical approaches based on the narrow 
band solution. The latter two methods are both in 
the form of an equivalent stress parameter and 
neither tends to work particularly well when used 
outside the offshore platform industry. Wirsching’s 
approach was developed for the offshore industry 
but has been found to be applicable to a wider class 
of industrial problems. 
 
In other industries advances were also being made. 

Steinberg and Tunna both worked on the problem 
for the electronics and rail industries respectively. 
Again neither of these methods tend to work well 
outside their respective industries. For more 
information on these methods see Bishop [3]. 
 
In 1985 Dirlik  proposed an empirical closed form 
solution to the problem following extensive 
computer simulations using the Monte Carlo 
technique. Although apparently more complicated 
than some alternative methods it is still only a 
function of four moments of area of the PSD, these 
being m0, m1, m2 and m4. This method has been 
found to be widely applicable and constantly 
outperforms all of the other available methods. The 
Dirlik formulation is given in Equation (6). 
 

( ) [ ] ( )SpTPESN ⋅⋅=   (6) 
 
Where, N(S) is the number of stress cycles of range 
S N/mm2 expected in time T sec. E[P] is the 
expected number of peaks obtained by Equation (5). 
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Figure 5 shows the range mean histogram obtained 
using Dirlik’s method for the wind turbine data used 
in Figure 1. Again the method ignores the cycle 
mean stresses but now gives an improved range 
mean histogram that is comparable with that 



obtained using a time domain approach. The fatigue 
life is correctly calculated as 0.2 years. 
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Figure 5 Range-mean histogram derived from 

PSD by Dirlik's method 

In terms of accuracy, Dirlik’s empirical formula for 
rainflow ranges has been shown to be far superior to 
the previously available correction factors. 
However, the need for certification of the technique 
before its use meant that theoretical verification was 
required. Bishop [6] achieved this when a 
theoretical solution for predicting rainflow ranges 
from the moments of area of the PSD was produced. 
The theoretical approach devised by Bishop is 
computationally intensive and shows little 
improvement on accuracy over Dirlik’s empirical 
approach. For this reason, Bishop’s method gives 
credence to the Dirlik method but is seldom used 
for analysis purposes. 
 

5. Comparison between fatigue 
analysis techniques 

Many comparative studies have been carried out to 
ascertain the accuracy of all the various methods. 
The studies made by Bishop [2] are of notable 
significance. These studies took data from the 
Howden HWP330 wind turbine, computed fatigue 
lives in the frequency domain and then compared 
these with the life obtained from the time domain 

approach. A summary of the results is given in 
Table 1. 
 
 

Load Case Narrow Dirlik Wirsching  Bishop Chaudhury  Hancock
Band

y12a 5.14 1.03 3.91 1.52 2.13 2.75
y19a 5.15 1.00 3.92 1.54 2.14 2.77
y27a 14.34 1.59 10.91 1.74 5.12 5.83
y35a 81.87 2.34 62.23 1.95 30.08 25.08
y12b 1.91 0.77 1.46 1.13 0.98 1.25
y19b 1.98 0.81 1.50 1.22 1.04 1.31
y27b 3.67 1.07 2.79 1.29 1.47 1.92
y35b 18.34 1.48 13.95 1.84 5.68 6.10
y12c 1.98 0.76 1.51 0.86 0.95 1.25
y19c 1.87 0.73 1.43 0.86 0.92 1.20
y27c 2.03 0.74 1.54 0.72 0.87 1.14
y35c 3.22 0.76 2.45 0.66 1.15 1.42
y12d 2.09 0.84 1.59 1.15 1.03 1.33
y19d 2.03 0.83 1.54 1.17 1.02 1.31
y27d 2.92 1.01 2.22 1.15 1.23 1.62
y35d 7.50 1.12 5.70 1.23 2.75 3.29
y12e 2.80 0.99 2.13 1.27 1.50 1.95
y19e 3.06 1.01 2.33 1.44 1.64 2.12
y27e 3.50 1.03 2.67 1.53 1.65 2.16
y35e 8.81 1.11 6.71 1.99 3.31 4.15
y12f 3.86 0.98 2.93 1.43 1.66 2.18
y19f 3.97 1.00 3.02 1.61 1.78 2.33
y27f 3.96 1.01 3.01 1.57 1.76 2.31
y35f 5.59 0.98 4.25 1.65 2.17 2.80

avrg 7.98 1.04 6.08 1.36 3.08 3.32  
Table 1 Comparison between different frequency 

domain fatigue analyses 

The table clearly shows that the Dirlik approach is 
remarkably robust. It shows an average discrepancy 
of only 4% from the fatigue life calculated in the 
time domain. 
 

6. FE based vibration analysis in 
the frequency domain 

The previous section discussed methods of 
determining fatigue life from PSDs of stress. This 
section considers how these PSDs are obtained from 
finite element analysis. 
 
The dynamic behaviour of components can be 
determined both in the time and frequency domains. 
In the time domain this involves a complicated and 
often lengthy transient analysis. In the frequency 
domain it uses a very fast ‘transfer function’ 
technique. Essentially the frequency domain breaks 
down a signal into its constituent sinusoidal waves 
following Fourier’s theory. The transfer function 
relates the amplitude of the input force or moment 
to the amplitude of the output stress for each 
frequency of sinusoidal wave. An example transfer 



function plot is shown in Figure 6. This relates 
input force (N) to output stress (MPa) for a certain 
node on a FE model. The peaks represent resonant 
modes in the component. 
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Figure 6 Transfer function relating input force to 

output stress at a node 

6.1 Calculating the linear transfer function 

Consider the simple bracket component shown in 
Figure 7 subjected to a single input load. PSDs of 
stress are required at each node on the model in 
order to determine the fatigue life of the component. 
 
The equation of motion for the component is given 
in Equation (7). 
 

 
Figure 7 Simple FE model of a mounting bracket 

 
[ ] ( ) [ ] ( ) [ ] ( ) ( )tftxKtxCtxM =⋅+⋅+⋅ ���  (7) 
 
Where: [M] is the global mass matrix 

[C] is the global damping matrix 
[K] is the global stiffness matrix 
x(t) is the vector of nodal displacements 
f(t) is the vector of nodal forces 

 
In the case of a single input system the vector f(t) 
has only one non-zero component. 
 
If the input load is sinusoidally varying with respect 
to time then the displacement vector v(t) will also 
be sinusoidally varying. Expressing this in 
exponential form yields the expressions for load and 
displacement shown in Equation (8). 
 

( ) tieFtf ⋅⋅⋅= ω

 
( ) tieXtx ⋅⋅⋅= ω  (8)

Where: F is the amplitude of the sinusoidally 
varying force of frequency ω  rad/sec 
and X is the amplitude of the induced 
displacement. 

 
Differentiating displacement with respect to time 
yields expressions for the velocity and acceleration 
of the component. These are given in Equation (9). 
 

( ) tieXitx ⋅⋅⋅⋅⋅= ωω�  (9)

( ) tieXtx ⋅⋅⋅⋅−= ωω 2
��   

 
Substituting these into the Equation (7) and 
simplifying yields the following formula for the 
amplitude of displacement with respect to 
frequency. 
 

( ) ( ) ( )ωωω FHX ⋅=  (10) 
 
Where: H(ω ) is the linear transfer function given 

by: 

( ) [ ] [ ] [ ][ ] 12 −+⋅⋅+⋅−= KiCMH ωωω  
  

X(ω) is the vector of displacement 
amplitude 

 F(ω) is the vector of force amplitude 
 
It is usual to compute the transfer function between 
input force and output stress instead of 
displacement shown in Equation (10). This is 
carried out in the FE program following the back 
substitution stage. 
 
Classical FE analysis results in a tensor of 6 
component stresses at each node. These consist of 3 
axial and 3 shear stress components and are 
expressed mathematically in Equation (11). 
 

Axial ( ) ( ) ( )ωωω zzyyxx SSS ,,  (11)



Shear ( ) ( ) ( )ωωω xzyzxy SSS ,,  
N.B. for the two dimensional plate elements shown 
in Figure 7, the values of Szz(ω), Syz(ω) and Sxz(ω) 
are all zero. 

 
For the purpose of fatigue analysis a single PSD is 
required for each node showing some stress 
invariant such as von-Mises, Tresca or the absolute 
maximum principal stress. These are obtained by 
taking the eigenvalues of the stress tensor matrix 
given in Equation (12). 
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 (12) 
 
The desired stress invariant can be obtained from 
Equation (12). The modulus sign is necessary 
because the principal stresses returned by Equation 
(12) are complex. 
 
Maximum principal: (13) 
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von-Mises: 
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Where σxxx(ω) is the transfer function with respect 
to frequency ω rad/sec expressed as a stress 
invariant. Frequency can also be expressed in terms 
of Hertz after using the appropriate conversion. 
 
 

6.2 Single force input 

Having found the relationship between nodal stress 
invariant and applied load, the stress PSD G(f) for a 
single input load PSD W(f) can be found very 

rapidly by multiplying the input PSD by the transfer 
function as Equation (14). 
 

( ) ( ) ( )fWfHfG ⋅= 2
 (14) 

 
Figure 8 shows the fatigue log damage plot arising 
on the bracket due to a vertical vibration at the bolt 
hole. The critical fatigue life is determined as 206 
hours. 
 

 
Figure 8 Fatigue contor plot of Log Damage 

 

6.3 Multiple force input 

To this point we have only considered the response 
on an element resulting from a single random input.  
This section introduces the analysis of multiple 
random inputs.  Figure 9 shows a simple example of 
a flagpole with two flags flying at different heights.  
A typical application would be to determine the 
bending stress at the base of the flagpole as a result 
of the two random wind speeds seen by the flags. 
 
The time history of wind speed at the location of the 
flags can be recorded using anemometers.  PSDs of 
wind speed can be calculated from these; however, 
the PSDs alone do not provide information on the 
phase relationships between the two measured time 
histories. 
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Figure 9 Example of two random process inputs 

 
With multiple random processes we also require the 
sequential relationship between the two time 
histories.  If the two flags are far enough apart then 
the wind speed witnessed by one will be completely 
independent of that on the other.  As they are moved 
closer together then a correlation between the two 
time histories will be seen.  The two time histories 
are correlated because the random wind turbulence 
incident on one flag has a sufficiently large range of 
influence to also affect the response at the other. 
 
To calculate the bending stress at the base of the 
flagpole it is insufficient to simply sum the 
reactions from the two input PSDs, instead we must 
sum the reactions from the input and cross-power 
spectra.  The cross-power spectra contain 
information on the joint statistics of the two 
processes.  If the two processes are correlated then 
the sequencing effects may act to increase or 
decrease the base bending stress depending on 
whether the forces are in or out-of-phase.  For a 
mathematical explanation of this see Newland [8].  
The single-sided PSD function of stress at the base 
of the flagpole, Gzz(f), is therefore determined by 
Equation (15). 
 

( ) ( ) ( ) ( )∑∑
= =

⋅⋅=
2

1

2

1

*

a b
abbazz fWfHfHfG  (15) 

 
H1(f) and H2(f) are the transfer functions relating 
stress at the base of the flagpole to wind load 
incident on flags x and y, respectively. The asterisk 
indicates the complex conjugate. W11(f) and W22(f) 
are the PSD functions of wind speed at flags x and 
y, respectively, and W12(f) and W21(f) are the cross-

power spectral density functions.  For a general 
loading with n simultaneous forcing functions the 
PSD of stress can be obtained from Equation (16). 
 

( ) ( ) ( ) ( )∑∑
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n
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1 1

*  (16) 

7. Conclusions 

The concept of frequency domain fatigue analysis 
has been presented, where the random loading and 
response are categorised using Power spectral 
density (PSD) functions. All the current methods 
are briefly reviewed and conclusions are drawn 
showing that the Dirlik method is recommended for 
general use. The Dirlik formulation is presented 
along with an explanation of the FE analysis 
involved. 
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